TDA5200_10 [INFINEON]

ASK Single Conversion Receiver; ASK单转换接收器
TDA5200_10
型号: TDA5200_10
厂家: Infineon    Infineon
描述:

ASK Single Conversion Receiver
ASK单转换接收器

文件: 总39页 (文件大小:1575K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA 5200  
ASK Single Conversion Receiver  
Version 3.0  
Data Sheet  
Revision 3.0, 2010-12-28  
Wireless Components  
Edition 2010-12-28  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2011 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
TDA 5200  
ASK Single Conversion Receiver  
Revision History  
Page or Item  
Subjects (major changes since previous revision)  
Previous Revision: 2.9  
Revision 3.0, 2010-12-28  
all  
Converted into structured FrameMaker (EDD 3.4)  
More detailed explanation of AGC  
More detailed information of LNA high gain mode and LNA low gain mode  
4-3  
5-6, 5-8  
Trademarks of Infineon Technologies AG  
AURIX™, BlueMoon™, C166™, CanPAK™, CIPOS™, CIPURSE™, COMNEON™, EconoPACK™, CoolMOS™,  
CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,  
EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™,  
MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™, PRIMARION™,  
PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™,  
SINDRION™, SIPMOS™, SMARTi™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™,  
TRENCHSTOP™, TriCore™, X-GOLD™, X-PMU™, XMM™, XPOSYS™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,  
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR  
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,  
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.  
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of  
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data  
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of  
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics  
Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™  
of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc.,  
OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc.  
RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc.  
SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden  
Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA.  
UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™  
of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of  
Diodes Zetex Limited.  
Last Trademarks Update 2010-10-26  
Data Sheet  
3
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Table of Contents  
Table of Contents  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Product Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1
2
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1  
2.2  
2.3  
2.4  
3
3.1  
3.2  
3.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Low Noise Amplifier (LNA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
PLL Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Data Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Data Slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Peak Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Bandgap Reference Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.4  
3.4.1  
3.4.2  
3.4.3  
3.4.4  
3.4.5  
3.4.6  
3.4.7  
3.4.8  
3.4.9  
4
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Choice of LNA Threshold Voltage and Time Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Data Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Quartz Load Capacitance Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Quartz Frequency Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Data Slicer Threshold Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.1  
4.2  
4.3  
4.4  
4.5  
5
5.1  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Test Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Test Board Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
5.1.1  
5.1.2  
5.1.3  
5.2  
5.2.1  
5.2.2  
5.2.3  
Data Sheet  
4
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
List of Figures  
List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
PG-TSSOP-28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
PG-TSSOP-28 Package Outlines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
IC Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Main Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
LNA Automatic Gain Control Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Typical Curve of RSSI Level and Permissive AGC Threshold Levels . . . . . . . . . . . . . . . . . . . . . . 23  
Data Filter Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Determination of Series Capacitance Value for the Quartz Oscillator . . . . . . . . . . . . . . . . . . . . . . 25  
Data Slicer Threshold Generation with External R-C Integrator. . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 10 Data Slicer Threshold Generation Utilizing the Peak Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 11 Schematic of the Evaluation Board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 12 Top Side of the Evaluation Board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 13 Bottom Side of the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 14 Component Placement on the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Data Sheet  
5
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
List of Tables  
List of Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Table 10  
Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
FSEL Pin Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
CSEL Pin Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
PDWN Pin Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
PLL Division Ratio Dependence on States of CSEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Absolute Maximum Ratings, Ambient Temperature TAMB = - 40 °C ... + 85 °C . . . . . . . . . . . . . . . 28  
Operating Range, Ambient Temperature TAMB = - 40 °C ... + 85 °C . . . . . . . . . . . . . . . . . . . . . . . 29  
AC/DC Characteristics with TAMB = 25 °C, VCC = 4.5 ... 5.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Bill of Materials Addendum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Data Sheet  
6
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Product Info  
1
Product Info  
General Description  
The IC is a very low power consumption single chip ASK Single Conversion Receiver for receive frequencies  
bands 868-870 MHz and 433-435 MHz. The IC offers a high level of integration and needs only a few external  
components. The device contains a low noise amplifier (LNA), a double balanced mixer, a fully integrated VCO, a  
PLL synthesizer, a crystal oscillator, a limiter with RSSI generator, a data filter, a data comparator (slicer) and a  
peak detector. Additionally there is a power down feature to save battery life.  
Features  
Low supply current (Is = 4.8 mA typ. at 868 MHz, Is = 4.6 mA typ. at 434 MHz)  
Supply voltage range 5 V ±10 %  
Power down mode with very low supply current (50 nA typ)  
Fully integrated VCO and PLL Synthesizer  
RF input sensitivity < – 107 dBm  
Selectable frequency ranges around 868-870 MHz and 433-435 MHz  
Selectable reference frequency  
Limiter with RSSI generation, operating at 10.7 MHz  
2nd order low pass data filter with external capacitors  
Data slicer with self-adjusting threshold  
Application  
Keyless Entry Systems  
Remote Control Systems  
Alarm Systems  
Low Bitrate Communication Systems  
Package  
Figure 1  
PG-TSSOP-28  
Ordering Information  
Type  
Ordering Code  
Package1)  
TDA5200  
SP000016381  
PG-TSSOP-28  
1) Available on tape and reel  
Data Sheet  
7
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Product Description  
2
Product Description  
2.1  
Overview  
The IC is a very low power consumption single chip ASK Superheterodyne Receiver (SHR) for the frequency  
bands 868-870 MHz and 433-435 MHz. The IC offers a high level of integration and needs only a few external  
components. The device contains a low noise amplifier (LNA), a double balanced mixer, a fully integrated VCO, a  
PLL synthesizer, a crystal oscillator, a limiter with RSSI generator, a data filter, a data comparator (slicer) and a  
peak detector. Additionally there is a power down feature to save battery life.  
2.2  
Application  
Keyless Entry Systems  
Remote Control Systems  
Alarm Systems  
Low Bitrate Communication Systems  
2.3  
Features  
Low supply current (Is = 4.8 mA typ. at 868 MHz, Is = 4.6 mA typ. at 434 MHz)  
Supply voltage range 5 V ±10 %  
Power down mode with very low supply current (100 nA typ.)  
Fully integrated VCO and PLL Synthesizer  
RF input sensitivity < – 107 dBm  
Selectable receive frequency bands 868-870 MHz and 433-435 MHz  
Selectable reference frequency  
Limiter with RSSI generation, operating at 10.7 MHz  
2nd order low pass data filter with external capacitors  
Data slicer with self-adjusting threshold  
Data Sheet  
8
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Product Description  
2.4  
Package Outlines  
Figure 2  
PG-TSSOP-28 Package Outlines  
Data Sheet  
9
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Functional Description  
3
Functional Description  
3.1  
Pin Configuration  
CRST1  
VCC  
LNI  
1
2
3
4
5
6
7
8
9
28 CRST2  
27 PDWN  
26 PDO  
25 DATA  
24 3VOUT  
23 THRES  
22 FFB  
TAGC  
AGND  
LNO  
VCC  
MI  
TDA 5200  
21 OPP  
20 SLN  
MIX  
AGND 10  
FSEL 11  
IFO 12  
19 SLP  
18 LIMX  
17 LIM  
DGND 13  
VDD 14  
16 CSEL  
15 LF  
Figure 3  
IC Pin Configuration  
Data Sheet  
10  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Functional Description  
3.2  
Pin Definition and Function  
Table 1  
Pin Definition and Function  
Pin Name  
No.  
Pin  
Type  
Buffer Type  
Function  
1
CRST1  
In/Out  
External Crystal Connector 1  
4.15V  
1
50uA  
2
3
VCC  
LNI  
In  
In  
5 V Supply  
LNA Input  
57uA  
3
500uA  
4k  
1k  
Data Sheet  
11  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Functional Description  
Table 1  
Pin Definition and Function (cont’d)  
Pin Name  
No.  
Pin  
Type  
Buffer Type  
Function  
4
TAGC  
In/Out  
AGC Time Constant Control  
4.3V  
4.2uA  
1.5uA  
4
1k  
1.7V  
5
6
AGND  
LNO  
In  
Analogue Ground Return  
LNA Output  
Out  
5V  
1k  
6
7
8
VCC  
MI  
In  
In  
5 V Supply  
Mixer Input  
1.7V  
2k  
2k  
8
9
400uA  
Data Sheet  
12  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Functional Description  
Table 1  
Pin Definition and Function (cont’d)  
Pin Name  
No.  
Pin  
Type  
Buffer Type  
Function  
9
MIX  
In  
Complementary Mixer Input  
1.7V  
2k  
2k  
8
9
400uA  
10  
11  
AGND  
FSEL  
In  
In  
Analogue Ground Return  
Operating Frequency  
Selector  
869/434 MHz  
750  
1.2V  
2k  
11  
12  
IFO  
Out  
IF Mixer Output  
10.7 MHz  
300uA  
2.2V  
60  
12  
4.5k  
13  
14  
DGND  
VDD  
In  
In  
Digital Ground Return  
5 V Supply  
PLL Counter Circuitry  
Data Sheet  
13  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Functional Description  
Table 1  
Pin Definition and Function (cont’d)  
Pin Name  
No.  
Pin  
Type  
Buffer Type  
Function  
15  
LF  
In/Out  
PLL Filter Access Point  
5V  
4.6V  
30uA  
200  
100  
15  
30uA  
2.4V  
16  
CSEL  
In  
Quartz Selector  
6.xx MHz or 13.xx MHz  
1.2V  
80k  
16  
17  
LIM  
In  
Limiter Input  
2.4V  
15k  
17  
75uA  
330  
15k  
18  
Data Sheet  
14  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Functional Description  
Table 1  
Pin Definition and Function (cont’d)  
Pin Name  
No.  
Pin  
Type  
Buffer Type  
Function  
18  
LIMX  
In  
Complementary Limiter Input  
2.4V  
15k  
17  
75uA  
330  
15k  
18  
19  
SLP  
In  
Data Slicer Positive Input  
15uA  
100  
3k  
19  
40uA  
20  
SLN  
In  
Data Slicer Negative Input  
5uA  
10k  
20  
21  
OPP  
In  
OpAmp Noninverting Input  
5uA  
200  
21  
Data Sheet  
15  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Functional Description  
Table 1  
Pin Definition and Function (cont’d)  
Pin Name  
No.  
Pin  
Type  
Buffer Type  
Function  
22  
FFB  
In  
Data Filter Feedback Pin  
5uA  
100k  
22  
23  
THRES  
In  
AGC Threshold Input  
5uA  
10k  
23  
24  
3VOUT  
Out  
3 V Reference Output  
24  
3V  
25  
DATA  
Out  
Data Output  
200  
25  
80k  
26  
PDO  
Out  
Peak Detector Output  
200  
26  
Data Sheet  
16  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Functional Description  
Table 1  
Pin Definition and Function (cont’d)  
Pin Name  
No.  
Pin  
Type  
Buffer Type  
Function  
27  
PDWN  
In  
Power Down Input  
27  
220k  
220k  
28  
CRST2  
In/Out  
External Crystal Connector 2  
4.15V  
28  
50uA  
Data Sheet  
17  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Functional Description  
3.3  
Functional Block Diagram  
VCC  
IF  
Filter  
LNO  
6
MI MIX IFO  
LIM  
17  
LIMX  
18  
FFB  
22  
OPP  
21  
SLP  
19  
SLN  
20  
9
8
12  
25  
DATA  
3
RF  
LNA  
RSSI  
SLICER  
PDO  
26  
23  
4
TAGC  
THRES  
3VOUT  
AGC  
Reference  
24  
TDA 5200  
14  
VDD  
UREF  
Φ
Crystal  
OSC  
: 1/2  
VCO  
: 128/64  
DET  
DGND 13  
Bandgap  
Reference  
Loop  
Filter  
2/7  
VCC  
5/10  
AGND  
28  
11  
FSEL  
15  
LF  
16  
1
27  
CSEL  
PDWN  
Crystal  
Figure 4  
Main Block Diagram  
Data Sheet  
18  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Functional Description  
3.4  
Functional Blocks  
3.4.1  
Low Noise Amplifier (LNA)  
The LNA is an on-chip cascode amplifier with a voltage gain of 15 dB to 20 dB. The gain figure is determined by  
the external matching networks situated ahead of LNA and between the LNA output LNO (Pin 6) and the Mixer  
Inputs MI and MIX (Pin 8 and Pin 9). The noise figure of the LNA is approximately 3.2 dB, the current consumption  
is 500 µA. The gain can be reduced by approximately 18 dB. The switching point of this AGC action can be  
determined externally by applying a threshold voltage at the THRES pin (Pin 23). This voltage is compared  
internally with the received signal (RSSI) level generated by the limiter circuitry. In case that the RSSI level is  
higher than the threshold voltage the LNA gain is reduced and vice versa. The threshold voltage can be generated  
by attaching a voltage divider between the 3VOUT pin (Pin 24) which provides a temperature stable 3 V output  
generated from the internal bandgap voltage and the THRES pin as described in Chapter 4.1. The time constant  
of the AGC action can be determined by connecting a capacitor to the TAGC pin (Pin 4) and should be chosen  
along with the appropriate threshold voltage according to the intended operating case and interference scenario  
to be expected during operation. The optimum choice of AGC time constant and the threshold voltage is described  
in Chapter 4.1.  
3.4.2  
Mixer  
The Double Balanced Mixer down-converts the input frequency (RF) in the range of 433-435 MHz / 868-870 MHz  
to the intermediate frequency (IF) at 10.7 MHz with a voltage gain of approximately 21 dB. A low pass filter with a  
corner frequency of 20 MHz is built on chip in order to suppress RF signals to appear at the IF output (IFO pin).  
The IF output is internally consisting of an emitter follower that has a source impedance of approximately 330  
to facilitate interfacing the pin directly to a standard 10.7 MHz ceramic filter without additional matching circuitry.  
3.4.3  
PLL Synthesizer  
The Phase Locked Loop synthesizer consists of a VCO, an asynchronous divider chain, a phase detector with  
charge pump and a loop filter and is fully implemented on-chip. The VCO is including spiral inductors and varactor  
diodes. It’s nominal centre frequency is 840 MHz. No additional components are necessary.  
Local oscillator high side injection has to be used for receive frequencies below approximately 420 MHz or  
840 MHz, low side injection for receive frequencies above approximately 420 MHz or 840 MHz - see also  
Chapter 4.4. Therefore low-side injection of the local oscillator has to be used for operation both in the 868 MHz  
and the 434 MHz ISM bands.  
The oscillator signal is fed both to the synthesizer divider chain and to the down-converting mixer. In case of  
operation in the 433-435 MHz range, the signal is divided by two before it is fed to the mixer. This is controlled by  
the selection pin FSEL (Pin 11) as described in the following table. The overall division ratio of the divider chain  
can be selected to be either 128 or 64, depending on the frequency of the reference oscillator quartz (see below).  
The loop filter is also realized fully on-chip.  
Table 2  
FSEL  
FSEL Pin Operating States  
RF Frequency  
433-435 MHz  
868-870 MHz  
Open  
Shorted to ground  
Data Sheet  
19  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Functional Description  
3.4.4  
Crystal Oscillator  
The on-chip crystal oscillator circuitry allows for utilization of quartzes both in the 6 MHz and 13 MHz range as the  
overall division ratio of the PLL can be switched between 64 and 128 via the CSEL (Pin 16) pin according to the  
following table.  
Table 3  
CSEL  
Open  
CSEL Pin Operating States  
Crystal Frequency  
6.xx MHz  
Shorted to ground  
13.xx MHz  
The calculation of the value of the necessary quartz load capacitance is shown in Chapter 4.3, the quartz  
frequency calculation is explained in Chapter 4.4.  
3.4.5  
Limiter  
The Limiter is an AC coupled multistage amplifier with a cumulative gain of approximately 80 dB that has a  
bandpass-characteristic centered around 10.7 MHz. It has an input impedance of 330 to allow for easy  
interfacing to a 10.7 MHz ceramic IF filter. The limiter circuit acts as a Receive Signal Strength Indicator (RSSI)  
generator which produces a DC voltage that is directly proportional to the input signal level as can be seen in  
Figure 6. This signal is used to demodulate the ASK receive signal in the subsequent baseband circuitry and to  
turn down the LNA gain by approximately 17 dB in case the input signal strength is too strong as described in  
Chapter 3.4.1 and Chapter 4.1.  
3.4.6  
Data Filter  
The data filter comprises an OP-Amp with a bandwidth of 100 kHz used as a voltage follower and two 100 kon-  
chip resistors. Along with two external capacitors a 2nd order Sallen-Key low pass filter is formed. The selection of  
the capacitor values is described in Chapter 4.2.  
3.4.7  
Data Slicer  
The data slicer is a fast comparator with a bandwidth of 100 kHz. This allows for a maximum receive data rate of  
approximately 120 kBaud. The maximum achievable data rate also depends on the IF Filter bandwidth and the  
local oscillator tolerance values. Both inputs are accessible. The output delivers a digital data signal (CMOS-like  
levels) for the detector. The self-adjusting threshold on pin 20 is generated by RC-term or peak detector  
depending on the baseband coding scheme. The data slicer threshold generation alternatives are described in  
more detail in Chapter 4.5.  
3.4.8  
Peak Detector  
The peak detector generates a DC voltage which is proportional to the peak value of the receive data signal. An  
external RC network is necessary. The output can be used as an indicator for the signal strength and also as a  
reference for the data slicer. The maximum output current is 500 µA.  
3.4.9  
Bandgap Reference Circuitry  
A Bandgap Reference Circuit provides a temperature stable reference voltage for the device. A power down mode  
is available to switch off all sub-circuits which is controlled by the PWDN pin (Pin 27) as shown in the following  
table. The supply current drawn in this case is typically 50 nA.  
Data Sheet  
20  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Functional Description  
Table 4  
PDWN  
PDWN Pin Operating States  
Operating State  
Open or tied to ground  
Power Down Mode  
Receiver On  
Tied to VCC  
Data Sheet  
21  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Applications  
4
Applications  
4.1  
Choice of LNA Threshold Voltage and Time Constant  
In the following figure the internal circuitry of the LNA automatic gain control is shown.  
R4  
R5  
Uthreshold  
Pins:  
24  
23  
RSSI (0.8 - 2.8V)  
+3V  
OTA  
VCC  
Iload  
LNA  
Gain control  
voltage  
RSSI > Uthreshold: Iload=4.2µA  
RSSI < Uthreshold: Iload= -1.5µA  
4
Uc:< 2.6V : Gain high  
Uc:> 2.6V : Gain low  
UC  
C
Ucmax= VCC - 0.7V  
Ucmin = 1.67V  
Figure 5  
LNA Automatic Gain Control Circuitry  
The LNA automatic gain control circuitry consists of an operational transimpedance amplifier that is used to  
compare the received signal strength signal (RSSI) generated by the Limiter with an externally provided threshold  
voltage Uthres. As shown in the following figure the threshold voltage can have any value between approximately  
typically 0.8 V and 2.8 V to provide a switching point within the receive signal dynamic range.  
This voltage Uthres is applied to the THRES pin (Pin 23). The threshold voltage can be generated by attaching a  
voltage divider between the 3VOUT pin (Pin 24) which provides a temperature stable 3 V output generated from  
the internal bandgap voltage and the THRES pin. If the RSSI level generated by the Limiter is higher than Uthres  
,
the OTA generates a positive current Iload. This yields a voltage rise on the TAGC pin (Pin 4). Otherwise, the OTA  
generates a negative current. These currents do not have the same values in order to achieve a fast-attack and  
slow-release action of the AGC and are used to charge an external capacitor which finally generates the LNA gain  
control voltage.  
Data Sheet  
22  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Applications  
3
2.5  
2
RSSI Level  
1.5  
1
0.5  
0
-120  
-110  
-100  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
Input Level at LNA Input [dBm]  
Figure 6  
Typical Curve of RSSI Level and Permissive AGC Threshold Levels  
The switching point should be chosen according to the intended operating scenario. The determination of the  
optimum point is described in the accompanying Application Note, a threshold voltage level of 1.8 V is apparently  
a viable choice. It should be noted that the output of the 3VOUT pin is capable of driving up to 50 µA, but that the  
THRES pin input current is only in the region of 40 nA. As the current drawn out of the 3VOUT pin is directly related  
to the receiver power consumption, the power divider resistors should have high impedance values. R4 can be  
chosen as 120 k, R5 as 180 kto yield an overall 3VOUT output current of 10 µA.  
Notes  
1. To keep the LNA in high gain mode for the complete RF-input level range a voltage equal or higher than 3.3 V  
has to be applied at pin 23. Alternatively, pin 23 has to be connected to pin 24 and pin 4 has to be connected  
to GND. In addition this would save an external capacitor.  
2. To keep the LNA in low gain mode for the complete RF-input level range a voltage lower than 0.7 V has to be  
applied to the THRES pin (e.g. THRES connected to GND). In the above-mentioned mode pin 4 has to be  
connected by a capacitor to GND.  
3. As stated above, the gain control voltage of the LNA is generated at the capacitor connected to the TAGC pin  
by the charging and discharging currents of the OTA. Consequently this capacitor is responsible for the AGC  
time constant. As the charging and discharging currents are not equal two different time constants will result.  
The time constant corresponding to the charging process of the capacitor shall be chosen according to the  
data rate. According to measurements performed at Infineon the capacitor value should be greater than 47 nF.  
Data Sheet  
23  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Applications  
4.2  
Data Filter Design  
Utilizing the on-board voltage follower and the two 100 kon-chip resistors a 2nd order Sallen-Key low pass data  
filter can be constructed by adding 2 external capacitors between pin 19 (SLP) and pin 22 (FFB) and to pin 21  
(OPP) as depicted in the following figure and described in the following formulas1).  
C1  
22  
C2  
21  
Pins:  
19  
R
R
100k  
100k  
Figure 7  
Data Filter Design  
2Q b  
C1 =  
(1)  
(2)  
R2Πf3dB  
b
C2 =  
4QRΠf3dB  
with  
b
(3)  
Q =  
a
the quality factor of the poles where  
in case of a Bessel filter  
and thus  
a = 1.3617, b = 0.618  
Q = 0.577  
and in case of a Butterworth filter  
and thus  
a = 1.141, b = 1  
Q = 0.71  
Example  
Butterworth filter with  
f
3dB = 5 kHz and R = 100 kΩ  
C1 = 450 pF, C2 = 225 pF  
1) Taken from Tietze/Schenk: Halbleiterschaltungstechnik, Springer Berlin, 1999  
Data Sheet 24  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Applications  
4.3  
Quartz Load Capacitance Calculation  
The value of the capacitor necessary to achieve that the quartz oscillator is operating at the intended frequency is  
determined by the reactive part of the negative resistance of the oscillator circuit as shown in Chapter 5.1.3 and  
by the quartz specifications given by the quartz manufacturer.  
CS  
Pin 28  
Input  
impedance  
Crystal  
Z1-28  
TDA5200  
Pin 1  
Figure 8  
Determination of Series Capacitance Value for the Quartz Oscillator  
Crystal specified with load capacitance  
1
CS =  
(4)  
1
+2π f XL  
CL  
with CL the load capacitance (refer to the quartz crystal specification).  
Examples  
6.7 MHz  
CL = 12 pF  
CL = 12 pF  
XL = 750 Ω  
CS = 8.7 pF  
CS = 5.3 pF  
13.401 MHz  
XL = 1250 Ω  
These values may be obtained in high accuracy by putting two capacitors in series to the quartz, such as 20 pF  
and 15 pF in the 6.7 MHz case and 15 pF and 8.2 pF in the 13.401 MHz case.  
But please note that the calculated value of CS includes the parasitic capacitors also.  
Data Sheet  
25  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Applications  
4.4  
Quartz Frequency Calculation  
As described in Chapter 3.4.3, the operating range of the on-chip VCO is 820 MHz to 860 MHz with a nominal  
center frequency of approximately 840 MHz. This signal is divided by 2 before applied to the mixer in case of  
operation at 434 MHz. This local oscillator signal can be used to down-convert the RF signals both with high- or  
low-side injection at the mixer. The resulting receive frequency ranges then extend between 810 MHz and  
870 MHz or between 400 MHz and 440 MHz. Low-side injection of the local oscillator has to be used for receive  
frequencies between 840 MHz and 870 MHz as well as high-side injection for receive frequencies below 840 MHz.  
Corresponding to that in the 400 MHz region low-side injection is applicable for receive frequencies above  
420 MHz, high-side injection below this frequency. Therefore for operation both in the 868 MHz and the 434 MHz  
ISM bands low-side injection of the local oscillator has to be used. Then the local oscillator frequency is calculated  
by subtracting the IF frequency (10.7 MHz) from the RF frequency (434 MHz or 868 MHz). The overall division  
ratios in the PLL are 64 or 128 in case of operation at 868 MHz or 32 and 64 in case of operation at 434 MHz,  
depending on the crystal frequency used as shown below.  
Therefore, the quartz frequency is calculated by using the following formula:  
fRF ±10.7  
fQU  
=
(5)  
r
with  
ƒRF  
ƒLO  
ƒQU  
r
Receive frequency  
Local oscillator (PLL) frequency (ƒRF ± 10.7)  
Quartz oscillator frequency  
Ratio of local oscillator (PLL) frequency and quartz frequency as shown in the subsequent table  
Table 5  
FSEL  
Open  
Open  
GND  
PLL Division Ratio Dependence on States of CSEL  
CSEL  
Open  
GND  
Open  
GND  
Ratio r = (ƒLO/ƒQU)  
64  
32  
128  
64  
GND  
Subtraction of 10.7 occurs in case the receive frequency is higher than the intended local oscillator frequency,  
addition in case the receive frequency lies below the local oscillator frequency.  
Example  
fQU  
fQU  
fQU  
=
=
(
868.4MHz 10.7MHz  
868.4MHz 10.7MHz  
434.2MHz 10.7MHz  
)
/64 = 13.40156MHz  
/128 = 6.7008 MHz  
/32 = 13.23437MHz  
(6)  
(7)  
(8)  
(
)
=
(
)
Data Sheet  
26  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Applications  
4.5  
Data Slicer Threshold Generation  
The threshold of the data slicer can be generated in two ways, depending on the signal coding scheme used. In  
case of a signal coding scheme without DC content such as Manchester coding the threshold can be generated  
using an external RC-Integrator as shown in Figure 9. The time constant TA of the RC-Integrator has to be  
significantly larger than the longest period of no signal change TL within the data sequence. In order to keep  
distortion low, the minimum value for R is 20 k.  
R
C
data out  
Pins:  
19  
20  
25  
Uthreshold  
data  
filter  
data slicer  
Figure 9  
Data Slicer Threshold Generation with External R-C Integrator  
Another possibility for threshold generation is to use the peak detector in connection with two resistors and one  
capacitor as shown in the following figure. The component values are depending on the coding scheme and the  
protocol used.  
R
C
R
data out  
Pins:  
20  
19  
26  
25  
Uthreshold  
peak detector  
data slicer  
data  
filter  
Figure 10 Data Slicer Threshold Generation Utilizing the Peak Detector  
Data Sheet  
27  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Electrical Characteristics  
5
Electrical Characteristics  
5.1  
Electrical Data  
5.1.1  
Absolute Maximum Ratings  
Attention: The maximum ratings may not be exceeded under any circumstances, not even momentarily  
and individually, as permanent damage to the IC will result.  
Table 6  
Absolute Maximum Ratings, Ambient Temperature TAMB = - 40 °C ... + 85 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Number  
Min.  
-0.3  
-40  
Max.  
5.5  
Supply Voltage  
VCC  
Tj  
V
1.1  
1.2  
1.3  
1.4  
1.5  
Junction Temperature  
Storage Temperature  
Thermal Resistance  
ESD HBM integrity, all pins  
+125  
+150  
114  
°C  
°C  
K/W  
kV  
Ts  
-40  
RthJA  
VESD  
±1,5  
AEC Q100-002 /  
JESD22-A114B  
ESD SDM integrity, all pins  
VESD  
±750  
V
AINSI / ESD  
1.6  
SP5.3.2-2008  
Data Sheet  
28  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Electrical Characteristics  
5.1.2  
Operating Range  
Within the operating range the IC operates as explained in the circuit description. The AC/DC characteristic limits  
are not guaranteed.  
Supply voltage: VCC = 4.5 V ... 5.5 V  
Table 7  
Operating Range, Ambient Temperature TAMB = - 40 °C ... + 85 °C  
Parameter  
Symbol  
Values  
Typ. Max.  
5.6  
Unit Note /  
Test Condition  
Test Number  
Min.  
Supply Current  
IS 868  
IS 434  
RFin  
mA  
mA  
f
f
RF = 868 MHz  
RF = 434 MHz  
2.1  
2.2  
5.4  
Receiver Input Level  
-107  
-13  
dBm @ source impedance   
50 , BER 2E-3,  
average power level,  
Manchester encoded  
data rate 4 kBit,  
2.3  
280 kHz IF  
Bandwidth  
LNI Input Frequency  
MI/X Input Frequency  
fRF  
433  
868  
433  
868  
5
435  
870  
435  
870  
23  
MHz  
MHz  
MHz  
MHz  
MHz  
2.4  
2.5  
2.6  
2.7  
2.8  
fRF  
fMI  
fMI  
3 dB IF Frequency  
Range  
fIF -3 dB  
Power Down Mode On PWDNON  
Power Down Mode Off PWDNOFF  
0
0.8  
V
V
V
2.9  
2
VCC  
2.10  
2.11  
Gain Control Voltage,  
LNA high gain state  
VTHRES  
2.8  
VCC-1  
Gain Control Voltage,  
LNA low gain state  
VTHRES  
0
0.7  
V
2.12  
Attention: Test means that the parameter is not subject to production test.  
It was verified by design/characterization.  
Data Sheet  
29  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Electrical Characteristics  
5.1.3  
AC/DC Characteristics  
AC/DC characteristics involve the spread of values guaranteed within the specified voltage and ambient  
temperature range. Typical characteristics are the median of the production. The device performance parameters  
marked with are not subject to production test. They were verified by design/characterization.  
Table 8  
AC/DC Characteristics with TAMB = 25 °C, VCC = 4.5 ... 5.5 V  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Test Number  
Min.  
Max.  
Supply Current  
Supply current  
standby mode  
IS PDWN  
IS 868  
50  
70  
5.2  
5
nA  
Pin 27 (PDWN)  
open or tied to 0 V  
3.1  
3.2  
3.3  
Supply current, device  
operating at 868 MHz  
4.8  
4.6  
mA  
mA  
Pin11(FSEL)tied  
to GND  
Supply current, device  
operating at 434 MHz  
IS 434  
Pin 11 (FSEL)  
open  
LNA - Signal Input LNI (PIN 3), VTHRES > 3.3 V, High Gain Mode  
Average Power Level  
at BER = 2E-3  
(Sensitivity)  
RFin  
-110  
dBm Manchester  
encodeddatarate  
3.4  
4 kBit, 280 kHz IF  
Bandwidth  
Input impedance  
S11 LNA  
0.873 /  
-34.7 deg  
3.5  
3.6  
3.7  
3.8  
3.9  
3.10  
f
RF = 434 MHz  
Input impedance  
RF = 868 MHz  
S11 LNA  
0.738 /  
-73.5 deg  
f
Input level @ 1 dB  
compression  
P1dBLNA  
-10  
-10  
-14  
dBm  
Input 3rd order intercept IIP3LNA  
point fRF = 434 MHz  
dBm Matched input  
dBm Matched input  
dBm  
Input 3rd order intercept IIP3LNA  
point fRF = 868 MHz  
LO signal feedthrough at LOLNI  
-73  
antenna port  
LNA - Signal Output LNO (PIN 6), VTHRES > 3.3 V, High Gain Mode  
Gain fRF = 434 MHz  
Gain fRF = 868 MHz  
Output impedance,  
S21 LNA  
S21 LNA  
S22 LNA  
S22 LNA  
1.509 /  
138.2 deg  
3.11  
3.12  
3.13  
3.14  
1.419 /  
101.7 deg  
0.886 /  
-12.9 deg  
f
RF = 434 MHz  
Output impedance,  
RF = 868 MHz  
0.866 /  
-24.2 deg  
f
LNA - Signal Input LNI, VTHRES = GND, Low Gain Mode  
Input impedance  
RF = 434 MHz  
S11 LNA  
0.873 /  
-34.7 deg  
3.15  
f
Data Sheet  
30  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Electrical Characteristics  
Table 8  
AC/DC Characteristics with TAMB = 25 °C, VCC = 4.5 ... 5.5 V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Test Number  
Min.  
Max.  
Input impedance  
S11 LNA  
0.738 /  
-73.5 deg  
3.16  
3.17  
3.18  
3.19  
3.20  
f
RF = 868 MHz  
Input level @ 1 dB C. P. P1dBLNA  
RF = 434 MHz  
Input level @ 1 dB C. P. P1dBLNA  
RF = 868 MHz  
-18  
dBm Matched input  
dBm Matched input  
dBm Matched input  
dBm Matched input  
f
-6  
f
Input 3rd order intercept IIP3LNA  
point fRF = 434 MHz  
Input 3rd order intercept IIP3LNA  
point fRF = 868 MHz  
-10  
-5  
LNA - Signal Output LNO, VTHRES = GND, Low Gain Mode  
Gain fRF = 434 MHz  
S21 LNA  
S21 LNA  
S22 LNA  
S22 LNA  
0.183 /  
140.6 deg  
3.21  
3.22  
3.23  
3.24  
Gain fRF = 868 MHz  
0.179 /  
109.1 deg  
Output impedance  
,fRF = 434 MHz  
0.897 /  
-13.6 deg  
Output impedance  
0.868 /  
,fRF = 868 MHz  
-26.3 deg  
LNA - Antenna to IFO, VTHRES > 3.3 V, High Gain Mode  
Voltage Gain Antenna to GAntMixerOut  
Mixer-Out (IFO)  
42  
dB  
dB  
3.25  
3.26  
f
RF = 434 MHz  
Voltage Gain Antenna to GAntMixerOut  
40  
Mixer-Out (IFO)  
f
RF = 868 MHz  
LNA - Antenna to IFO, VTHRES = GND, Low Gain Mode  
Voltage Gain Antenna to GAntMixerOut  
Mixer-Out (IFO)  
22  
19  
dB  
dB  
3.27  
3.28  
f
RF = 434 MHz  
Voltage Gain Antenna to GAntMixerOut  
Mixer-Out (IFO)  
f
RF = 868 MHz  
AGC - Signal 3VOUT (PIN 24)  
Output voltage  
Current out  
V3VOUT  
I3VOUT  
3
V
At 5 µA  
3.29  
3.30  
50  
µA  
AGC - Signal THRES (PIN 23)  
Input Voltage range  
LNA low gain mode  
VTHRES  
VTHRES  
0
0
VCC-1  
V
V
See chapter 4.1  
3.31  
3.32  
Data Sheet  
31  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Electrical Characteristics  
Table 8  
AC/DC Characteristics with TAMB = 25 °C, VCC = 4.5 ... 5.5 V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Test Number  
Min.  
Max.  
LNA high gain mode  
VTHRES  
3.31)  
VCC-11)  
V
Voltage must not  
be higher than  
VCC-1 V  
3.33  
Current in  
ITHRES_in  
5
nA  
3.34  
AGC - Signal TAGC (PIN 4)  
Current out,  
LNA low gain state  
ITAGC_out  
4.2  
1.5  
µA  
µA  
RSSI > VTHRES  
RSSI < VTHRES  
3.35  
3.36  
Current in,  
ITAGC_in  
LNA high gain state  
MIXER - Signal Input MI/MIX (PINS 8/9)  
Input impedance  
RF = 434 MHz  
Input impedance  
RF = 868 MHz  
Input 3rd order intercept IIP3MIX  
point fRF = 434 MHz  
S11 MIX  
0.942 /  
-14.4 deg  
3.37  
3.38  
3.39  
3.40  
f
S11 MIX  
0.918 /  
-28.1 deg  
f
-28  
dBm  
dBm  
Input 3rd order intercept IIP3MIX  
point fRF = 868 MHz  
-26  
MIXER - Signal Output IFO (PIN 12)  
Output impedance  
Conversion Voltage Gain GMIX  
RF = 434 MHz  
Conversion Voltage Gain GMIX  
RF = 868 MHz  
LIMITER - Signal Input LIM/LIMX (PINS 17/18)  
ZIFO  
330  
3.41  
3.42  
+19  
dB  
f
+18  
dB  
3.43  
f
Input Impedance  
RSSI dynamic range  
RSSI linearity  
ZLIM  
264  
60  
330  
396  
80  
3.44  
3.45  
3.46  
3.47  
DRRSSI  
LINRSSI  
fLIM  
dB  
dB  
MHz  
±1  
Operating frequency  
(3 dB points)  
5
10.7  
23  
DATA FILTER  
Useable bandwidth  
BWBB FILT  
100  
kHz  
V
3.48  
3.49  
RSSI Level at Data Filter RSSIlow  
Output SLP  
1.1  
LNA in high gain  
RFIN = -103 dBm  
868 MHz  
RSSI Level at Data Filter RSSIhigh  
Output SLP  
2.65  
V
LNA in high gain  
RFIN = -30 dBm  
868 MHz  
3.50  
3.51  
SLICER - Signal Output DATA (PIN 25)  
Useable bandwidth  
BWBB SLIC  
100  
kHz  
Data Sheet  
32  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Electrical Characteristics  
Table 8  
AC/DC Characteristics with TAMB = 25 °C, VCC = 4.5 ... 5.5 V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Test Number  
Min.  
Max.  
Capacitive loading of  
output  
Cmax SLIC  
20  
pF  
3.52  
LOW output voltage  
HIGH output voltage  
VSLIC_L  
VSLIC_H  
0
V
3.53  
3.54  
VCC-1.3 VCC-1  
VCC-0.7 V  
Output current  
= 200 µA  
Output current  
ISLIC_out  
200  
µA  
3.55  
PEAK DETECTOR - Signal Output PDO (PIN 26)  
LOW output voltage  
HIGH output voltage  
Load current  
VSLIC_L  
VSLIC_H  
Iload  
0
V
3.56  
3.57  
3.58  
VCC-1  
V
-500  
µA  
Staticloadcurrent  
must not exceed  
-500 µA  
Leakage current  
Ileakage  
700  
nA  
3.59  
3.60  
CRYSTAL OSCILLATOR - Signals CRST1, CRST2, (PINS 1/28)  
Operating frequency  
fCRSTL  
6
14  
MHz Fundamental  
mode, series  
resonance  
Input Impedance  
@ ~6 MHz  
Z1-28  
Z1-28  
-900  
+ j750  
3.61  
3.62  
3.63  
3.64  
Input Impedance  
@ ~13 MHz  
-450  
+ j1250  
Serial Capacity  
@ ~6 MHz  
C
S6 = C1  
S13 = C1  
8.7  
pF  
pF  
Serial Capacity  
@ ~13 MHz  
C
5.3  
PLL - Signal LF (PIN 15)  
Tuning voltage relative to VTUNE  
0.4  
1.6  
2.4  
V
3.65  
VCC  
POWER DOWN MODE - Signal PDWN (PIN 27)  
Power Mode On  
Power Mode Off  
VON  
2.8  
0
VCC  
V
3.66  
3.67  
3.68  
3.69  
VPWDN  
0.8  
V
Input bias current PDWN IPDWN  
19  
<1  
µA  
Start-up Time until valid TSU  
IF signal is detected  
ms  
Depends on the  
used crystal  
PLL DIVIDER - Signal CSEL (PIN 16)  
f
f
CRSTL range 6.xx MHz  
VCSEL  
1.4  
0
42)  
V
Or open  
3.70  
3.71  
3.72  
CRSTL range 13.xx MHz VCSEL  
0.2  
V
Input bias current CSEL ICSEL  
5
µA  
CSEL tied to GND  
1) See Chapter 4.1 Choice of LNA Threshold Voltage and Time Constant.  
2) Maximum voltage in Power-On state is 4 V, but in PDWN-state the maximum voltage is 2.8 V.  
Data Sheet  
33  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Electrical Characteristics  
5.2  
Test Board  
Test Circuit  
5.2.1  
The device performance parameters marked with in Chapter 5.1.3 are not subject to production test. They were  
verified by design/characterization.  
Figure 11 Schematic of the Evaluation Board  
Data Sheet  
34  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Electrical Characteristics  
5.2.2  
Test Board Layouts  
Figure 12 Top Side of the Evaluation Board  
Figure 13 Bottom Side of the Evaluation Board  
Data Sheet  
35  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Electrical Characteristics  
Figure 14 Component Placement on the Evaluation Board  
Data Sheet  
36  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Electrical Characteristics  
5.2.3  
Bill of Materials  
The following components are necessary for evaluation of the TDA5200 without use of a Microchip HCS515  
decoder.  
Table 9  
Ref  
R1  
Bill of Materials  
Value  
Specification  
0805, ± 5 %  
0805, ± 5 %  
0805, ± 5 %  
0805, ± 5 %  
0805, ± 5 %  
0805, ± 5 %  
100 kΩ  
R2  
100 kΩ  
R3  
820 kΩ  
R4  
120 kΩ  
R5  
180 kΩ  
R6  
10 kΩ  
L1  
434 MHz: 15 nH  
868 MHz: 3.3 nH  
Toko, PTL2012-F15N0G  
Toko, PTL2012-F3N3C  
L2  
434 MHz: 8.2 pF  
868 MHz: 3.9 nH  
0805, COG, ± 0.1 pF  
Toko, PTL2012-F3N9C  
C1  
C2  
1 pF  
0805, COG, ± 0.1 pF  
434 MHz: 4.7 pF  
868 MHz: 3.9 pF  
0805, COG, ± 0.1 pF  
0805, COG, ± 0.1 pF  
C3  
434 MHz: 6.8 pF  
868 MHz: 5.6 pF  
0805, COG, ± 0.1 pF  
0805, COG, ± 0.1 pF  
C4  
C5  
C6  
100 pF  
47 nF  
0805, COG, ± 5 %  
1206, X7R, ± 10 %  
434 MHz: 10 nH  
868 MHz: 3.9 pF  
Toko, PTL2012-F10N0G  
0805, COG, ± 0.1 pF  
C7  
C8  
100 pF  
0805, COG, ± 5 %  
434 MHz: 33 pF  
868 MHz: 22 pF  
0805, COG, ± 5 %  
0805, COG, ± 5 %  
C9  
100 pF  
10 nF  
10 nF  
220 pF  
47 nF  
470 pF  
47 nF  
15 pF  
8.2 pF  
0805, COG, ± 5 %  
0805, X7R, ± 10 %  
0805, X7R, ± 10 %  
0805, COG, ± 5 %  
0805, X7R, ± 10 %  
0805, COG, ± 5 %  
0805, X7R, ± 5 %  
0805, COG, ± 1 %  
0805, COG, ± 1 %  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
Q2  
(fRF – 10.7 MHz)/32 or  
(fRF – 10.7 MHz)/64  
HC49/U, fundamental mode, CL = 12 pF,  
e.g. 434.2 MHz: Jauch Q 13,23437-S11-1323-12-10/20  
e.g. 868.4 MHz: Jauch Q 13,40155-S11-1323-12-10/20  
F1  
SFE10.7MA5-A or  
SKM107M1-A20-10  
Murata  
Toko  
X2, X3  
Data Sheet  
142-0701-801  
Johnson  
37  
Revision 3.0, 2010-12-28  
TDA 5200  
ASK Single Conversion Receiver  
Electrical Characteristics  
Table 9  
Ref  
Bill of Materials  
Value  
Specification  
X1, X4, S1, S5  
2-pole pin connector  
S4  
3-pole pin connector, or not equipped  
Infineon  
IC1  
TDA 5200  
Please note that in case of operation at 434 MHz a capacitor has to be soldered in place of L2 and an inductor in  
place of C6.  
The following components are necessary in addition to the above mentioned ones for evaluation of the TDA 5200  
in conjunction with a Microchip HCS515 decoder.  
Table 10  
Ref  
Bill of Materials Addendum  
Value  
Specification  
0805, ± 5 %  
0805, ± 5 %  
0805, ± 5 %  
0805, ± 5 %  
0805, ± 5 %  
1206, X7R, ± 10 %  
1206, X7R, ± 10 %  
Microchip  
R21  
R22  
R23  
R24  
R25  
C21  
C22  
IC2  
22 kΩ  
100 kΩ  
22 kΩ  
820 kΩ  
560 kΩ  
100 nF  
100 nF  
HCS515  
BC 847B  
LS T670-JL  
T1  
Infineon  
D1  
Infineon  
Data Sheet  
38  
Revision 3.0, 2010-12-28  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

TDA5200_15

Material Content Data Sheet
INFINEON

TDA5201

ASK Single Conversion Receiver
INFINEON

TDA5201XT

暂无描述
INFINEON

TDA5201_10

ASK Single Conversion Receiver
INFINEON

TDA5201_15

Material Content Data Sheet
INFINEON

TDA5204

ASK Single Conversion Receiver 390MHz
INFINEON

TDA5204E1

ASK Single Conversion Receiver 390MHz
INFINEON

TDA5210

ASK/FSK Single Conversion Receiver
INFINEON

TDA5210_15

Material Content Data Sheet
INFINEON

TDA5211

ASK/FSK Single Conversion Receiver
INFINEON

TDA5211XUMA1

Telecom Circuit, 1-Func, PDSO28, PLASTIC, TSSOP-28
INFINEON

TDA5211_15

Material Content Data Sheet
INFINEON