TDA5201 [INFINEON]

ASK Single Conversion Receiver; ASK单转换接收器
TDA5201
型号: TDA5201
厂家: Infineon    Infineon
描述:

ASK Single Conversion Receiver
ASK单转换接收器

电信集成电路 电信电路 光电二极管
文件: 总43页 (文件大小:668K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wireless Components  
ASK Single Conversion Receiver  
TDA 5201 Version 1.5  
Specification July 2004  
Revision History  
Current Version: 1.5 as of 01.07.04  
Previous Version: 1.4, March 2000  
Page  
Page  
Subjects (major changes since last revision)  
(in previous  
Version)  
(in current  
Version)  
ABM®, AOP®, ARCOFI®, ARCOFI®-BA, ARCOFI®-SP, DigiTape®, EPIC®-1, EPIC®-S, ELIC®, FALC®54, FALC®56, FALC®-E1, FALC®-LH, IDEC®, IOM®,  
IOM®-1, IOM®-2, IPAT®-2, ISAC®-P, ISAC®-S, ISAC®-S TE, ISAC®-P TE, ITAC®, IWE®, MUSAC®-A, OCTAT®-P, QUAT®-S, SICAT®, SICOFI®, SICOFI®-  
2, SICOFI®-4, SICOFI®-4µC, SLICOFI® are registered trademarks of Infineon Technologies AG.  
ACE, ASM, ASP, POTSWIRE, QuadFALC, SCOUTare trademarks of Infineon Technologies AG.  
Edition 07.04  
Published by Infineon Technologies AG,  
Balanstraße 73,  
81541 München  
© Infineon Technologies AG July 2004.  
All Rights Reserved.  
Attention please!  
As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits im-  
plemented within components or assemblies.  
The information describes the type of component and shall not be considered as assured characteristics.  
Terms of delivery and rights to change design reserved.  
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest  
Infineon Technologies Office.  
Infineon Technologies AG is an approved CECC manufacturer.  
Packing  
Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing  
material back, if it is sorted. You must bear the costs of transport.  
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.  
Components used in life-support devices or systems must be expressly authorized for such purpose!  
Critical components1 of the Infineon Technologies AG, may only be used in life-support devices or systems2 with the express written approval of the  
Infineon Technologies AG.  
1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-  
support device or system, or to affect its safety or effectiveness of that device or system.  
2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they  
fail, it is reasonable to assume that the health of the user may be endangered.  
TDA 5201  
Product Info  
Product Info  
Package  
General Description The IC is a very low power consump-  
tion single chip ASK Single Conver-  
sion Receiver for receive frequencies  
between 310 and 350MHz. The  
Receiver offers a high level of integra-  
tion and needs only a few external  
components. The device contains a  
low noise amplifier (LNA), a double  
balanced mixer, a fully integrated  
VCO, a PLL synthesiser, a crystal  
oscillator, a limiter with RSSI genera-  
tor, a data filter, a data comparator  
(slicer) and a peak detector. Addition-  
ally there is a power down feature to  
save battery life.  
Features Low supply current  
Selectable frequency ranges  
(Is = 4.6mA typ.)  
around 315 MHz and 345 MHz  
Supply voltage range 5V ±10%  
Selectable reference frequency  
Power down mode with very low  
Limiter with RSSI generation,  
supply current (50nA typ)  
operating at 10.7MHz  
Fully integrated VCO and PLL  
2nd order low pass data filter with  
Synthesiser  
external capacitors  
RF input sensitivity < 110dBm  
Data slicer with self-adjusting  
threshold  
Application Keyless Entry Systems  
Remote Control Systems  
Fire Alarm Systems  
Low Bitrate Communication  
Systems  
Ordering Information  
Type  
Ordering Code  
Q67037-A1118  
Package  
TDA 5201  
P-TSSOP-28-1  
available on tape and reel  
Wireless Components  
Product Info  
Specification, July 2004  
1
Table of Contents  
1 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
i
2 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1
2
2.1  
2.2  
2.3  
2.4  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2
2
3
3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1
2
3.1  
3.2  
3.3  
3.4  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Pin Definition and Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3
9
10  
10  
10  
10  
11  
11  
11  
11  
12  
12  
3.4.1 Low Noise Amplifier (LNA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.4.2 Mixer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.4.3 PLL Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.4.4 Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.4.5 Limiter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.4.6 Data Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.4.7 Data Slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.4.8 Peak Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.4.9 Bandgap Reference Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1
2
4.1  
Choice of LNA Threshold Voltage and Time Constant. . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.2  
4.3  
4.4  
4.5  
Data Filter Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Quartz Load Capacitance Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Quartz Frequency Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Data Slicer Threshold Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4
5
6
7
5 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.1 Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1
2
2
3
4
5.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.1.2 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.1.3 AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.2  
5.3  
5.4  
5.5  
Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Test Board Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Appendix - Noise Figure and Gain Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8
9
11  
13  
2
Product Description  
Contents of this Chapter  
2.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
2.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
2.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
2.4 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
TDA 5201  
Product Description  
2.1 Overview  
The IC is a very low power consumption single chip ASK Superheterodyne  
Receiver (SHR) for the frequency bands 315 and 345MHz. The SHR offers a  
high level of integration and needs only a few external components. The device  
contains a low noise amplifier (LNA), a double balanced mixer, a fully integrated  
VCO, a PLL synthesiser, a crystal oscillator, a limiter with RSSI generator, a  
data filter, a data comparator (slicer) and a peak detector. Additionally there is  
a power down feature to save battery life.  
2.2 Application  
Keyless Entry Systems  
Remote Control Systems  
Fire Alarm Systems  
Low Bitrate Communication Systems  
2.3 Features  
Low supply current (Is = 4.6mA typ.)  
Supply voltage range 5V ±10%  
Power down mode with very low supply current (50nA typ.)  
Fully integrated VCO and PLL Synthesiser  
RF input sensitivity < 110dBm  
Selectable receive frequency bands 315 and 345MHz  
Selectable reference frequency  
Limiter with RSSI generation, operating at 10.7MHz  
2nd order low pass data filter with external capacitors  
Data slicer with self-adjusting threshold  
Wireless Components  
2 - 2  
Specification, July 2004  
TDA 5201  
Product Description  
2.4 Package Outlines  
P_TSSOP_28.EPS  
Figure 2-1  
P-TSSOP-28-1 package outlines  
Wireless Components  
2 - 3  
Specification, July 2004  
3
Functional Description  
Contents of this Chapter  
3.1 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
3.2 Pin Definition and Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
3.3 Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9  
3.4 Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10  
TDA 5201  
Functional Description  
3.1 Pin Configuration  
CRST1  
VCC  
LNI  
1
2
3
4
5
6
7
8
9
28 CRST2  
27 PDWN  
26 PDO  
25 DATA  
24 3VOUT  
23 THRES  
22 FFB  
21 OPP  
20 SLN  
19 SLP  
18 LIMX  
17 LIM  
TAGC  
AGND  
LNO  
VCC  
MI  
TDA 5201  
MIX  
AGND 10  
FSEL 11  
IFO 12  
DGND 13  
VDD 14  
16 CSEL  
15 LF  
Pin_Configuration_5201_V1.4.wmf  
Figure 3-1  
IC Pin Configuration  
Wireless Components  
3 - 2  
Specification, July 2004  
TDA 5201  
Functional Description  
3.2 Pin Definition and Function  
Table 3-1 Pin Definition and Function  
Pin No. Symbol Equivalent I/O-Schematic  
Function  
1
CRST1  
External Crystal Connector 1  
4.15V  
1
50uA  
2
3
VCC  
LNI  
5V Supply  
LNA Input  
57uA  
3
500uA  
4k  
1k  
Wireless Components  
3 - 3  
Specification, July 2004  
TDA 5201  
Functional Description  
4
TAGC  
AGC Time Constant Control  
4.3V  
3uA  
4
1k  
1.4uA  
1.7V  
5
6
AGND  
LNO  
Analogue Ground Return  
LNA Output  
5V  
1k  
6
7
8
VCC  
MI  
5V Supply  
Mixer Input  
1.7V  
2k  
2k  
9
MIX  
Complementary Mixer Input  
8
9
400uA  
10  
11  
AGND  
FSEL  
Analogue Ground Return  
not applicable - has to be left  
open  
Wireless Components  
3 - 4  
Specification, July 2004  
TDA 5201  
Functional Description  
12  
IFO  
10.7 MHz IF Mixer Output  
300uA  
2.2V  
60  
12  
4.5k  
13  
14  
DGND  
VDD  
Digital Ground Return  
5V Supply (PLL Counter Cir-  
cuitry)  
15  
LF  
PLL Filter Access Point  
5V  
4.6V  
30uA  
200  
15  
100  
30uA  
2.4V  
16  
CSEL  
5.xx or 10.xx MHz Quartz  
Selector  
1.2V  
80k  
16  
Wireless Components  
3 - 5  
Specification, July 2004  
TDA 5201  
Functional Description  
17  
18  
LIM  
Limiter Input  
2.4V  
15k  
17  
LIMX  
Complementary Limiter Input  
75uA  
330  
15k  
18  
19  
SLP  
Data Slicer Positive Input  
15uA  
100  
3k  
19  
40uA  
20  
SLN  
Data Slicer Negative Input  
5uA  
10k  
20  
Wireless Components  
3 - 6  
Specification, July 2004  
TDA 5201  
Functional Description  
21  
22  
23  
24  
25  
OPP  
OpAmp Noninverting Input  
Data Filter Feedback Pin  
AGC Threshold Input  
3V Reference Output  
Data Output  
5uA  
200  
100k  
10k  
21  
FFB  
5uA  
22  
THRES  
3VOUT  
DATA  
5uA  
23  
24  
3V  
200  
25  
80k  
Wireless Components  
3 - 7  
Specification, July 2004  
TDA 5201  
Functional Description  
26  
PDO  
Peak Detector Output  
200  
26  
27  
PDWN  
Power Down Input  
27  
220k  
220k  
28  
CRST2  
External Crystal Connector 2  
4.15V  
28  
50uA  
Wireless Components  
3 - 8  
Specification, July 2004  
TDA 5201  
Functional Description  
3.3 Functional Block Diagram  
VCC  
IF  
Filter  
LNO  
6
MI MIX IFO  
LIM  
17  
LIMX  
18  
FFB  
22  
OPP  
21  
SLP  
19  
SLN  
20  
9
8
12  
25  
DATA  
3
RF  
LNA  
RSSI  
SLICER  
PDO  
26  
23  
4
TAGC  
THRES  
3VOUT  
AGC  
Reference  
24  
TDA 5201  
14  
VDD  
UREF  
Φ
Crystal  
OSC  
: 1/2  
VCO  
: 128/64  
DET  
DGND 13  
Bandgap  
Reference  
Loop  
Filter  
2/7  
VCC  
5/10  
AGND  
28  
11  
FSEL  
15  
LF  
16  
1
27  
CSEL  
PDWN  
Crystal  
Function_5200.wmf  
Figure 3-2  
Main Block Diagram  
Wireless Components  
3 - 9  
Specification, July 2004  
TDA 5201  
Functional Description  
3.4 Functional Blocks  
3.4.1 Low Noise Amplifier (LNA)  
The LNA is an on-chip cascode amplifier with a voltage gain of 15 to 20dB. The  
gain figure is determined by the external matching networks situated ahead of  
LNA and between the LNA output LNO (Pin 6) and the Mixer Inputs MI and MIX  
(Pins 8 and 9). The noise figure of the LNA is approximately 2dB, the current  
consumption is 500µA. The gain can be reduced by approximately 18dB. The  
switching point of this AGC action can be determined externally by applying a  
threshold voltage at the THRES pin (Pin 23). This voltage is compared internally  
with the received signal (RSSI) level generated by the limiter circuitry. In case  
that the RSSI level is higher than the threshold voltage the LNA gain is reduced  
and vice versa. The threshold voltage can be generated by attaching a voltage  
divider between the 3VOUT pin (Pin 24) which provides a temperature stable  
3V output generated from the internal bandgap voltage and the THRES pin as  
described in Section 4.1. The time constant of the AGC action can be deter-  
mined by connecting a capacitor to the TAGC pin (Pin 4) and should be chosen  
along with the appropriate threshold voltage according to the intended operat-  
ing case and interference scenario to be expected during operation. The opti-  
mum choice of AGC time constant and the threshold voltage is described in  
Section 4.1.  
3.4.2 Mixer  
The Double Balanced Mixer downconverts the input frequency (RF) in the  
range of 310-350MHz to the intermediate frequency (IF) at 10.7MHz with a vol-  
tage gain of approximately 21dB by utilising either high- or low-side injection of  
the local oscillator signal. In case the mixer is interfaced only single-ended, the  
unused mixer input has to be tied to ground via a capacitor. The mixer is fol-  
lowed by a low pass filter with a corner frequency of 20MHz in order to suppress  
RF signals to appear at the IF output (IFO pin). The IF output is internally con-  
sisting of an emitter follower that has a source impedance of approximately  
330to facilitate interfacing the pin directly to a standard 10.7MHz ceramic filter  
without additional matching circuitry.  
3.4.3 PLL Synthesizer  
The Phase Locked Loop synthesizer consists of a VCO, an asynchronous  
divider chain, a phase detector with charge pump and a loop filter and is fully  
implemented on-chip. The VCO is including spiral inductors and varactor  
diodes. The FSEL pin (Pin11) has to be left open. The tuning range of the VCO  
was designed to guarantee over production spread and the specified tempera-  
ture range a receive frequency range between 310 and 350MHz depending on  
whether high- or low-side injection of the local oscillator is used. The oscillator  
signal is fed both to the synthesiser divider chain and to a divider that is dividing  
Wireless Components  
3 - 10  
Specification, July 2004  
TDA 5201  
Functional Description  
the signal by 2 before it is applied to the downconverting mixer. Local oscillator  
high side injection has to be used for receive frequencies between approxi-  
mately 310 and 330 MHz, low side injection for receive frequencies between  
330 and 350MHz - see also Section 4.4..  
3.4.4 Crystal Oscillator  
The on-chip crystal oscillator circuitry allows for utilisation of quartzes both in  
the 5 and 10MHz range as the overall division ratio of the PLL can be switched  
between 64 and 128 via the CSEL (Pin 16 ) pin according to the following table.  
Table 3-2 CSEL Pin Operating States  
CSEL  
Crystal Frequency  
5.xx MHz  
Open  
Shorted to ground  
10.xx MHz  
The calculation of the value of the necessary quartz load capacitance is shown  
in Section 4.3, the quartz frequency calculation is expained in Section 4.4.  
3.4.5 Limiter  
The Limiter is an AC coupled multistage amplifier with a cumulative gain of  
approximately 80dB that has a bandpass-characteristic centred around  
10.7MHz. It has an input impedance of 330 to allow for easy interfacing to a  
10.7MHz ceramic IF filter. The limiter circuit acts as a Receive Signal Strength  
Indicator (RSSI) generator which produces a DC voltage that is directly propor-  
tional to the input signal level as can be seen in Figure 4-2. This signal is used  
to demodulate the ASK receive signal in the subsequent baseband circuitry and  
to turn down the LNA gain by approximately 18dB in case the input signal  
strength is too strong as described in Section 3.4.1 and Section 4.1.  
3.4.6 Data Filter  
The data filter comprises an OP-Amp with a bandwidth of 100kHz used as a  
voltage follower and two 100kon-chip resistors. Along with two external  
capacitors a 2nd order Sallen-Key low pass filter is formed. The selection of the  
capacitor values is described in Section 4.2.  
Wireless Components  
3 - 11  
Specification, July 2004  
TDA 5201  
Functional Description  
3.4.7 Data Slicer  
The data slicer is a fast comparator with a bandwidth of 100 kHz. This allows  
for a maximum receive data rate of approximately 120kBaud. The maximum  
achievable data rate also depends on the IF Filter bandwidth and the local oscil-  
lator tolerance values. Both inputs are accessible. The output delivers a digital  
data signal (CMOS-like levels) for the detector. The self-adjusting threshold on  
pin 20 its generated by RC-term or peak detector depending on the baseband  
coding scheme. The data slicer threshold generation alternatives are described  
in more detail in Section 4.5.  
3.4.8 Peak Detector  
The peak detector generates a DC voltage which is proportional to the peak  
value of the receive data signal. An external RC network is necessary. The out-  
put can be used as an indicator for the signal strength and also as a reference  
for the data slicer. The maximum output current is 500µA.  
3.4.9 Bandgap Reference Circuitry  
A Bandgap Reference Circuit provides a temperature stable reference voltage  
for the device. A power down mode is available to switch off all subcircuits which  
is controlled by the PWDN pin (Pin 27) as shown in the following table. The sup-  
ply current drawn in this case is typically 50nA.  
Table 3-3 PDWN Pin Operating States  
PDWN  
Operating State  
Powerdown Mode  
Receiver On  
Open or tied to ground  
Tied to Vs  
Wireless Components  
3 - 12  
Specification, July 2004  
4
Applications  
Contents of this Chapter  
4.1 Choice of LNA Threshold Voltage and Time Constant. . . . . . . . . . . . 4-2  
4.2 Data Filter Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4  
4.3 Quartz Load Capacitance Calculation . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
4.4 Quartz Frequency Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  
4.5 Data Slicer Threshold Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7  
TDA 5201  
Applications  
4.1 Choice of LNA Threshold Voltage and Time Constant  
In the following figure the internal circuitry of the LNA automatic gain control is  
shown.  
R4  
R5  
Uthreshold  
Pins:  
24  
23  
RSSI (0.8 - 2.8V)  
+3V  
OTA  
VCC  
Iload  
LNA  
Gain control  
voltage  
RSSI > Uthreshold: Iload=4.2µA  
RSSI < Uthreshold: Iload= -1.5µA  
4
Uc:< 2.6V : Gain high  
Uc:> 2.6V : Gain low  
UC  
C
U
cmax= VCC - 0.7V  
Ucmin = 1.67V  
LNA_autom.wmf  
Figure 4-1  
LNA Automatic Gain Control Circuitry  
The LNA automatic gain control circuitry consists of an operational transimped-  
ance amplifier that is used to compare the received signal strength signal  
(RSSI) generated by the Limiter with an externally provided threshold voltage  
U
thres. As shown in the following figure the threshold voltage can have any  
value between approximately 0.8 and 2.8V to provide a switching point within  
the receive signal dynamic range.  
This voltage Uthres is applied to the THRES pin (Pin 23) The threshold voltage  
can be generated by attaching a voltage divider between the 3VOUT pin  
(Pin 24) which provides a temperature stable 3V output generated from the  
internal bandgap voltage and the THRES pin. If the RSSI level generated by the  
Limiter is higher than Uthres, the OTA generates a positive current Iload. This  
yields a voltage rise on the TAGC pin (Pin 4). Otherwise, the OTA generates a  
negative current. These currents do not have the same values in order to  
achieve a fast-attack and slow-release action of the AGC and are used to  
charge an external capacitor which finally generates the LNA gain control volt-  
age.  
Wireless Components  
4 - 2  
Specification, July 2004  
TDA 5201  
Applications  
3
2.5  
2
RSSI Level  
1.5  
1
0.5  
0
-120  
-110  
-100  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
Input Level at LNA Input [dBm]  
RSSI-AGC.wmf  
Figure 4-2  
RSSI Level and Permissive AGC Threshold Levels  
The switching point should be chosen according to the intended operating sce-  
nario. The determination of the optimum point is described in the accompanying  
Application Note, a threshold voltage level of 1.8V is apparently a viable choice.  
It should be noted that the output of the 3VOUT pin is capable of driving up to  
50µA, but that the THRES pin input current is only in the region of 40nA. As the  
current drawn out of the 3VOUT pin is directly related to the receiver power con-  
sumption, the power divider resistors should have high impedance values. R4  
can be chosen as 120k, R5 as 180kto yield an overall 3VOUT output current  
of 10µA.  
Note: If the LNA gain shall be kept in either high or low gain mode this has to  
be accomplished by tying the THRES pin to a fixed voltage. In order to achieve  
high gain mode operation, a voltage higher than 2.8V shall be applied to the  
THRES pin, such as a short to the 3VOLT pin. In order to achieve low gain  
mode operation a voltage lower than 0.7V shall be applied to the THRES, such  
as a short to ground.  
As stated above the capacitor connected to the TAGC pin is generating the gain  
control voltage of the LNA due to the charging and discharging currents of the  
OTA and thus is also responsible for the AGC time constant. As the charging  
and discharging currents are not equal two different time constants will result.  
The time constant corresponding to the charging process of the capacitor shall  
be chosen according to the data rate. According to measurements performed  
at Infineon the capacitor value should be greater than 47nF.  
Wireless Components  
4 - 3  
Specification, July 2004  
TDA 5201  
Applications  
4.2 Data Filter Design  
Utilising the on-board voltage follower and the two 100kon-chip resistors a  
2nd order Sallen-Key low pass data filter can be constructed by adding 2 exter-  
nal capacitors between pins 19 (SLP) and 22 (FFB) and to pin 21 (OPP) as  
depicted in the following figure and described in the following formulas1.  
C1  
22  
C2  
21  
Pins:  
19  
R
R
100k  
100k  
Filter_Design.wmf  
Figure 4-3  
Data Filter Design  
2Q b  
C1 =  
R2Πf3dB  
b
C2 =  
4QRΠf3dB  
with  
b
Q =  
a
the quality factor of the poles where  
in case of a Bessel filter  
and thus  
a = 1.3617, b = 0.618  
Q = 0.577  
and in case of a Butterworth filter  
and thus  
a = 1.141, b = 1  
Q = 0.71  
Example: Butterworth filter with f3dB = 5kHz and R = 100k:  
C1 = 450pF, C2 = 225pF  
1. taken from Tietze/Schenk: Halbleiterschaltungstechnik, Springer Berlin, 1999  
Wireless Components  
4 - 4  
Specification, July 2004  
TDA 5201  
Applications  
4.3 Quartz Load Capacitance Calculation  
The value of the capacitor necessary to achieve that the quartz oscillator is  
operating at the intended frequency is determined by the reactive part of the  
negative resistance of the oscillator circuit as shown in Section 5.1.3 and by the  
quartz specifications given by the quartz manufacturer.  
CS  
Pin 28  
Input  
impedance  
Crystal  
Z1-28  
TDA5200  
Pin 1  
Quartz_load.wmf  
Figure 4-4  
Determination of Series Capacitance Value for the Quartz Oscillator  
Crystal specified with load capacitance  
1
CS =  
1
+ 2π f X L  
Cl  
with Cl the load capacitance (refer to the quartz crystal specification).  
Examples:  
5.1 MHz:  
CL = 12 pF  
XL=580 Ω  
XL=870 Ω  
CS = 9.8 pF  
CS = 7.2 pF  
10.18 MHz: CL = 12 pF  
These values may be obtained by putting two capacitors in series to the quartz,  
such as 18pF and 22pF in the 5.1MHz case and 18pF and 12pF in the 10.2MHz  
case.  
But please note that the calculated value of CS includes the parasitic capacitors  
also.  
Wireless Components  
4 - 5  
Specification, July 2004  
TDA 5201  
Applications  
4.4 Quartz Frequency Calculation  
As described in Section 3.4.3 the operating range of the on-chip VCO is wide  
enough to guarantee a receive frequency range between 310 and 350MHz. The  
VCO signal is divided by 2 before applied to the mixer . This local oscillator sig-  
nal can be used to downconvert the RF signals both with high- or low-side injec-  
tion at the mixer. High-side injection of the local oscillator has to be used for  
receive frequencies between 310 and 330 MHz. In this case the local oscillator  
frequency is calculated by adding the IF frequency (10.7 MHz) to the RF fre-  
quency.  
Low-side injection has to be used for receive frequencies between 330 and  
350 MHz. The local oscillator frequency is calculated by subtracting the IF fre-  
quency (10.7 MHz) from the RF frequency then. The overall division ratios in  
the PLL are 64 or 32 depending on whether the CSEL-pin is left open or tied to  
ground.  
Therefore the quartz frequency may be calculated by using the following for-  
mula:  
fRF 10.7  
fQU  
=
r
with  
ƒRF ....  
ƒLO ....  
ƒQU ....  
receive frequency  
local oscillator (PLL) frequency (ƒRF ± 10.7)  
quartz oscillator frequency  
r
....  
ratio of local oscillator (PLL) frequency and quartz  
frequency as shown in the subsequent table.  
Table 4-1 PLL Division Ratio Dependence on States of CSEL  
CSEL  
open  
GND  
Ratio r = (fLO/fQU)  
64  
32  
Example:  
Addition of 10.7 is used in case of operation the device at 315 MHz, subtraction  
in case of operation at 345 MHz for instance. This yields the following frequen-  
cies:  
CSEL tied to GND:  
fQU  
fQU  
=
=
(
315MHz +10.7MHz  
)
)
/ 32 = 10.1781 MHz  
/ 32 = 10.4469 MHz  
(
345MHz 10.7MHz  
Wireless Components  
4 - 6  
Specification, July 2004  
TDA 5201  
Applications  
CSEL open:  
fQU  
fQU  
=
=
(
315MHz + 10.7MHz  
)
)
/ 64 = 5.0891 MHz  
/ 64 = 5.2234 MHz  
(
345MHz 10.7MHz  
Wireless Components  
4 - 7  
Specification, July 2004  
TDA 5201  
Applications  
4.5 Data Slicer Threshold Generation  
The threshold of the data slicer especially for a coding scheme without DC-con-  
tent, can be generated in two ways, depending on the signal coding scheme  
used. In case of a signal coding scheme without DC content such as Manches-  
ter coding the threshold can be generated using an external R-C integrator as  
shown in Figure 4-5. The time constant TA of the R-C integrator has to be sig-  
nificantly larger than the longest period of no signal change TL within the data  
sequence. In order to keep distortion low, the minimum value for R is 20k.  
R
C
data out  
Pins:  
19  
20  
25  
Uthreshold  
data  
filter  
data slicer  
Data_slice1.wmf  
Figure 4-5  
Data Slicer Threshold Generation with External R-C Integrator  
Another possibility for threshold generation is to use the peak detector in con-  
nection with two resistors and one capacitor as shown in the following figure.  
The component values are depending on the coding scheme and the protocol  
used.  
R
C
R
data out  
Pins:  
20  
19  
26  
25  
Uthreshold  
peak detector  
data slicer  
data  
filter  
Data_slice2.wmf  
Figure 4-6  
Data Slicer Threshold Generation Utilising the Peak Detector  
Wireless Components  
4 - 8  
Specification, July 2004  
5
Reference  
Contents of this Chapter  
5.1 Electrical Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2  
5.2 Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8  
5.3 Test Board Layouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9  
5.4 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11  
5.5 Appendix - Noise Figure and Gain Circles . . . . . . . . . . . . . . . . . . . . 5-13  
TDA 5201  
Reference  
5.1 Electrical Data  
5.1.1 Absolute Maximum Ratings  
WARNING  
The maximum ratings may not be exceeded under any circumstances, not even  
momentarily and individually, as permanent damage to the IC will result.  
Table 5-1 Absolute Maximum Ratings, Ambient temperature T  
=-40°C ... + 85°C  
Limit Values  
AMB  
#
Parameter  
Symbol  
Unit  
Remarks  
min  
-0.3  
max  
5.5  
1
2
3
4
5
Supply Voltage  
Vs  
Tj  
V
°C  
Junction Temperature  
Storage Temperature  
Thermal Resistance  
ESD integrity, all pins  
-40  
-40  
+125  
+150  
114  
+1  
Ts  
°C  
RthJA  
VESD  
K/W  
kV  
-1  
HBM  
according to  
MIL STD  
883D,  
method  
3015.7  
Wireless Components  
5 - 2  
Specification, July 2004  
TDA 5201  
Reference  
5.1.2 Operating Range  
Within the operating range the IC operates as explained in the circuit descrip-  
tion. The AC/DC characteristic limits are not guaranteed.  
Supply voltage: VCC = 4.5V .. 5.5V  
Table 5-2 Operating Range, Ambient temperature T  
= -40°C ... + 85°C  
AMB  
#
Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions/Notes  
L
Item  
min  
max  
5.2  
1
2
Supply Current  
I
mA  
f
= 315MHz  
RF  
S
Receiver Input Level  
RFin  
-110  
-13  
dBm  
@ source impedance 50,  
BER 2E-3, average power  
level, Manchester encoded  
datarate 4kBit, 280kHz IF  
Bandwidth  
3
4
5
6
7
8
LNI Input Frequency  
MI/X Input Frequency  
3dB IF Frequency Range  
Powerdown Mode On  
Powerdown Mode Off  
fRF  
fMI  
310  
310  
5
350  
350  
23  
MHz  
MHz  
MHz  
V
fIF -3dB  
PWDNON  
PWDNOFF  
VTHRES  
0
0.8  
2
V
V
S
S
Gain Control Voltage,  
LNA high gain state  
2.8  
V
V
9
Gain Control Voltage,  
LNA low gain state  
VTHRES  
0
0.7V  
V
ꢀꢀ Not part of the production test - either verified by design or measured in an Infineon Evalboard as described in  
Section 5.2.  
Wireless Components  
5 - 3  
Specification, July 2004  
TDA 5201  
Reference  
5.1.3 AC/DC Characteristics  
AC/DC characteristics involve the spread of values guaranteed within the spec-  
ified voltage and ambient temperature range. Typical characteristics are the  
median of the production. The device performance parameters marked with ꢀ  
are not part of the production test, but verified by design or measured on an Infi-  
neon evaluation board as desdribed in Section 5.2.  
Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions /  
L
Item  
Notes  
min  
typ  
max  
Supply  
Supply Current  
1
Supply current,  
standby mode  
IS PDWN  
50  
70  
5
nA  
Pin 27 (PDWN)  
open or tied to 0 V  
2
Supply current  
I
4.6  
mA  
S
LNA  
Signal Input LNI (PIN 3), V  
> 2.8V, high gain mode  
THRES  
1
Average Power Level  
at BER = 2E-3  
(Sensitivity)  
RFin  
-112  
dBm Manchester  
encoded datarate  
4kBit, 280kHz IF  
Bandwidth  
2
3
4
Input impedance,  
S
0.895 / -25.5 deg  
11 LNA  
f
= 315 MHz  
RF  
Input level @ 1dB C.P.  
fRF=315 MHz  
P1dB  
IIP3  
-14  
-10  
dBm  
LNA  
Input 3rd order intercept  
LNA  
LNI  
dBm fin = 315 & 317MHz  
dBm  
point f = 315 MHz  
RF  
5
LO signal feedthrough at  
antenna port  
LO  
-119  
Signal Output LNO (PIN 6), V  
> 2.8V, high gain mode  
THRES  
1
2
Gain f = 315 MHz  
RF  
S
1.577 / 150.3 deg  
21 LNA  
22 LNA  
Output impedance,  
S
0.897 / -10.3 deg  
f
= 315 MHz  
RF  
3
4
Voltage Gain Antenna to  
G
21  
2
dB  
AntMI  
MI f = 315 MHz  
RF  
Noise Figure  
NF  
dB  
excluding matching  
network loss - see  
Appendix  
LNA  
Signal Input LNI, V  
= GND, low gain mode  
THRES  
1
Input impedance,  
= 315 MHz  
S
0.918 / -25.2 deg  
-7  
11 LNA  
f
RF  
2
Input level @ 1dB C. P.  
= 315 MHz  
P1dB  
LNA  
dBm matched input  
f
RF  
Wireless Components  
5 - 4  
Specification, July 2004  
TDA 5201  
Reference  
Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V (continued)  
Parameter  
Symbol  
Limit Values  
Unit Test Conditions/  
Notes  
L
Item  
min  
= GND, low gain mode  
typ  
max  
Signal Input LNI, V  
THRES  
Input 3rd order intercept  
LNA  
3
IIP3  
-13  
dBm fin = 315 & 317MHz  
point f = 315 MHz  
RF  
Signal Output LNO, V  
= GND, low gain mode  
THRES  
1
2
Gain f = 315 MHz  
S
0.007 / 153.7 deg  
0.907 / -10.5 deg  
RF  
21 LNA  
22 LNA  
Output impedance,  
S
f
= 315 MHz  
RF  
3
Voltage Gain Antenna to  
MI f = 315 MHz  
G
2
3
dB  
AntMI  
RF  
Signal 3VOUT (PIN 24)  
1
2
Output voltage  
Current out  
V
I
V
3VOUT  
50  
µA  
3VOUT  
Signal THRES (PIN 23)  
1
2
3
4
Input Voltage range  
LNA low gain mode  
LNA high gain mode  
Current in  
V
0
0
V -1V  
S
V
V
see chapter 4.1  
THRES  
THRES  
THRES  
V
V
2.8  
3
5
V -1  
S
V
or shorted to Pin 24  
ITHRES_in  
nA  
Signal TAGC (PIN 4)  
1
Current out,  
LNA low gain state  
ITAGC_out  
4.2  
1.5  
µA  
µA  
RSSI > V  
RSSI < V  
THRES  
2
Current in,  
I
TAGC_in  
THRES  
LNA high gain state  
MIXER  
Signal Input MI/MIX (PINS 8/9)  
1
Input impedance,  
= 315 MHz  
S
0.954 / -10.9 deg  
-25  
11 MIX  
f
RF  
Input 3rd order intercept  
point  
MIX  
2
IIP3  
dBm  
Signal Output IFO (PIN 12)  
1
2
Output impedance  
Z
330  
+21  
IFO  
Conversion Voltage Gain  
G
dB  
MIX  
f
=869 MHz  
RF  
3
4
Noise Figure, SSB  
(~DSB NF+3dB)  
NF  
13  
46  
dB  
dB  
MIX  
RF to IF isolation  
A
RF-IF  
Wireless Components  
5 - 5  
Specification, July 2004  
TDA 5201  
Reference  
Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V (continued)  
Parameter  
Symbol  
Limit Values  
Unit Test Conditions/  
Notes  
L
Item  
min  
typ  
max  
LIMITER  
Signal Input LIM/X (PINS 17/18)  
1
2
3
4
Input Impedance  
RSSI dynamic range  
RSSI linearity  
Z
264  
60  
330  
396  
80  
dB  
LIM  
DR  
LIN  
f
RSSI  
RSSI  
dB  
±1  
Operating frequency (3dB  
points)  
5
10.7  
23  
MHz  
LIM  
DATA FILTER  
1
2
3
Useable bandwidth  
BW  
100  
kHz  
BB  
FILT  
RSSI Level at Data Filter  
Output SLP  
RSSI  
1.1  
V
V
LNA in high gain  
low  
RF ~-103dBm  
IN  
RSSI Level at Data Filter  
Output SLP  
RSSI  
2.65  
LNA in high gain.  
high  
RF ~-30dBm  
IN  
SLICER  
Signal Output DATA (PIN 25)  
1
Useable bandwith  
BW  
100  
20  
kHz  
pF  
BB  
SLIC  
2
Capacitive loading of out-  
put  
C
max  
SLIC  
3
4
LOW output voltage  
HIGH output voltage  
V
V
0
V
V
SLIC_L  
V -1.3  
V -1  
S
V -0.7  
S
Output current  
=200µA  
S
SLIC_H  
5
Output current  
I
200  
µA  
SLIC_out  
PEAK DETECTOR  
Signal Output PDO (PIN 26)  
1
2
3
LOW output voltage  
HIGH output voltage  
Load current  
V
V
0
V
V
SLIC_L  
V -1  
S
SLIC_H  
I
-500  
µA  
Static load current  
must not exceed  
-500µA  
load  
4
Leakage current  
I
700  
nA  
leakage  
Wireless Components  
5 - 6  
Specification, July 2004  
TDA 5201  
Reference  
Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V (continued)  
Parameter  
Symbol  
Limit Values  
Unit Test Conditions/  
Notes  
L
Item  
min  
typ  
max  
CRYSTAL OSCILLATOR  
Signals CRSTL1, CRISTL 2, (PINS 1/28)  
1
Operating frequency  
f
5
11  
MHz fundamental mode,  
series resonance  
CRSTL  
2
Input Impedance  
@ ~5MHz  
Z
-760  
+j580  
1-28  
3
4
5
Input Impedance  
@ ~10MHz  
Z
-600  
+j870  
1-28  
Serial Capacity  
@ ~5MHz  
C
C
=C1  
9.3  
pF  
pF  
S 5  
Serial Capacity  
@ ~10MHz  
=C1  
6.4  
S10  
PLL  
Signal LF (PIN 15)  
1
Tuning voltage relative to  
V
0.4  
1.6  
2.4  
V
V
TUNE  
V
s
POWER DOWN MODE  
Signal PDWN (PIN 27)  
1
Powerdown Mode On  
PWDN  
N
2.8  
0
V
S
O
2
3
4
Powerdown Mode Off  
PWDN  
0.8  
V
Off  
Input bias current PDWN  
I
19  
1
µA  
PDWN  
Start-up Time until valid IF  
signal is detected  
T
mS  
Depends on the  
used crystal  
SU  
PLL DIVIDER  
Signal CSEL (PIN 16)  
1
2
f
range 5.xxMHz  
range 10.xxMHz  
V
1.4  
0
4
V
V
or open  
CRSTL  
CRSTL  
CSEL  
CSEL  
f
V
0.2  
3
Input bias current CSEL  
I
5
µA  
CSEL tied to GND  
CSEL  
ꢀꢀ Not part of the production test - either verified by design or measured in an Infineon Evalboard as described in  
Section 5.2.  
Wireless Components  
5 - 7  
Specification, July 2004  
TDA 5201  
Reference  
5.2 Test Circuit  
The device performance parameters marked with in Section 5.1.3 were either  
verified by design or measured on an Infineon evaluation board. This evaluation  
board can be obtained together with evaluation boards of the accompanying  
transmitter device TDA5101 in an evaluation kit that may be ordered on the  
INFINEON RKE Webpage www.infineon.com/rke  
Test_circuit.wmf  
Figure 5-1  
Schematic of the Evaluation Board  
Wireless Components  
5 - 8  
Specification, July 2004  
TDA 5201  
Reference  
5.3 Test Board Layouts  
Figure 5-2  
Top Side of the Evaluation Board  
Figure 5-3  
Bottom Side of the Evaluation Board  
Wireless Components  
5 - 9  
Specification, July 2004  
TDA 5201  
Reference  
Figure 5-4  
Component Placement on the Evaluation Board  
Wireless Components  
5 - 10  
Specification, July 2004  
TDA 5201  
Reference  
5.4 Bill of Materials  
The following components are necessary for evaluation of the TDA5201 at  
315MHz without use of a Microchip HCS515 decoder.  
Table 5-4 Bill of Materials  
Ref  
Value  
100kΩ  
100kΩ  
820kΩ  
120kΩ  
180kΩ  
10kΩ  
15nH  
12pF  
Specification  
0805, ± 5%  
R1  
R2  
0805, ± 5%  
R3  
0805, ± 5%  
R4  
0805, ± 5%  
R5  
0805, ± 5%  
R6  
0805, ± 5%  
L1  
Toko, PTL2012-F15N0G  
0805,COG, ± 2%  
0805, COG, ± 0.1pF  
0805, COG, ± 0.1pF  
0805, COG, ± 0.1pF  
0805, COG, ± 5%  
1206, X7R, ± 10%  
Toko, PTL2012-F15N0G  
0805, COG, ± 5%  
0805, COG, ± 5%  
0805, COG, ± 5%  
0805, X7R, ± 10%  
0805, X7R, ± 10%  
0805, COG, ± 5%  
0805, X7R, ± 10%  
0805, COG, ± 5%  
0805, X7R, ± 10%  
0805, COG, ± 0.1pF  
0805, COG, ± 2%  
L2  
C1  
3.3 pF  
10pF  
C2  
C3  
6.8pF  
100pF  
47nF  
C4  
C5  
C6  
15nH  
100pF  
33pF  
C7  
C8  
C9  
100pF  
10nF  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
10nF  
220pF  
47nF  
470pF  
47nF  
18pF  
12pF  
Q2  
(315 + 10.7MHz)/32  
HC49/U, fundamental mode, C = 12pF,  
L
e.g. 434.2 MHz: Jauch Q 10.17813-S11-1323-12-10/20  
F1  
X2, X3  
X1, X4, S1, S5  
S4  
SFE10.7MA5-A  
142-0701-801  
Murata  
Johnson  
2-pole pin connector  
3-pole pin connector, or not equipped  
Infineon  
IC1  
TDA 5201  
Wireless Components  
5 - 11  
Specification, July 2004  
TDA 5201  
Reference  
The following components are necessary in addition to the above mentioned  
ones for evaluation of the TDA5201 in conjunction with a Microchip HCS515  
decoder.  
Table 5-5 Bill of Materials Addendum  
Ref  
Value  
22kΩ  
Specification  
0805, ± 5%  
0805, ± 5%  
0805, ± 5%  
0805, ± 5%  
0805, ± 5%  
1206, X7R, ± 10%  
1206, X7R, ± 10%  
Microchip  
R21  
R22  
R23  
R24  
R25  
C21  
C22  
IC2  
T1  
100kΩ  
22kΩ  
820kΩ  
560kΩ  
100nF  
100nF  
HCS515  
BC 847B  
LS T670-JL  
Infineon  
D1  
Infineon  
Wireless Components  
5 - 12  
Specification, July 2004  
TDA 5201  
Reference  
5.5 Appendix - Noise Figure and Gain Circles  
The following gain and noise figure circles were measured utilizing Microlab  
Stub Stretchers and a HP8514 network analyser. Maximum gain is shown at  
point 1 at 18.5 dB, minimum noise figure ist 1.9dB at point 2, step size of circles  
is 0.5dB.  
Figure 5-5  
Gain and Noise Circles of the TDA5201 at 315 MHz.  
Wireless Components  
5 - 13  
Specification, July 2004  
TDA 5201  
List of Figures  
List of Figures  
Figure 2-1 P-TSSOP-28-1 package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 3-1 IC Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 3-2 Main Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 4-1 LNA Automatic Gain Control Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 4-2 RSSI Level and Permissive AGC Threshold Levels . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 4-3 Data Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 4-4 Determination of Series Capacitance Value for the Quartz Oscillator . . . . . . . . . . . . . .  
Figure 4-5 Data Slicer Threshold Generation with External R-C Integrator . . . . . . . . . . . . . . . . . .  
Figure 4-6 Data Slicer Threshold Generation Utilising the Peak Detector . . . . . . . . . . . . . . . . . . .  
Figure 5-1 Schematic of the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 5-2 Top Side of the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 5-3 Bottom Side of the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 5-4 Component Placement on the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 5-5 Gain and Noise Circles of the TDA5201 at 315 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . .  
3
2
9
2
3
4
5
7
7
8
9
9
10  
13  
Wireless Components  
List of Figures - 1  
Specification, July 2004  
TDA 5201  
List of Tables  
List of Tables  
Table 3-1 Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Table 3-3 PDWN Pin Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Table 5-1 Absolute Maximum Ratings, Ambient temperature TAMB=-40°C ... + 85°C . . . . . . . . .  
Table 5-2 Operating Range, Ambient temperature TAMB= -40°C ... + 85°C . . . . . . . . . . . . . . . . .  
Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V . . . . . . . . . . . . . . . . . . . . .  
AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V (continued) 5  
3
12  
2
3
4
AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V (continued) 6  
AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V (continued) 7  
Table 5-4 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Table 5-5 Bill of Materials Addendum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
11  
12  
Wireless Components  
List of Tables - 1  
Specification, July 2004  

相关型号:

TDA5201XT

暂无描述
INFINEON

TDA5201_10

ASK Single Conversion Receiver
INFINEON

TDA5201_15

Material Content Data Sheet
INFINEON

TDA5204

ASK Single Conversion Receiver 390MHz
INFINEON

TDA5204E1

ASK Single Conversion Receiver 390MHz
INFINEON

TDA5210

ASK/FSK Single Conversion Receiver
INFINEON

TDA5210_15

Material Content Data Sheet
INFINEON

TDA5211

ASK/FSK Single Conversion Receiver
INFINEON

TDA5211XUMA1

Telecom Circuit, 1-Func, PDSO28, PLASTIC, TSSOP-28
INFINEON

TDA5211_15

Material Content Data Sheet
INFINEON

TDA5212

ASK/FSK 915MHz Single Conversion Receiver
INFINEON

TDA5212_06

ASK/FSK 915MHz Single Conversion Receiver
INFINEON