TDA5201_10 [INFINEON]

ASK Single Conversion Receiver; ASK单转换接收器
TDA5201_10
型号: TDA5201_10
厂家: Infineon    Infineon
描述:

ASK Single Conversion Receiver
ASK单转换接收器

文件: 总38页 (文件大小:1683K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA 5201  
ASK Single Conversion Receiver  
Version 1.6  
Data Sheet  
Revision 1.6, 2010-12-21  
Wireless Components  
Edition 2010-12-21  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2011 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
TDA 5201  
ASK Single Conversion Receiver  
Revision History  
Page or Item  
Subjects (major changes since previous revision)  
Previous Revision: 1.5  
Revision 1.6, 2010-12-21  
all  
Converted into structured FrameMaker (EDD 3.4)  
More detailed explanation of AGC  
4-3  
5-5, 5-7  
5-3, 5-4  
More detailed information of LNA high gain mode and LNA low gain mode  
Enhanced sensitivity values  
Trademarks of Infineon Technologies AG  
AURIX™, BlueMoon™, C166™, CanPAK™, CIPOS™, CIPURSE™, COMNEON™, EconoPACK™, CoolMOS™,  
CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,  
EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™,  
MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™, PRIMARION™,  
PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™,  
SINDRION™, SIPMOS™, SMARTi™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™,  
TRENCHSTOP™, TriCore™, X-GOLD™, X-PMU™, XMM™, XPOSYS™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,  
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR  
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,  
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.  
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of  
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data  
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of  
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics  
Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™  
of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc.,  
OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc.  
RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc.  
SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden  
Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA.  
UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™  
of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of  
Diodes Zetex Limited.  
Last Trademarks Update 2010-10-26  
Data Sheet  
3
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Table of Contents  
Table of Contents  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Product Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1
2
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1  
2.2  
2.3  
2.4  
3
3.1  
3.2  
3.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Low Noise Amplifier (LNA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
PLL Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Data Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Data Slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Peak Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Bandgap Reference Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.4  
3.4.1  
3.4.2  
3.4.3  
3.4.4  
3.4.5  
3.4.6  
3.4.7  
3.4.8  
3.4.9  
4
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Choice of LNA Threshold Voltage and Time Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Data Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Quartz Load Capacitance Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Quartz Frequency Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Data Slicer Threshold Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
4.1  
4.2  
4.3  
4.4  
4.5  
5
5.1  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Test Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Test Board Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
5.1.1  
5.1.2  
5.1.3  
5.2  
5.2.1  
5.2.2  
5.2.3  
Appendix - Noise Figure and Gain Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Data Sheet  
4
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
List of Figures  
List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
PG-TSSOP-28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
PG-TSSOP-28 Package Outlines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
IC Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Main Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
LNA Automatic Gain Control Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Typical Curve of RSSI Level and Permissive AGC Threshold Levels . . . . . . . . . . . . . . . . . . . . . . 22  
Data Filter Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Determination of Series Capacitance Value for the Quartz Oscillator . . . . . . . . . . . . . . . . . . . . . . 24  
Data Slicer Threshold Generation with External R-C Integrator. . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 10 Data Slicer Threshold Generation Utilizing the Peak Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 11 Schematic of the Evaluation Board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 12 Top Side of the Evaluation Board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 13 Bottom Side of the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 14 Component Placement on the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 15 Gain and Noise Circles of the TDA5201 at 315 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Data Sheet  
5
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
List of Tables  
List of Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
CSEL Pin Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
PDWN Pin Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
PLL Division Ratio Dependence on States of CSEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Absolute Maximum Ratings, Ambient Temperature TAMB = - 40 °C ... + 85 °C . . . . . . . . . . . . . . . 27  
Operating Range, Ambient Temperature TAMB = - 40 °C ... + 85 °C . . . . . . . . . . . . . . . . . . . . . . . 27  
AC/DC Characteristics with TAMB = 25 °C, VCC = 4.5 ... 5.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Bill of Materials Addendum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Data Sheet  
6
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Product Info  
1
Product Info  
General Description  
The IC is a very low power consumption single chip ASK Single Conversion Receiver for receive frequencies  
between 310 MHz and 350 MHz. The Receiver offers a high level of integration and needs only a few external  
components. The device contains a low noise amplifier (LNA), a double balanced mixer, a fully integrated VCO, a  
PLL synthesizer, a crystal oscillator, a limiter with RSSI generator, a data filter, a data comparator (slicer) and a  
peak detector. Additionally there is a power down feature to save battery life.  
Features  
Low supply current (Is = 4.6 mA typ.)  
Supply voltage range 5 V ±10 %  
Power down mode with very low supply current (50 nA typ)  
Fully integrated VCO and PLL Synthesizer  
RF input sensitivity < – 110 dBm  
Selectable frequency ranges around 315 MHz and 345 MHz  
Selectable reference frequency  
Limiter with RSSI generation, operating at 10.7 MHz  
2nd order low pass data filter with external capacitors  
Data slicer with self-adjusting threshold  
Application  
Keyless Entry Systems  
Remote Control Systems  
Fire Alarm Systems  
Low Bitrate Communication Systems  
Package  
Figure 1  
PG-TSSOP-28  
Ordering Information  
Type  
Ordering Code  
Package1)  
TDA5201  
SP000012902  
PG-TSSOP-28  
1) Available on tape and reel  
Data Sheet  
7
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Product Description  
2
Product Description  
2.1  
Overview  
The IC is a very low power consumption single chip ASK Superheterodyne Receiver (SHR) for the frequency  
bands 315 MHz and 345 MHz. The SHR offers a high level of integration and needs only a few external  
components. The device contains a low noise amplifier (LNA), a double balanced mixer, a fully integrated VCO, a  
PLL synthesizer, a crystal oscillator, a limiter with RSSI generator, a data filter, a data comparator (slicer) and a  
peak detector. Additionally there is a power down feature to save battery life.  
2.2  
Application  
Keyless Entry Systems  
Remote Control Systems  
Fire Alarm Systems  
Low Bitrate Communication Systems  
2.3  
Features  
Low supply current (Is = 4.6 mA typ.)  
Supply voltage range 5 V ±10 %  
Power down mode with very low supply current (50 nA typ.)  
Fully integrated VCO and PLL Synthesizer  
RF input sensitivity < – 110 dBm  
Selectable receive frequency bands 315 MHz and 345 MHz  
Selectable reference frequency  
Limiter with RSSI generation, operating at 10.7 MHz  
2nd order low pass data filter with external capacitors  
Data slicer with self-adjusting threshold  
Data Sheet  
8
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Product Description  
2.4  
Package Outlines  
Figure 2  
PG-TSSOP-28 Package Outlines  
Data Sheet  
9
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Functional Description  
3
Functional Description  
3.1  
Pin Configuration  
CRST1  
VCC  
LNI  
1
2
3
4
5
6
7
8
9
28 CRST2  
27 PDWN  
26 PDO  
25 DATA  
24 3VOUT  
23 THRES  
22 FFB  
TAGC  
AGND  
LNO  
VCC  
MI  
TDA 5201  
21 OPP  
20 SLN  
MIX  
AGND 10  
FSEL 11  
IFO 12  
19 SLP  
18 LIMX  
17 LIM  
DGND 13  
VDD 14  
16 CSEL  
15 LF  
Figure 3  
IC Pin Configuration  
Data Sheet  
10  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Functional Description  
3.2  
Pin Definition and Function  
Table 1  
Pin Definition and Function  
Pin  
No.  
Name  
Pin  
Type  
Buffer Type  
Function  
1
CRST1  
In/Out  
External Crystal Connector 1  
4.15V  
1
50uA  
2
3
VCC  
LNI  
In  
In  
5 V Supply  
LNA Input  
57uA  
3
500uA  
4k  
1k  
Data Sheet  
11  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Functional Description  
Table 1  
Pin Definition and Function (cont’d)  
Pin  
No.  
Name  
Pin  
Type  
Buffer Type  
Function  
4
TAGC  
In/Out  
AGC Time Constant Control  
4.3V  
4.2uA  
1.5uA  
4
1k  
1.7V  
5
6
AGND  
LNO  
In  
Analogue Ground Return  
LNA Output  
Out  
5V  
1k  
6
7
8
VCC  
MI  
In  
In  
5 V Supply  
Mixer Input  
1.7V  
2k  
2k  
8
9
400uA  
Data Sheet  
12  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Functional Description  
Table 1  
Pin Definition and Function (cont’d)  
Pin  
No.  
Name  
Pin  
Type  
Buffer Type  
Function  
9
MIX  
In  
Complementary Mixer Input  
1.7V  
2k  
2k  
8
9
400uA  
10  
11  
AGND  
FSEL  
In  
Analogue Ground Return  
Not applicable - has to be left  
open  
12  
IFO  
Out  
IF Mixer Output  
10.7 MHz  
300uA  
2.2V  
60  
12  
4.5k  
13  
14  
DGND  
VDD  
In  
In  
Digital Ground Return  
5 V Supply  
PLL Counter Circuitry  
Data Sheet  
13  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Functional Description  
Table 1  
Pin Definition and Function (cont’d)  
Pin  
No.  
Name  
Pin  
Type  
Buffer Type  
Function  
15  
LF  
In/Out  
PLL Filter Access Point  
5V  
4.6V  
30uA  
200  
100  
15  
30uA  
2.4V  
16  
CSEL  
In  
Quartz Selector  
5.xx MHz or 10.xx MHz  
1.2V  
80k  
16  
17  
LIM  
In  
Limiter Input  
2.4V  
15k  
17  
75uA  
330  
15k  
18  
Data Sheet  
14  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Functional Description  
Table 1  
Pin Definition and Function (cont’d)  
Pin  
No.  
Name  
Pin  
Type  
Buffer Type  
Function  
18  
LIMX  
In  
Complementary Limiter Input  
2.4V  
15k  
17  
75uA  
330  
15k  
18  
19  
SLP  
In  
Data Slicer Positive Input  
15uA  
100  
3k  
9
40uA  
20  
SLN  
In  
Data Slicer Negative Input  
5uA  
10k  
20  
21  
OPP  
In  
OpAmp Noninverting Input  
5uA  
200  
21  
Data Sheet  
15  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Functional Description  
Table 1  
Pin Definition and Function (cont’d)  
Pin  
No.  
Name  
Pin  
Type  
Buffer Type  
Function  
22  
23  
24  
25  
FFB  
In  
Data Filter Feedback Pin  
5uA  
100k  
22  
THRES  
3VOUT  
DATA  
In  
AGC Threshold Input  
3 V Reference Output  
Data Output  
5uA  
10k  
23  
Out  
24  
3V  
Out  
200  
25  
80k  
26  
PDO  
Out  
Peak Detector Output  
200  
26  
Data Sheet  
16  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Functional Description  
Table 1  
Pin Definition and Function (cont’d)  
Pin  
No.  
Name  
Pin  
Type  
Buffer Type  
Function  
27  
PDWN  
In  
Power Down Input  
27  
220k  
220k  
28  
CRST2  
In/Out  
External Crystal Connector 2  
4.15V  
28  
50uA  
Data Sheet  
17  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Functional Description  
3.3  
Functional Block Diagram  
VCC  
IF  
Filter  
LNO  
6
MI MIX IFO  
LIM  
17  
LIMX  
18  
FFB  
22  
OPP  
21  
SLP  
19  
SLN  
20  
9
8
12  
25  
DATA  
3
RF  
LNA  
RSSI  
SLICER  
PDO  
26  
23  
4
TAGC  
THRES  
3VOUT  
AGC  
Reference  
24  
TDA 5201  
14  
VDD  
UREF  
Φ
Crystal  
OSC  
: 1/2  
VCO  
: 128/64  
DET  
DGND 13  
Bandgap  
Reference  
Loop  
Filter  
2/7  
VCC  
5/10  
AGND  
28  
11  
FSEL  
15  
LF  
16  
1
27  
CSEL  
PDWN  
Crystal  
Figure 4  
Main Block Diagram  
Data Sheet  
18  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Functional Description  
3.4  
Functional Blocks  
3.4.1  
Low Noise Amplifier (LNA)  
The LNA is an on-chip cascode amplifier with a voltage gain of 15 dB to 20 dB. The gain figure is determined by  
the external matching networks situated ahead of LNA and between the LNA output LNO (Pin 6) and the Mixer  
Inputs MI and MIX (Pin 8 and Pin 9). The noise figure of the LNA is approximately 2 dB, the current consumption  
is 500 µA. The gain can be reduced by approximately 18 dB. The switching point of this AGC action can be  
determined externally by applying a threshold voltage at the THRES pin (Pin 23). This voltage is compared  
internally with the received signal (RSSI) level generated by the limiter circuitry. In case that the RSSI level is  
higher than the threshold voltage the LNA gain is reduced and vice versa. The threshold voltage can be generated  
by attaching a voltage divider between the 3VOUT pin (Pin 24) which provides a temperature stable 3 V output  
generated from the internal bandgap voltage and the THRES pin as described in Chapter 4.1. The time constant  
of the AGC action can be determined by connecting a capacitor to the TAGC pin (Pin 4) and should be chosen  
along with the appropriate threshold voltage according to the intended operating case and interference scenario  
to be expected during operation. The optimum choice of AGC time constant and the threshold voltage is described  
in Chapter 4.1.  
3.4.2  
Mixer  
The Double Balanced Mixer down-converts the input frequency (RF) in the range of 310 MHz to 350 MHz to the  
intermediate frequency (IF) at 10.7 MHz with a voltage gain of approximately 21 dB by utilizing either high- or low-  
side injection of the local oscillator signal. In case the mixer is interfaced only single-ended, the unused mixer input  
has to be tied to ground via a capacitor. The mixer is followed by a low pass filter with a corner frequency of 20 MHz  
in order to suppress RF signals to appear at the IF output (IFO pin). The IF output is internally consisting of an  
emitter follower that has a source impedance of approximately 330 to facilitate interfacing the pin directly to a  
standard 10.7 MHz ceramic filter without additional matching circuitry.  
3.4.3  
PLL Synthesizer  
The Phase Locked Loop synthesizer consists of a VCO, an asynchronous divider chain, a phase detector with  
charge pump and a loop filter and is fully implemented on-chip. The VCO is including spiral inductors and varactor  
diodes. The FSEL pin (Pin 11) has to be left open. The tuning range of the VCO was designed to guarantee over  
production spread and the specified temperature range a receive frequency range between 310 MHz and  
350 MHz depending on whether high- or low-side injection of the local oscillator is used. The oscillator signal is  
fed both to the synthesizer divider chain and to a divider that is dividing the signal by 2 before it is applied to the  
down-converting mixer. Local oscillator high side injection has to be used for receive frequencies between  
approximately 310 MHz and 330 MHz, low side injection for receive frequencies between 330 MHz and 350 MHz  
- see also Chapter 4.4.  
3.4.4  
Crystal Oscillator  
The on-chip crystal oscillator circuitry allows for utilization of quartzes both in the 5 MHz and 10 MHz range as the  
overall division ratio of the PLL can be switched between 64 and 128 via the CSEL (Pin 16) pin according to the  
following table.  
Table 2  
CSEL  
Open  
CSEL Pin Operating States  
Crystal Frequency  
5.xx MHz  
Shorted to ground  
10.xx MHz  
Data Sheet  
19  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Functional Description  
The calculation of the value of the necessary quartz load capacitance is shown in Chapter 4.3, the quartz  
frequency calculation is explained in Chapter 4.4.  
3.4.5  
Limiter  
The Limiter is an AC coupled multistage amplifier with a cumulative gain of approximately 80 dB that has a  
bandpass-characteristic centered around 10.7 MHz. It has an input impedance of 330 to allow for easy  
interfacing to a 10.7 MHz ceramic IF filter. The limiter circuit acts as a Receive Signal Strength Indicator (RSSI)  
generator, which produces a DC voltage that is directly proportional to the input signal level as can be seen in  
Figure 6. This signal is used to demodulate the ASK receive signal in the subsequent baseband circuitry and to  
turn down the LNA gain by approximately 18 dB in case the input signal strength is too strong as described in  
Chapter 3.4.1 and Chapter 4.1.  
3.4.6  
Data Filter  
The data filter comprises an OP-Amp with a bandwidth of 100 kHz used as a voltage follower and two 100 kon-  
chip resistors. Along with two external capacitors a 2nd order Sallen-Key low pass filter is formed. The selection of  
the capacitor values is described in Chapter 4.2.  
3.4.7  
Data Slicer  
The data slicer is a fast comparator with a bandwidth of 100 kHz. This allows for a maximum receive data rate of  
approximately 120 kBaud. The maximum achievable data rate also depends on the IF Filter bandwidth and the  
local oscillator tolerance values. Both inputs are accessible. The output delivers a digital data signal (CMOS-like  
levels) for the detector. The self-adjusting threshold on pin 20 is generated by RC-term or peak detector  
depending on the baseband coding scheme. The data slicer threshold generation alternatives are described in  
more detail in Chapter 4.5.  
3.4.8  
Peak Detector  
The peak detector generates a DC voltage which is proportional to the peak value of the receive data signal. An  
external RC network is necessary. The output can be used as an indicator for the signal strength and also as a  
reference for the data slicer. The maximum output current is 500 µA.  
3.4.9  
Bandgap Reference Circuitry  
A Bandgap Reference Circuit provides a temperature stable reference voltage for the device. A power down mode  
is available to switch off all sub-circuits which is controlled by the PWDN pin (Pin 27) as shown in the following  
table. The supply current drawn in this case is typically 50 nA.  
Table 3  
PDWN  
PDWN Pin Operating States  
Operating State  
Power Down Mode  
Receiver On  
Open or tied to ground  
Tied to VCC  
Data Sheet  
20  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Applications  
4
Applications  
4.1  
Choice of LNA Threshold Voltage and Time Constant  
In the following figure the internal circuitry of the LNA automatic gain control is shown.  
R4  
R5  
Uthreshold  
Pins:  
24  
23  
RSSI (0.8 - 2.8V)  
+3V  
OTA  
VCC  
Iload  
LNA  
Gain control  
voltage  
RSSI > Uthreshold: Iload=4.2µA  
RSSI < Uthreshold: Iload= -1.5µA  
4
Uc:< 2.6V : Gain high  
Uc:> 2.6V : Gain low  
UC  
C
Ucmax= VCC - 0.7V  
Ucmin = 1.67V  
Figure 5  
LNA Automatic Gain Control Circuitry  
The LNA automatic gain control circuitry consists of an operational transimpedance amplifier that is used to  
compare the received signal strength signal (RSSI) generated by the Limiter with an externally provided threshold  
voltage Uthres. As shown in the following figure the threshold voltage can have any value between approximately  
typically 0.8 V and 2.8 V to provide a switching point within the receive signal dynamic range.  
This voltage Uthres is applied to the THRES pin (Pin 23). The threshold voltage can be generated by attaching a  
voltage divider between the 3VOUT pin (Pin 24) which provides a temperature stable 3 V output generated from  
the internal bandgap voltage and the THRES pin. If the RSSI level generated by the Limiter is higher than Uthres  
,
the OTA generates a positive current Iload. This yields a voltage rise on the TAGC pin (Pin 4). Otherwise, the OTA  
generates a negative current. These currents do not have the same values in order to achieve a fast-attack and  
slow-release action of the AGC and are used to charge an external capacitor which finally generates the LNA gain  
control voltage.  
Data Sheet  
21  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Applications  
3
2.5  
2
RSSI Level  
1.5  
1
0.5  
0
-120  
-110  
-100  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
Input Level at LNA Input [dBm]  
Figure 6  
Typical Curve of RSSI Level and Permissive AGC Threshold Levels  
The switching point should be chosen according to the intended operating scenario. The determination of the  
optimum point is described in the accompanying Application Note, a threshold voltage level of 1.8 V is apparently  
a viable choice. It should be noted that the output of the 3VOUT pin is capable of driving up to 50 µA, but that the  
THRES pin input current is only in the region of 40 nA. As the current drawn out of the 3VOUT pin is directly related  
to the receiver power consumption, the power divider resistors should have high impedance values. R4 can be  
chosen as 120 k, R5 as 180 kto yield an overall 3VOUT output current of 10 µA.  
Notes  
1. To keep the LNA in high gain mode for the complete RF-input level range a voltage equal or higher than 3.3 V  
has to be applied at pin 23. Alternatively, pin 23 has to be connected to pin 24 and pin 4 has to be connected  
to GND. In addition this would save an external capacitor.  
2. To keep the LNA in low gain mode for the complete RF-input level range a voltage lower than 0.7 V has to be  
applied to the THRES pin (e.g. THRES connected to GND). In the above-mentioned mode pin 4 has to be  
connected by a capacitor to GND.  
3. As stated above, the gain control voltage of the LNA is generated at the capacitor connected to the TAGC pin  
by the charging and discharging currents of the OTA. Consequently this capacitor is responsible for the AGC  
time constant. As the charging and discharging currents are not equal two different time constants will result.  
The time constant corresponding to the charging process of the capacitor shall be chosen according to the  
data rate. According to measurements performed at Infineon the capacitor value should be greater than 47 nF.  
Data Sheet  
22  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Applications  
4.2  
Data Filter Design  
Utilizing the on-board voltage follower and the two 100 kon-chip resistors a 2nd order Sallen-Key low pass data  
filter can be constructed by adding 2 external capacitors between pin 19 (SLP) and pin 22 (FFB) and to pin 21  
(OPP) as depicted in the following figure and described in the following formulas1).  
C1  
22  
C2  
21  
Pins:  
19  
R
R
100k  
100k  
Figure 7  
Data Filter Design  
2Q b  
C1 =  
(1)  
(2)  
R2Πf3dB  
b
C2 =  
4QRΠf3dB  
with  
b
(3)  
Q =  
a
the quality factor of the poles where  
in case of a Bessel filter  
and thus  
a = 1.3617, b = 0.618  
Q = 0.577  
and in case of a Butterworth filter  
and thus  
a = 1.141, b = 1  
Q = 0.71  
Example  
Butterworth filter with  
f
3dB = 5 kHz and R = 100 kΩ  
C1 = 450 pF, C2 = 225 pF  
1) Taken from Tietze/Schenk: Halbleiterschaltungstechnik, Springer Berlin, 1999  
Data Sheet 23  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Applications  
4.3  
Quartz Load Capacitance Calculation  
The value of the capacitor necessary to achieve that the quartz oscillator is operating at the intended frequency is  
determined by the reactive part of the negative resistance of the oscillator circuit as shown in Chapter 1.1.3 and  
by the quartz specifications given by the quartz manufacturer.  
CS  
Pin 28  
Input  
impedance  
Crystal  
Z1-28  
TDA5201  
Pin 1  
Figure 8  
Determination of Series Capacitance Value for the Quartz Oscillator  
Crystal specified with load capacitance  
1
CS =  
(4)  
1
+2π f XL  
CL  
with CL the load capacitance (refer to the quartz crystal specification).  
Examples  
5.1 MHz  
CL = 12 pF  
CL = 12 pF  
XL = 580 Ω  
XL = 870 Ω  
CS = 9.8 pF  
CS = 7.2 pF  
10.18 MHz  
These values may be obtained by putting two capacitors in series to the quartz, such as 18 pF and 22 pF in the  
5.1 MHz case and 18 pF and 12 pF in the 10.2 MHz case.  
But please note that the calculated value of CS includes the parasitic capacitors also.  
Data Sheet  
24  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Applications  
4.4  
Quartz Frequency Calculation  
As described in Chapter 3.4.3, the operating range of the on-chip VCO is wide enough to guarantee a receive  
frequency range between 310 MHz and 350 MHz. The VCO signal is divided by 2 before applied to the mixer .  
This local oscillator signal can be used to down-convert the RF signals both with high- or low-side injection at the  
mixer. High-side injection of the local oscillator has to be used for receive frequencies between 310 MHz and 330  
MHz. In this case the local oscillator frequency is calculated by adding the IF frequency (10.7 MHz) to the RF  
frequency.  
Low-side injection has to be used for receive frequencies between 330 MHz and 350 MHz. The local oscillator  
frequency is calculated by subtracting the IF frequency (10.7 MHz) from the RF frequency then. The overall  
division ratios in the PLL are 64 or 32 depending on whether the CSEL-pin is left open or tied to ground.  
Therefore, the quartz frequency may be calculated by using the following formula:  
fRF 10.7  
fQU  
=
(5)  
r
with  
ƒRF  
ƒLO  
ƒQU  
r
Receive frequency  
Local oscillator (PLL) frequency (ƒRF ± 10.7)  
Quartz oscillator frequency  
Ratio of local oscillator (PLL) frequency and quartz frequency as shown in the subsequent table  
Table 4  
CSEL  
Open  
PLL Division Ratio Dependence on States of CSEL  
Ratio r = (ƒLO/ƒQU  
)
64  
32  
GND  
Example  
Addition of 10.7 is used in case of operation the device at 315 MHz, subtraction in case of operation at 345 MHz  
for instance. This yields the following frequencies:  
CSEL tied to GND:  
fQU  
fQU  
=
=
(
315MHz +10.7MHz  
)
/ 32 = 10.1781 MHz  
(6)  
(7)  
(
345MHz 10.7MHz  
)
/ 32 = 10.4469 MHz  
CSEL open:  
fQU  
fQU  
=
=
(
315MHz +10.7MHz  
)
/ 64 = 5.0891MHz  
(8)  
(9)  
(
345MHz 10.7MHz  
)
/ 64 = 5.2234 MHz  
Data Sheet  
25  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Applications  
4.5  
Data Slicer Threshold Generation  
The threshold of the data slicer especially for a coding scheme without DC-content, can be generated in two ways,  
depending on the signal coding scheme used. In case of a signal coding scheme without DC content such as  
Manchester coding the threshold can be generated using an external RC-Integrator as shown in Figure 9. The  
time constant TA of the RC-Integrator has to be significantly larger than the longest period of no signal change TL  
within the data sequence. In order to keep distortion low, the minimum value for R is 20 k.  
R
C
data out  
Pins:  
19  
20  
25  
Uthreshold  
data  
filter  
data slicer  
Figure 9  
Data Slicer Threshold Generation with External R-C Integrator  
Another possibility for threshold generation is to use the peak detector in connection with two resistors and one  
capacitor as shown in the following figure. The component values are depending on the coding scheme and the  
protocol used.  
R
C
R
data out  
Pins:  
20  
19  
26  
25  
Uthreshold  
peak detector  
data slicer  
data  
filter  
Figure 10 Data Slicer Threshold Generation Utilizing the Peak Detector  
Data Sheet  
26  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Electrical Characteristics  
5
Electrical Characteristics  
5.1  
Electrical Data  
5.1.1  
Absolute Maximum Ratings  
Attention: The maximum ratings may not be exceeded under any circumstances, not even momentarily  
and individually, as permanent damage to the IC will result.  
Table 5  
Absolute Maximum Ratings, Ambient Temperature TAMB = - 40 °C ... + 85 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Number  
Min.  
-0.3  
-40  
Max.  
5.5  
Supply Voltage  
Vs  
V
1.1  
1.2  
1.3  
1.4  
1.5  
Junction Temperature  
Storage Temperature  
Thermal Resistance  
ESD HBM integrity, all pins  
Tj  
+125  
+150  
114  
°C  
°C  
K/W  
kV  
Ts  
-40  
RthJA  
VESD  
±1,5  
AEC Q100-002 /  
JESD22-A114B  
ESD SDM integrity, all pins  
VESD  
±750  
V
AINSI / ESD  
1.6  
SP5.3.2-2008  
5.1.2  
Operating Range  
Within the operating range the IC operates as explained in the circuit description. The AC/DC characteristic limits  
are not guaranteed.  
Supply voltage: VCC = 4.5 V ... 5.5 V  
Table 6  
Operating Range, Ambient Temperature TAMB = - 40 °C ... + 85 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Test Number  
Min.  
Max.  
5.2  
Supply Current  
IS  
mA  
f
RF = 315 MHz  
dBm @ source  
impedance 50 ,  
2.1  
Receiver Input Level  
RFin  
-111  
-13  
2.2  
BER 2E-3,  
average power  
level, Manchester  
encoded data rate  
4 kBit, 280 kHz IF  
Bandwidth  
LNI Input Frequency  
MI/X Input Frequency  
fRF  
310  
310  
5
350  
350  
23  
MHz  
MHz  
MHz  
2.3  
2.4  
2.5  
fMI  
3 dB IF Frequency  
Range  
fIF -3 dB  
Data Sheet  
27  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Electrical Characteristics  
Table 6  
Operating Range, Ambient Temperature TAMB = - 40 °C ... + 85 °C (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Test Number  
Min.  
0
Max.  
0.8  
Power Mode Off  
Power Mode Off  
VOFF  
VON  
V
V
V
2.6  
2.7  
2.8  
2
VCC  
Gain Control Voltage,  
LNA high gain state  
VTHRES  
2.8  
VCC-1  
Gain Control Voltage,  
LNA low gain state  
VTHRES  
0
0.7  
V
2.9  
Attention: Test means that the parameter is not subject to production test.  
It was verified by design/characterization.  
5.1.3  
AC/DC Characteristics  
AC/DC characteristics involve the spread of values guaranteed within the specified voltage and ambient  
temperature range. Typical characteristics are the median of the production.  
Table 7  
AC/DC Characteristics with TAMB = 25 °C, VCC = 4.5 ... 5.5 V  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Test Number  
Min.  
Max.  
Supply Current  
Supply current  
standby mode  
IS PDWN  
IS  
50  
70  
5
nA  
Pin 27 (PDWN)  
open or tied to 0 V  
3.1  
3.2  
Supply current  
4.6  
mA  
LNA - Signal Input LNI (PIN 3), VTHRES > 3.3 V, High Gain Mode  
Average Power Level  
at BER = 2E-3  
(Sensitivity)  
RFin  
-113  
dBm Manchester  
encodeddatarate  
3.3  
4 kBit, 280 kHz IF  
Bandwidth  
Input impedance  
S11 LNA  
0.895 /  
-25.5 deg  
3.4  
3.5  
3.6  
3.7  
f
RF = 315 MHz  
Input level @ 1 dB C.P. P1dBLNA  
RF = 315 MHz  
-14  
dBm  
f
Input 3rd order intercept IIP3LNA  
point fRF = 315 MHz  
-10  
dBm fin = 315 MHz &  
317 MHz  
LO signal feedthrough at LOLNI  
-119  
dBm  
antenna port  
LNA - Signal Output LNO (PIN 6), VTHRES > 3.3 V, High Gain Mode  
Gain fRF = 315 MHz  
S21 LNA  
1.577 /  
150.3 deg  
3.8  
Output impedance,  
S22 LNA  
0.897 /  
-10.3 deg  
3.9  
f
RF = 315 MHz  
Voltage Gain Antenna to GAntMI  
21  
dB  
3.10  
MI fRF = 315 MHz  
Data Sheet  
28  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Electrical Characteristics  
Table 7  
AC/DC Characteristics with TAMB = 25 °C, VCC = 4.5 ... 5.5 V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Test Number  
Min.  
Max.  
Noise Figure  
NFLNA  
2
dB  
Excluding  
3.11  
matching network  
loss see Appendix  
LNA - Signal Input LNI, VTHRES = GND, Low Gain Mode  
Input impedance  
RF = 315 MHz  
Input level @ 1 dB C. P. P1dBLNA  
RF = 315 MHz  
S11 LNA  
0.918 /  
-25.2 deg  
3.12  
3.13  
3.14  
f
-7  
dBm Matched input  
f
Input 3rd order intercept IIP3LNA  
-13  
dBm fin = 315 MHz and   
point fRF = 315 MHz  
317 MHz  
LNA - Signal Output LNO, VTHRES = GND, Low Gain Mode  
Gain fRF = 315 MHz  
S21 LNA  
0.007 /  
153.7 deg  
3.15  
3.16  
3.17  
Output impedance  
,fRF = 315 MHz  
S22 LNA  
0.907 /  
-10.5 deg  
Voltage Gain Antenna to GAntMI  
MI fRF = 315 MHz  
2
dB  
AGC - Signal 3VOUT (PIN 24)  
Output voltage  
Current out  
V3VOUT  
I3VOUT  
3
V
3.18  
3.19  
50  
µA  
AGC - Signal THRES (PIN 23)  
Input Voltage range  
LNA low gain mode  
LNA high gain mode  
VTHRES  
VTHRES  
VTHRES  
0
VCC-1  
VCC-11)  
V
V
V
See chapter 4.1  
3.20  
3.21  
3.22  
0
3.31)  
Voltage must not  
be higher than  
VCC-1 V  
Current in  
ITHRES_in  
5
nA  
3.23  
AGC - Signal TAGC (PIN 4)  
Current out,  
LNA low gain state  
ITAGC_out  
4.2  
1.5  
µA  
µA  
RSSI > VTHRES  
RSSI < VTHRES  
3.24  
3.25  
Current in,  
ITAGC_in  
LNA high gain state  
MIXER - Signal Input MI/MIX (PINS 8/9)  
Input impedance  
RF = 315 MHz  
S11 MIX  
0.954 /  
-10.9 deg  
3.26  
3.27  
f
Input 3rd order intercept IIP3MIX  
-25  
dBm  
point  
MIXER - Signal Output IFO (PIN 12)  
Output impedance  
ZIFO  
330  
3.28  
Data Sheet  
29  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Electrical Characteristics  
Table 7  
AC/DC Characteristics with TAMB = 25 °C, VCC = 4.5 ... 5.5 V (cont’d)  
Symbol Values Unit Note /  
Test Condition  
Parameter  
Test Number  
Min.  
Typ.  
Max.  
Conversion Voltage Gain GMIX  
RF = 315 MHz  
+21  
dB  
dB  
dB  
3.29  
f
Noise Figure, SSB  
(~DSB NF + 3 dB)  
NFMIX  
13  
3.30  
3.31  
RF to IF isolation  
ARF-IF  
46  
LIMITER - Signal Input LIM/LIMX (PINS 17/18)  
Input Impedance  
RSSI dynamic range  
RSSI linearity  
ZLIM  
264  
60  
330  
396  
80  
3.32  
3.33  
3.34  
3.35  
DRRSSI  
LINRSSI  
fLIM  
dB  
dB  
MHz  
±1  
Operating frequency  
(3 dB points)  
5
10.7  
23  
DATA FILTER  
Useable bandwidth  
BWBB FILT  
100  
kHz  
V
3.36  
3.37  
RSSI Level at Data Filter RSSIlow  
1.1  
LNA in high gain  
Output SLP  
RFIN = -103 dBm  
RSSI Level at Data Filter RSSIhigh  
2.65  
V
LNA in high gain  
3.38  
Output SLP  
RFIN = -30 dBm  
SLICER - Signal Output DATA (PIN 25)  
Useable bandwidth  
BWBB SLIC  
Cmax SLIC  
100  
20  
kHz  
pF  
3.39  
3.40  
Capacitive loading of  
output  
LOW output voltage  
HIGH output voltage  
VSLIC_L  
VSLIC_H  
0
V
3.41  
3.42  
VCC-1.3 VCC-1  
VCC-0.7 V  
Output current  
= 200 µA  
Output current  
ISLIC_out  
200  
µA  
3.43  
PEAK DETECTOR - Signal Output PDO (PIN 26)  
LOW output voltage  
HIGH output voltage  
Load current  
VSLIC_L  
VSLIC_H  
Iload  
0
V
3.44  
3.45  
3.46  
VCC-1  
V
-500  
µA  
Staticloadcurrent  
must not exceed  
-500 µA  
Leakage current  
Ileakage  
700  
nA  
3.47  
3.48  
CRYSTAL OSCILLATOR - Signals CRST1, CRST2, (PINS 1/28)  
Operating frequency  
fCRSTL  
5
11  
MHz Fundamental  
mode, series  
resonance  
Input Impedance  
@ ~5 MHz  
Z1-28  
Z1-28  
-760  
+ j580  
3.49  
3.50  
Input Impedance  
@ ~10 MHz  
-600  
+ j870  
Data Sheet  
30  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Electrical Characteristics  
Table 7  
AC/DC Characteristics with TAMB = 25 °C, VCC = 4.5 ... 5.5 V (cont’d)  
Symbol Values Unit Note /  
Test Condition  
Parameter  
Test Number  
Min.  
Typ.  
Max.  
Serial Capacity  
@ ~5 MHz  
C
S5 = C1  
9.3  
pF  
3.51  
3.52  
Serial Capacity  
@ ~10 MHz  
CS10 = C1  
6.4  
pF  
PLL - Signal LF (PIN 15)  
Tuning voltage relative to VTUNE  
0.4  
1.6  
2.4  
V
3.53  
VCC  
POWER DOWN MODE - Signal PDWN (PIN 27)  
Power Mode On  
Power Mode Off  
VON  
VOff  
2.8  
0
VCC  
V
3.54  
3.55  
3.56  
3.57  
0.8  
V
Input bias current PDWN IPDWN  
19  
1
µA  
ms  
Start-up Time until valid TSU  
IF signal is detected  
Depends on the  
used crystal  
PLL DIVIDER - Signal CSEL (PIN 16)  
f
f
CRSTL range 5.xx MHz  
VCSEL  
1.4  
0
42)  
V
or open  
3.58  
3.59  
3.60  
CRSTL range 10.xx MHz VCSEL  
0.2  
V
Input bias current CSEL ICSEL  
5
µA  
CSEL tied to GND  
1) See Chapter 4.1, Choice of LNA Threshold Voltage and Time Constant  
2) Maximum voltage in Power-On state is 4 V, but in PDWN-state the maximum voltage is 2.8 V.  
Attention: Test means that the parameter is not subject to production test.  
It was verified by design/characterization.  
Data Sheet  
31  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Electrical Characteristics  
5.2  
Test Board  
Test Circuit  
5.2.1  
The device performance parameters marked with in Chapter 5.1.3 are not subject to production test. They were  
verified by design/characterization.  
Figure 11 Schematic of the Evaluation Board  
Data Sheet  
32  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Electrical Characteristics  
5.2.2  
Test Board Layouts  
Figure 12 Top Side of the Evaluation Board  
Figure 13 Bottom Side of the Evaluation Board  
Data Sheet  
33  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Electrical Characteristics  
Figure 14 Component Placement on the Evaluation Board  
Data Sheet  
34  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Electrical Characteristics  
5.2.3  
Bill of Materials  
The following components are necessary for evaluation of the TDA5201 at 315 MHz without use of a Microchip  
HCS515 decoder.  
Table 8  
Ref  
R1  
Bill of Materials  
Value  
Specification  
100 kΩ  
100 kΩ  
820 kΩ  
120 kΩ  
180 kΩ  
10 kΩ  
0805, ±5 %  
R2  
0805, ±5 %  
R3  
0805, ±5 %  
R4  
0805, ±5 %  
R5  
0805, ±5 %  
R6  
0805, ±5 %  
L1  
15 nH  
Toko, PTL2012-F15N0G  
0805,COG, ±2 %  
0805, COG, ±0.1 pF  
0805, COG, ±0.1 pF  
0805, COG, ±0.1 pF  
0805, COG, ±5 %  
1206, X7R, ±10 %  
Toko, PTL2012-F15N0G  
0805, COG, ±5 %  
0805, COG, ±5 %  
0805, COG, ±5 %  
0805, X7R, ±10 %  
0805, X7R, ±10 %  
0805, COG, ±5 %  
0805, X7R, ±10 %  
0805, COG, ±5 %  
0805, X7R, ±10 %  
0805, COG, ±0.1 pF  
0805, COG, ±2 %  
L2  
12 pF  
C1  
3.3 pF  
10 pF  
C2  
C3  
6.8 pF  
100 pF  
47 nF  
C4  
C5  
C6  
15 nH  
C7  
100 pF  
33 pF  
C8  
C9  
100 pF  
10 nF  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
Q2  
10 nF  
220 pF  
47 nF  
470 pF  
47 nF  
18 pF  
12 pF  
(315 + 10.7 MHz)/32  
HC49/U, fundamental mode, CL = 12 pF,  
315 MHz: Jauch Q 10.17813-S11-1323-12-10/20  
F1  
SFE10.7MA5-A  
142-0701-801  
Murata  
X2, X3  
Johnson  
X1, X4, S1, S5  
2-pole pin connector  
3-pole pin connector, or not equipped  
Infineon  
S4  
IC1  
TDA5201  
The following components are necessary in addition to the above mentioned ones for evaluation of the TDA5201  
in conjunction with a Microchip HCS515 decoder.  
Data Sheet  
35  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Electrical Characteristics  
Table 9  
Ref  
Bill of Materials Addendum  
Value  
Specification  
0805, ±5 %  
0805, ±5 %  
0805, ±5 %  
0805, ±5 %  
0805, ±5 %  
R21  
R22  
R23  
R24  
R25  
C21  
C22  
IC2  
22 kΩ  
100 kΩ  
22 kΩ  
820 kΩ  
560 kΩ  
100 nF  
100 nF  
HCS515  
BC 847B  
LS T670-JL  
1206, X7R, ±10 %  
1206, X7R, ±10 %  
Microchip  
T1  
Infineon  
D1  
Infineon  
Data Sheet  
36  
Revision 1.6, 2010-12-21  
TDA 5201  
ASK Single Conversion Receiver  
Appendix - Noise Figure and Gain Circles  
Appendix - Noise Figure and Gain Circles  
The following gain and noise figure circles were measured utilizing Microlab Stub Stretchers and a HP8514  
network analyzer. Maximum gain is shown at point 1 at 18.5 dB, minimum noise figure is 1.9 dB at point 2, step  
size of circles is 0.5 dB.  
Figure 15 Gain and Noise Circles of the TDA5201 at 315 MHz  
Data Sheet  
37  
Revision 1.6, 2010-12-21  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

TDA5201_15

Material Content Data Sheet
INFINEON

TDA5204

ASK Single Conversion Receiver 390MHz
INFINEON

TDA5204E1

ASK Single Conversion Receiver 390MHz
INFINEON

TDA5210

ASK/FSK Single Conversion Receiver
INFINEON

TDA5210_15

Material Content Data Sheet
INFINEON

TDA5211

ASK/FSK Single Conversion Receiver
INFINEON

TDA5211XUMA1

Telecom Circuit, 1-Func, PDSO28, PLASTIC, TSSOP-28
INFINEON

TDA5211_15

Material Content Data Sheet
INFINEON

TDA5212

ASK/FSK 915MHz Single Conversion Receiver
INFINEON

TDA5212_06

ASK/FSK 915MHz Single Conversion Receiver
INFINEON

TDA5220

ASK/FSK Single Conversion Receiver
INFINEON

TDA5220XUMA1

Telecom Circuit, 1-Func, PDSO28, PLASTIC, TSSOP-28
INFINEON