TLD5097EP [INFINEON]

LED Driver,;
TLD5097EP
型号: TLD5097EP
厂家: Infineon    Infineon
描述:

LED Driver,

驱动 接口集成电路
文件: 总41页 (文件大小:1178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LITIX™ Power  
TLD5097EP - Multitopology LITIX™ Power DC/DC Controller IC  
1
Overview  
Description  
The TLD5097EP is a flexibly usable DC/DC boost controller with built in  
diagnosis and protection features especially designed to drive LEDs.  
It is designed to support fixed current and fixed voltage configurations in  
multiple topologies such as Boost, Buck, Buck-Boost, SEPIC and Flyback by simply adjusting the external  
components. The TLD5097EP drives a low side n-channel power MOSFET from an internal 5 V linear regulator.  
The switching frequency is adjustable in the range of 100 kHz to 500 kHz and can also be synchronized to an  
external clock source.  
The TLD5097EP can be flexibly dimmed by means of analog and PWM dimming; an enable function reduces  
the shut-down current consumption to IQ_OFF < 10 µA.  
The current mode control scheme of this device provides a stable regulation loop maintained by small  
external compensation components. Additionally an integrated soft start feature limits the current peak as  
well as voltage overshoot at start-up. This IC is suited for use in the harsh automotive environments.  
LBO  
DBO  
VIN  
VIN = 4.5V to 45V  
CIN  
CBO  
ILED  
TSW  
2
4
SWO  
14  
IN  
V
CC or VIVCC  
SWCS  
RFB  
VREF  
RCS  
RA  
V
CC or VIVCC  
ROVH  
3
9
SGND  
OVFB  
10  
D1  
RB  
SET  
IC2  
Microcontroller  
(e.g. XC866)  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
ROVL  
IC1  
TLD5097  
5
Diagnosis  
ST  
PWMI  
6
FBH  
IVCC  
13  
11  
8
Digital Dimming  
EN / PWMI  
1
RPOL  
CIVCC  
DPOL  
Clock / Spread Spectrum  
FREQ / SYNC  
COMP  
CCOMP  
7
FBL  
RFREQ  
RCOMP  
GND  
12  
LED load seperated  
via wire harness  
Figure 1  
Typical application: Boost LED driver  
Type  
Package  
Marking  
TLD5097EP  
PG-TSDSO-14  
TLD5097  
Datasheet  
www.infineon.com  
1
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Potential applications  
Potential applications  
Automotive exterior and interior lighting  
General illumination  
General purpose current/voltage controlled DC/DC driver  
Features  
Fixed current or fixed voltage configuration in Boost, Buck, Buck-Boost, SEPIC and Flyback Topology  
Drives low side external n-channel switching MOSFET from internal 5 V voltage regulator  
Flexible switching frequency range from 100 kHz to 500 kHz, synchronization with external clock source  
Wide input voltage range from 4.5 V to 45 V  
Enable & PWM function with very low shutdown current: IQ_OFF < 10 µA  
Analog dimming and PWM dimming feature to adjust average LED current  
Low active status output for fault communication  
Integrated protection and diagnostic functions  
Internal soft start  
300 mV high-side current sense  
Available in a small thermally enhanced 14-pin PG-TSDSO-14 package, green product (RoHS) compliant  
Table 1  
Feature  
Product summary  
Symbol  
VIN  
Range  
Nominal supply voltage range  
Extended supply voltage range  
8 V ... 34 V  
VIN  
4.5 V ... 45 V  
VIVCC > VIVCC,RTH,d ; parameter deviations possible  
Switching frequency range  
fFREQ  
100 kHz ... 500 kHz oscillator frequency adjustment  
range  
250 kHz ... 500 kHz synchronization frequency  
capture range  
Maximum duty cycle  
Dmax,fixed  
91% ...95% fixed frequency mode  
88% synchronization mode  
380 mA  
Dmax,synced  
Typical gate driver peak sourcing current ISWO,SRC  
Typical gate driver peak sinking current ISWO,SNK  
550 mA  
Protection and diagnostic functions  
Open circuit detection  
Output overvoltage protection  
Overtemperature shutdown  
Electrostatic discharge (ESD) protection  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100/101.  
Datasheet  
2
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Table of contents  
Table of contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Protection and diagnostic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2
3
3.1  
3.2  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.1  
4.2  
4.3  
5
5.1  
5.2  
Switching regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
6
Oscillator and synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Typical performance characteristics of oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.1  
6.2  
6.3  
7
7.1  
7.2  
Enable and dimming function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
8
8.1  
8.2  
Linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
9
9.1  
9.2  
Protection and diagnostic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10  
Analog dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Purpose of analog dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
10.1  
10.2  
10.3  
11  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
11.1  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
12  
13  
Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Datasheet  
3
Rev.1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Block diagram  
2
Block diagram  
14  
13  
LDO  
1
IN  
IVCC  
SWO  
Power on  
reset  
Internal  
supply  
EN_INT/  
PWM_INT  
On/Off  
logic  
EN / PWMI  
Power switch  
gate driver  
Soft  
Start  
2
Oscillator  
11  
FREQ/SYNC  
PWM  
Generator  
4
SWCS  
SGND  
Switch current error  
amplifier  
Slope  
Comp.  
3
Thermal  
protection  
Leading edge  
blanking  
Diagnostic  
logic  
Overvoltage  
protection  
ST  
5
9
OVFB  
Open load  
Reference current  
generator  
10  
8
SET  
6
7
FBH  
FBL  
Feedback voltage error  
amplifier  
COMP  
12  
GND  
Figure 2  
Block diagram TLD5097EP  
Datasheet  
4
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Pin configuration  
3
Pin configuration  
3.1  
Pin assignment  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
IVCC  
SWO  
IN  
EN/PWMI  
GND  
SGND  
SWCS  
FREQ/SYNC  
ST  
SET  
FBH  
OVFB  
COMP  
EP  
FBL  
8
Figure 3  
Pin configuration TLD5097EP  
3.2  
Pin definitions and functions  
Table 2  
Pin definition and function  
#
Symbol  
Direction Function  
1
IVCC  
Output  
Internal LDO  
Used for internal biasing and gate drive. Bypass with external  
capacitor. Pin must not be left open  
2
3
4
5
6
7
8
SWO  
SGND  
SWCS  
ST  
Output  
Switch gate driver  
Connect to gate of external switching MOSFET  
Current Sense Ground  
Ground return for switch current sense  
Input  
Output  
Input  
Input  
Input  
Current Sense  
Detects the peak current through switch  
Status  
to indicate fault conditions  
FBH  
Voltage Feedback Positive  
Non inverting Input (+)  
FBL  
Voltage Feedback Negative  
Inverting Input (-)  
COMP  
Compensation  
Connect R and C network to pin for stability  
Datasheet  
5
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Pin configuration  
Table 2  
Pin definition and function  
#
Symbol  
Direction Function  
9
OVFB  
Input  
Overvoltage Protection Feedback  
Connect to resistive voltage divider to set overvoltage threshold  
10  
11  
SET  
Input  
Analog dimming  
Load current adjustment Pin. Pin must not be left open. If analog  
dimming feature is not used connect to IVCC pin  
FREQ / SYNC  
Input  
Frequency Select or Synchronization  
Connect external resistor to GND to set frequency.  
Or apply external clock signal for synchronization within frequency  
capture range  
12  
13  
GND  
Ground  
Connect to system ground  
EN / PWMI  
Input  
Enable or PWM  
Apply logic HIGH signal to enable device or PWM signal for dimming  
LED  
14  
IN  
Input  
Supply Input  
Supply for internal biasing  
EP  
Exposed Pad  
Connect to external heat spreading GND Cu area (e.g. inner GND layer  
of multilayer PCB with thermal vias)  
Datasheet  
6
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
General product characteristics  
4
General product characteristics  
4.1  
Absolute maximum ratings  
TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Table 3  
Absolute maximum ratings1)  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Voltage  
IN  
VIN  
-0.3  
-40  
-40  
45  
45  
61  
V
V
V
P_4.1.1  
P_4.1.2  
Supply input  
EN / PWMI  
Enable or PWM Input  
VEN  
FBH-FBL;  
Feedback error amplifier  
differential  
VFBH- VFBL  
The maximum delta P_4.1.3  
must not exceed  
61 V  
Differential signal  
(not referred to  
GND)  
FBH;  
VFBH  
-40  
-40  
61  
61  
V
V
The difference  
between VFBH and  
P_4.1.4  
P_4.1.5  
Feedback error amplifier  
positive input  
V
FBL must not  
exceed 61 V, refer to  
P_4.1.3  
FBL  
VFBL  
The difference  
Feedback error amplifier  
negative input  
between VFBH and  
V
FBL must not  
exceed 61 V, refer to  
P_4.1.3  
FBH and FBL current  
IFBH, IFBL  
1
mA  
V
t < 100 ms;  
VFBH - VFBL = 0.3 V  
P_4.1.6  
P_4.1.7  
OVFB  
VOVP  
-0.3  
-0.3  
5.5  
6.2  
Overvoltage feedback  
input  
OVFB  
VOVP  
V
t < 10 s  
P_4.1.8  
Overvoltage feedback  
input  
SWCS  
VSWCS  
VSWCS  
VSWO  
-0.3  
-0.3  
-0.3  
5.5  
6.2  
5.5  
V
V
V
P_4.1.9  
Switch current sense input  
SWCS  
t < 10 s  
P_4.1.10  
P_4.1.11  
Switch current sense input  
SWO  
Switch gate drive output  
Datasheet  
7
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
General product characteristics  
Table 3  
Absolute maximum ratings1)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
SWO  
VSWO  
-0.3  
6.2  
V
t < 10 s  
P_4.1.12  
P_4.1.13  
P_4.1.14  
P_4.1.15  
P_4.1.16  
P_4.1.17  
P_4.1.18  
P_4.1.19  
P_4.1.20  
P_4.1.21  
P_4.1.22  
Switch gate drive output  
SGND  
VSGND  
VCOMP  
VCOMP  
-0.3  
-0.3  
-0.3  
0.3  
5.5  
6.2  
5.5  
6.2  
5.5  
6.2  
2
V
Current sense switch GND  
COMP  
Compensation input  
V
COMP  
Compensation input  
V
t < 10 s  
FREQ / SYNC; Frequency  
and synchronization input  
VFREQ/SYNC -0.3  
VFREQ/SYNC -0.3  
V
FREQ / SYNC; Frequency  
and synchronization input  
V
t < 10 s  
ST  
VST  
-0.3  
-0.3  
-2  
V
Status output  
ST  
VST  
V
t < 10 s  
Status output  
ST  
IST  
mA  
V
Status output  
SET  
VSET  
VIVCC  
-0.3  
-0.3  
45  
Analog dimming input  
IVCC  
5.5  
V
Internal linear voltage  
regulator output  
IVCC  
VIVCC  
-0.3  
6.2  
V
t < 10 s  
P_4.1.23  
Internal linear voltage  
regulator output  
Temperature  
Junction temperature  
Storage temperature  
ESD Susceptibility  
ESD resistivity of all pins  
TJ  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.24  
P_4.1.25  
Tstg  
VESD,HBM  
VESD,HBM  
-2  
-4  
2
4
kV  
kV  
HBM2)  
HBM2)  
P_4.1.26  
P_4.1.27  
ESD resistivity of IN,  
EN/PWMI, FBH, FBL and  
SET pin to GND  
ESD resistivity  
VESD_CDM  
-500  
-750  
500  
750  
V
V
CDM3)  
CDM3)  
P_4.1.28  
P_4.1.29  
ESD resistivity corner pins VESD_CDM  
1) Not subject to production test, specified by design  
2) ESD susceptibility, Human Body Model “HBM” according to AEC Q100-002  
3) ESD susceptibility, Charged Device Mode “CDM” according to AECQ100-011  
Datasheet  
8
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
General product characteristics  
Note:  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
4.2  
Functional range  
Table 4  
Functional range  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Extended supply  
voltage range  
VIN  
4.5  
45  
V
V
> VIVCCT,RTH,d  
;
P_4.2.1  
IVCC  
parameter deviations  
possible  
Nominal supply  
voltage range  
VIN  
8
34  
V
P_4.2.2  
P_4.2.3  
P_4.2.4  
Feedback voltage  
input  
VFBH, VFBL  
3
60  
V
Junction  
TJ  
-40  
150  
°C  
temperature  
1) Not subject to production test, specified by design  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
Datasheet  
9
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
General product characteristics  
4.3  
Thermal resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For further  
information visit https://www.jedec.org  
Table 5  
Thermal resistance  
Parameter  
Symbol  
Values  
Typ.  
16  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)2)  
Junction to Case  
RthJC  
K/W  
P_4.3.1  
P_4.3.2  
P_4.3.3  
P_4.3.4  
Junction to Ambient RthJA  
Junction to Ambient RthJA  
Junction to Ambient RthJA  
53  
K/W 1)3) 2s2p  
K/W 1)3)1s0p + 600mm2  
K/W 1)3) 1s0p + 300mm2  
71  
83  
1) Not subject to production test, specified by design  
2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed  
to ambient temperature). TA = 25°C dissipates 1 W  
3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink area  
at natural convection on FR4 board;The device was simulated on a 76.2 x 114.3 x 1.5 mm board. The 2s2p board has  
2 outer copper layers (2 x 70 µm Cu) and 2 inner copper layers (2 x 35 µm Cu), A thermal via (diameter = 0.3 mm and  
25 µm plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner  
layer and second outer layer (bottom) of the JEDEC PCB. TA=25°C, IC dissipates 1 W  
Datasheet  
10  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Switching regulator  
5
Switching regulator  
5.1  
Description  
The TLD5097EP regulator is suitable for Boost, Buck, Buck-Boost, SEPIC and Flyback configurations. The  
constant output current is especially useful for light emitting diode (LED) applications. The switching  
regulator function is implemented by a pulse width modulated (PWM) current mode controller.  
The PWM current mode controller uses the peak current through the external power switch and error in the  
output current to determine the appropriate pulse width duty cycle (on time) for constant output current. The  
current mode controller provides a PWM signal to an internal gate driver which then outputs to an external  
n-channel enhancement mode metal oxide field effect transistor (MOSFET) power switch.  
The current mode controller also has built-in slope compensation to prevent sub-harmonic oscillations which  
is a characteristic of current mode controllers operating at high duty cycles (>50% duty).  
An additional built-in feature is an integrated soft start that limits the current through the inductor and  
external power switch during initialization. The soft start function gradually increases the inductor and switch  
current over tSS (P_5.2.9) to minimize potential overvoltage at the output.  
OV FB  
H when  
OVFB >1.25V  
OVFB  
9
8
Vref =1.25V  
UV IVCC  
High when  
IVCC < 4.0V  
COMP  
Vref =4.0V  
NOR  
FBH 6  
Current  
Comp  
Gate Driver  
Supply  
x1  
EA  
1 IVCC  
2 SWO  
gmEA  
High when  
EA - ISLOPE - ICS > 0  
>
1
Output Stage  
OFF when Low  
l
INV  
1
R
S
OFF  
IEA  
Q
FBL  
SET  
7
&
when H  
0 if SET < 1.6V  
0
Low when  
j > 175 °C  
Gate  
Driver  
10  
1
R
T
Q
ꢁꢂꢃ − 0.1ꢄ  
5
&
&
Soft start  
Vre f =0.3V  
&
Q
Current  
Sense  
ISLOPE  
PWM-FF  
Oscillator  
Slope Comp  
I
4
3
SWCS  
SGND  
NAND 2  
S
t
Q
FREQ/  
SYNC  
11  
ICS  
&
Error-FF  
Clock  
Figure 4  
Switching regulator block diagram  
Datasheet  
11  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Switching regulator  
5.2  
Electrical characteristics  
VIN = 8 V to 34 V; TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Table 6  
Electrical characteristics: Switching regulator  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Regulator  
Feedback reference  
voltage  
VREF  
0.29  
0.30  
0.06  
0.31  
V
refer to Figure 29 P_5.2.1  
VREF = VFBH - VFBL  
VSET = 5 V  
ILED =350 mA  
Feedback reference  
voltage  
VREF  
0.057  
0.063  
5
V
refer to Figure 29 P_5.2.2  
VREF= VFBH - VFBL  
VSET= 0.4 V  
ILED=70 mA  
Feedback reference  
voltage offset  
VREF_offset  
mV  
refer to Figure 17 P_5.2.3  
and Figure 29  
V
REF= VFBH - VFBL  
VSET= 0.1 V  
OUT > VIN  
%/V refer to Figure 29 P_5.2.4  
IN = 8 V to 19 V;  
VSET = 5 V;  
LED = 350 mA  
%/A refer to Figure 29 P_5.2.5  
SET = 5 V;  
LED = 100 to  
V
Voltage line regulation (VREF  
/
0.15  
5
V
REF) / VIN  
V
I
Voltage load regulation (VREF  
/
V
REF) / IBO  
V
I
500 mA  
Switch peak  
overcurrent threshold  
VSWCS  
DMAX,fixed  
DMAX,sync  
tSS  
130  
91  
150  
93  
170  
95  
mV  
%
VFBH= VFBL = 5 V  
VCOMP = 3.5 V  
P_5.2.6  
P_5.2.7  
P_5.2.8  
Maximum duty cycle  
Maximum duty cycle  
Soft start ramp  
Fixed frequency  
mode  
88  
%
Synchronization  
mode  
350  
38  
1000  
46  
1500  
54  
µs  
µA  
VFB rising from 5% P_5.2.9  
to 95% of VFB , typ.  
IFBH  
IFBH  
VFBH - VFBL = 0.3 V  
VFBH - VFBL = 0.3 V  
VSWCS = 150 mV  
P_5.2.10  
P_5.2.11  
P_5.2.12  
Feedback high input  
current  
IFBL  
IFBL  
15  
10  
21  
50  
12  
27  
µA  
µA  
Feedback low input  
current  
Switch current sense  
input current  
ISWCS  
100  
Datasheet  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Switching regulator  
Table 6  
Electrical characteristics: Switching regulator  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Input undervoltage  
shutdown  
VIN,off  
VIN,on  
3.5  
4.5  
V
VIN decreasing  
VIN increasing  
1)  
P_5.2.13  
P_5.2.14  
Input voltage startup  
4.85  
V
Gate driver for external switch  
Gate driver peak  
sourcing current  
ISWO,SRC  
380  
550  
30  
20  
mA  
mA  
ns  
ns  
V
V
= 1 V to 4 V P_5.2.15  
SWO  
1)  
1)  
Gate driver peak sinking ISWO,SNK  
current  
V
= 4 V to 1 V P_5.2.16  
SWO  
Gate driver output rise tR,SWO  
time  
60  
40  
5.5  
C
= 3.3 nF;  
P_5.2.17  
P_5.2.18  
P_5.2.19  
L,SWO  
VSWO = 1 V to 4 V  
1)  
Gate driver output fall tF,SWO  
time  
C
= 3.3 nF;  
L,SWO  
VSWO = 4 V to 1 V  
1)  
Gate driver output  
voltage  
VSWO  
4.5  
C
= 3.3 nF  
L,SWO  
1) Not subject to production test, specified by design  
Datasheet  
13  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Oscillator and synchronization  
6
Oscillator and synchronization  
6.1  
Description  
Rfreq vs. switching frequency  
The internal oscillator is used to determine the switching frequency of the boost regulator. The switching  
frequency can be selected from 100 kHz to 500 kHz with an external resistor to GND. To set the switching  
frequency with an external resistor the following formula can be applied.  
(6.1)  
1
3
R FREQ  
=
(
3.5 10  
[
Ω
]
)[ ]  
Ω
s
1
12  
(141 10  
) f FREQ  
Ω
s
In addition, the oscillator is capable of changing from the frequency set by the external resistor to a  
synchronized frequency from an external clock source. If an external clock source is provided on the pin  
FREQ/SYNC, then the internal oscillator synchronizes to this external clock frequency and the boost regulator  
switches at the synchronized frequency. The synchronization frequency capture range is 250 kHz to 500 kHz.  
TLD5097  
FREQ  
/ SYNC  
Oscillator  
PWM  
Logic  
Gate  
Driver  
SWO  
Multiplexer  
Clock Frequency  
Detector  
VCLK  
RFREQ  
Figure 5  
Oscillator and synchronization block diagram and simplified application circuit  
T
SYNC = 1 / fSYNC  
tSYNC,PWH  
VSYNC  
VSYNC,H  
VSYNC,L  
t
Figure 6  
Synchronization timing diagram  
Datasheet  
14  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Oscillator and synchronization  
6.2  
Electrical characteristics  
VIN = 8 V to 34 V; TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Table 7  
Electrical characteristics: Oscillator and synchronization  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Oscillator  
Oscillator frequency  
fFREQ  
fFREQ  
250  
100  
300  
350  
500  
kHz  
kHz  
RFREQ = 20 k  
P_6.2.1  
P_6.2.2  
Oscillator frequency  
adjustment range  
FREQ / SYNC supply  
current  
IFREQ  
-700  
1.32  
µA  
V
VFREQ = 0 V  
P_6.2.3  
Frequency voltage  
VFREQ  
1.16  
1.24  
fFREQ = 100 kHz P_6.2.4  
Synchronization  
Synchronization  
frequency capture range  
fSYNC  
250  
3.0  
500  
kHz  
V
P_6.2.5  
P_6.2.6  
P_6.2.7  
P_6.2.8  
1)2)  
Synchronization signal VSYNC,H  
high logic level valid  
1)2)  
1)2)  
Synchronization signal VSYNC,L  
low logic level valid  
0.8  
V
Synchronization signal tSYNC,PWH  
200  
ns  
logic high pulse width  
1) Synchronization of external PWM ON signal to falling edge  
2) Not subject to production test, specified by design  
Datasheet  
15  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Oscillator and synchronization  
6.3  
Typical performance characteristics of oscillator  
600  
500  
400  
300  
200  
100  
0
TJ = 25°C  
0
10 20 30 40 50 60 70 80  
RFREQ[kΩ ]  
Figure 7  
Switching frequency fSW versus frequency select resistor to GND RFREQ  
Datasheet  
16  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Enable and dimming function  
7
Enable and dimming function  
7.1  
Description  
The enable function powers the device on or off. A valid logic “low”signal on enable pin EN/PWMI powers “off”  
the device and current consumption is less than IQ_OFF (P_7.1.8). A valid logic “high” enable signal on enable  
pin EN/PWMI powers on the device. The enable function features an integrated pull down resistor which  
ensures that the IC is shut down and the power switch is off in case the enable pin EN is left open.  
In addition to the enable function described above, the EN/PWMI pin detects a pulse width modulated (PWM)  
input signal that is fed through to the internal gate driver. The EN/PWMI enables and disables the gate driver  
for the main switch during PWM operation. PWM dimming an LED is a commonly practiced dimming method  
and can prevent color shift in an LED light source.  
The enable and PWM input function share the same pin. Therefore a valid logic “low” signal at the EN/PWMI  
pin needs to differentiate between an enable power “off” or a PWM dimming “low” signal. The device  
differentiates between enable off and PWM dimming signal by requiring the enable off at the EN/PWMI pin to  
stay “low” for the “Enable turn off delay time” (tEN,OFF,DEL P_7.1.6).  
LBO  
DBO  
CBO  
RFB  
IN  
14  
Enable  
Enable  
IVCC  
SWO  
1
LDO  
EN / PWMI  
TSW  
Enable / PWMI  
Logic  
Gate  
driver  
13  
2
Microcontroller  
RSWCS  
Figure 8  
Block diagram and simplified application circuit enable and LED dimming  
Datasheet  
17  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Enable and dimming function  
tEN,START  
TPWMI  
tPWMI,H  
tEN,OFF,DEL  
VEN/PWMI  
VEN/PWMI,ON  
VEN/PWMI,OFF  
t
t
t
t
VIVCC  
VIVCC,ON  
VIVCC,RTH  
VST  
1
fFREQ  
TFREQ  
=
VSWO  
Power Off Delay Time  
Power On  
Power Off  
Normal  
SWO On  
ST On  
Dim  
Normal  
SWO On  
ST On  
Dim  
Normal  
SWO On  
ST On  
IQ_OFF < 10 μA  
ST Off  
ST Off  
SWO Off  
SWO Off  
Figure 9  
Timing diagram enable and LED dimming  
Note:  
The ST signal is “low” during soft-start.  
Datasheet  
18  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Enable and dimming function  
7.2  
Electrical characteristics  
VIN = 8 V to 34 V; TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Table 8  
Electrical characteristics: Enable and dimming  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
VEN/PWMI,ON 3.0  
VEN/PWMI,OFF  
VEN/PWMI,HYS 50  
Max.  
Enable / PWM Input  
Enable/PWMI  
turn on threshold  
V
P_7.1.1  
P_7.1.2  
P_7.1.3  
P_7.1.4  
P_7.1.5  
P_7.1.6  
P_7.1.7  
Enable/PWMI  
turn off threshold  
0.8  
400  
30  
1
V
1)  
Enable/PWMI  
hysteresis  
200  
mV  
µA  
µA  
ms  
µs  
Enable/PWMI  
high input current  
IEN/PWMI,H  
IEN/PWMI,L  
tEN,OFF,DEL  
VEN/PWMI = 16.0 V  
VEN/PWMI = 0.5 V  
Enable/PWMI  
low input current  
0.1  
10  
Enable turn off  
delay time  
8
12  
1)  
Enable startup time tEN,START  
100  
Current consumption  
Current  
consumption,  
shutdown mode  
IQ_OFF  
10  
7
µA  
VEN/PWMI = 0.8 V;  
TJ 105°C;  
VIN = 16V  
2)  
P_7.1.8  
Current  
IQ_ON  
mA  
V
4.75 V; P_7.1.9  
EN/PWMI  
consumption,  
active mode  
IBO = 0 mA;  
SWO = 0% duty  
cycle  
V
1) Not subject to production test, specified by design  
2) Dependency on switching frequency and gate charge of external switches  
Datasheet  
19  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Linear regulator  
8
Linear regulator  
8.1  
Description  
The internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5 V and current  
up to ILIM,min (P_8.1.2). An external output capacitor with ESR lower than RIVCC,ESR (P_8.1.5) is required on pin  
IVCC for stability and buffering transient load currents. During normal operation the external MOSFET  
switches will draw transient currents from the linear regulator and its output capacitor. Proper sizing of the  
output capacitor must be considered to supply sufficient peak current to the gate of the external MOSFET  
switches.  
Integrated undervoltage protection for the external switching MOSFET  
An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage (VIVCC) and  
resets the device in case the output voltage falls below the IVCC undervoltage reset switch OFF threshold  
(VIVCC,RTH,d). The undervoltage reset threshold for the IVCC pin helps to protect the external switches from  
excessive power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of an external  
logic level n-channel MOSFET.  
IN  
IVCC  
14  
1
Linear Regulator  
EN / PWMI  
13  
Gate  
Drivers  
Figure 10 Voltage regulator block diagram and simplified application circuit  
Datasheet  
20  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Linear regulator  
8.2  
Electrical characteristics  
VIN = 8 V to 34 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Table 9  
Electrical characteristics: Line regulator  
Parameter  
Symbol  
Values  
Typ.  
5
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Output voltage  
VIVCC  
ILIM  
4.85  
5.15  
V
6 V VIN45 V  
P_8.1.1  
P_8.1.2  
0.1 mA IIVCC 40 mA  
Output current  
limitation  
51  
90  
mA  
VIN = 13.5 V  
V
IVCC = 4.5 V  
Current flows out of  
pin  
Drop out voltage  
VDR  
0.5  
100  
0.5  
V
VIN = 4.5 V  
P_8.1.3  
P_8.1.4  
P_8.1.5  
P_8.1.6  
P_8.1.7  
I
IVCC = 25 mA  
1)2)  
IVCC buffer  
capacitor  
CIVCC  
0.47  
1
µF  
Ω
1)  
IVCC buffer  
capacitor ESR  
RIVCC, ESR  
Undervoltage reset VIVCC,HDRM  
headroom  
100  
3.6  
mV  
V
VIVCC decreasing  
VIVCC - VIVCC,RTH,d  
3)  
IVCC undervoltage VIVCC,RTH,d  
reset switch-off  
4.0  
V
decreasing  
IVCC  
threshold  
IVCC undervoltage VIVCC,RTH,i  
reset switch-on  
4.5  
V
VIVCC increasing  
P_8.1.8  
threshold  
1) Not subject to production test, specified by design  
2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum.  
3) Selection of external switching MOSFET is crucial and the VIVCC,RTH,d min. as worst case the threshold voltage of the.  
MOSFET must be considered.  
Datasheet  
21  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Protection and diagnostic functions  
9
Protection and diagnostic functions  
9.1  
Description  
The TLD5097EP has integrated circuits to diagnose and protect against output overvoltage, open load, open  
feedback and overtemperature faults. In case of a fault condition, the SWO signal stops operation. The ST  
signal will change to an active logic “low” signal to communicate that a fault has occurred (detailed overview  
in Figure 11 and Table 10 below). Figure 12 illustrates the various open load and open feedback conditions.  
In case of an overtemperature condition the integrated thermal shutdown function turns off the gate driver  
and internal linear voltage regulator. The typical junction shutdown temperature is 175°C (TJ,SD P_9.2.3). After  
cooling down the IC will automatically restart. Thermal shutdown is an integrated protection function  
designed to prevent IC destruction and is not intended for continuous use in normal operation (Figure 14). To  
calculate the proper overvoltage protection resistor values an example is given in Figure 15.  
Input  
Output  
Protection and  
diagnostic circuit  
Output  
overvoltage  
Open load  
SWO gate driver off  
ST pin low  
OR  
Open feedback  
Overtemperature  
OR  
Linear regulator off  
Input undervoltage  
Figure 11 Protection and diagnostic function block diagram  
Datasheet  
22  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Protection and diagnostic functions  
Table 10 Diagnosis truth table1)  
Input  
Output  
ST  
Condition  
Level  
SWO  
Sw  
IVCC  
Overvoltage at output False  
True  
High or Sw  
Low  
Active  
Low  
Sw  
Active  
Open load  
False  
True  
False  
True  
False  
True  
High or Sw  
Low  
Active  
Low  
Sw  
Active  
Open feedback  
Overtemperature  
High or Sw  
Low  
Active  
Low  
Sw  
Active  
High or Sw  
Low  
Active  
Low  
Sw  
Shutdown  
Active  
Undervoltage at input False  
High or Sw  
True  
Low  
Low  
Shutdown  
1) Sw = Switching; False = Condition does NOT exist; True = Condition does exist  
VBO  
Output open circuit conditions  
Open Circuit 3  
Open Circuit 1  
Open circuit  
condition  
Fault threshold voltage  
VREF  
Fault condition  
TLD5097  
1
2
3
4
Open FBH  
Open FBL  
-20 to -100 mV  
0.5 to 1.0 V  
ROVH  
RFB  
Overvoltage  
comparator  
OVFB  
Open Circuit 2  
D1  
9
Open VBO  
-20 to -100 mV  
ROVL  
Open LED-GND  
Detected by overvoltage  
VOVFB,TH  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
VREF  
Feedback voltage  
error amplifier  
FBH  
FBL  
6
7
+
VREF  
-
Max Threshold = 1.0 V  
Min Threshold = 0.5 V  
Typical VREF = 0.3 V  
Open Circuit 4  
Max Threshold = -20 mV  
Min Threshold = -100 mV  
Figure 12 Open load and open feedback conditions  
Datasheet  
23  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Protection and diagnostic functions  
Startup  
Normal  
Thermal  
Shutdown  
Overvoltage  
2
Open Load /  
Feedback  
Shutdown  
1
3
VIVCC  
VIVCC,RTH,i  
VIVCC,RTH,d  
t
t
t
t
TJ,SD,HYST  
TJ  
1
TJ,SD  
VOVFB,HYS  
2
VBO  
V
OVFB ≥ VOVFB,TH  
VIN  
3
V
FBH-VFBL  
VREF,2  
tSS  
tSS  
0.3 V Typ  
VREF,1  
VST  
t
Figure 13 Open load, overvoltage and overtemperature timing diagram  
Datasheet  
24  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Protection and diagnostic functions  
VEN/PWMI  
H
L
t
TJ  
TJSD  
ΔΤ  
TJSO  
t
t
TA  
VSWO  
ILED  
Ipeak  
t
VST and  
VIVCC  
5V  
t
Device  
off  
Overtemp  
fault  
Overtemp  
fault  
Overtemp  
fault  
Overtemp  
fault  
Normaloperation  
on  
on  
on  
Figure 14 Device overtemperature protection behavior  
VOVFB  
example: VOUT,max=40V  
1.25mA  
VOVP,max  
Overvoltage protection  
active  
40V  
1.25mA  
ROVH  
33.2kΩ  
TLD5097  
9
VOVFB,TH  
OVFB  
1.25V  
ROVL  
1kΩ  
1.25V  
Overvoltage protection  
disabled  
GND  
12  
t
Figure 15 Overvoltage protection description  
Datasheet  
25  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Protection and diagnostic functions  
9.2  
Electrical characteristics  
VIN = 8 V to 34 V; TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Table 11 Electrical characteristics: Protection and diagnosis  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Status output  
1)  
1)  
Status output voltage VST,LOW  
low  
0.4  
V
V
I = 1mA  
P_9.2.1  
P_9.2.2  
ST  
Status output voltage VST,HIGH  
VIVCC -0.4  
VIVCC  
I = -1mA  
ST  
high  
Temperature protection  
Overtemperature  
shutdown  
TJ,SD  
160  
175  
15  
190  
°C  
°C  
1) refer to Figure 14 P_9.2.3  
1)  
Overtemperature  
TJ,SD,HYST  
P_9.2.4  
shutdown hystereses  
Overvoltage protection  
Output overvoltage  
feedback threshold  
increasing  
VOVFB,TH  
1.21  
1.25  
1.29  
V
refer to Figure 15 P_9.2.5  
Output overvoltage  
feedback hysteresis  
VOVFB,HYS  
50  
2
150  
10  
1
mV  
µs  
1)Output voltage  
decreasing  
P_9.2.6  
P_9.2.7  
P_9.2.8  
Overvoltage reaction tOVPRR  
time  
1)Output voltage  
decreasing  
Overvoltage feedback IOVFB  
-1  
0.1  
µA  
VOVFB = 1.25 V  
input current  
Open load and open feedback diagnostics  
Open load/feedback  
Threshold  
VREF,1,3  
-100  
-20  
1
mV  
V
refer to Figure 12 P_9.2.9  
REF = VFBH - VFBL  
Open circuit 1 or 3  
V
Open feedback  
threshold  
VREF,2  
0.5  
refer to Figure 12 P_9.2.10  
V
REF = VFBH - VFBL  
Open circuit 2  
1) Specified by design; not subject to production test.  
Note:  
Integrated protection functions are designed to prevent IC destruction under fault conditions  
described in the data sheet. Fault conditions are considered as “outside” normal operating range.  
Protection functions are not designed for continuous repetitive operation.  
Datasheet  
26  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Analog dimming  
10  
Analog dimming  
This pin influences the “feedback voltage error amplifier” by generating an internal current accordingly to an  
external reference voltage (VSET). If the analog dimming feature is not needed this pin must be connected to  
IVCC or external > 1.6 V supply. Different application scenarios are described in Figure 18. This pin can also go  
outside of the ECU for instance if a thermistor is connected on a separated LED module and the “Analog  
dimming input” is used to thermally protect the LEDs. For reverse battery protection of this pin an external  
series resistor should be placed to limit the current.  
10.1  
Purpose of analog dimming  
1. It is difficult for LED manufacturers to deliver LEDs which have the same brightness, colorpoint and  
forward voltage class. Due to this relatively wide spread of the crucial LED parameters automotive  
customers order LEDs from one or maximum two different colorpoint classes. The LED manufacturer must  
preselect the LEDs to deliver the requested colorpoint class. These preselected LEDs are matched in terms  
of the colorpoint but a variation of the brightness remains. To correct the brightness deviation an analog  
dimming feature is needed. The mean LED current can be adjusted by applying an external voltage VSET at  
the SET pin.  
2. If the DC/DC application is separated from the LED loads the ECU manufacturers aim is to develop one  
hardware which should be able to handle different load current conditions (e.g. 80 mA to 400 mA) to cover  
different applications. To achieve this average LED current adjustment the analog dimming is a crucial  
feature.  
10.2  
Description  
Application example  
Desired LED current = 400 mA. For the calculation of the correct feedback resistor RFB the following equation  
can be used: This formula is valid if the analog dimming feature is disabled and VSET > 1.6 V.  
(10.1)  
VREF  
RFB  
VREF  
ILED  
0.3V  
ILED  
=
RFB =  
RFB =  
= 750mΩ  
400mA  
Related electrical parameter is guaranteed with VSET = 5 V (P_5.2.1) A decrease of the average LED current can  
be achieved by controlling the voltage at the SET pin (VSET) between 0.1 V and 1.6 V. The mathematical relation  
is given in the formula below:  
(10.2)  
VSET 0.1V  
ILED  
=
5 RFB  
Refer to the concept drawing in Figure 17.  
If VSET is equal to or smaller than 50 mV, the switching activity is stopped and ILED = 0 A.  
Datasheet  
27  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Analog dimming  
V
FBH-FBL [mV]  
Typ. 300  
0
VSET [V]  
Analog dimming enabled  
− 0.1ꢄ  
Analog enabled  
ꢁꢂꢃ  
ꢉꢂꢊ  
ꢇꢂꢈ  
=
ꢇꢂꢈ =  
5 ∙ ꢉꢊꢋ  
ꢊꢋ  
Figure 16 Basic relationship between VREF and VSET voltage  
VREF  
VOUT  
RFB  
FBL  
IFBL  
R2  
FBH  
ILED  
6
7
Vint  
IFBH  
R1  
V
Bandgap = 1.6V  
VREF_offset  
SET  
+
+
10  
VSET  
-
-
+
Feedback voltage  
error amplifier  
ISET  
ISET  
n*ISET  
R3  
100mV  
COMP  
GND  
8
12  
CCOMP  
RCOMP  
Figure 17 Concept drawing analog dimming  
Datasheet  
28  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Analog dimming  
Multi-purpose usage of the analog dimming feature  
1. A µC integrated digital analog converter (DAC) output or a stand alone DAC can be used to supply the SET  
pin of the TLD5097EP. The integrated voltage regulator (VIVCC) can be used to supply the µC or external  
components if the current consumption does not exceed 20 mA.  
2. The analog dimming feature is directly connected to the input voltage of the system. In this configuration  
the LED current is reduced if the input voltage VIN is decreasing. The DC/DC boost converter is changing  
(increasing) the switching duty cycle if VIN drops to a lower potential. This causes an increase of the input  
current consumption. If applications require a decrease of the LED current in respect to VIN variations this  
setup can be chosen.  
3. The usage of an external resistor divider connected between IVCC (integrated 5 V regulator output and gate  
buffer pin) SET and GND can be chosen for systems without µC on board. The concept allows to control the  
LED current via placing cheap low power resistors. Furthermore a temperature sensitive resistor  
(Thermistor) to protect the LED loads from thermal destruction can be connected additionally.  
4. If the analog dimming feature is not needed the SET pin must be connected directly to > 1.6 V potential  
(e.g. IVCC potential)  
5. Instead of a DAC the µC can provide a PWM signal and an external R-C filter produces a constant voltage for  
the analog dimming. The voltage level depends on the PWM frequency (fPWM) and duty cycle (DC) which can  
be controlled by the µc software after reading the coding resistor placed at the LED module.  
Datasheet  
29  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Analog dimming  
+5V  
Vbb  
1
2
4
CIVCC  
1
14  
IVCC  
IN  
RSET2  
10  
D/A-Output  
SET  
10  
SET  
μC  
VSET  
VSET RSET1  
Cfilter  
GND  
GND  
12  
12  
3
VIVCC = +5V  
VIVCC = +5V  
1
1
IVCC  
SET  
IVCC  
SET  
Rfilter  
RSET2  
CIVCC  
CIVCC  
10  
10  
RSET1  
GND  
GND  
VSET  
VSET ~ VIVCC  
Cfilter  
Cfilter  
12  
12  
5
+5V  
1
IVCC  
SET  
CIVCC  
PWM  
10  
PWM output  
Rfilter  
μC  
(e.g. XC866)  
Cfilter  
VSET  
GND  
12  
Figure 18 Analog dimming in various applications  
Datasheet  
30  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Analog dimming  
10.3  
Electrical characteristics  
VIN = 8 V to 34 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Table 12 Electrical characteristics: Protection and diagnosis  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
SET programming  
range  
VSET  
0
1.6  
V
1) refer to  
Figure 16  
P_10.3.1  
1) Specified by design; not subject to production test.  
Datasheet  
31  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Application information  
11  
Application information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
LBO  
DBO  
Vbattery  
VIN  
CIN  
CBO  
ILED  
TSW  
2
4
SWO  
14  
IN  
SWCS  
RFB  
VREF  
RCS  
V
CC or VIVCC  
ROVH  
3
9
SGND  
OVFB  
PWM  
VSET  
D1  
10  
Analog Dimming  
SET  
Rfilter  
Cfilter  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
ROVL  
IC1  
IC2  
Microcontroller  
(e.g. XC866)  
TLD5097  
PWMI  
6
FBH  
IVCC  
13  
11  
8
Digital Dimming  
Spread  
EN / PWMI  
FREQ / SYNC  
COMP  
1
CIVCC  
RPOL  
DPOL  
STATUS  
Spectrum  
CCOMP  
7
5
FBL  
ST  
RFREQ  
RCOMP  
GND  
12  
Figure 19 Boost to Ground application circuit - B2G (Boost configuration)  
Reference  
Designator  
Part  
Number  
Value  
Manufacturer  
Type  
Quantity  
D1 - 10  
DBO  
White  
Schottky, 3 A, 100 VR  
100 uF, 50V  
10 uF, 50V  
100 nF  
Osram  
Vishay  
LUW H9GP  
SS3H10  
LED  
Diode  
10  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CIN  
Panasonic  
Panasonic  
EPCOS  
EEEFK1H101GP  
Electrolytic or Ceramic Bank  
X7R  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
IC  
CBO  
CCOMP  
CIVCC  
IC1  
MLCC CCNPZC105KBW X7R  
TLD5097  
1uF , 6.3V  
--  
EPCOS  
Infineon  
IC2  
--  
Infineon  
XC866  
IC  
LBO  
100 uH  
Coilcraft  
MSS1278T-104ML  
ERJ3EKF1002V  
ERJ14BQFR82U  
ERJ3EKF2002V  
ERJ3EKF3322V  
ERJ3EKF1001V  
ERJB1CFR05U  
IPG20N10S4L-22  
IPD30N06S4L-23  
Inductor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
RCOMP  
RFB  
10 kΩ, 1%  
820 mΩ, 1%  
20 kΩ, 1%  
33.2 kΩ, 1%  
1 kΩ, 1%  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Infineon  
RFREQ  
ROVH  
ROVL  
RCS  
50 mΩ, 1%  
100V N-ch, 35A  
alternativ: 60V N-ch, 30A  
TSW  
Transistor  
Transistor  
Infineon  
Figure 20 Bill of Materials for B2G application circuit  
Datasheet  
32  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Application information  
L1  
DBO  
CSEPIC  
VIN  
VIN = 4.5V to 45V  
CIN  
ISW  
RFB  
L2  
VREF  
CBO  
TSW  
2
4
SWO  
14  
IN  
SWCS  
ILED  
D1  
RCS  
V
CC or VIVCC  
ROVH  
D2  
D3  
D4  
D5  
D6  
D7  
3
9
SGND  
OVFB  
PWM  
VSET  
10  
Analog Dimming  
IC2  
Microcontroller  
(e.g. XC866)  
SET  
Rfilter  
ROVL  
Cfilter  
IC1  
TLD5097  
PWMI  
13  
11  
8
Digital Dimming  
EN / PWMI  
6
7
FBH  
FBL  
Spread  
Spectrum  
FREQ / SYNC  
COMP  
STATUS  
Dn  
CCOMP  
DPOL  
RPOL  
1
5
IVCC  
ST  
CIVCC  
RFREQ  
RCOMP  
GND  
12  
Figure 21 SEPIC application circuit (Buck - Boost configuration)  
Reference  
Designator  
Part  
Number  
Value  
White  
Manufacturer  
Osram  
Type  
LED  
Quantity  
variable  
D1 - n  
LUW H9GP  
DBO  
Schottky, 3 A, 100 VR  
80V Diode  
Vishay  
SS3H10  
Diode  
Diode  
1
1
DPOL  
Infineon  
BAS1603W  
CSEPIC  
CIN  
3.3 uF, 20V  
100 uF, 50V  
10 uF, 50V  
100 nF  
EPCOS  
Panasonic  
Panasonic  
EPCOS  
X7R, Low ESR  
EEEFK1H101GP  
EEEFK1H100P  
X7R  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
IC  
1
1
1
1
1
1
1
2
CBO  
CCOMP  
CIVCC  
IC1  
1uF , 6.3V  
--  
EPCOS  
X7R  
Infineon  
TLD5097  
IC2  
--  
Infineon  
XC866  
IC  
L1 , L2  
47 uH  
Coilcraft  
MSS1278T-473ML  
MSD1278-223MLD  
Inductor  
alternativ: 22uH coupled  
inductor  
Coilcraft  
Inductor  
1
RCOMP, RPOL  
RFB  
10 kΩ, 1%  
820 mΩ, 1%  
20 kΩ, 1%  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Infineon  
ERJ3EKF1002V  
ERJ14BQFR82U  
ERJ3EKF2002V  
ERJ3EKF3322V  
ERJ3EKF1001V  
ERJB1CFR05U  
IPD35N10S3L-26  
IPD30N06S4L-23  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Transistor  
Transistor  
2
1
1
1
1
1
1
1
RFREQ  
ROVH  
33.2 kΩ, 1%  
1 kΩ, 1%  
ROVL  
RCS  
50 mΩ, 1%  
100V N-ch, 35A  
alternativ: 60V N-ch, 30A  
TSW  
Infineon  
Figure 22 Bill of Materials for SEPIC application circuit  
Datasheet  
33  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Application information  
DBO  
VIN  
V
IN = 4.5V to 45V  
L1  
CIN  
ISW  
RFB  
L2  
VREF  
CBO  
TSW  
2
4
SWO  
14  
IN  
SWCS  
ILED  
RCS  
V
CC or VIVCC  
ROVH  
D1  
3
9
SGND  
OVFB  
PWM  
VSET  
D2  
D3  
D4  
D5  
D6  
D7  
10  
Analog Dimming  
SET  
Rfilter  
ROVL  
Cfilter  
IC1  
TLD5097  
IC2  
Microcontroller  
(e.g. XC866)  
PWMI  
13  
11  
8
Digital Dimming  
EN / PWMI  
6
7
FBH  
FBL  
Output  
STATUS  
FREQ / SYNC  
COMP  
CCOMP  
DPOL  
RPOL  
Dn  
1
5
IVCC  
ST  
CIVCC  
RFREQ  
RCOMP  
GND  
12  
Figure 23 Flyback application circuit (Buck - Boost configuration)  
Reference  
Designator  
Part  
Number  
Value  
Manufacturer  
Type  
Quantity  
D1 - n  
DBO  
CBO  
CIN  
White  
Schottky, 3 A, 100 VR  
3.3 uF, 50V (100V)  
100 uF, 50V  
47 nF  
Osram  
Vishay  
LUW H9GP  
SS3H10  
LED  
variable  
Diode  
1
1
1
1
1
1
1
EPCOS  
Panasonic  
EPCOS  
EPCOS  
Infineon  
Infineon  
X7R, Low ESR  
EEEFK1H101GP  
X7R  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
IC  
CCOMP  
CIVCC  
IC1  
1 uF , 6.3V  
--  
X7R  
TLD5097  
XC866  
IC2  
--  
IC  
L1 , L2  
1 µH / 9 uH  
EPCOS  
Transformer EHP 16  
ERJ3EKF1002V  
Inductor  
Resistor  
1
2
RCOMP, RPOL  
10 kΩ, 1%  
Panasonic  
DPOL  
RFB  
80 V Diode  
820 mΩ, 1%  
Infineon  
Isabellenhütte  
Panasonic  
Panasonic  
Panasonic  
Isabellenhütte  
Infineon  
BAS1603W  
SMS – Power Resistor  
ERJ3EKF1002V  
Diode  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Transistor  
Transistor  
1
1
1
1
1
1
1
1
RFREQ  
ROVH  
ROVL  
RCS  
10 kΩ, 1%  
56.2 kΩ, 1%  
ERJ3EKF5622V  
1.24 kΩ, 1%  
ERJ3EKF1241V  
5 mΩ, 1%  
SMS - Power Resistor  
IPG20N10S4L-22  
IPD30N06S4L-23  
TSW  
100V N-ch, 35A  
alternativ: 60V N-ch, 30A  
Infineon  
Figure 24 Bill of Materials for Flyback application circuit  
Datasheet  
34  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Application information  
CBO  
RFB  
VIN = 4.5V to 45V  
CIN  
Dn  
D1  
Number of LEDs could be variable  
independent from VIN:  
→ BUCK-BOOST configuration  
ILED  
LBO  
DBO  
ISW  
VOUT  
TSW  
2
4
SWO  
SWCS  
6
FBH  
RCS  
7
VCC or VIVCC  
FBL  
3
9
SGND  
OVFB  
ROVH  
14  
IN  
PWM  
VSET  
10  
Analog Dimming  
SET  
Rfilter  
IC2  
Cfilter  
ROVL  
Microcontroller  
(e.g. XC866)  
IC1  
TLD5097  
Diagnosis  
5
ST  
PWMI  
13  
Digital Dimming  
Spread Spectrum  
EN / PWMI  
11  
FREQ / SYNC  
8
COMP  
IVCC  
CCOMP  
1
CIVCC  
GND  
RFREQ  
RCOMP  
12  
Figure 25 Boost to Battery application circuit - B2B (Buck - Boost configuration)  
Reference  
Designator  
Part  
Number  
Value  
Manufacturer  
Type  
Quantity  
D1 - n  
DBO  
CBO  
CIN  
White  
Schottky, 3 A, 100 VR  
3.3 uF, 50V (100V)  
100 uF, 50V  
47 nF  
Osram  
Vishay  
LUW H9GP  
SS3H10  
LED  
Diode  
variable  
1
1
1
1
1
1
1
EPCOS  
Panasonic  
EPCOS  
EPCOS  
Infineon  
Infineon  
X7R, Low ESR  
EEEFK1H101GP  
X7R  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
IC  
CCOMP  
CIVCC  
IC1  
1 uF , 6.3V  
--  
X7R  
TLD5097  
XC866  
IC2  
--  
IC  
L1 , L2  
1 µH / 9 uH  
EPCOS  
Transformer EHP 16  
ERJ3EKF1002V  
Inductor  
Resistor  
1
2
RCOMP, RPOL  
10 kΩ, 1%  
Panasonic  
DPOL  
RFB  
80 V Diode  
820 mΩ, 1%  
Infineon  
Isabellenhütte  
Panasonic  
Panasonic  
Panasonic  
Isabellenhütte  
Infineon  
BAS1603W  
SMS – Power Resistor  
ERJ3EKF1002V  
Diode  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Transistor  
Transistor  
1
1
1
1
1
1
1
1
RFREQ  
ROVH  
ROVL  
RCS  
10 kΩ, 1%  
56.2 kΩ, 1%  
ERJ3EKF5622V  
1.24 kΩ, 1%  
ERJ3EKF1241V  
5 mΩ, 1%  
SMS - Power Resistor  
IPG20N10S4L-22  
IPD30N06S4L-23  
TSW  
100V N-ch, 35A  
alternativ: 60V N-ch, 30A  
Infineon  
Figure 26 Bill of Materials for B2B application circuit  
Datasheet  
35  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Application information  
DBO  
D1  
D2  
CBO  
VREF  
LBO  
Vbattery  
ILED  
CIN  
RFB  
BUCK Setup:  
VIN > VOUT  
14  
IN  
IC1  
TLD5097  
VCC or VIVCC  
6
FBH  
FBL  
PWM  
VSET  
Analog Dimming  
10  
SET  
7
1
Rfilter  
IC2  
Cfilter  
IVCC  
Microcontroller  
(e.g. XC866)  
Diagnosis  
CIVCC  
RPOL  
RPOL  
5
ST  
PWMI  
TSW  
2
4
SWO  
SWCS  
13  
11  
8
Digital Dimming  
Spread Spectrum  
EN / PWMI  
FREQ / SYNC  
COMP  
RCS  
3
9
SGND  
OVFB  
CCOMP  
RFREQ  
RCOMP  
GND  
12  
Figure 27 Buck application circuit  
Reference  
Value  
Part  
Number  
Manufacturer  
Type  
Quantity  
Designator  
D1 -2  
DBO  
DPOL  
CBO  
CIN  
White  
Schottky, 3 A, 100 VR  
80V Diode  
4.7 uF, 50V  
100 uF, 50V  
47 nF  
Osram  
Vishay  
LE UW Q9WP  
SS3H10  
LED  
Diode  
Diode  
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Infineon  
BAS1603W  
X7R  
EPCOS  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
IC  
Panasonic  
EPCOS  
EEEFK1H101GP  
X7R  
CCOMP  
CIVCC  
IC1  
MLCC CCNPZC105KBW X7R  
TLD5097  
1 uF , 6.3V  
--  
EPCOS  
Infineon  
IC2  
--  
Infineon  
XC866  
IC  
L1  
22 µH  
Coilcraft  
MSS1278T  
Inductor  
Resistor  
Resistor  
Resistor  
Resistor  
Transistor  
Transistor  
RPOL  
RFB  
10 kΩ, 1%  
820 mΩ, 1%  
20 kΩ, 1%  
50 mΩ, 1%  
100V N-ch, 35A  
alternativ: 60V N-ch, 30A  
Panasonic  
Isabellenhütte  
Panasonic  
Isabellenhütte  
Infineon  
ERJ3EKF1002V  
SMS – Power Resistor  
ERJ3EKF2002V  
SMS - Power Resistor  
IPG20N10S4L-22  
IPD30N06S4L-23  
RFREQ  
RCS  
TSW  
Infineon  
Figure 28 Bill of Materials for Buck application circuit  
Datasheet  
36  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Application information  
IBO  
ILoad  
DRV  
L1  
VIN  
LBO  
DBO  
VBO  
VBATT  
CBO  
CIN  
ISW  
constant  
VOUT  
C1  
C2  
RL  
2
3
TSW  
SWO  
14  
1
IN  
VCC or VIVCC  
SWCS  
IVCC  
RCS  
CIVCC  
ROVH  
4
9
SGND  
OVFB  
5
Diagnosis  
Dimming  
ST  
RST  
10  
SET  
ROVL  
IC2  
IC1  
TLD5097  
Microcontroller  
(e.g. XC866)  
RFB1  
13  
11  
8
PWM  
EN / PWMI  
FREQ / SYNC  
COMP  
6
7
FBH  
FBL  
CLK/Spread  
Spectrum  
RFB2  
VREF  
CCOMP  
RFB3  
RFREQ  
RCOMP  
GND  
12  
Figure 29 Boost voltage application circuit  
Reference  
Designator  
Part  
Number  
Value  
Manufacturer  
Vishay  
Type  
Quantity  
1
DBO  
Schottky, 3 A, 100 VR  
SS3H10  
Diode  
CBO  
CIN  
100 uF, 80V  
100 uF, 50V  
Panasonic  
Panasonic  
EEVFK1K101Q  
Capacitor  
Capacitor  
1
1
EEEFK1H101GP  
CCOMP  
CIVCC  
IC1  
10 nF, 16V  
1 uF, 6.3V  
EPCOS  
Panasonic  
Infineon  
X7R  
Capacitor  
Capacitor  
IC  
1
1
1
1
1
1
1
1
1
1
1
1
1
X7R  
--  
TLD5097  
IC2  
--  
Infineon  
XC866  
IC  
LBO  
100 uH  
Coilcraft  
MSS1278T-104ML_  
ERJ3EKF1002V  
ERJ3EKF5102V  
ERJ3EKF1001V  
ERJ3EKF2002V  
ERJ3EKF3322V  
ERJ3EKF1001V  
ERJB1CFR05U  
IPG20N10S4L-22  
Inductor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Transistor  
RCOMP  
RFB1,RFB3  
RFB2  
10 kohms, 1%  
51 kohms, 1%  
1 kohms, 1%  
20 kohms, 1%  
33.2 kohms, 1%  
1 kohms, 1%  
50 mohms, 1%  
N-ch, OptiMOS-T2 100V  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Infineon  
RFREQ  
ROVH  
ROVL  
RCS  
TSW  
Figure 30 Bill of Materials for Boost voltage application circuit  
Note:  
The application drawings and corresponding bill of materials are simplified examples. Optimization  
of the external components must be done accordingly to specific application requirements.  
Datasheet  
37  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Application information  
11.1  
Further Application Information  
For further information you may contact http://www.infineon.com/  
Application Note: TLD509x DC-DC Multitopology Controller IC “Dimensioning and Stability Guideline -  
Theory and Practice”  
Datasheet  
38  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Package outlines  
12  
Package outlines  
ꢀꢁ  
ꢀꢁ  
ꢆꢃꢊsꢂꢃꢀ  
ꢌꢃꢊsꢂꢃꢀ  
'
ꢂꢃꢀ  
ꢂꢃꢀ  
ꢅ[  
ꢅ[  
&
ꢂꢃꢂꢈ &  
ꢂꢃꢉꢇsꢂꢃꢅꢄ  
ꢀꢆ[  
6($7,1* &23/$1$5,7<  
3/$1(  
sꢂꢃꢅ  
ꢂꢃꢅ '  
ꢀꢆ[  
ꢅꢁ  
ꢂꢃꢅꢄsꢂꢃꢂꢄ  
ꢂꢃꢅꢄ  
$ꢋ% &  
ꢀꢆ[  
%27720 9,(:  
$
ꢀꢆ  
ꢀꢆ  
ꢂꢃꢀꢄ  
$ꢋ%  
'
,1'(;  
0$5.,1*  
%
ꢂꢃꢉꢄ  
sꢂꢃꢀ  
ꢂꢃꢀꢄ  
ꢀꢁ '2(6 127 ,1&/8'( 3/$67,& 25 0(7$/ 3527586,21 2) ꢂꢃꢀꢄ 0$;ꢃ 3(5 6,'(  
ꢅꢁ '$0%$5 352786,21 6+$// %( 0$;,080 ꢂꢃꢀ00 727$/ ,1 (;&(66 2) /($' :,'7+  
$// ',0(16,216 $5( ,1 81,76 00  
7+( '5$:,1* ,6 ,1 &203/,$1&( :,7+ ,62 ꢀꢅꢈ ꢎ 352-(&7,21 0(7+2' ꢀ >  
@
Figure 31 Outline PG-TSDSO-141)  
Green product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Further information on packages  
https://www.infineon.com/packages  
1) Dimensions in mm  
Datasheet  
39  
Rev. 1.00  
2018-12-13  
LITIX™ Power  
TLD5097EP  
Revision history  
13  
Revision history  
Revision Date  
Changes  
1.00  
2018-12-13  
Initial datasheet  
Datasheet  
40  
Rev. 1.00  
2018-12-13  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2018-12-13  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2018 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  
LITIX™ Power TLD5097EP Rev.1.00  

相关型号:

TLD5098EL

DC/DC Boost, Buck-Boost, SEPIC controller
INFINEON

TLD5098EP

LED Driver,
INFINEON

TLD5099EP

Display Driver,
INFINEON

TLD5190

H-Bridge DC/DC Controller
INFINEON

TLD5190QU

H-Bridge DC/DC Controller
INFINEON

TLD5190QV

H-Bridge DC/DC Controller
INFINEON

TLD5190_18

H-Bridge DC/DC Controller
INFINEON

TLD5191ES

TLD5191ES 是一款具有内置保护功能的同步 MOSFET H 桥 DC-DC 控制器。 该设计有利于以最高的系统效率和最少的外部组件驱动高功率 LED。 TLD5191ES 具有模拟和数字 (PWM) 调光及嵌入式 PWM 发生器。 开关频率可在 200 kHz 至 700 kHz 范围内调节。 内置扩频开关频率调制和强制连续电流调节模式改善了整体 EMC 行为。 此外,电流模式调节方案提供了一个由小型外部补偿元件维持的稳定调节环路。 可调软启动功能可限制启动时的电流峰值和电压过冲。 TLD5191ES 适用于汽车环境以及工业和消费类应用(例如无线充电)。
INFINEON

TLD5541-1

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD5541-1QU

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD5541-1QV

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD5541-1_18

H-Bridge DC/DC Controller with SPI Interface
INFINEON