TLE8250GXUMA1 [INFINEON]

Interface Circuit, PDSO8, GREEN, PLASTIC, DSO-8;
TLE8250GXUMA1
型号: TLE8250GXUMA1
厂家: Infineon    Infineon
描述:

Interface Circuit, PDSO8, GREEN, PLASTIC, DSO-8

电信 光电二极管 电信集成电路
文件: 总28页 (文件大小:527K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed CAN-Transceiver  
TLE8250G  
1
Overview  
Quality Requirement Category: Automotive  
Features  
Fully compatible to ISO 11898-2  
Wide common mode range for electromagnetic immunity (EMI)  
Very low electromagnetic emission (EME)  
Excellent ESD robustness  
Extended supply range at VCC  
CAN Short-Circuit-proof to ground, battery and VCC  
TxD time-out function  
Low CAN bus leakage current in Power Down mode  
Over temperature protection  
Protected against automotive transients  
CAN data transmission rate up to 1 MBit/s  
Green Product (RoHS compliant)  
AEC Qualified  
Applications  
Engine Control Unit (ECUs)  
Transmission Control Units (TCUs)  
Chassis Control Modules  
Electric Power Steering  
Description  
The TLE8250G is a transceiver designed for CAN networks in automotive and industrial applications. As an  
interface between the physical bus layer and the CAN protocol controller, the TLE8250G drives the signals to  
the bus and protects the microcontroller against disturbances coming from the network. Based on the high  
symmetry of the CANH and CANL signals, the TLE8250G provides a very low level of electromagnetic emission  
(EME) within a broad frequency range. The TLE8250G is integrated in a RoHS complaint PG-DSO-8 package and  
fulfills or exceeds the requirements of the ISO11898-2.  
As a successor to the first generation of HS CAN transceivers, the TLE8250G is fully pin and function compatible  
to his predecessor model the TLE6250G. The TLE8250G is optimized to provide an excellent passive behavior  
in Power Down mode. This feature makes the TLE8250G extremely suitable for mixed supply HS CAN  
networks.  
Data Sheet  
www.infineon.com/transceivers  
1
Rev. 1.11  
2016-12-29  
 
 
TLE8250G  
High Speed CAN-Transceiver  
Overview  
Based on the Infineon Smart Power Technology SPT, the TLE8250G provides industry leading ESD robustness  
together with a very high electromagnetic immunity (EMI). The Infineon Smart Power Technology SPT allows  
bipolar and CMOS control circuitry in accordance with DMOS power devices to exist on the same monolithic  
circuit. The TLE8250G and the Infineon SPT technology are AEC qualified and tailored to withstand the harsh  
conditions of the Automotive Environment.  
Three different operation modes, additional Fail Safe features like a TxD time-out and the optimized output  
slew rates on the CANH and CANL signals are making the TLE8250G the ideal choice for large CAN networks  
with high data rates.  
Type  
Package  
Marking  
8250G  
TLE8250G  
PG-DSO-8  
Data Sheet  
2
Rev. 1.11  
2016-12-29  
TLE8250G  
High Speed CAN-Transceiver  
Table of Contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
High Speed CAN Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Normal Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Receive-Only Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Stand-By Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
5
Fail Safe Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Open Logic Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
TxD Time-Out function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Under-Voltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Over-Temperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.1  
5.2  
5.3  
5.4  
5.5  
6
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
6.1  
6.2  
6.3  
7
7.1  
7.2  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Functional Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
8
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Output Characteristics of the RxD Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8.1  
8.2  
8.3  
9
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10  
Data Sheet  
3
Rev. 1.11  
2016-12-29  
TLE8250G  
High Speed CAN-Transceiver  
Block Diagram  
2
Block Diagram  
3
1
VCC  
Output Driver  
Stage  
7
6
Driver  
CANH  
CANL  
TxD  
Output  
Stage  
Temp-  
Protection  
Timeout  
8
5
NEN  
NRM  
Mode Control  
VCC/2  
=
Receive Unit  
Receiver  
*
4
RxD  
2
GND  
Figure 1  
Block Diagram  
Note:  
In comparison to the TLE6250G the pin 8 (INH) was renamed to the term NEN, the function remains  
unchanged. NEN stands for Not ENable. The naming of the pin 5 changed from RM (TLE6250G) to  
NRM on the TLE8250G. The function of pin 5 remains unchanged.  
Data Sheet  
4
Rev. 1.11  
2016-12-29  
 
TLE8250G  
High Speed CAN-Transceiver  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
1
2
3
4
8
7
6
5
TxD  
GND  
VCC  
NEN  
CANH  
CANL  
NRM  
RxD  
Figure 2  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Table 1  
Pin Definition and Functions  
Pin Symbol  
Function  
1
TxD  
Transmit Data Input;  
internal pull-up to VCC, “Low” for “Dominant” state.  
2
3
GND  
Ground  
VCC  
Transceiver Supply Voltage;  
100 nF decoupling capacitor to GND required.  
4
5
RxD  
Receive Data Output;  
“Low” in “Dominant” state.  
Receive-Only Mode input1);  
NRM  
Control input for selecting the Receive-Only mode,  
internal pull-up to VCC, “Low” to select the Receive-Only mode.  
6
7
8
CANL  
CANH  
NEN  
CAN Bus Low level I/O;  
“Low “ in “Dominant” state.  
CAN Bus High level I/O;  
“High “ in “Dominant” state.  
Not ENable Input;1)  
internal pull-up to VCC  
,
“Low” to select Normal Operation mode or Receive-Only mode.  
Data Sheet  
5
Rev. 1.11  
2016-12-29  
TLE8250G  
High Speed CAN-Transceiver  
Pin Configuration  
1) The naming of pin 8 and pin 5 are different between the TLE8250G and its forerunner model the TLE6250G. The  
function of pin 8 and pin 5 remains the same.  
Data Sheet  
6
Rev. 1.11  
2016-12-29  
TLE8250G  
High Speed CAN-Transceiver  
Functional Description  
4
Functional Description  
CAN is a serial bus system that connects microcontrollers, sensor and actuators for real-time control  
applications. The usage of the Control Area Network (abbreviated CAN) within road vehicles is described by  
the international standard ISO 11898. According to the 7 layer OSI reference model the physical layer of a  
CAN bus system specifies the data transmission from one CAN node to all other available CAN nodes inside the  
network. The physical layer specification of a CAN bus system includes all electrical and mechanical  
specifications of a CAN network. The CAN transceiver is part of the physical layer specification. Several  
different physical layer definitions of a CAN network have been developed over the last years. The TLE8250G  
is a High Speed CAN transceiver without any dedicated Wake-Up function. High Speed CAN Transceivers  
without Wake-Up function are defined by the international standard ISO 11898-2.  
4.1  
High Speed CAN Physical Layer  
TxD  
VCC  
t
VCC  
=
CAN Power Supply  
Input from the  
Microcontroller  
Output to the  
TxD  
=
VCC  
CAN_H  
CAN_L  
RxD  
=
Microcontroller  
CANH = Voltage on the CANH  
Input/Output  
CANL = Voltage on the CANL  
Input/Output  
VDIFF  
=
Differential Voltage  
between CANH and CANL  
VDIFF = VCANH VCANL  
t
t
t
VDIFF  
Dominant  
Recessive  
VDIFF = ISO Level Dominant  
VDIFF = ISO Level Recessive  
RxD  
VCC  
Figure 3  
High Speed CAN Bus Signals and Logic Signals  
Data Sheet  
7
Rev. 1.11  
2016-12-29  
 
TLE8250G  
High Speed CAN-Transceiver  
Functional Description  
The TLE8250G is a High Speed CAN transceiver, operating as an interface between the CAN controller and the  
physical bus medium. A HS CAN network is a two wire, differential network which allows data transmission  
rates up to 1 MBit/s. Characteristic for a HS CAN network are the two signal states on the CAN bus: “Dominant”  
and “Recessive” (see Figure 3).  
The pins CANH and CANL are the interface to the CAN bus and both pins operate as an input and as an output.  
The pins RxD and TxD are the interface to the microcontroller. The pin TxD is the serial data input from the CAN  
controller, the pin RxD is the serial data output to the CAN controller. As shown in Figure 1, the HS CAN  
transceiver TLE8250G has a receive and a transmit unit, allowing the transceiver to send data to the bus  
medium and monitor the data from the bus medium at the same time. The HS CAN transceiver TLE8250G  
converts the serial data stream available on the transmit data input TxD, into a differential output signal on  
CAN bus, provided by the pins CANH and CANL. The receiver stage of the TLE8250G monitors the data on the  
CAN bus and converts them to a serial, single ended signal on the RxD output pin. A logical “Low” signal on the  
TxD pin creates a “Dominant” signal on the CAN bus, followed by a logical “Low” signal on the RxD pin (see  
Figure 3). The feature, broadcasting data to the CAN bus and listening to the data traffic on the CAN bus  
simultaneous is essential to support the bit to bit arbitration inside CAN networks.  
The voltage levels for HS CAN transceivers are defined by the ISO 11898-2 and the ISO 11898-5 standards. If a  
data bit is “Dominant” or “Recessive” depends on the voltage difference between pins CANH and CANL:  
VDIFF = VCANH - VCANL.  
In comparison to other differential network protocols the differential signal on a CAN network can only be  
larger or equal to 0 V. To transmit a “Dominant” signal to the CAN bus the differential signal VDIFF is larger or  
equal to 1.5 V. To receive a “Recessive” signal from the CAN bus the differential VDIFF is smaller or equal to 0.5 V.  
Partially supplied CAN networks are networks where the CAN bus participants have different power supply  
conditions. Some nodes are connected to the power supply, some other nodes are disconnected from the  
power supply. Regardless, if the CAN bus participant is supplied or not supplied, each participant connected  
to the common bus media must not disturb the communication. The TLE8250G is designed to support  
partially supplied networks. In Power Down mode, the receiver input resistors are switched off and the  
transceiver input is high resistive.  
4.2  
Operation Modes  
Three different operation modes are available on TLE8250G. Each mode with specific characteristics in terms  
of quiescent current or data transmission. For the mode selection the digital input pins NEN and NRM are used.  
Figure 4 illustrates the different mode changes depending on the status of the NEN and NRM pins. After  
suppling VCC to the HS CAN transceiver, the TLE8250G starts in Stand-By mode. The internal pull-up resistors  
are setting the TLE8250G to Stand-By per default. If the microcontroller is up and running the TLE8250G can  
change to any operation mode within the time for mode change tMode  
.
Data Sheet  
8
Rev. 1.11  
2016-12-29  
TLE8250G  
High Speed CAN-Transceiver  
Functional Description  
Start – Up  
Supply VCC  
VCC < VCC(UV)  
Undervoltage  
Detection on VCC  
Power Down  
Stand-By Mode  
NRM = 1  
NEN = 0  
NRM = 0  
NEN = 0  
NEN = 1  
NRM = 0/1  
NRM = 0/1  
NEN = 1  
NRM = 0/1  
NEN = 1  
NRM = 0  
NEN = 0  
Normal Operation  
Mode  
Receive-Only Mode  
NEN = 0  
NRM = 1  
NEN = 0  
NRM = 0  
NRM = 1  
NEN = 0  
Figure 4  
Operation Modes  
The TLE8250G has 3 major operation modes:  
Stand-By mode  
Normal Operation mode  
Receive-Only mode  
Table 2  
Mode  
Operating modes  
NRM  
NEN  
Bus Bias  
Comments  
Normal Operation  
“High”  
“Low”  
V
CC/2  
Output driver stage is active.  
Receiver unit is active.  
Stand-By  
“Low”  
or  
“High”  
“High”  
“Low”  
Floating  
Output driver stage is disabled.  
Receiver unit is disabled.  
Receive-Only  
“Low”  
V
CC/2  
Output driver stage is disabled.  
Receiver unit is active.  
VCC off  
“Low”  
or  
“Low”  
or  
Floating  
Output driver stage is disabled.  
Receiver unit is disabled.  
“High”  
“High”  
4.3  
Normal Operation Mode  
In Normal Operation mode the HS CAN transceiver TLE8250G sends the serial data stream on the TxD pin to  
the CAN bus while at the same time the data available on the CAN bus are monitored to the RxD pin. In Normal  
Operation mode all functions of the TLE8250G are active:  
The output driver stage is active and drives data from the TxD to the CAN bus.  
The receiver unit is active and provides the data from the CAN bus to the RxD pin.  
Data Sheet  
9
Rev. 1.11  
2016-12-29  
 
 
TLE8250G  
High Speed CAN-Transceiver  
Functional Description  
The bus basing is set to VCC/2.  
The under-voltage monitoring on the power supply VCC is active.  
To enter the Normal Operation mode set the pin NRM to logical “High” and the pin NEN to logical “Low” (see  
Table 2 or Figure 4). Both pins, the NEN pin and the NRM pin have internal pull-up resistors to the power-  
supply VCC  
.
4.4  
Receive-Only Mode  
The Receive-Only mode can be used to test the connection of the bus medium. The TLE8250G can still receive  
data from the bus, but the output driver stage is disabled and therefore no data can be sent to the CAN bus.  
All other functions are active:  
The output driver stage is disabled and data which are available on the TxD pin are blocked and not send  
to the CAN bus.  
The receiver unit is active and provides the data from the CAN bus to the RxD output pin.  
The bus basing is set to VCC/2.  
The under-voltage monitoring on the power supply VCC is active.  
To enter the Receive-Only mode set the pin NRM to logical “Low” and the pin NEN to logical “Low” (see Table 2  
or Figure 4). In case the Receive-Only mode will not be used, the NRM pin can be left open.  
4.5  
Stand-By Mode  
Stand-By mode is an idle mode of the TLE8250G with optimized power consumption. In Stand-By mode the  
TLE8250G can not send or receive any data. The output driver stage and the receiver unit are disabled. Both  
CAN bus pins, CANH and CANL are floating.  
The output driver stage is disabled.  
The receiver unit is disabled.  
The bus basing is floating.  
The under-voltage monitoring on the power supply VCC is active.  
To enter the Stand-By mode set the pin NEN to logical “High”, the logical state of the NRM pin has no influence  
for the mode selection (see Table 2 or Figure 4). Both pins the NEN and the NRM pin have an internal pull-up  
resistor to the power-supply VCC. If the Stand-By mode is not used in the application, the NEN pin needs to get  
connected to GND.  
In case the NRM pin is set to logical “Low” in Stand-By mode, the internal pull-up resistor causes an additional  
quiescent current from VCC to GND, therefore it is recommended to set the NRM pin to logical “High” in Stand-  
By mode or leave the pin open if the Receive-Only mode is not used in the application.  
4.6  
Power Down Mode  
Power Down mode means the TLE8250G is not supplied. In Power Down the differential input resistors of the  
receiver stage are switched off. The CANH and CANL bus interface of the TLE8250G acts as an high impedance  
input with a very small leakage current. The high ohmic input doesn’t influence the “Recessive” level of the  
CAN network and allows an optimized EME performance of the whole CAN network.  
Data Sheet  
10  
Rev. 1.11  
2016-12-29  
TLE8250G  
High Speed CAN-Transceiver  
Fail Safe Functions  
5
Fail Safe Functions  
5.1  
Short circuit protection  
The CANH and CANL bus outputs are short-circuit-proof, either against GND or a positive supply voltage. A  
current limiting circuit protects the transceiver against damages. If the device is heating up due to a continuos  
short on CANH or CANL, the internal over-temperature protection switches off the bus transmitter.  
5.2  
Open Logic Pins  
All logic input pins have internal pull-up resistor to VCC. In case the VCC supply is activated and the logical pins  
are open or floating, the TLE8250G enters into the Stand-By mode per default. In Stand-By mode the output  
driver stage of the TLE8250G is disabled, the bus biasing is shut off and the HS CAN transceiver TLE8250G will  
not influence the data on the CAN bus.  
5.3  
TxD Time-Out function  
The TxD Time-out feature protects the CAN bus against permanent blocking in case the logical signal on the  
TxD pin is continuously “Low”. A continuous “Low” signal on the TxD pin can have it’s root cause in a locked-  
up microcontroller or in a short on the printed circuit board for example. In Normal Operation mode, a logical  
“Low” signal on the TxD pin for the time t > tTXD the TLE8250G activates the TxD Time-out and the TLE8250G  
disables the output driver stage (see Figure 5). The receive unit is still active and the data on the bus are  
monitored at the RxD output pin.  
t > tTxD  
TxD Time – Out released  
TxD Time - Out  
CANH  
CANL  
t
TxD  
t
t
RxD  
Figure 5  
TxD Time-Out function  
Figure 5 shows how the output driver stage is deactivated and activated again. A permanent “Low” signal on  
the TxD input pin activates the TxD time-out function and deactivates the output driver stage. To release the  
output driver stage after a TxD time-out event the TLE8250G requires a signal change on the TxD input pin  
from logical “Low” to logical “High”.  
5.4  
Under-Voltage detection  
The HS CAN Transceiver TLE8250G is equipped with an under-voltage detection on the power supply VCC. In  
case of an under-voltage event on VCC, the under-voltage detection changes the operation mode of TLE8250G  
Data Sheet  
11  
Rev. 1.11  
2016-12-29  
 
TLE8250G  
High Speed CAN-Transceiver  
Fail Safe Functions  
to the Stand-By mode, regardless of the logical signal on the pins NEN and NRM (see Figure 6). If the  
transceiver TLE8250G recovers from the under-voltage event, the operation mode returns to the programmed  
mode by the logical pins NEN and NRM.  
Supply voltage VCC  
Power down reset level  
VCC(UV)  
Time for mode change  
tMode  
Blanking time  
tblank,UV  
NEN = 0  
NRM = 1  
Normal Operation  
Mode  
Stand-By  
Mode  
Normal Operation Mode1)  
1) Assuming the logical signal on the pin NEN and on the pin NRM keep its values during  
the under-voltage event. In this case NEN remains „Low“ and NRM remains „High“.  
Figure 6  
Under-Voltage detection on VCC  
Over-Temperature protection  
Overtemperature Event  
5.5  
Cool Down  
TJSD (Shut Off temperature)  
TJ  
TJ (Shut On temperature)  
t
t
CANH  
CANL  
TxD  
RxD  
t
t
Figure 7  
Over-Temperature protection  
Data Sheet  
12  
Rev. 1.11  
2016-12-29  
 
 
TLE8250G  
High Speed CAN-Transceiver  
Fail Safe Functions  
The TLE8250G has an integrated over-temperature detection to protect the device against thermal overstress  
of the output driver stage. In case of an over-temperature event, the temperature sensor will disable the  
output driver stage (see Figure 1). After the device cools down the output driver stage is activated again (see  
Figure 7).  
Inside the temperature sensor a hysteresis is implemented.  
Data Sheet  
13  
Rev. 1.11  
2016-12-29  
TLE8250G  
High Speed CAN-Transceiver  
General Product Characteristics  
6
General Product Characteristics  
6.1  
Absolute Maximum Ratings  
Table 3  
Absolute Maximum Ratings Voltages, Currents and Temperatures1)  
All voltages with respect to ground; positive current flowing into pin; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Voltages  
Supply voltage  
VCC  
-0.3  
-40  
-40  
6.0  
40  
40  
40  
V
V
V
V
P_6.1.1  
P_6.1.2  
P_6.1.3  
P_6.1.4  
CANH DC voltage versus GND  
CANL DC voltage versus GND  
VCANH  
VCANL  
Differential voltage between CANH and  
CANL  
VCAN diff -40  
Logic voltages at NEN, NRM, TxD, RxD  
Temperatures  
VI  
-0.3  
6.0  
V
P_6.1.5  
Junction temperature  
Storage temperature  
ESD Resistivity  
Tj  
-40  
150 °C  
150 °C  
P_6.1.6  
P_6.1.7  
TS  
- 55  
ESD Resistivity at CANH, CANL versus GND VESD  
-8  
-2  
8
2
kV Human Body Model P_6.1.8  
(100pF via 1.5 k)2)  
ESD Resistivity all other pins VESD  
kV Human Body Model P_6.1.9  
(100pF via 1.5 k)2)  
1) Not subject to production test, specified by design  
2) ESD susceptibility HBM according to EIA / JESD 22-A 114  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
6.2  
Functional Range  
Table 4  
Operating Range  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Supply Voltages  
Transceiver Supply Voltage  
Thermal Parameters  
Junction temperature  
VCC  
TJ  
4.5  
5.5  
V
P_6.2.1  
P_6.2.2  
1)  
-40  
150  
°C  
1) Not subject to production test, specified by design  
Data Sheet  
14  
Rev. 1.11  
2016-12-29  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TLE8250G  
High Speed CAN-Transceiver  
General Product Characteristics  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
6.3  
Thermal Characteristics  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more  
information, go to www.jedec.org.  
Table 5  
Thermal Resistance1)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
P_6.3.1  
Min. Typ. Max.  
Thermal Resistance  
Junction to Ambient1)  
2)  
RthJA  
130  
K/W  
Thermal Shutdown Junction Temperature  
Thermal shutdown temp.  
TJSD  
150 175 200 °C  
10  
P_6.3.2  
P_6.3.3  
Thermal shutdown hysteresis  
T  
K
1) Not subject to production test, specified by design  
2) Specified RthJA value is according to Jedec JESD51-2,-7 at natural convection on FR4 2s2p board; The Product  
(TLE8250G) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).  
Data Sheet  
15  
Rev. 1.11  
2016-12-29  
 
 
 
 
TLE8250G  
High Speed CAN-Transceiver  
Electrical Characteristics  
7
Electrical Characteristics  
7.1  
Functional Device Characteristics  
Table 6  
Electrical Characteristics  
4.5 V < VCC < 5.5 V; RL = 60 ; -40°C < TJ < +150°C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Current Consumption  
Current consumption  
ICC  
6
10  
70  
10  
15  
mA “Recessive” state;  
P_7.1.1  
P_7.1.2  
VTxD = VCC  
Current consumption  
Current consumption  
Current consumption  
ICC  
45  
6
mA “Dominant” state;  
VTxD = 0 V  
ICC(ROM)  
ICC(STB)  
mA Receive-Only mode P_7.1.3  
NRM = “Low”  
7
µA Stand-By mode;  
TxD = NRM = “High”  
P_7.1.4  
Supply Resets  
VCC under-voltage monitor  
VCC(UV) 1.3  
3.2  
4.3  
V
1)  
P_7.1.5  
P_7.1.6  
VCC under-voltage monitor  
VCC(UV,H)  
200  
mV  
hysteresis  
1)  
VCC under-voltage blanking  
tblank(UV)  
15  
µs  
P_7.1.7  
time  
Receiver Output: RxD  
HIGH level output current  
IRD,H  
IRD,L  
2
-4  
4
-2  
mA VRxD = 0.8 × VCC  
VDIFF < 0.5 V  
P_7.1.8  
P_7.1.9  
LOW level output current  
mA VRxD = 0.2 × VCC  
VDIFF > 0.9 V  
Transmission Input: TxD  
HIGH level input voltage  
threshold  
VTD,H  
VTD,L  
0.5 × VCC 0.7 × VCC  
V
V
“Recessive” state  
“Dominant” state  
P_7.1.10  
P_7.1.11  
LOW level input voltage  
threshold  
0.3 × VCC 0.4 × VCC  
TxD pull-up resistance  
TxD input hysteresis  
RTD  
10  
25  
200  
50  
kΩ  
mV  
ms  
P_7.1.12  
P_7.1.13  
P_7.1.14  
1)  
VHYS(TxD)  
tTxD  
TxD permanent dominant  
disable time  
0.3  
1.0  
Not Enable Input NEN  
HIGH level input voltage  
threshold  
VNEN,H  
0.5 × VCC 0.7 × VCC  
V
Stand-By mode;  
P_7.1.15  
Data Sheet  
16  
Rev. 1.11  
2016-12-29  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TLE8250G  
High Speed CAN-Transceiver  
Electrical Characteristics  
Table 6  
Electrical Characteristics (cont’d)  
4.5 V < VCC < 5.5 V; RL = 60 ; -40°C < TJ < +150°C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
P_7.1.16  
Min.  
Max.  
LOW level input voltage  
threshold  
VNEN,L  
0.3 × VCC 0.4 × VCC  
V
Normal Operation  
mode;  
NEN pull-up resistance  
NEN input hysteresis  
RNEN  
10  
25  
50  
kΩ  
1)  
P_7.1.17  
P_7.1.18  
VHYS(NEN)  
200  
mV  
Data Sheet  
17  
Rev. 1.11  
2016-12-29  
 
 
 
TLE8250G  
High Speed CAN-Transceiver  
Electrical Characteristics  
Table 6  
Electrical Characteristics (cont’d)  
4.5 V < VCC < 5.5 V; RL = 60 ; -40°C < TJ < +150°C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Receive only Input NRM  
HIGH level input voltage  
threshold  
VNRM,H  
0.5 × VCC 0.7 × VCC  
V
V
Normal Operation  
mode  
P_7.1.19  
LOW level input voltage  
threshold  
VNRM,L  
0.3 × VCC 0.4 × VCC  
Receive-Only mode P_7.1.20  
NRM pull-up resistance  
NRM input hysteresis  
Bus Receiver  
RNRM  
10  
25  
50  
kΩ  
1)  
P_7.1.21  
P_7.1.22  
VNRM(Hys)  
200  
mV  
Differential receiver threshold VDIFF,(D)  
“Dominant”  
0.75  
0.6  
0.9  
V
V
V
P_7.1.23  
P_7.1.24  
P_7.1.25  
P_7.1.26  
Differential receiver threshold VDIFF,(R) 0.5  
“Recessive”  
Differential receiver input  
range - “Dominant”  
Vdiff,rdN 0.9  
Vdiff,drN -1.0  
5.0  
0.5  
Differential receiver input  
range - “Recessive”  
Common Mode Range  
CMR  
-12  
12  
V
VCC = 5 V  
P_7.1.27  
P_7.1.28  
P_7.1.29  
P_7.1.30  
1)  
Differential receiver hysteresis Vdiff,hys  
CANH, CANL input resistance Ri  
100  
20  
40  
mV  
10  
20  
-3  
30  
60  
3
k“Recessive” state  
k“Recessive” state  
Differential input resistance  
Rdiff  
Input resistance deviation  
between CANH and CANL  
Ri  
%
1) “Recessive” state P_7.1.31  
1)  
Input capacitance CANH,  
CANL versus GND  
CIN  
20  
10  
40  
20  
pF  
pF  
V
V
= VCC  
= VCC  
P_7.1.32  
P_7.1.33  
TxD  
TxD  
1)  
Differential input capacitance CInDiff  
Bus Transmitter  
CANL/CANH recessive output VCANL/H 2.0  
voltage  
2.5  
3.0  
50  
V
VTxD = VCC;  
no load  
P_7.1.34  
P_7.1.35  
CANH, CANL recessive  
output voltage difference  
Vdiff  
-500  
0.5  
mV VTxD = VCC;  
no load  
CANL dominant output  
voltage  
VCANL  
2.25  
V
V
4.75 V < VCC < 5.25 V, P_7.1.36  
TxD = 0 V,  
V
50 < RL < 65 ;  
CANH dominant output  
voltage  
VCANH  
2.75  
4.5  
4.75 V < VCC < 5.25 V, P_7.1.37  
VTxD = 0 V,  
50 < RL < 65 ;  
Data Sheet  
18  
Rev. 1.11  
2016-12-29  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TLE8250G  
High Speed CAN-Transceiver  
Electrical Characteristics  
Table 6  
Electrical Characteristics (cont’d)  
4.5 V < VCC < 5.5 V; RL = 60 ; -40°C < TJ < +150°C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
1.5  
Max.  
3.0  
CANH, CANL dominant output Vdiff  
V
4.75 V < VCC < 5.25 V, P_7.1.38  
voltage difference  
VTxD = 0 V,  
V
diff = VCANH - VCANL  
Driver Symmetry  
SYM = VCANH + VCANL  
50 < RL < 65 Ω  
VSYM  
4.5  
50  
5.5  
V
VTxD = 0 V; VCC = 5 V  
50 < RL < 65 Ω  
P_7.1.39  
V
CANL short circuit current  
CANH short circuit current  
Leakage current  
ICANLsc  
100  
-100  
0
200  
-50  
5
mA VCANLshort = 18 V  
mA VCANHshort = 0 V  
µA VCC = 0 V; VCANH  
P_7.1.40  
P_7.1.41  
P_7.1.42  
ICANHsc -200  
ICANHL,lk -5  
=
VCANL  
;
0 V < VCANH,L < 5 V  
Data Sheet  
19  
Rev. 1.11  
2016-12-29  
 
 
 
 
 
 
TLE8250G  
High Speed CAN-Transceiver  
Electrical Characteristics  
Table 6  
Electrical Characteristics (cont’d)  
4.5 V < VCC < 5.5 V; RL = 60 ; -40°C < TJ < +150°C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Dynamic CAN-Transceiver Characteristics  
Max.  
255  
Propagation delay  
TxD-to-RxD LOW (“Recessive”  
to “Dominant”)  
td(L),TR  
ns CL = 100 pF;  
VCC = 5 V; CRxD = 15 pF  
P_7.1.43  
P_7.1.44  
Propagation delay  
td(H),TR  
255  
ns CL = 100 pF;  
TxD-to-RxD HIGH (“Dominant”  
to “Recessive”)  
V
CC = 5 V; CRxD = 15 pF  
Propagation delay  
TxD LOW to bus “Dominant”  
td(L),T  
td(H),T  
td(L),R  
td(H),R  
tMode  
110  
110  
70  
ns CL = 100 pF;  
P_7.1.45  
P_7.1.46  
P_7.1.47  
P_7.1.48  
P_7.1.49  
V
CC = 5 V; CRxD = 15 pF  
Propagation delay  
TxD HIGH to bus “Recessive”  
ns CL = 100 pF;  
V
CC = 5 V; CRxD = 15 pF  
Propagation delay  
bus “Dominant” to RxD “Low”  
ns CL = 100 pF;  
V
CC = 5 V; CRxD = 15 pF  
Propagation delay  
bus “Recessive” to RxD “High”  
100  
ns CL = 100 pF;  
VCC = 5 V; CRxD = 15 pF  
1)  
Time for mode change  
10  
µs  
1) Not subject to production test specified by design  
7.2  
Diagrams  
5
NRM  
7
6
1
8
CANH  
TxD  
NEN  
CL  
RL  
4
3
RxD  
CRxD  
CANL  
VCC  
GND  
2
100 nF  
Figure 8  
Simplified test circuit  
Data Sheet  
20  
Rev. 1.11  
2016-12-29  
 
 
 
 
 
 
 
 
TLE8250G  
High Speed CAN-Transceiver  
Electrical Characteristics  
VTxD  
VCC  
GND  
VDIFF  
t
t
td(L),T  
td(H),T  
0,9V  
0,5V  
td(H),R  
td(L),R  
td(L),TR  
td(H),TR  
VRxD  
VCC  
0.8 x VCC  
0.2 x VCC  
GND  
t
Figure 9  
Timing diagram for dynamic characteristics  
Data Sheet  
21  
Rev. 1.11  
2016-12-29  
TLE8250G  
High Speed CAN-Transceiver  
Application Information  
8
Application Information  
8.1  
Application Example  
VBAT  
I
Q1  
Q2  
22 uF  
TLE4476D  
GND  
100 nF  
CANH  
CANL  
EN  
3
VCC  
100 nF  
22 uF  
120  
Ohm  
TLE8250G  
VCC  
8
1
4
5
Out  
Out  
In  
NEN  
7
6
CANH  
CANL  
TxD  
RxD  
Microcontroller  
e.g. XC22xx  
optional:  
common mode choke  
Out  
NRM  
GND  
GND  
2
I
Q1  
Q2  
22 uF  
TLE4476D  
GND  
100 nF  
EN  
3
VCC  
100 nF  
22 uF  
TLE8250G  
VCC  
8
1
4
5
Out  
Out  
In  
NEN  
TxD  
7
6
CANH  
Microcontroller  
e.g. XC22xx  
RxD  
CANL  
2
optional:  
common mode choke  
Out  
NRM  
GND  
120  
GND  
Ohm  
CANH  
CANL  
example ECU design  
Figure 10  
Simplified Application for the TLE8250G  
Data Sheet  
22  
Rev. 1.11  
2016-12-29  
 
TLE8250G  
High Speed CAN-Transceiver  
Application Information  
8.2  
Output Characteristics of the RxD Pin  
The RxD output pin is designed as a push-pull output stage (see Figure 1), meaning to produce a logical “Low”  
signal the TLE8250G switches the RxD output to GND. Vice versa to produce a logical “High” signal the  
TLE8250G switches the RxD output to VCC  
.
The level VRxD,H for a logical “High” signal on the RxD output depends on the load on the RxD output pin and  
therefore on the RxD output current IRD,H. For a load against the GND potential, the current IRD,H is flowing out  
of the RxD output pin.  
Similar to the logical “High” signal, the level VRxD,L for a logical “Low” signal on the RxD output pin depends on  
the output current IRD,L. For a load against the power supply VCC the current IRD,L is flowing into the RxD output  
pin.  
Currents flowing into the device are marked positive inside the data sheet and currents flowing out of the  
device TLE8250G are marked negative inside the data sheet (see Table 6).  
7,000  
6,000  
5,000  
4,000  
3,000  
V
RxD,H=4.6V; typical output current  
VCC=5V  
2,000  
1,000  
0,000  
V
RxD,H=4.6V; typical output current  
+ 6sigma; VCC=5V  
V
RxD,H=4.6V; typical output current  
- 6sigma; VCC=5V  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Temperature in °C  
Figure 11  
RxD Output driver capability for a logical “High” signal1)  
The diagram in Figure 11 shows the output current capability of the RxD output pin depended on the chip  
temperature TJ. At a logical “High” signal VRxD,H = 4.6 V, the typical output current is between 5.7 mA for -40 °C  
and 4.7 mA for a temperature of +150 °C. The dependency of the output current on the temperature is almost  
linear. The upper curve “VRxD,H = 4.6 V; typical output current + 6 sigma; VCC=5 V” reflects the expected  
maximum value of the RxD output current of the TLE8250G.  
The lower curve “VRxD,H = 4.6 V; typical output current - 6 sigma; VCC=5 V” reflects the expected minimum value  
of the RxD output current of the TLE8250G. All simulations are based on a power supply VCC = 5.0 V.  
1) Characteristics generated by simulation and specified by design. Production test criteria is described in Table 6;  
Pos.: 7.1.8  
Data Sheet  
23  
Rev. 1.11  
2016-12-29  
 
 
 
TLE8250G  
High Speed CAN-Transceiver  
Application Information  
6,000  
5,000  
4,000  
3,000  
2,000  
1,000  
V
RxD,L=0.4V; typical output current  
VCC=5V  
RxD,L=0.4V; typical output current  
+ 6sigma; VCC=5V  
RxD,L=0.4V; typical output current  
V
V
- 6sigma; VCC=5V  
0,000  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Temperature in °C  
Figure 12  
RxD Output driver capability for a logical “Low” signal1)  
The diagram in Figure 12 shows the output current capability of the RxD output pin depended on the chip  
temperature TJ. At a logical “Low” signal VRxD,L = 0.4 V, the typical output current is between 5 mA for -40 °C and  
3.5 mA for a temperature of +150 °C. The dependency of the output current on the temperature is almost  
linear. The upper curve “VRxD,L = 0.4 V; typical output current + 6 sigma; VCC=5 V” reflects the expected  
maximum value of the RxD output current of the TLE8250G.  
The lower curve “VRxD,L = 0.4 V; typical output current - 6 sigma; VCC=5 V” reflects the expected minimum value  
of the RxD output current of the TLE8250G. All simulations are based on a power supply VCC = 5.0 V.  
8.3  
Further Application Information  
Please contact us for information regarding the FMEA pin.  
Existing App. Note (Title)  
For further information you may contact http://www.infineon.com/transceiver  
1) Characteristics generated by simulation and specified by design. Production test criteria is described in Table 6;  
Pos.: 7.1.9  
Data Sheet  
24  
Rev. 1.11  
2016-12-29  
 
 
TLE8250G  
High Speed CAN-Transceiver  
Package Outlines  
9
Package Outlines  
Figure 13  
PG-DSO-8 (Plastic Dual Small Outline)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data Sheet  
25  
Rev. 1.11  
2016-12-29  
TLE8250G  
High Speed CAN-Transceiver  
Revision History  
10  
Revision History  
Revision  
1.11  
Date  
Changes  
2016-12-29 Update from Data Sheet Rev. 1.1:  
New style template  
Editorial changes  
1.1  
2014-09-26 Update from Data Sheet Rev. 1.02:  
All pages:  
Revision and date updated.  
Spelling and grammar corrected.  
Cover page:  
Logo and layout updated.  
Page 1, Overview:  
Feature list updated (“Extended supply range at VCC“).  
Page 14, Table 4, P_6.2.1:  
Supply range updated (“4.5 V < VCC < 5.5 V”).  
Page 16, Table 6:  
Table header updated (“4.5 V < VCC < 5.5 V”).  
Page 18, Table 6, P_7.1.31:  
New parameter added.  
Page 18, Table 6, P_7.1.32:  
New parameter added.  
Page 18, Table 6, P_7.1.33:  
New parameter added.  
Page 18, Table 6, P_7.1.36:  
Remark added (“4.75 V < VCC < 5.25 V”).  
Page 18, Table 6, P_7.1.37:  
Remark added (“4.75 V < VCC < 5.25 V”).  
Page 19, Table 6, P_7.1.38:  
Remark added (“4.75 V < VCC < 5.25 V”).  
Page 22, Figure 10:  
Picture updated.  
Page 23, Chapter 8.2:  
Description updated.  
Page 23, Figure 11:  
Picture updated.  
Page 24, Figure 12:  
Picture updated  
Page 26:  
Revision history updated.  
Data Sheet  
26  
Rev. 1.11  
2016-12-29  
 
TLE8250G  
High Speed CAN-Transceiver  
Revision History  
Revision  
1.02  
Date  
Changes  
2013-07-01 Updated from Data Sheet Rev. 1.01:  
Page 18, P_7.1.23  
Remark removed “normal-operating mode”.  
Page 18, P_7.1.24  
Remark removed “normal-operating mode”.  
Page 18, P_7.1.24  
Remark removed “normal-operating mode”.  
Page 18, P_7.1.25  
Remark removed “normal-operating mode”.  
1.01  
1.0  
2010-10-11 page 8, figure 4: Editorial change NEN=1 changed to NEN=0  
2010-06-02 Data Sheet Created  
Data Sheet  
27  
Rev. 1.11  
2016-12-29  
Please read the Important Notice and Warnings at the end of this document  
Trademarks of Infineon Technologies AG  
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,  
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,  
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,  
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,  
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.  
Trademarks updated November 2015  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2016-12-29  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
WARNINGS  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2016 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  

相关型号:

TLE8250SJ

Interface Circuit, PDSO8, SOP-8
INFINEON

TLE8250SJXUMA1

Interface Circuit, PDSO8, SOP-8
INFINEON

TLE8250VSJ

Interface Circuit, PDSO8, SOP-8
INFINEON

TLE8250XSJ

Interface Circuit, PDSO8, SOP-8
INFINEON

TLE8250_16

High Speed CAN Transceiver
INFINEON

TLE8251V

High Speed CAN Transceiver with Bus Wake-up
INFINEON

TLE8251VSJ

High Speed CAN Transceiver with Bus Wake-up
INFINEON

TLE8251VSJXUMA1

Interface Circuit, PDSO8, SOP-8
INFINEON

TLE8261-2E

Universal System Basis Chip
INFINEON

TLE8261E

Universal System Basis Chip HERMES Rev. 1.0
INFINEON

TLE8261EXUMA1

Interface Circuit, PDSO36, GREEN, PLASTIC, DSO-36
INFINEON

TLE8261EXUMA3

Interface Circuit, PDSO36, GREEN, PLASTIC, DSO-36
INFINEON