IRGP4063DPBF [INFINEON]

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE; 绝缘栅双极型晶体管,超快软恢复二极管
IRGP4063DPBF
型号: IRGP4063DPBF
厂家: Infineon    Infineon
描述:

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
绝缘栅双极型晶体管,超快软恢复二极管

晶体 二极管 双极型晶体管 功率控制 双极性晶体管 栅 局域网 超快软恢复二极管 快速软恢复二极管
文件: 总10页 (文件大小:779K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97210  
IRGP4063DPbF  
INSULATED GATE BIPOLAR TRANSISTOR WITH  
ULTRAFAST SOFT RECOVERY DIODE  
Features  
• Low VCE (ON) Trench IGBT Technology  
C
VCES = 600V  
• Low switching losses  
• Maximum Junction temperature 175 °C  
• 5 µS short circuit SOA  
IC = 48A, TC = 100°C  
• SquareRBSOA  
G
tSC 5µs, TJ(max) = 175°C  
• 100% of the parts tested for 4X rated current (ILM  
• Positive VCE (ON) Temperature co-efficient  
• Ultra fast soft Recovery Co-Pak Diode  
• Tightparameterdistribution  
)
E
VCE(on) typ. = 1.65V  
n-channel  
• LeadFreePackage  
Benefits  
C
• High Efficiency in a wide range of applications  
• Suitable for a wide range of switching frequencies due to  
Low VCE (ON) and Low Switching losses  
• RuggedtransientPerformanceforincreasedreliability  
• ExcellentCurrentsharinginparalleloperation  
• Low EMI  
E
C
G
TO-247AC  
G
C
E
Gate  
Collector  
Emitter  
Absolute Maximum Ratings  
Parameter  
Max.  
600  
96  
Units  
Collector-to-Emitter Voltage  
V
VCES  
Continuous Collector Current  
Continuous Collector Current  
Pulse Collector Current  
IC @ TC = 25°C  
48  
IC @ TC = 100°C  
192  
192  
96  
ICM  
Clamped Inductive Load Current  
Diode Continous Forward Current  
Diode Continous Forward Current  
Diode Maximum Forward Current  
Continuous Gate-to-Emitter Voltage  
Transient Gate-to-Emitter Voltage  
Maximum Power Dissipation  
Maximum Power Dissipation  
Operating Junction and  
A
ILM  
IF @ TC = 25°C  
48  
IF @ TC = 100°C  
192  
±20  
±30  
330  
170  
IFM  
V
VGE  
W
PD @ TC = 25°C  
PD @ TC = 100°C  
-55 to +175  
TJ  
Storage Temperature Range  
Soldering Temperature, for 10 sec.  
Mounting Torque, 6-32 or M3 Screw  
°C  
TSTG  
300 (0.063 in. (1.6mm) from case)  
10 lbf·in (1.1 N·m)  
Thermal Resistance  
Parameter  
Min.  
–––  
–––  
–––  
–––  
Typ.  
–––  
–––  
0.24  
80  
Max.  
0.45  
0.92  
–––  
Units  
Rθ (IGBT)  
Thermal Resistance Junction-to-Case-(each IGBT)  
Thermal Resistance Junction-to-Case-(each Diode)  
Thermal Resistance, Case-to-Sink (flat, greased surface)  
°C/W  
JC  
Rθ (Diode)  
JC  
Rθ  
CS  
Rθ  
Thermal Resistance, Junction-to-Ambient (typical socket mount)  
–––  
JA  
1
www.irf.com  
05/11/06  
IRGP4063DPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Ref.Fig  
CT6  
Parameter  
Collector-to-Emitter Breakdown Voltage  
Min. Typ. Max. Units  
Conditions  
VGE = 0V, IC = 150µA  
V(BR)CES  
600  
4.0  
0.30  
1.65  
2.0  
V
V(BR)CES/TJ  
V
GE = 0V, IC = 1mA (25°C-175°C)  
CT6  
Temperature Coeff. of Breakdown Voltage  
V/°C  
IC = 48A, VGE = 15V, TJ = 25°C  
IC = 48A, VGE = 15V, TJ = 150°C  
IC = 48A, VGE = 15V, TJ = 175°C  
VCE = VGE, IC = 1.4mA  
5,6,7  
2.14  
VCE(on)  
VGE(th)  
Collector-to-Emitter Saturation Voltage  
V
9,10,11  
2.05  
Gate Threshold Voltage  
6.5  
V
mV/°C  
S
9, 10,  
VGE(th)/ TJ  
V
CE = VGE, IC = 1.0mA (25°C - 175°C)  
11, 12  
Threshold Voltage temp. coefficient  
Forward Transconductance  
-21  
32  
VCE = 50V, IC = 48A, PW = 80µs  
VGE = 0V, VCE = 600V  
VGE = 0V, VCE = 600V, TJ = 175°C  
IF = 48A  
gfe  
ICES  
Collector-to-Emitter Leakage Current  
1.0  
150  
1000  
2.91  
µA  
450  
1.95  
1.45  
VFM  
IGES  
8
Diode Forward Voltage Drop  
V
IF = 48A, TJ = 175°C  
VGE = ±20V  
Gate-to-Emitter Leakage Current  
±100  
nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Ref.Fig  
24  
Parameter  
Total Gate Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
Min. Typ. Max. Units  
Conditions  
Qg  
IC = 48A  
95  
140  
Qge  
Qgc  
Eon  
Eoff  
Etotal  
td(on)  
tr  
V
GE = 15V  
CT1  
28  
42  
nC  
µJ  
ns  
VCC = 400V  
35  
53  
IC = 48A, VCC = 400V, VGE = 15V  
RG = 10, L = 200µH, LS = 150nH, TJ = 25°C  
Energy losses include tail & diode reverse recovery  
IC = 48A, VCC = 400V, VGE = 15V  
CT4  
CT4  
625  
1141  
1275 1481  
1900 2622  
60  
40  
78  
56  
176  
46  
G = 10 , L = 200µH, LS = 150nH, TJ = 25°C  
R
td(off)  
tf  
Turn-Off delay time  
Fall time  
145  
35  
Eon  
Eoff  
Etotal  
td(on)  
tr  
IC = 48A, VCC = 400V, VGE=15V  
13, 15  
CT4  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
1625  
1585  
3210  
55  
RG=10 , L=200µH, LS=150nH, TJ = 175°C  
µJ  
ns  
pF  
Energy losses include tail & diode reverse recovery  
IC = 48A, VCC = 400V, VGE = 15V  
RG = 10, L = 200µH, LS = 150nH  
TJ = 175°C  
WF1, WF2  
14, 16  
CT4  
45  
td(off)  
tf  
WF1  
Turn-Off delay time  
Fall time  
165  
45  
WF2  
Cies  
Coes  
Cres  
V
GE = 0V  
23  
Input Capacitance  
3025  
245  
90  
VCC = 30V  
Output Capacitance  
Reverse Transfer Capacitance  
f = 1.0Mhz  
TJ = 175°C, IC = 192A  
4
V
CC = 480V, Vp =600V  
Rg = 10, VGE = +15V to 0V  
CC = 400V, Vp =600V  
RBSOA  
SCSOA  
Reverse Bias Safe Operating Area  
Short Circuit Safe Operating Area  
FULL SQUARE  
CT2  
V
22, CT3  
WF4  
5
µs  
Rg = 10, VGE = +15V to 0V  
TJ = 175°C  
Erec  
trr  
Reverse Recovery Energy of the Diode  
Diode Reverse Recovery Time  
845  
115  
40  
µJ  
ns  
A
17, 18, 19  
20, 21  
WF3  
VCC = 400V, IF = 48A  
VGE = 15V, Rg = 10 , L =200µH, Ls = 150nH  
Irr  
Peak Reverse Recovery Current  
Notes:  
 VCC = 80% (VCES), VGE = 20V, L = 200µH, RG = 10.  
‚ This is only applied to TO-247AC package.  
ƒ Pulse width limited by max. junction temperature.  
„ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.  
2
www.irf.com  
IRGP4063DPbF  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
350  
300  
250  
200  
150  
100  
50  
0
0
25 50 75 100 125 150 175 200  
(°C)  
0
25 50 75 100 125 150 175 200  
T
(°C)  
T
C
C
Fig. 1 - Maximum DC Collector Current vs.  
Fig. 2 - Power Dissipation vs. Case  
Case Temperature  
Temperature  
1000  
1000  
10µsec  
100  
100  
10  
1
100µsec  
1msec  
10  
DC  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
0.1  
1
10  
100  
1000  
10  
100  
(V)  
1000  
V
(V)  
V
CE  
CE  
Fig. 3 - Forward SOA  
TC = 25°C, TJ 175°C; VGE =15V  
Fig. 4 - Reverse Bias SOA  
TJ = 175°C; VGE =15V  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
V
= 18V  
GE  
V
= 18V  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
60  
60  
40  
40  
20  
20  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
V
(V)  
V
(V)  
CE  
CE  
Fig. 5 - Typ. IGBT Output Characteristics  
Fig. 6 - Typ. IGBT Output Characteristics  
TJ = -40°C; tp = 80µs  
TJ = 25°C; tp = 80µs  
www.irf.com  
3
IRGP4063DPbF  
200  
200  
180  
160  
140  
120  
100  
80  
V
= 18V  
180  
160  
140  
120  
100  
80  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
-40°c  
25°C  
175°C  
60  
60  
40  
40  
20  
20  
0
0
0
2
4
6
8
10  
0.0  
1.0  
2.0  
(V)  
3.0  
4.0  
V
F
V
(V)  
CE  
Fig. 7 - Typ. IGBT Output Characteristics  
Fig. 8 - Typ. Diode Forward Characteristics  
TJ = 175°C; tp = 80µs  
tp = 80µs  
20  
18  
16  
14  
12  
20  
18  
16  
14  
12  
I
I
I
= 24A  
= 48A  
= 96A  
I
I
I
= 24A  
= 48A  
= 96A  
CE  
CE  
CE  
CE  
CE  
CE  
10  
8
10  
8
6
6
4
4
2
2
0
0
5
10  
15  
20  
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 10 - Typical VCE vs. VGE  
Fig. 9 - Typical VCE vs. VGE  
TJ = 25°C  
TJ = -40°C  
20  
18  
16  
14  
12  
10  
8
200  
180  
160  
140  
120  
100  
80  
T
= 25°C  
J
T
= 175°C  
J
I
I
I
= 24A  
CE  
CE  
CE  
= 48A  
= 96A  
6
60  
4
40  
2
20  
0
0
5
10  
15  
20  
0
5
10  
15  
V
(V)  
V
(V)  
GE  
GE  
Fig. 11 - Typical VCE vs. VGE  
Fig. 12 - Typ. Transfer Characteristics  
CE = 50V; tp = 10µs  
TJ = 175°C  
V
4
www.irf.com  
IRGP4063DPbF  
6000  
5000  
4000  
3000  
2000  
1000  
0
1000  
100  
10  
E
OFF  
td  
OFF  
E
ON  
td  
ON  
t
F
t
R
0
50  
100  
150  
0
20  
40  
60  
80  
100  
I
(A)  
C
I
(A)  
C
Fig. 13 - Typ. Energy Loss vs. IC  
Fig. 14 - Typ. Switching Time vs. IC  
TJ = 175°C; L = 200µH; VCE = 400V, RG = 10; VGE = 15V  
TJ = 175°C; L = 200µH; VCE = 400V, RG = 10; VGE = 15V  
5000  
1000  
4500  
td  
OFF  
E
OFF  
4000  
E
t
ON  
R
3500  
3000  
2500  
2000  
1500  
1000  
td  
ON  
100  
t
F
10  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
()  
100  
125  
R
G
Rg ()  
Fig. 16 - Typ. Switching Time vs. RG  
Fig. 15 - Typ. Energy Loss vs. RG  
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 48A; VGE = 15V  
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 48A; VGE = 15V  
45  
45  
40  
40  
35  
30  
25  
20  
15  
10  
R
10  
G =  
R
35  
30  
25  
20  
15  
10  
5
22  
G =  
47  
R
G =  
100  
R
G =  
0
0
20  
40  
60  
80  
100  
0
25  
50  
75  
Ω)  
100  
125  
I
(A)  
R
(
F
G
Fig. 17 - Typ. Diode IRR vs. IF  
Fig. 18 - Typ. Diode IRR vs. RG  
TJ = 175°C  
TJ = 175°C  
www.irf.com  
5
IRGP4063DPbF  
45  
40  
35  
30  
25  
20  
15  
10  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
96A  
10  
48A  
100  
22  
47  
24A  
0
500  
1000  
1500  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 20 - Typ. Diode QRR vs. diF/dt  
CC = 400V; VGE = 15V; TJ = 175°C  
Fig. 19 - Typ. Diode IRR vs. diF/dt  
VCC = 400V; VGE = 15V; IF = 48A; TJ = 175°C  
V
400  
350  
300  
250  
200  
150  
100  
50  
900  
800  
18  
16  
14  
12  
10  
8
R
R
= 10Ω  
= 22Ω  
G
700  
600  
500  
400  
300  
200  
100  
0
G
R
G
= 47Ω  
G
R
= 100Ω  
6
4
0
20  
40  
60  
80  
100  
8
10  
12  
14  
(V)  
16  
18  
I
(A)  
V
F
GE  
Fig. 22 - VGE vs. Short Circuit Time  
Fig. 21 - Typ. Diode ERR vs. IF  
VCC = 400V; TC = 25°C  
TJ = 175°C  
10000  
1000  
100  
16  
14  
12  
10  
8
V
V
= 300V  
= 400V  
Cies  
CES  
CES  
Coes  
Cres  
6
4
2
10  
0
0
20  
40  
60  
(V)  
80  
100  
0
25  
50  
75  
100  
V
Q
, Total Gate Charge (nC)  
CE  
G
Fig. 24 - Typical Gate Charge vs. VGE  
Fig. 23 - Typ. Capacitance vs. VCE  
ICE = 48A; L = 600µH  
VGE= 0V; f = 1MHz  
6
www.irf.com  
IRGP4063DPbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.0872 0.000114  
0.1599 0.001520  
0.02  
0.01  
0.01  
τ
J τJ  
τ
τ
Cτ  
τ
1τ1  
τ
2 τ2  
3τ3  
0.2020 0.020330  
SINGLE PULSE  
( THERMAL RESPONSE )  
Ci= τi/Ri  
/
0.001  
0.0001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.2774 0.000908  
0.02  
0.01  
τ
J τJ  
τ
τ
Cτ  
0.01  
0.001  
0.0001  
τ
1τ1  
τ
2 τ2  
3τ3  
0.3896 0.003869  
0.2540 0.030195  
Ci= τi/Ri  
/
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)  
www.irf.com  
7
IRGP4063DPbF  
L
L
80 V  
VCC  
DUT  
DUT  
480V  
0
Rg  
1K  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
Fig.C.T.2 - RBSOA Circuit  
diode clamp /  
DUT  
L
4x  
- 5V  
DC  
360V  
DUT /  
DRIVER  
VCC  
DUT  
Rg  
Fig.C.T.3 - S.C. SOA Circuit  
Fig.C.T.4 - Switching Loss Circuit  
V
CC  
C force  
400µH  
R =  
I
CM  
D1  
10K  
C sense  
DUT  
VCC  
G force  
DUT  
0.0075µ  
Rg  
E sense  
E force  
Fig.C.T.5 - Resistive Load Circuit  
Fig.C.T.6 - BVCES Filter Circuit  
8
www.irf.com  
IRGP4063DPbF  
600  
500  
400  
300  
200  
100  
0
120  
100  
80  
700  
600  
500  
400  
300  
200  
100  
0
140  
120  
100  
80  
tr  
TEST  
tf  
60  
90% test  
60  
90% ICE  
5% VCE  
40  
40  
10% test  
20  
20  
5% VCE  
5% ICE  
EOFF Loss  
0.60  
0
0
EON  
-100  
-20  
-100  
-20  
7.00  
-0.40  
0.10  
1.10  
6.20  
6.40  
6.60  
6.80  
Time(µs)  
Time (µs)  
Fig. WF1 - Typ. Turn-off Loss Waveform  
Fig. WF2 - Typ. Turn-on Loss Waveform  
@ TJ = 175°C using Fig. CT.4  
@ TJ = 175°C using Fig. CT.4  
600  
500  
400  
300  
200  
100  
0
600  
60  
50  
40  
500  
400  
300  
200  
100  
0
ICE  
VCE  
QRR  
30  
20  
10  
tRR  
0
-10  
-20  
-30  
-40  
10%  
Peak  
IRR  
Peak  
IRR  
-100  
-100  
-0.15 -0.05 0.05  
0.15  
0.25  
-5.00  
0.00  
5.00  
10.00  
time (µS)  
time (µS)  
Fig. WF3 - Typ. Diode Recovery Waveform  
Fig. WF4 - Typ. S.C. Waveform  
@ TJ = 25°C using Fig. CT.3  
@ TJ = 175°C using Fig. CT.4  
www.irf.com  
9
IRGP4063DPbF  
TO-247AC Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AC Part Marking Information  
TO-247AC package is not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 05/06  
10  
www.irf.com  

相关型号:

IRGP4063PBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4063PBF_15

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4065DPBF

PDP TRENCH IGBT
INFINEON

IRGP4065PBF

PDP TRENCH IGBT
INFINEON

IRGP4066-EPBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4066D-EPBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4066DPBF

Insulated Gate Bipolar Transistor, 140A I(C), 600V V(BR)CES, N-Channel, TO-247AC, LEAD FREE, PLASTIC PACKAGE-3
INFINEON

IRGP4066PBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4066PBF_15

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4068D-EPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
INFINEON

IRGP4068DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
INFINEON

IRGP4069D-EPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON