LT3013B [Linear]

250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; 250毫安, 4V至80V低压差微功耗线性稳压器,具有PWRGD
LT3013B
型号: LT3013B
厂家: Linear    Linear
描述:

250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD
250毫安, 4V至80V低压差微功耗线性稳压器,具有PWRGD

稳压器
文件: 总16页 (文件大小:217K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3013B  
250mA, 4V to 80V  
Low Dropout Micropower  
Linear Regulator with PWRGD  
U
FEATURES  
DESCRIPTIO  
The LT®3013B is a high voltage, micropower low dropout  
linearregulator.Thedeviceiscapableofsupplying250mA  
of output current with a dropout voltage of 400mV. De-  
signed for use in battery-powered or high voltage sys-  
tems, the low quiescent current (65µA operating) makes  
theLT3013Banidealchoice.Quiescentcurrentisalsowell  
controlled in dropout.  
Wide Input Voltage Range: 4V to 80V  
Low Quiescent Current: 65µA  
Low Dropout Voltage: 400mV  
Output Current: 250mA  
No Protection Diodes Needed  
Adjustable Output from 1.24V to 60V  
Stable with 3.3µF Output Capacitor  
Stable with Aluminum, Tantalum or Ceramic  
Other features of the LT3013B include a PWRGD flag to  
indicate output regulation. The delay between regulated  
output level and flag indication is programmable with a  
single capacitor. The LT3013B also has the ability to  
operate with very small output capacitors. The regulator is  
stable with only 3.3µF on the output while most older  
devices require between 10µF and 100µF for stability.  
Smallceramiccapacitorscanbeusedwithoutanyneedfor  
series resistance (ESR) as is common with other regula-  
tors. Internal protection circuitry includes reverse-battery  
protection, current limiting, thermal limiting and reverse  
current protection.  
Capacitors  
Reverse-Battery Protection  
No Reverse Current Flow from Output to Input  
Thermal Limiting  
Thermally Enhanced 16-Lead TSSOP and 12 Pin  
(4mm × 3mm) DFN Package  
U
APPLICATIO S  
Low Current High Voltage Regulators  
Regulator for Battery-Powered Systems  
Telecom Applications  
Automotive Applications  
The device is available with an adjustable output with a  
1.24V reference voltage. The LT3013B regulator is avail-  
ableinthethermallyenhanced16-leadTSSOPandthelow  
profile (0.75mm), 12 pin (4mm × 3mm) DFN package,  
both providing excellent thermal characteristics.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
Dropout Voltage  
TYPICAL APPLICATIO  
400  
350  
300  
250  
200  
150  
100  
50  
5V Supply  
V
OUT  
IN  
OUT  
LT3013B  
5V  
250mA  
V
IN  
750k  
249k  
5.4V TO  
80V  
1.6M  
3.3µF  
1µF  
ADJ  
PWRGD  
GND  
C
T
3013 TA01  
1000pF  
0
0
50  
100  
150  
200  
250  
OUTPUT CURRENT (mA)  
3013 TA02  
3013bfa  
1
LT3013B  
W W  
U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
IN Pin Voltage................................................... ±80V  
OUT Pin Voltage ............................................... ±60V  
IN to OUT Differential Voltage........................... ±80V  
ADJ Pin Voltage .................................................. ±7V  
Storage Temperature Range  
TSSOP Package ........................... –65°C to 150°C  
DFN Package ............................... –65°C to 125°C  
Operating Junction Temperature Range  
C Pin Voltage ........................................... 7V, –0.5V  
(Notes 3, 9, 10) ........................... –40°C to 125°C  
Lead Temperature (FE16 Soldering, 10 sec)... 300°C  
T
PWRGD Pin Voltage ................................ 80V, –0.5V  
Output Short-Circuit Duration..................... Indefinite  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
GND  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
NC  
IN  
NC  
OUT  
1
2
3
4
5
6
12 NC  
11 IN  
10 IN  
OUT  
OUT  
OUT  
IN  
13  
17  
ADJ  
9
8
7
NC  
NC  
ADJ  
NC  
NC  
GND  
GND  
PWRGD  
GND  
C
T
PWRGD  
C
T
GND  
DE PACKAGE  
12-LEAD (4mm × 3mm) PLASTIC DFN  
FE PACKAGE  
16-LEAD PLASTIC TSSOP  
TJMAX = 125°C, θJA = 40°C/ W, θJC = 16°C/ W  
TJMAX = 125°C, θJA = 40°C/ W, θJC = 16°C/ W  
EXPOSED PAD (PIN13) IS GND  
MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN17) IS GND  
MUST BE SOLDERED TO PCB  
ORDER PART NUMBER  
DE PART MARKING  
3013B  
ORDER PART NUMBER  
LT3013BEFE  
FE PART MARKING  
3013BEFE  
LT3013BEDE  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating temperature range, otherwise specifications are at T = 25°C.  
J
PARAMETER  
CONDITIONS  
= 250mA  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
ADJ Pin Voltage (Notes 2,3)  
I
4
4.5  
V
LOAD  
V
IN  
= 4V, I  
= 1mA  
1.225  
1.2  
1.24  
1.24  
1.255  
1.28  
V
V
LOAD  
4.5V < V < 80V, 1mA < I  
< 250mA  
LOAD  
IN  
Line Regulation  
V = 4V to 80V, I  
= 1mA (Note 2)  
0.1  
7
5
mV  
IN  
LOAD  
Load Regulation (Note 2)  
V
V
= 4.5V, I  
= 4.5V, I  
= 1mA to 250mA  
= 1mA to 250mA  
12  
25  
mV  
mV  
IN  
IN  
LOAD  
LOAD  
3013bfa  
2
LT3013B  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating temperature range, otherwise specifications are at T = 25°C.  
J
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Dropout Voltage  
I
I
= 10mA  
= 10mA  
160  
230  
300  
mV  
mV  
LOAD  
LOAD  
V
= V  
IN  
OUT(NOMINAL)  
(Notes 4, 5)  
I
I
= 50mA  
= 50mA  
250  
400  
340  
420  
mV  
mV  
LOAD  
LOAD  
I
I
= 250mA  
= 250mA  
490  
620  
mV  
mV  
LOAD  
LOAD  
GND Pin Current  
I
I
I
= 0mA  
= 100mA  
= 250mA  
65  
3
10  
120  
µA  
mA  
mA  
LOAD  
LOAD  
LOAD  
V
= 4.5V  
IN  
(Notes 4, 6)  
18  
Output Voltage Noise  
ADJ Pin Bias Current  
PWRGD Trip Point  
C
= 10µF, I  
= 250mA, BW = 10Hz to 100kHz  
100  
30  
µV  
RMS  
OUT  
LOAD  
(Note 7)  
100  
94  
nA  
% of Nominal Output Voltage, Output Rising  
% of Nominal Output Voltage  
85  
90  
%
%
PWRGD Trip Point Hysteresis  
PWRGD Output Low Voltage  
1.1  
140  
3.6  
1.6  
75  
I
= 50µA  
250  
6
mV  
µA  
V
PWRGD  
C Pin Charging Current  
T
C Pin Voltage Differential  
T
V
V
– V  
CT(PWRGD High) CT(PWRGD Low)  
Ripple Rejection  
Current Limit  
= 7V(Avg), V  
= 0.5V , f  
= 120Hz, I = 250mA  
LOAD  
65  
dB  
IN  
RIPPLE  
P-P RIPPLE  
V
V
= 7V, V  
= 0V  
400  
mA  
mA  
IN  
IN  
OUT  
= 4.5V, V  
= –0.1V (Note 2)  
270  
OUT  
Reverse Output Current (Note 8)  
V
= 1.24V, V < 1.24V (Note 2)  
12  
25  
µA  
OUT  
IN  
Note 6: GND pin current is tested with V = 4.5V and a current source  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
IN  
load. This means the device is tested while operating close to its dropout  
region. This is the worst-case GND pin current. The GND pin current will  
decrease slightly at higher input voltages.  
Note 7: ADJ pin bias current flows into the ADJ pin.  
Note 2: The LT3013B is tested and specified for these conditions with the  
ADJ pin connected to the OUT pin.  
Note 8: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
Note 9: The LT3013BE is guaranteed to meet performance specifications  
from 0°C to 125°C operating junction temperature. Specifications over  
the –40°C to 125°C operating junction temperature range are assured by  
design, characterization and correlation with statistical process controls.  
Note 3: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply for  
all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
Note 4: To satisfy requirements for minimum input voltage, the LT3013B  
is tested and specified for these conditions with an external resistor divider  
(249k bottom, 549k top) for an output voltage of 4V. The external resistor  
divider will add a 5µA DC load on the output.  
Note 10: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is  
active. Continuous operation above the specified maximum operating  
junction temperature may impair device reliability.  
Note 5: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage will be equal to (V – V  
).  
IN  
DROPOUT  
3013bfa  
3
LT3013B  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
600  
500  
= TEST POINTS  
T
125°C  
J
T
= 125°C  
J
I
L
= 250mA  
I
L
= 100mA  
400  
300  
T
25°C  
J
T
= 25°C  
J
I
L
= 50mA  
200  
100  
0
I
I
= 10mA  
= 1mA  
L
L
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
–50  
0
25  
50  
75 100 125  
–25  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
3013 G01  
3013 G02  
3013 G03  
Quiescent Current  
ADJ Pin Voltage  
Quiescent Current  
600  
1.260  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
I
= 1mA  
J
L
L
R
=
500  
400  
300  
200  
100  
0
1.255  
1.250  
I = 250mA  
L
I = 100mA  
L
1.245  
1.240  
1.235  
1.230  
1.225  
I = 50mA  
L
I = 10mA  
L
I = 1mA  
L
1.220  
–50  
0
25  
50  
75 100 125  
–25  
25  
0
50  
75 100 125  
1
2
6
7
9
50  
25  
0
3
4
5
8
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
3013 G03  
3013 G05  
3013 G06  
GND Pin Current  
GND Pin Current vs I  
LOAD  
GND Pin Current  
1.2  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
T
= 25°C, *FOR V  
= 1.24V  
OUT  
V
T
= 4.5V  
T
= 25°C  
J
IN  
J
J
= 25°C  
*FOR V  
= 1.24V  
OUT  
1.0  
0.8  
0.6  
0.4  
0.2  
0
R
I
= 49.6  
= 25mA*  
L
L
R = 4.96  
L
I = 250mA*  
L
R
I
= 124Ω  
= 10mA*  
L
L
R
L
= 12.4Ω  
L
I
= 100mA*  
R
L
I
L
= 1.24k  
= 1mA*  
R
= 24.8, I = 50mA*  
L
L
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
50  
100  
150  
200  
250  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
3013 G07  
3013 G08  
3013 G09  
3013bfa  
4
LT3013B  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
PWRGD Trip Point  
PWRGD Output Low Voltage  
ADJ Pin Bias Current  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
200  
180  
160  
140  
120  
100  
80  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
I
= 50µA  
PWRGD  
OUTPUT RISING  
OUTPUT FALLING  
60  
40  
20  
0
0
25  
0
50  
75 100 125  
25  
0
50  
75 100 125  
50  
25  
50  
25  
25  
0
50  
75 100 125  
50  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3013 G25  
3013 G26  
3013 G13  
Current Limit  
CT Charging Current  
CT Comparator Thresholds  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
PWRGD TRIPPED HIGH  
V
= 0V  
OUT  
V
(HIGH)  
CT  
T
= 25°C  
J
T
= 125°C  
J
V
(LOW)  
50  
CT  
25  
0
50  
75 100 125  
25  
0
75 100 125  
10 20 30 40 50 60 70 80  
50  
25  
50  
25  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
3013 G27  
3013 G28  
3013 G14  
Current Limit  
Reverse Output Current  
Reverse Output Current  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
200  
180  
160  
140  
120  
100  
80  
35  
30  
25  
20  
15  
10  
5
T
V
V
= 25°C  
V
V
= 0V  
= V  
J
IN  
OUT  
= 0V  
= 1.24V  
ADJ  
IN  
OUT  
= V  
ADJ  
CURRENT FLOWS  
INTO OUTPUT PIN  
ADJ  
PIN CLAMP  
(SEE APPLICATIONS  
INFORMATION)  
60  
40  
V
V
= 7V  
IN  
OUT  
20  
= 0V  
0
0
–50  
0
25  
50  
75 100 125  
0
1
2
3
4
5
6
7
8
9
10  
50 25  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
3013 G15  
3013 G16  
3013 G17  
3013bfa  
5
LT3013B  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Ripple Rejection  
Input Ripple Rejection  
Minimum Input Voltage  
100  
4.0  
92  
V
LOAD  
= 4.5V + 50mV RIPPLE  
IN  
RMS  
I
= 250mA  
LOAD  
90  
80  
70  
I
= 250mA  
3.5  
3.0  
88  
84  
80  
76  
72  
68  
64  
60  
2.5  
2.0  
1.5  
1.0  
0.5  
60  
50  
C
OUT  
= 10µF  
40  
30  
20  
10  
0
V
L
V
= 4.5V + 0.5V RIPPLE AT f = 120Hz  
P-P  
IN  
C
= 3.3µF  
OUT  
I
= 250mA  
= 1.24V  
OUT  
0
10  
100  
1k  
10k  
100k  
1M  
25  
0
50  
75 100 125  
50  
25  
–50  
0
25  
50  
75 100 125  
–25  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3013 G19  
3013 G20  
3013 G18  
Output Noise Spectral Density  
Load Regulation  
10  
1
0
–2  
C
= 3.3µF  
= 250mA  
I = 1mA TO 250mA  
L
OUT  
I
LOAD  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
0.1  
0.01  
25  
0
50  
75 100 125  
50  
25  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
TEMPERATURE (°C)  
3013 G22  
3013 G21  
10Hz to 100kHz Output Noise  
Transient Response  
0.15  
0.10  
0.05  
0
VOUT  
100µV/DIV  
–0.05  
–0.10  
–0.15  
300  
V
V
C
C
= 6V  
= 5V  
= 3.3µF CERAMIC  
IN  
OUT  
IN  
= 3.3µF CERAMIC  
LOAD  
OUT  
I  
= 100mA TO 200mA  
200  
C
OUT = 10µF  
1ms/DIV  
3013B G23  
100  
IL = 250mA  
VOUT = VADJ  
0
0
100  
200  
300  
400  
500  
TIME (µs)  
3013 G24  
3013bfa  
6
LT3013B  
U
U
U
PI FU CTIO S  
(DFN Package)/(TSSOP Package)  
OUT (Pins 2, 3)/(Pins 3, 4): Output. The output supplies  
power to the load. A minimum output capacitor of 3.3µF is  
required to prevent oscillations. Larger output capacitors  
will be required for applications with large transient loads  
to limit peak voltage transients. See the Applications  
Information section for more information on output ca-  
pacitance and reverse output characteristics.  
CT (Pin 7)/(Pin 10): Timing Capacitor. The CT pin allows  
theuseofasmallcapacitortodelaythetimingbetweenthe  
point where the output crosses the PWRGD threshold and  
the PWRGD flag changes to a high impedance state.  
Current out of this pin during the charging phase is 3µA.  
The voltage difference between the PWRGD low and  
PWRGDhighstatesis1.6V(seetheApplicationsInforma-  
tion Section).  
ADJ (Pin 4)/(Pin 5): Adjust. This is the input to the error  
amplifier. This pin is internally clamped to ±7V. It has a  
bias current of 30nA which flows into the pin (see curve of  
ADJPinBiasCurrentvsTemperatureintheTypicalPerfor-  
mance Characteristics). The ADJ pin voltage is 1.24V  
referenced to ground, and the output voltage range is  
1.24V to 60V.  
IN (Pins 10, 11)/(Pins 13,14): Input. Power is supplied to  
the device through the IN pin. A bypass capacitor is  
required on this pin if the device is more than six inches  
away from the main input filter capacitor. In general, the  
output impedance of a battery rises with frequency, so it  
is advisable to include a bypass capacitor in battery-  
poweredcircuits. Abypasscapacitorintherangeof1µFto  
10µF is sufficient. The LT3013B is designed to withstand  
reverse voltages on the IN pin with respect to ground and  
the OUT pin. In the case of a reversed input, which can  
happen if a battery is plugged in backwards, the LT3013B  
will act as if there is a diode in series with its input. There  
will be no reverse current flow into the LT3013B and no  
reverse voltage will appear at the load. The device will  
protect both itself and the load.  
GND (Pins 5, 13)/(Pins 1, 6, 8, 9, 16, 17): Ground. The  
exposed backside of the package is an electrical connec-  
tion for GND. As such, to ensure optimum device opera-  
tion and thermal performance, the exposed pad must be  
connected directly to pin 5/pin 6 on the PC board.  
PWRGD (Pin 6)/(Pin 7): Power Good. The PWRGD flag is  
an open collector flag to indicate that the output voltage  
has come up to above 90% of the nominal output voltage.  
There is no internal pull-up on this pin; a pull-up resistor  
must be used. The PWRGD pin will change state from an  
open-collector to high impedance after both the output is  
above90%ofthenominalvoltageandthecapacitoronthe  
CT pin has charged through a 1V differential. The maxi-  
mum pull-down current of the PWRGD pin in the low state  
is 50µA.  
NC (Pins 1, 8, 9, 12)/(Pins 2, 11, 12, 15):No Connect. No  
Connect pins may be floated, tied to IN or tied to GND.  
3013bfa  
7
LT3013B  
W U U  
U
APPLICATIO S I FOR ATIO  
The LT3013B is a 250mA high voltage low dropout regu-  
lator with micropower quiescent current. The device is  
capable of supplying 250mA at a dropout voltage of  
400mV. Operating quiescent current is only 65µA. In  
addition to the low quiescent current, the LT3013B incor-  
porates several protection features which make it ideal for  
use in battery-powered systems. The device is protected  
against both reverse input and reverse output voltages. In  
battery backup applications where the output can be held  
up by a backup battery when the input is pulled to ground,  
theLT3013Bactslikeithasadiodeinserieswithitsoutput  
and prevents reverse current flow.  
for output voltages greater than 1.24V will be proportional  
to the ratio of the desired output voltage to 1.24V; (VOUT  
/
1.24V). For example, load regulation for an  
output current change of 1mA to 250mA is –7mV typical  
at VOUT = 1.24V. At VOUT = 12V, load regulation is:  
(12V/1.24V) • (–7mV) = –68mV  
Output Capacitance and Transient Response  
The LT3013B is designed to be stable with a wide range of  
output capacitors. The ESR of the output capacitor affects  
stability, most notably with small capacitors. A minimum  
output capacitor of 3.3µF with an ESR of 3or less is  
recommended to prevent oscillations. The LT3013B is a  
micropower device and output transient response will be  
a function of output capacitance. Larger values of output  
capacitance decrease the peak deviations and provide  
improved transient response for larger load current  
changes. Bypass capacitors, used to decouple individual  
components powered by the LT3013B, will increase the  
effective output capacitor value.  
Adjustable Operation  
The LT3013B has an output voltage range of 1.24V to  
60V. The output voltage is set by the ratio of two external  
resistors as shown in Figure 1. The device servos the  
output to maintain the voltage at the adjust pin at 1.24V  
referenced to ground. The current in R1 is then equal to  
1.24V/R1 and the current in R2 is the current in R1 plus  
the ADJ pin bias current. The ADJ pin bias current, 30nA  
at 25°C, flows through R2 into the ADJ pin. The output  
voltage can be calculated using the formula in Figure 1.  
The value of R1 should be less than 250k to minimize  
errors in the output voltage caused by the ADJ pin bias  
current.  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common di-  
electrics used are specified with EIA temperature charac-  
teristiccodesofZ5U,Y5V,X5RandX7R.TheZ5UandY5V  
dielectrics are good for providing high capacitances in a  
small package, but they tend to have strong voltage and  
The adjustable device is tested and specified with the ADJ  
pintiedtotheOUTpinanda5µADCload(unlessotherwise  
specified) for an output voltage of 1.24V. Specifications  
V
OUT  
IN  
LT3013B  
ADJ  
OUT  
+
R2  
V
IN  
GND  
R1  
3013 F01  
R2  
R1  
V
V
= 1.24V 1 +  
+ (I )(R2)  
ADJ  
OUT  
(
)
= 1.24V  
ADJ  
I
= 30nA AT 25°C  
OUTPUT RANGE = 1.24V TO 60V  
ADJ  
Figure 1. Adjustable Operation  
3013bfa  
8
LT3013B  
W U U  
APPLICATIO S I FOR ATIO  
U
temperature coefficients as shown in Figures 2 and 3.  
When used with a 5V regulator, a 16V 10µF Y5V capacitor  
can exhibit an effective value as low as 1µF to 2µF for the  
DC bias voltage applied and over the operating tempera-  
ture range. The X5R and X7R dielectrics result in more  
stable characteristics and are more suitable for use as the  
output capacitor. The X7R type has better stability across  
temperature, while the X5R is less expensive and is  
available in higher values. Care still must be exercised  
when using X5R and X7R capacitors; the X5R and X7R  
codesonlyspecifyoperatingtemperaturerangeandmaxi-  
mum capacitance change over temperature. Capacitance  
change due to DC bias with X5R and X7R capacitors is  
better than Y5V and Z5U capacitors, but can still be  
significant enough to drop capacitor values below appro-  
priate levels. Capacitor DC bias characteristics tend to  
improve as component case size increases, but expected  
capacitance at operating voltage should be verified.  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric accelerometer or micro-  
phone works. For a ceramic capacitor the stress can be  
induced by vibrations in the system or thermal transients.  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
0
X5R  
–20  
–40  
PWRGD Flag and Timing Capacitor Delay  
–60  
The PWRGD flag is used to indicate that the ADJ pin  
voltageiswithin10%oftheregulatedvoltage.ThePWRGD  
pin is an open-collector output, capable of sinking 50µA of  
current when the ADJ pin voltage is low. There is no  
internal pull-up on the PWRGD pin; an external pull-up  
resistor must be used. When the ADJ pin rises to within  
10% of its final reference value, a delay timer is started. At  
the end of this delay, programmed by the value of the  
capacitor on the CT pin, the PWRGD pin switches to a high  
impedance and is pulled up to a logic level by an external  
pull-up resistor.  
Y5V  
–80  
–100  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
3013 F02  
Figure 2. Ceramic Capacitor DC Bias Characterics  
40  
20  
0
To calculate the capacitor value on the CT pin, use the  
following formula:  
X5R  
–20  
–40  
Y5V  
ICT tDELAY  
VCT(HIGH) VCT(LOW)  
CTIME  
=
–60  
–80  
BOTH CAPACITORS ARE 16V,  
Figure 4 shows a block diagram of the PWRGD circuit. At  
startup,thetimingcapacitorisdischargedandthePWRGD  
pin will be held low. As the output voltage increases and  
the ADJ pin crosses the 90% threshold, the JK flip-flop is  
reset, and the 3µA current source begins to charge the  
1210 CASE SIZE, 10µF  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
3013 F03  
Figure 3. Ceramic Capacitor Temperature Characterics  
3013bfa  
9
LT3013B  
W U U  
U
APPLICATIO S I FOR ATIO  
I
CT  
3µA  
CT  
PWRGD  
+
ADJ  
V
– V  
BE  
CT(HIGH)  
J
Q
(~1.1V)  
K
V
• 90%  
REF  
+
V
CT(LOW)  
~0.1V  
3013 F04  
Figure 4. PWRGD Circuit Block Diagram  
maximum junction temperature rating may impair the life  
of the device.  
timing capacitor. Once the voltage on the CT pin reaches  
the VCT(HIGH) threshold (approximately 1.7V at 25°C), the  
capacitor voltage is clamped and the PWRGD pin is set to  
a high impedance state.  
Thermal Considerations  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C). The  
power dissipated by the device will be made up of two  
components:  
Duringnormaloperation,aninternalglitchfilterwillignore  
short transients (<15µs). Longer transients below the  
90% threshold will reset the JK flip-flop. This flip-flop  
ensures that the capacitor on the CT pin is quickly dis-  
charged all the way to the VCT(LOW) threshold before re-  
starting the time delay. This provides a consistent time  
delay after the ADJ pin is within 10% of the regulated  
voltage before the PWRGD pin switches to high  
impedance.  
1. Output current multiplied by the input/output voltage  
differential: IOUT • (VIN – VOUT) and,  
2. GND pin current multiplied by the input voltage:  
IGND • VIN.  
The GND pin current can be found by examining the GND  
Pin Current curves in the Typical Performance Character-  
istics. Powerdissipationwillbeequaltothesumofthetwo  
components listed above.  
Current Limit and Safe Operating Area Protection  
Like many IC power regulators, the LT3013B has safe  
operating area protection. The safe operating area protec-  
tion decreases the current limit as the input voltage  
increases and keeps the power transistor in a safe operat-  
ing region. The protection is designed to provide some  
outputcurrentatallvaluesofinputvoltageuptothedevice  
breakdown (see curve of Current Limit vs Input Voltage in  
the Typical Performance Characteristics).  
The LT3013B series regulators have internal thermal lim-  
iting designed to protect the device during overload con-  
ditions. For continuous normal conditions the maximum  
junction temperature rating of 125°C must not be ex-  
ceeded. It is important to give careful consideration to all  
sources of thermal resistance from junction to ambient.  
Additional heat sources mounted nearby must also be  
considered.  
The LT3013B is limited for operating conditions by maxi-  
mum junction temperature. While operating at maximum  
input voltage, the output current range must be limited;  
when operating at maximum output current, the input  
voltage range must be limited. Device specifications will  
not apply for all possible combinations of input voltage  
and output current. Operating the LT3013B beyond the  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
3013bfa  
10  
LT3013B  
W U U  
APPLICATIO S I FOR ATIO  
U
The following tables list thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 3/32" FR-4 board with one ounce  
copper.  
250mA, and a maximum ambient temperature of 30°C,  
what will the maximum junction temperature be?  
The power dissipated by the device will be equal to:  
IOUT(MAX) • (VIN(MAX) – VOUT) + (IGND • VIN(MAX)  
where:  
IOUT(MAX) = 250mA  
IN(MAX) = 12V  
IGND at (IOUT = 250mA, VIN = 12V) = 8mA  
So:  
)
Table 1. Measured Thermal Resistance (TSSOP)  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE  
2500 sq mm  
1000 sq mm  
225 sq mm  
100 sq mm  
BACKSIDE  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
BOARD AREA  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
(JUNCTION-TO-AMBIENT)  
40°C/W  
V
45°C/W  
50°C/W  
62°C/W  
Table 2. Measured Thermal Resistance (DFN)  
P = 250mA • (12V – 5V) + (8mA • 12V) = 1.85W  
COPPER AREA  
THERMAL RESISTANCE  
The thermal resistance will be in the range of 40°C/W to  
62°C/W depending on the copper area. So the junction  
temperature rise above ambient will be approximately  
equal to:  
TOPSIDE  
2500 sq mm  
1000 sq mm  
225 sq mm  
100 sq mm  
BACKSIDE  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
BOARD AREA  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
(JUNCTION-TO-AMBIENT)  
40°C/W  
45°C/W  
50°C/W  
1.85W • 50°C/W = 92.3°C  
62°C/W  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
The thermal resistance junction-to-case (θJC), measured  
at the exposed pad on the back of the die, is 16°C/W.  
Continuous operation at large input/output voltage differ-  
entials and maximum load current is not practical due to  
thermal limitations. Transient operation at high input/  
output differentials is possible. The approximate thermal  
time constant for a 2500sq mm 3/32" FR-4 board with  
maximumtopsideandbacksideareaforoneouncecopper  
is 3 seconds. This time constant will increase as more  
thermal mass is added (i.e. vias, larger board, and other  
components).  
TJMAX = 30°C + 92.3°C = 122.3°C  
Example 2: Given an output voltage of 5V, an input voltage  
of 48V that rises to 72V for 5ms(max) out of every 100ms,  
and a 5mA load that steps to 200mA for 50ms out of every  
250ms, what is the junction temperature rise above ambi-  
ent? Using a 500ms period (well under the time constant  
of the board), power dissipation is as follows:  
P1(48V in, 5mA load) = 5mA • (48V – 5V)  
+ (200µA • 48V) = 0.23W  
For an application with transient high power peaks, aver-  
age power dissipation can be used for junction tempera-  
turecalculationsaslongasthepulseperiodissignificantly  
less than the thermal time constant of the device and  
board.  
P2(48V in, 50mA load) = 200mA • (48V – 5V)  
+ (8mA • 48V) = 8.98W  
P3(72V in, 5mA load) = 5mA • (72V – 5V)  
+ (200µA • 72V) = 0.35W  
P4(72V in, 50mA load) = 200mA • (72V – 5V)  
+ (8mA • 72V) = 13.98W  
Calculating Junction Temperature  
Example 1: Given an output voltage of 5V, an input voltage  
range of 8V to 12V, an output current range of 0mA to  
3013bfa  
11  
LT3013B  
W U U  
U
APPLICATIO S I FOR ATIO  
Operation at the different power levels is as follows:  
voltage if the output is pulled high, the ADJ pin input  
current must be limited to less than 5mA. For example, a  
resistor divider is used to provide a regulated 1.5V output  
fromthe1.24Vreferencewhentheoutputisforcedto60V.  
The top resistor of the resistor divider must be chosen to  
limitthecurrentintotheADJpintolessthan5mAwhenthe  
ADJ pin is at 7V. The 53V difference between the OUT and  
ADJ pins divided by the 5mA maximum current into the  
ADJ pin yields a minimum top resistor value of 10.6k.  
76% operation at P1, 19% for P2, 4% for P3, and  
1% for P4.  
P
EFF = 76%(0.23W) + 19%(8.98W) + 4%(0.35W)  
+ 1%(13.98W) = 2.03W  
With a thermal resistance in the range of 40°C/W to  
62°C/W, this translates to a junction temperature rise  
above ambient of 81°C to 125°C.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled to  
ground, pulled to some intermediate voltage, or is left  
open circuit. Current flow back into the output will follow  
the curve shown in Figure 5. The rise in reverse output  
current above 7V occurs from the breakdown of the 7V  
clamp on the ADJ pin. With a resistor divider on the  
regulator output, this current will be reduced depending  
on the size of the resistor divider.  
Protection Features  
The LT3013B incorporates several protection features  
which make it ideal for use in battery-powered circuits. In  
addition to the normal protection features associated with  
monolithic regulators, such as current limiting and ther-  
mal limiting, the device is protected against reverse-input  
voltages, and reverse voltages from output to input.  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C.  
When the IN pin of the LT3013B is forced below the OUT  
pin or the OUT pin is pulled above the IN pin, input current  
will typically drop to less than 2µA. This can happen if the  
input of the LT3013B is connected to a discharged (low  
voltage) battery and the output is held up by either a  
backup battery or a second regulator circuit.  
The input of the device will withstand reverse voltages of  
80V. No negative voltage will appear at the output. The  
device will protect both itself and the load. This provides  
protection against batteries which can be plugged in  
backward.  
200  
The ADJ pin of the device can be pulled above or below  
ground by as much as 7V without damaging the device. If  
the input is left open circuit or grounded, the ADJ pin will  
act like an open circuit when pulled below ground, and like  
alargeresistor(typically100k)inserieswithadiodewhen  
pulled above ground. If the input is powered by a voltage  
source, pulling the ADJ pin below the reference voltage  
will cause the device to try and force the current limit  
current out of the output. This will cause the output to go  
to a unregulated high voltage. Pulling the ADJ pin above  
the reference voltage will turn off all output current.  
T
V
V
= 25°C  
J
= 0V  
180  
160  
140  
120  
100  
80  
IN  
OUT  
= V  
ADJ  
CURRENT FLOWS  
INTO OUTPUT PIN  
ADJ  
PIN CLAMP  
(SEE ABOVE)  
60  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
3013 F05  
In situations where the ADJ pin is connected to a resistor  
divider that would pull the ADJ pin above its 7V clamp  
Figure 5. Reverse Output Current  
3013bfa  
12  
LT3013B  
U
TYPICAL APPLICATIO S  
LT3013B Automotive Application  
IN  
OUT  
ADJ  
NO PROTECTION  
DIODE NEEDED!  
+
V
IN  
LT3013B  
GND  
750k  
249k  
3.3µF  
12V  
1µF  
LOAD: CLOCK,  
SECURITY SYSTEM  
ETC  
(LATER 42V)  
LT3013B Telecom Application  
V
IN  
IN  
OUT  
48V  
(72V TRANSIENT)  
+
LT3013B  
750k  
249k  
BACKUP  
BATTERY  
NO PROTECTION  
DIODE NEEDED!  
3.3µF  
1µF  
LOAD:  
SYSTEM MONITOR  
ETC  
ADJ  
GND  
3013 TA05  
Constant Brightness for Indicator LED over Wide Input Voltage Range  
RETURN  
IN  
LT3013B  
ADJ  
OUT  
1µF  
3.3µF  
GND  
R
SET  
–48V  
3013 TA06  
I
= 1.24V/R  
SET  
LED  
–48V CAN VARY FROM –4V TO –80V  
3013bfa  
13  
LT3013B  
U
PACKAGE DESCRIPTIO  
DE Package  
12-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-1695 Rev C)  
0.70 ±0.05  
3.60 ±0.05  
2.20 ±0.05 (2 SIDES)  
1.70 ±0.05  
PACKAGE OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
3.30 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
0.40 ± 0.10  
4.00 ±0.10  
(2 SIDES)  
R = 0.115  
TYP  
7
12  
R = 0.05  
TYP  
3.00 ±0.10 1.70 ± 0.05  
(2 SIDES)  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PIN 1 NOTCH  
R = 0.20 OR  
0.35 × 45°  
CHAMFER  
(UE12/DE12) DFN 0905 REV C  
6
0.25 ± 0.05  
1
0.75 ±0.05  
0.200 REF  
0.50  
BSC  
3.30 ±0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE A VARIATION OF VERSION  
(WGED) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3013bfa  
14  
LT3013B  
U
PACKAGE DESCRIPTIO  
FE Package  
16-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation BB  
4.90 – 5.10*  
(.193 – .201)  
3.58  
(.141)  
3.58  
(.141)  
16 1514 13 12 1110  
9
6.60 ±0.10  
4.50 ±0.10  
2.94  
(.116)  
6.40  
(.252)  
BSC  
SEE NOTE 4  
2.94  
(.116)  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE16 (BB) TSSOP 0204  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
3013bfa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT3013B  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 4.5V to 36V, V  
LT1020  
125mA, Micropower Regulator and Comparator  
= 2.5V, V = 0.4V, I = 40µA, I = 40µA,  
OUT DO Q SD  
IN  
Comparator and Reference, Class B Outputs, S16, PDIP14 Packages  
LT1120/LT1120A 125mA, Micropower Regulator and Comparator  
V : 4.5V to 36V, V = 2.5V, V = 0.4V, I = 40µA, I = 10µA,  
Comparator and Reference,Logic Shutdown, Ref Sources and Sinks 2/4mA,  
S8, N8 Packages  
IN  
OUT  
DO  
Q
SD  
LT1121/  
LT1121HV  
150mA, Micropower, LDO  
700mA, Micropower, LDO  
V : 4.2V to 30/36V, V  
Reverse Battery Protection, SOT-223, S8, Z Packages  
= 3.75V, V = 0.42V, I = 30µA, I = 16µA,  
OUT DO Q SD  
IN  
LT1129  
LT1616  
LT1676  
LT1761  
LT1762  
LT1763  
V : 4.2V to 30V, V = 3.75V, V = 0.4V, I = 50µA, I = 16µA,  
IN  
OUT  
DO  
Q
SD  
DD, S0T-223, S8,TO220-5, TSSOP20 Packages  
25V, 500mA (I ), 1.4MHz, High Efficiency  
V : 3.6V to 25V, V  
= 1.25V, I = 1.9mA, I = <1µA, ThinSOT Package  
Q SD  
OUT  
IN  
OUT  
OUT  
Step-Down DC/DC Converter  
60V, 440mA (I ), 100kHz, High Efficiency  
V : 7.4V to 60V, V  
IN  
= 1.24V, I = 3.2mA, I = 2.5µA, S8 Package  
Q SD  
OUT  
Step-Down DC/DC Converter  
100mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 20µA, I = <1µA,  
OUT DO Q SD  
IN  
Low Noise < 20µV  
, Stable with 1µF Ceramic Capacitors, ThinSOT Package  
RMS P-P  
150mA, Low Noise Micropower, LDO  
500mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
IN  
= 1.22V, V = 0.3V, I = 25µA, I = <1µA,  
OUT  
DO  
Q
SD  
Low Noise < 20µV  
, MS8 Package  
RMS P-P  
V : 1.8V to 20V, V  
IN  
= 1.22V, V = 0.3V, I = 30µA, I = <1µA,  
OUT  
DO  
Q
SD  
Low Noise < 20µV  
, S8 Package  
RMS P-P  
LT1764/LT1764A 3A, Low Noise, Fast Transient Response, LDO  
V : 2.7V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I = <1µA,  
OUT DO Q SD  
IN  
Low Noise < 40µV  
, “A” Version Stable with Ceramic Capacitors,  
RMS P-P  
DD, TO220-5 Packages  
LT1766  
LT1776  
60V, 1.2A (I ), 200kHz, High Efficiency  
Step-Down DC/DC Converter  
V : 5.5V to 60V, V  
= 1.20V, I = 2.5mA, I = 25µA, TSSOP16/E Package  
Q SD  
OUT  
IN  
OUT  
OUT  
40V, 550mA (I ), 200kHz, High Efficiency  
V : 7.4V to 40V, V  
IN  
= 1.24V, I = 3.2mA, I = 30µA, N8, S8 Packages  
Q SD  
OUT  
Step-Down DC/DC Converter  
LT1934/  
LT1934-1  
300mA/60mA, (I ), Constant Off-Time, High  
Efficiency Step-Down DC/DC Converter  
90% Efficiency, V : 3.2V to 34V, V  
ThinSOT Package  
= 1.25V, I = 14µA, I = <1µA,  
OUT Q SD  
OUT  
IN  
LT1956  
60V, 1.2A (I ), 500kHz, High Efficiency  
Step-Down DC/DC Converter  
V : 5.5V to 60V, V  
IN  
= 1.20V, I = 2.5mA, I = 25µA, TSSOP16/E Package  
OUT Q SD  
OUT  
LT1962  
300mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.27V, I = 30µA, I = <1µA,  
IN  
OUT  
DO  
Q
SD  
Low Noise < 20µV  
, MS8 Package  
RMS P-P  
LT1963/LT1963A 1.5A, Low Noise, Fast Transient Response, LDO  
V : 2.1V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I = <1µA,  
OUT DO Q SD  
IN  
Low Noise < 40µV  
, “A” Version Stable with Ceramic Capacitors,  
RMS P-P  
DD, TO220-5, S0T-223, S8 Packages  
LT1964  
LT3010  
200mA, Low Noise Micropower, Negative LDO  
50mA, High Voltage, Micropower LDO  
V : –1.9V to –20V, V  
= –1.21V, V = 0.34V, I = 30µA, I = 3µA,  
OUT DO Q SD  
IN  
Low Noise < 30µV  
, Stable with Ceramic Capacitors, ThinSOT Package  
RMS P-P  
V : 3V to 80V, V  
IN  
= 1.2V, V = 0.3V, I = 30µA, I < 1µA,  
DO Q SD  
, Stable with 1µF Output Capacitor, Exposed  
OUT(MIN)  
Low Noise: <100µV  
MS8E Package  
RMS  
3013bfa  
LT 0306 REV A • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2006  

相关型号:

LT3013BEDE

250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD
Linear

LT3013BEDE#PBF

LT3013B - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3013BEDE#TRPBF

LT3013B - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3013BEFE

250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD
Linear

LT3013EDE

250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD
Linear

LT3013EDE#PBF

LT3013 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3013EDE#TRPBF

LT3013 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3013EFE

250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD
Linear

LT3013EFE#TR

LT3013 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3013HFE

250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD
Linear

LT3013HFE#PBF

LT3013 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT3013HFE#TR

IC VREG 1.24 V-60 V ADJUSTABLE POSITIVE LDO REGULATOR, 0.62 V DROPOUT, PDSO16, 4.40 MM, PLASTIC, TSSOP-16, Adjustable Positive Single Output LDO Regulator
Linear