LTC1657LCGN#TRPBF [Linear]

LTC1657 - Parallel 16-Bit Rail-to-Rail Micropower DAC; Package: SSOP; Pins: 28; Temperature Range: 0°C to 70°C;
LTC1657LCGN#TRPBF
型号: LTC1657LCGN#TRPBF
厂家: Linear    Linear
描述:

LTC1657 - Parallel 16-Bit Rail-to-Rail Micropower DAC; Package: SSOP; Pins: 28; Temperature Range: 0°C to 70°C

光电二极管 转换器
文件: 总18页 (文件大小:275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1657/LTC1657L  
Parallel 16-Bit Rail-to-Rail  
Micropower DAC  
FEATURES  
DESCRIPTION  
TheLTC®1657/LTC1657Larecompletesinglesupply, rail-  
to-rail voltage output, 16-bit digital-to-analog converters  
(DAC)ina28-pinSSOPpackage.Theyincludearail-to-rail  
output buffer amplifier, an internal reference and a double  
buffered parallel digital interface.  
n
16-Bit Monotonic Over Temperature  
Deglitched Rail-to-Rail Voltage Output: 8nV•s  
n
n
I : 650µA Typ  
CC  
n
n
n
Maximum DNL Error: 1LSꢀ  
Settling Time: 20µs to 1LSꢀ  
ꢀuilt-In Reference: 2.048V (LTC1657)  
1.25V (LTC1657L)  
TheLTC1657/LTC1657Lhaveseparatereferenceinputpins  
that can be driven by an external reference. The full-scale  
outputcanbe1or2timesthereferencevoltagedepending  
onhowtheX1/X2pinisconnected. TheLTC1657operates  
from a 4.5V to 5.5V supply and has an onboard 2.048V  
reference. The LTC1657L operates from a 2.7V to 5.5V  
supply and has an onboard 1.25V reference.  
n
n
n
n
n
n
Internal Power-On Reset to Zero Volts  
Asynchronous CLR Pin  
Output ꢀuffer Configurable for Gain of 1 or 2  
Parallel 16-ꢀit or 2-ꢀyte Double ꢀuffered Interface  
Multiplying Capability  
Narrow 28-Lead SSOP Package  
The LTC1657/LTC1657L are similar to Linear Technology  
Corporation’sLTC1450/LTC1450L12-bitV DACfamily,  
OUT  
APPLICATIONS  
allowinganupgradepath.Theyaretheonlybuffered16-bit  
parallel DACs in a 28-lead SSOP package and include an  
onboard reference for stand alone performance.  
n
Instrumentation  
Digital Calibration  
Industrial Process Control  
Automatic Test Equipment  
n
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
n
Communication Test Equipment  
BLOCK DIAGRAM  
LTC1657: 4.5V TO 5.5V  
LTC1657L: 2.7V TO 5.5V  
Differential Nonlinearity  
vs Input Code  
23  
22  
24  
V
REFOUT  
REFHI  
CC  
19 D15 (MSB)  
REFERENCE  
LTC1657: 2.048V  
LTC1657L: 1.25V  
18  
17  
1.0  
0.8  
MSB  
8-BIT  
16  
15  
14  
13  
12  
INPUT  
REGISTER  
0.6  
0.4  
16-BIT  
DAC  
REGISTER  
DATA IN FROM  
MICROPROCESSOR  
DATA BUS  
16-BIT  
DAC  
D8  
D7  
+
LTC1657:  
0.2  
V
OUT  
25  
11  
10  
9
0V TO 4.096V  
LTC1657L:  
0V TO 2.5V  
0
LSB  
8-BIT  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
8
R
7
INPUT  
6
REGISTER  
R
5
D0 (LSB)  
4
3
1
2
CSMSB  
WR  
FROM  
MICROPROCESSOR  
DECODE LOGIC  
0
16384  
32768  
49152  
65535  
CSLSB  
DIGITAL INPUT CODE  
28 LDAC  
27 CLR  
POWER-ON  
RESET  
1657 TA02  
FROM  
SYSTEM RESET  
GND  
20  
REFLO  
21  
X1/X2  
26  
1657 TA01  
1657lfa  
1
For more information www.linear.com/LTC1657  
LTC1657/LTC1657L  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
TOP VIEW  
V
to GND ............................................... –0.5V to 7.5V  
CC  
1
2
LDAC  
CLR  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
WR  
CSLSB  
CSMSB  
(LSB) D0  
D1  
TTL Input Voltage, REFHI, REFLO,  
X1/X2 ....................................................... –0.5V to 7.5V  
3
X1/X2  
V
OUT  
, REFOUT ............................. –0.5V to (V + 0.5V)  
CC  
4
V
OUT  
Operating Temperature Range  
5
V
CC  
LTC1657C/LTC1657LC ........................... 0°C to 70°C  
LTC1657I/LTC1657LI ......................... –40°C to 85°C  
Maximum Junction Temperature .......................... 125°C  
Storage Temperature Range ................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
6
REFOUT  
REFHI  
REFLO  
GND  
D2  
7
D3  
8
D4  
9
D5  
10  
11  
12  
13  
14  
D15 (MSB)  
D14  
D6  
D7  
D13  
D8  
D12  
D9  
D11  
D10  
OBSOLETE PACKAGE  
N PACKAGE  
28-LEAD PDIP  
GN PACKAGE  
28-LEAD PLASTIC SSOP  
T
T
= 125°C, θ = 95°C/W (GN)  
JA  
JMAX  
JMAX  
= 125°C, θ = 58°C/W (N)  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC1657CGN#PꢀF  
LTC1657IGN#PꢀF  
LTC1657LCGN#PꢀF  
LTC1657LIGN#PꢀF  
TAPE AND REEL  
PART MARKING  
1657CGN  
PACKAGE DESCRIPTION  
28-Lead Plastic SSOP  
28-Lead Plastic SSOP  
28-Lead Plastic SSOP  
28-Lead Plastic SSOP  
TEMPERATURE RANGE  
0°C to 70°C  
LTC1657CGN#TRPꢀF  
LTC1657IGN#TRPꢀF  
LTC1657LCGN#TRPꢀF  
LTC1657LIGN#TRPꢀF  
1657IGN  
–40°C to 85°C  
0°C to 70°C  
1657LCGN  
1657LIGN  
–40°C to 85°C  
OBSOLETE PACKAGE  
LTC1657CN#PꢀF  
LTC1657IN#PꢀF  
LTC1657LCN#PꢀF  
LTC1657LIN#PꢀF  
LTC1657CN#TRPꢀF  
LTC1657IN#TRPꢀF  
LTC1657LCN#TRPꢀF  
LTC1657LIN#TRPꢀF  
1657CN  
1657IN  
28-Lead PDIP  
28-Lead PDIP  
28-Lead PDIP  
28-Lead PDIP  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
1657LCN  
1657LIN  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1657lfa  
2
For more information www.linear.com/LTC1657  
LTC1657/LTC1657L  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V (LTC1657), VCC = 2.7V to 5.5V (LTC1657L),  
VOUT unloaded, REFOUT tied to REFHI, REFLO tied to GND, X1/X2 tied to GND, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DAC (Note 2)  
l
l
l
l
l
l
l
Resolution  
16  
16  
ꢀits  
ꢀits  
Monotonicity  
DNL  
INL  
Differential Nonlinearity  
Integral Nonlinearity  
Zero Scale Error  
Offset Error  
Guaranteed Monotonic (Note 3)  
(Note 3)  
0.5  
4
1
12  
2
LSꢀ  
LSꢀ  
ZSE  
0
mV  
V
OS  
Measured at Code 200 (LTC1657)  
Measured at Code 200 (LTC1657L)  
0.3  
0.4  
5
3
mV  
4
mV  
V
TC  
OS  
Offset Error Tempco  
Gain Error  
µV/°C  
LSꢀ  
l
2
16  
Gain Error Drift  
LTC1657  
0.5  
1.0  
ppm/°C  
ppm/°C  
LTC1657L  
Power Supply  
l
l
l
V
Positive Supply Voltage  
For Specified Performance (LTC1657)  
For Specified Performance (LTC1657L)  
(Note 4)  
4.5  
2.7  
5.5  
5.5  
V
V
CC  
I
CC  
Supply Current  
650  
1200  
µA  
Op Amp DC Performance  
Short-Circuit Current Low  
l
l
l
l
l
l
V
V
Shorted to GND  
70  
80  
120  
140  
120  
275  
4
mA  
mA  
OUT  
OUT  
Short-Circuit Current High  
Output Impedance to GND  
Shorted to V  
CC  
Input Code = 0 (LTC1657)  
Input Code = 0 (LTC1657L)  
40  
Ω
120  
Ω
Output Line Regulation  
Input Code = 65535, LTC1657: V = 4.5V to 5.5V  
mV/V  
mV/V  
CC  
Input Code = 65535, LTC1657L: V = 2.7V to 5.5V  
3
CC  
AC Performance  
l
Voltage Output Slew Rate  
(Note 5)  
0.3  
0.7  
20  
10  
0.3  
8
V/µs  
µs  
Voltage Output Settling Time  
(Note 5) to 0.0015% (16-ꢀit Settling Time)  
(Note 5) to 0.012% (13-ꢀit Settling Time)  
(Note 6)  
µs  
Digital Feedthrough  
nV•s  
nV•s  
Midscale Glitch Impulse  
DAC Switch ꢀetween 8000H and 7FFFH  
Output Voltage Noise Using  
Internal Reference at 1kHz  
X1/X2 Tied to V  
LTC1657  
(Notes 8, 9)  
OUT  
165  
105  
nV/√Hz  
nV/√Hz  
LTC1657L  
Output Voltage Noise Using  
External Reference at 1kHz  
X1/X2 Tied to V  
X1/X2 Tied to V  
(Notes 8, 9, 10)  
(Notes 8, 9)  
50  
nV/√Hz  
OUT  
OUT  
Output Voltage Noise Density Using  
Internal Reference from 0.1Hz to 10Hz  
8
µV  
P-P  
Reference Input Multiplying ꢀW  
700  
kHz  
1657lfa  
3
For more information www.linear.com/LTC1657  
LTC1657/LTC1657L  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V (LTC1657), VCC = 2.7V to 5.5V (LTC1657L),  
VOUT unloaded, REFOUT tied to REFHI, REFLO tied to GND, X1/X2 tied to GND, unless otherwise noted.  
SYMBOL  
Reference Output (REFOUT)  
Reference Output Voltage  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
LTC1657  
2.036  
1.240  
2.048  
1.250  
15  
2.060  
1.260  
V
V
LTC1657L  
Reference Output  
Temperature Coefficient  
ppm/°C  
l
l
l
l
l
Reference Line Regulation  
Reference Load Regulation  
Short-Circuit Current  
LTC1657: V = 4.5V to 5.5V  
1.5  
1.0  
5
mV/V  
mV/V  
mV/A  
mV/A  
mA  
CC  
LTC1657L: V = 2.7V to 5.5V  
CC  
Measured at I  
Measured at I  
= 100µA (LTC1657)  
= 100µA (LTC1657L)  
OUT  
OUT  
3
REFOUT Shorted to GND  
50  
150  
90  
6
100  
Reference Output Voltage Noise at 1kHz LTC1657  
LTC1657L  
nV/√Hz  
nV/√Hz  
Reference Output Voltage Noise  
Density from 0.1Hz to 10Hz  
µV  
P-P  
Reference Input  
REFHI, REFLO Input Range  
(Note 7) See Applications Information  
X1/X2 Tied to V  
l
l
0
0
V
CC  
– 1.5  
V
V
OUT  
X1/X2 Tied to GND  
V /2  
CC  
l
l
REFHI Input Resistance  
LTC1657  
16  
16  
25  
23  
kΩ  
kΩ  
LTC1657L (Relative to REFLO)  
1657lfa  
4
For more information www.linear.com/LTC1657  
LTC1657/LTC1657L  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range TA = TMIN to TMAX, VCC = 5V (LTC1657), VCC = 3V (LTC1657L), unless otherwise noted.  
LTC1657  
TYP  
LTC1657L  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
Digital I/O  
l
l
l
l
V
V
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Input Leakage  
2.4  
2.0  
V
V
IH  
0.8  
10  
10  
0.6  
10  
10  
IL  
I
V
= GND to V  
CC  
µA  
pF  
LEAK  
IN  
C
Digital Input Capacitance  
(Note 7)  
IN  
Switching Characteristics  
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
CS (MSꢀ or LSꢀ) Pulse Width  
WR Pulse Width  
40  
40  
0
60  
60  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS  
WR  
CS to WR Setup  
CWS  
CWH  
DWS  
DWH  
LDAC  
CLR  
CS to WR Hold  
0
0
Data Valid to WR Setup  
Data Valid to WR Hold  
LDAC Pulse Width  
CLR Pulse Width  
40  
0
60  
0
40  
40  
60  
60  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: DAC switched between all 1s and all 0s. V = 4.096V.  
Note 6: D0 to D15 toggle between all 0s and all 1s with REFHI = 0V,  
CSMSB = CSLSB = WR = LDAC = High  
Note 7: Guaranteed by design. Not subject to test.  
Note 8: DAC inputs all 1s.  
Note 9: X1/X2 tied to GND, the voltage noise will be a factor of 2 greater.  
FS  
Note 2: External reference REFHI = 2.2V. V = 5V (LTC1657).  
CC  
External reference REFHI = 1.3V. V = 3V (LTC1657L).  
CC  
Note 3: Nonlinearity is defined from code 128 to code 65535 (full scale).  
See Applications Information.  
Note 10: Using 2.048V (1.25V) external reference with 3nV/√Hz noise at  
1kHz for LTC1657/(LTC1657L).  
Note 4: Digital inputs at 0V or V  
.
CC  
1657lfa  
5
For more information www.linear.com/LTC1657  
LTC1657/LTC1657L  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC1657 Differential Nonlinearity  
LTC1657L Differential Nonlinearity  
LTC1657 Integral Nonlinearity  
2.0  
1.6  
5
4
2.0  
1.6  
1.2  
3
1.2  
0.8  
2
0.8  
0.4  
1
0.4  
0
0
0
–1  
–2  
–3  
–4  
–5  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
0
16384  
32768  
49152  
65535  
0
16384  
32768  
49152  
65535  
0
16384  
32768  
49152  
65535  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
1657 G02  
1657 G03  
1657 G01  
LTC1657 Minimum Supply  
Headroom for Full Output Swing  
vs Load Current  
LTC1657L Minimum Supply  
Headroom for Full Output Swing  
vs Load Current  
LTC1657L Integral Nonlinearity  
5
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
CODE ALL 1s  
CODE ALL 1s  
4
3
∆V  
≤ 1LSB  
∆V  
OUT  
≤ 1LSB  
OUT  
OUT  
V
= 4.096V  
V
= 2.5V  
OUT  
2
125°C  
125°C  
1
0
25°C  
–1  
–2  
–3  
–4  
–5  
25°C  
–55°C  
–55°C  
0
16384  
32768  
49152  
65535  
0
5
10  
0
5
10  
DIGITAL INPUT CODE  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
1657 G04  
1657 G05  
1657 G06  
LTC1657 Minimum Output  
Voltage vs Output Sink Current  
LTC1657L Minimum Output  
Voltage vs Output Sink Current  
LTC1657 Full-Scale Voltage  
vs Temperature  
4.110  
4.105  
4.100  
4.095  
4.090  
4.085  
4.080  
0.6  
0.4  
0.2  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
CODE ALL 0s  
OUT  
∆V  
≤ 1LSB  
125°C  
25°C  
–55°C  
125°C  
25°C  
–55°C  
CODE ALL 0s  
∆V  
≤ 1LSB  
OUT  
–55  
–25  
5
35  
65  
95  
125  
0
5
10  
15  
0
5
10  
15  
TEMPERATURE (°C)  
OUTPUT SINK CURRENT (mA)  
OUTPUT SINK CURRENT (mA)  
1657 G09  
1657 G08  
1657 G07  
1657lfa  
6
For more information www.linear.com/LTC1657  
LTC1657/LTC1657L  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC1657L Full-Scale Voltage  
vs Temperature  
LTC1657 Offset Error  
vs Temperature  
LTC1657L Offset Error  
vs Temperature  
1.0  
2.510  
2.505  
2.500  
2.495  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
– 0.8  
–1.0  
2.490  
–55 –25  
5
35  
65  
95  
125  
–55  
–10  
35  
80  
125  
–55  
–10  
35  
80  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1657 G10  
1657 G12  
1657 G11  
LTC1657 Supply Current  
vs Logic Input Voltage  
LTC1657L Supply Current  
vs Logic Input Voltage  
LTC1657 Supply Current  
vs Temperature  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
700  
680  
660  
640  
620  
600  
580  
560  
540  
520  
500  
8
7
6
5
4
3
2
1
0
V
= 3V  
CC  
V
= 5V  
CC  
V
= 5.5V  
CC  
V
V
= 5V  
CC  
CC  
= 4.5V  
0
1
3
2
–55 –35 –15  
5
25 45 65 85 105 125  
0
1
2
3
4
5
LOGIC INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
LOGIC INPUT VOLTAGE (V)  
1657 G14  
1657 G15  
1657 G13  
LTC1657L Supply Current  
vs Temperature  
LTC1657  
Large-Signal Transient Response  
LTC1657L  
Large-Signal Transient Response  
5
4
3
2
1
0
5
4
3
2
1
0
560  
550  
540  
530  
520  
510  
500  
490  
480  
470  
460  
V
UNLOADED  
V
T
UNLOADED  
OUT  
OUT  
T
= 25°C  
= 25°C  
A
A
V
= 3.3V  
CC  
V
= 3V  
CC  
V
= 2.7V  
CC  
–55 –35 –15  
5
25 45 65 85 105 125  
TIME (20µs/DIV)  
TIME (20µs/DIV)  
TEMPERATURE (°C)  
1657 G18  
1657 G17  
1657 G16  
1657lfa  
7
For more information www.linear.com/LTC1657  
LTC1657/LTC1657L  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC1657 0.1Hz to 10Hz  
Voltage Noise  
LTC1657L 0.1Hz to 10Hz  
Voltage Noise  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (SEC)  
TIME (SEC)  
1659 G19  
1659 G20  
PIN FUNCTIONS  
REFLO(Pin21):LowerinputterminaloftheDAC’sinternal  
WR (Pin 1): Write Input (Active Low). Used with CSMSB  
and/or CSLSB to control the input registers. While WR  
and CSMSB and/or CSLSB are held low, data writes into  
the input register.  
resistor ladder. Typically connected to Analog Ground. An  
input code of (0000) will connect the positive input of  
H
the output buffer to this end of the ladder. Can be used  
to offset the zero scale above ground.  
CSLSB (Pin 2): Chip Select Least Significant ꢀyte (Active  
Low).UsedwithWRtocontroltheLS8-bitinputregisters.  
While WR and CSLSB are held low, the LSꢀ byte writes  
into the LSꢀ input register. Can be connected to CSMSB  
for simultaneous loading of both sets of input latches on  
a 16-bit bus.  
REFHI (Pin 22): Upper input terminal of the DAC’s internal  
resistor ladder. Typically connected to REFOUT. An input  
codeof(FFFF) willconnectthepositiveinputoftheoutput  
H
buffer to 1LSꢀ below this voltage.  
REFOUT(Pin23):Outputoftheinternalreferenceis2.048V  
(LTC1657), 1.25V (LTC1657L). Typically connected to  
REFHI to drive internal DAC resistor ladder.  
CSMSB (Pin 3): Chip Select Most Significant ꢀyte (Ac-  
tive Low). Used with WR to control the MSꢀ 8-bit input  
registers. While WR and CSMSB are held low, the MSꢀ  
byte writes into the MSꢀ input register. Can be connected  
to CSLSB for simultaneous loading of both sets of input  
latches on a 16-bit bus.  
V
(Pin 24): Positive Power Supply Input. 4.5V ≤ V  
CC  
CC  
5.5V (LTC1657), 2.7V ≤ V ≤ 5.5V (LTC1657L). Requires  
CC  
a 0.1µF bypass capacitor to ground.  
V
(Pin 25): ꢀuffered DAC Output.  
OUT  
D0 to D7 (Pins 4 to 11): Input data for the Least Significant  
ꢀyte. Written into LSꢀ input register when WR = 0 and  
CSLSB = 0.  
X1/X2(Pin26):GainSettingResistorPin. ConnecttoGND  
for G = 2 or to V for G = 1. This pin should always be  
OUT  
tied to a low impedance source, such as ground or V  
,
OUT  
D8 to D15 (Pins 12 to 19): Input data for the Most Signifi-  
cant ꢀyte. Written into MSꢀ input register when WR = 0  
and CSMSB = 0.  
to ensure stability of the output buffer when driving ca-  
pacitive loads.  
GND (Pin 20): Ground.  
1657lfa  
8
For more information www.linear.com/LTC1657  
LTC1657/LTC1657L  
PIN FUNCTIONS  
CLR (Pin 27): Clear Input (Asynchronous Active Low). A  
low on this pin asynchronously resets all input and DAC  
registers to 0s.  
LDAC (Pin 28): Load DAC (Asynchronous Active Low).  
Used to asynchronously transfer the contents of the input  
registers to the DAC register which updates the output  
voltage. If held low, the DAC register loads data from the  
input registers which will immediately update V  
.
OUT  
DIGITAL INTERFACE TRUTH TABLE  
CLR  
CSMSB  
CSLSB  
WR  
LDAC  
FUNCTION  
L
X
X
X
L
X
X
X
H
L
X
X
L
Clears input and DAC registers to zero  
Loads DAC register with contents of input registers  
Freezes contents of DAC register  
Writes MSꢀ byte into MSꢀ input register  
Writes LSꢀ byte into LSꢀ input register  
H
X
H
X
H
X
X
X
X
X
X
L
H
L
H
H
L
L
H
L
L
Writes MSꢀ and LSꢀ bytes into MSꢀ and LSꢀ input registers  
Inhibits write to MSꢀ and LSꢀ input registers  
Inhibits write to MSꢀ input register  
H
X
H
X
L
X
X
H
L
H
X
H
H
X
Inhibits write to LSꢀ input register  
H
L
Data bus flows directly through input and DAC registers  
TIMING DIAGRAM  
t
CS  
CSLSB  
t
CS  
CSMSB  
t
t
t
WR  
CWH  
CWS  
t
WR  
WR  
t
LDAC  
LDAC  
t
DWH  
t
DWS  
DAC UPDATE  
DATA VALID  
DATA VALID  
DATA  
1657 TD  
1657lfa  
9
For more information www.linear.com/LTC1657  
LTC1657/LTC1657L  
DEFINITIONS  
Resolution (n): Resolution is defined as the number of  
DAC Transfer Characteristic:  
digital input bits (n). It defines the number of DAC output  
REFHIREFLO  
65536  
n
states(2 )thatdividethefull-scalerange.Resolutiondoes  
V
= G•  
CODE +REFLO  
(
)
OUT  
not imply linearity.  
Full-Scale Voltage (V ): This is the output of the DAC  
G = 1 for X1/X2 connected to V  
FS  
OUT  
when all bits are set to 1.  
G = 2 for X1/X2 connected to GND  
Voltage Offset Error (V ): Normally, the DAC offset is  
OS  
CODE = Decimal equivalent of digital input  
(0 ≤ CODE ≤ 65535)  
the voltage at the output when the DAC is loaded with  
all zeros. The DAC can have a true negative offset, but  
because the part is operated from a single supply, the  
output cannot go below zero. If the offset is negative, the  
output will remain near 0V resulting in the transfer curve  
shown in Figure 1.  
Zero-Scale Error (ZSE): The output voltage when the DAC  
is loaded with all zeros. Since this is a single supply part,  
this value cannot be less than 0V.  
IntegralNonlinearity(INL):End-pointINListhemaximum  
deviation from a straight line passing through the end  
pointsoftheDACtransfercurve.ecausethepartoperates  
from a single supply and the output cannot go below zero,  
the linearity is measured between full scale and the code  
corresponding to the maximum offset specification. The  
INL error at a given input code is calculated as follows:  
OUTPUT  
VOLTAGE  
0V  
NEGATIVE  
OFFSET  
DAC CODE  
1657 F01  
Figure 1. Effect of Negative Offset  
INL (In LSꢀs) = [V  
(code/65535)]  
– V – (V – V )  
OS FS OS  
OUT  
The offset of the part is measured at the code that cor-  
responds to the maximum offset specification:  
V
= The output voltage of the DAC measured at  
OUT  
the given input code  
n
V
= V  
– [(Code)(V )/(2 – 1)]  
OS  
OUT  
FS  
Differential Nonlinearity (DNL): DNL is the difference  
between the measured change and the ideal one LSꢀ  
change between any two adjacent codes. The DNL error  
between any two codes is calculated as follows:  
Least Significant Bit (LSB): One LSꢀ is the ideal voltage  
difference between two successive codes.  
LSꢀ = G • V /65536  
REF  
DNL = (∆V  
– LSꢀ)/LSꢀ  
OUT  
G = 1 for X1/X2 connected to V  
OUT  
∆V  
= The measured voltage difference between  
OUT  
G = 2 for X1/X2 connected to GND  
two adjacent codes  
Nominal LSBs: (V  
tie to V  
, REFLO tie to GND,  
REFOUT  
REFHI  
Digital Feedthrough: The glitch that appears at the analog  
outputcausedbyACcouplingfromthedigitalinputswhen  
theychangestate.TheareaoftheglitchisspecifiedinnV•s.  
G = 2)  
LTC1657 LSꢀ = 4.096V/65536 = 62.5µV  
LTC1657L LSꢀ = 2.5V/65536 = 38.1µV  
1657lfa  
10  
For more information www.linear.com/LTC1657  
LTC1657/LTC1657L  
OPERATION  
Parallel Interface  
the resistor ladder can be driven by an external source in  
multiplying applications. The external reference or source  
must be capable of driving the 16k (minimum) DAC lad-  
der resistance.  
The data on the input of the DAC is written into the DAC’s  
input registers when Chip Select (CSLSB and/or CSMSB)  
and WR are at a logic low. The data that is written into the  
input registers will depend on which of the Chip Selects Internal reference output noise can be reduced with a  
are at a logic low (see Digital Interface Truth Table). If WR bypass capacitor to ground. (Note: The reference does  
and CSLSB are both low and CSMSB is high, then only not require a bypass capacitor to ground for nominal  
data on the eight LSꢀs (D0 to D7) is written into the input operation.) When bypassing the reference, a small value  
registers. Similarly, if WR and CSMSB are both low and resistor in series with the capacitor is recommended to  
CSLSB is high, then only data on the eight MSꢀs (D8 to helpreducepeakingontheoutput.A10Ωresistorinseries  
D15) is written into the input registers. Data is written with a 4.7µF capacitor is optimum for reducing reference  
into both the Least Significant Data ꢀits (D0 to D7) and generated noise. Internal reference output voltage noise  
the Most Significant ꢀits (D8 to D15) at the same time if spectraldensityat1kHzistypically150nV/√Hz(LTC1657),  
WR, CSLSB and CSMSB are low. If WR is high or both 90nV/√Hz (LTC1657L).  
CSMSB and CSLSB are high, then no data is written into  
the input registers.  
DAC Resistor Ladder  
The high and low end of the DAC ladder resistor string  
(REFHI and REFLO, respectively) are not connected in-  
ternally on this part. Typically, REFHI will be connected  
to REFOUT and REFLO will be connected to GND. X1/X2  
connected to GND will give the LTC1657/LTC1657L a  
full-scale output swing of 4.096V/2.5V.  
Once data is written into the input registers, it can be  
written into the DAC register. This will update the analog  
voltage output of the DAC. The DAC register is written by  
a logic low on LDAC. The data in the DAC register will be  
held when LDAC is high.  
When WR, CSLSB, CSMSB and LDAC are all low, the  
registers are transparent and data on pins D0 to D15 flows  
directly into the DAC register.  
Either of these pins can be driven up to V – 1.5V when  
CC  
using the buffer in the gain-of-1 configuration. The resis-  
tor string pins can be driven to V /2 when the buffer is  
CC  
For an 8-bit data bus connection, tie the MSꢀ byte data  
pins to their corresponding LSꢀ byte pins (D15 to D7,  
D14 to D6, etc).  
in the gain of 2 configuration. The resistance between  
these two pins is typically 25k (16k min) (LTC1657), 23k  
(16k min) (LTC1657L).  
Power-On Reset  
Voltage Output  
The LTC1657/LTC1657L have an internal power-on reset  
that resets all internal registers to 0’s on power-up and  
OUT  
The output buffer for the LTC1657/LTC1657L can be  
configured for two different gain settings. ꢀy tying the  
X1/X2 pin to GND, the gain is set to 2. ꢀy tying the X1/X2  
V
pinforcestoGND(equivalenttotheCLRpinfunction).  
pin to V , the gain is set to unity.  
OUT  
Reference  
The LTC1657/LTC1657L rail-to-rail buffered output can  
source or sink 5mA within 500mV of the positive supply  
voltage or ground at room temperature. The output stage  
is equipped with a deglitcher that results in a midscale  
glitch impulse of 8nV•s. The output swings to within a  
few millivolts of either supply rail when unloaded and has  
an equivalent output resistance of 40Ω (LTC1657), 120Ω  
(LTC1657L) when driving a load to the rails.  
The LTC1657/LTC1657L include an internal 2.048V/1.25V  
reference, giving the LTC1657/LTC1657L a full-scale  
range of 4.096V/2.5V in the gain-of-2 configuration. The  
onboard reference in the LTC1657/LTC1657L is not in-  
ternally connected to the DAC’s reference resistor string  
but is provided on an adjacent pin for flexibility. ꢀecause  
the internal reference is not internally connected to the  
DAC resistor ladder, an external reference can be used or  
1657lfa  
11  
For more information www.linear.com/LTC1657  
LTC1657/LTC1657L  
APPLICATION INFORMATION  
Rail-to-Rail Output Considerations  
Similarly, limiting can occur near full scale when the REF  
pin is tied to V /2. If V = V /2 and the DAC full-scale  
CC  
REF  
CC  
In any rail-to-rail DAC, the output swing is limited to volt-  
ages within the supply range.  
error (FSE) is positive, the output for the highest codes  
limits at V as shown in Figure 1c. No full-scale limiting  
CC  
If the DAC offset is negative, the output for the lowest  
codes limits at 0V as shown in Figure 1b.  
can occur if V is less than (V – FSE)/2.  
REF  
CC  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting  
can occur.  
POSITIVE  
FSE  
V
CC  
V
REF  
= V /2  
CC  
OUTPUT  
VOLTAGE  
INPUT CODE  
(c)  
V
CC  
V
REF  
= V /2  
CC  
OUTPUT  
VOLTAGE  
0
32768  
65535  
INPUT CODE  
(a)  
OUTPUT  
VOLTAGE  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
(b)  
1657 F02  
Figure 2. Effects of Rail-to-Rail Operation On a DAC Transfer Curve. (a) Overall Transfer Function (b) Effect of Negative Offset for  
Codes Near Zero Scale (c) Effect of Positive Full-Scale Error for Input Codes Near Full Scale When VREF = VCC/2  
1657lfa  
12  
For more information www.linear.com/LTC1657  
LTC1657/LTC1657L  
APPLICATIONS INFORMATION  
This circuit shows how to make a bipolar output 16-bit  
DAC with a wide output swing using an LTC1657 and an  
LT1077. R1 and R2 resistively divide down the LTC1657  
output and an offset is summed in using the LTC1657  
onboard 2.048V reference and R3 and R4. R5 ensures  
that the onboard reference is always sourcing current and  
never has to sink any current even when V  
is at full  
OUT  
scale. The LT1077 output will have a wide bipolar output  
swing of –4.096V to 4.096V as shown in the figure below.  
With this output swing, 1LSꢀ = 125µV.  
A Wide Swing, Bipolar Output 16-Bit DAC  
5V  
0.1µF  
24  
5:19  
2
V
CC  
DATA (0:15)  
CSLSB  
CSMSB  
WR  
3
25  
µP  
V
LTC1657  
OUT  
1
R1  
100k  
1%  
28  
27  
5V  
LDAC  
CLR  
3
2
X1/X2 REFLO GND REFHI REFOUT  
26 21 20 22 23  
7
+
6
(2)(D )(4.096)  
IN  
R2  
200k  
1%  
LT1077  
4
V
:
– 4.096V  
OUT  
65536  
R3  
100k  
1%  
R4  
200k  
1%  
5V  
1657 TA05  
R5  
100k  
1%  
TRANSFER CURVE  
32768  
4.096  
65535  
0
V
D
OUT  
IN  
4.096  
1657lfa  
13  
For more information www.linear.com/LTC1657  
LTC1657/LTC1657L  
TYPICAL APPLICATIONS  
Thiscircuitshowsadigitallyprogrammablecurrentsource  
from an external voltage source using an external op amp,  
an LT1218 and an NPN transistor (2N3440). Any digital  
word from 0 to 65535 is loaded into the LTC1657 and  
its output correspondingly swings from 0V to 4.096V.  
is chosen to be 412Ω, the output current will range from  
0mA at zero scale to 10mA at full scale. The minimum  
voltage for V is determined by the load resistor R and  
S
L
Q1’s V  
voltage. With a load resistor of 50Ω, the volt-  
CESAT  
age source can be 5V.  
This voltage will be forced across the resistor R . If R  
A
A
Digitally Programmable Current Source  
5V  
22  
23  
5V < V < 100V  
S
FOR R ≤ 50Ω  
L
0.1μF  
5:19  
2
REFHI REFOUT  
V
CC  
DATA (0:15)  
CSLSB  
CSMSB  
WR  
(D )(4.096)  
IN  
3
R
L
I
=
7
OUT  
25  
3
(65536)(R )  
µP  
A
LTC1657  
V
OUT  
+
1
≈ 0mA TO 10mA  
6
Q1  
2N3440  
28  
27  
LT1218  
LDAC  
2
CLR  
X1/X2 REFLO GND  
26 21 20  
4
R
A
412Ω  
1%  
1657 TA04  
1657lfa  
14  
For more information www.linear.com/LTC1657  
LTC1657/LTC1657L  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
GN Package  
28-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641 Rev B)  
.386 – .393*  
(9.804 – 9.982)  
.045 .005  
.033  
(0.838)  
REF  
28 27 26 25 24 23 22 21 20 19 18 17 1615  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 .0015  
.0250 BSC  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
RECOMMENDED SOLDER PAD LAYOUT  
.015 .004  
.0532 – .0688  
(1.35 – 1.75)  
× 45°  
.004 – .0098  
(0.102 – 0.249)  
(0.38 0.10)  
.0075 – .0098  
(0.19 – 0.25)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.008 – .012  
.0250  
(0.635)  
BSC  
GN28 REV B 0212  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1657lfa  
15  
For more information www.linear.com/LTC1657  
LTC1657/LTC1657L  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
N Package  
28-Lead Plastic PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510 Rev I)  
1.400*  
(35.560)  
MAX  
28  
27 26 25 24  
23 22 21 20  
19 18 17 16  
15  
14  
.240 – .295*  
(6.096 – 7.493)  
5
6
7
8
9
10 11 12 13  
1
2
3
4
.045 – .065  
.130 ±.005  
(1.143 – 1.651)  
(3.302 ±0.127)  
.020  
(0.508)  
MIN  
.065  
(1.651)  
TYP  
N28 REV I 0711  
.120  
(3.048)  
MIN  
.005  
(0.127)  
MIN  
.018 ±.003  
(0.457 ±0.076)  
.100  
(2.54)  
BSC  
NOTE:  
1. DIMENSIONS ARE  
INCHES  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
OBSOLETE PACKAGE  
1657lfa  
16  
For more information www.linear.com/LTC1657  
LTC1657/LTC1657L  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
07/15 Obsoleted 28-Lead PDIP Package  
2, 16  
1657lfa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
17  
LTC1657/LTC1657L  
TYPICAL APPLICATION  
This circuit shows how to measure negative offset. Since  
LTC1657/LTC1657L operate on a single supply, if their  
offset is negative, the output for code 0 limits at 0V. To  
measure this negative offset, a negative supply is needed,  
connect resistor R1 as shown in the figure. The output  
voltage is the offset when code 0 is loaded in.  
Negative Offset Measurement  
5V  
22  
23  
24  
0.1µF  
5:19  
2
REFHI REFOUT  
V
CC  
DATA (0:15)  
CSLSB  
CSMSB  
WR  
3
25  
µP  
LTC1657/LTC1657L  
V
1
OUT  
R1  
100k  
28  
27  
LDAC  
CLR  
X1/X2 REFLO GND  
–5V  
26  
21  
20  
1657 TA06  
Although LTC1657 output is up to 4.096V with its internal  
reference, higher voltages can be achieved with the help  
of another op amp. The following circuit shows how to  
increasetheoutputswingofLTC1657byusinganLT1218.  
As shown in the configuration, the output of LTC1657 is  
amplified by 8 for an output swing of 0V to 32.768V, or a  
convenient 0.5mV/LSꢀ.  
A Higher Voltage Output DAC  
5V  
24  
36V  
22  
23  
0.1µF  
TRANSFER CURVE  
5:19  
2
REFHI REFOUT  
V
CC  
32.768 (V)  
DATA (0:15)  
CSLSB  
CSMSB  
WR  
0.1µF  
3
7
25  
3
2
µP  
LTC1657  
V
+
1
OUT  
6
V
28  
27  
OUT  
LT1218  
LDAC  
(D )(4.096)  
IN  
65536  
R2  
R1  
CLR  
X1/X2 REFLO GND  
26 21 20  
V
=
1 +  
OUT  
4
(
)
0
D
IN  
65535  
R1  
R2  
6.98k  
1%  
1k  
1%  
1657 TA07  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC1446(L)  
LTC1450(L)  
LTC1458(L)  
LTC1650  
Dual 12-ꢀit V  
DACs in SO-8 Package  
V
CC  
V
CC  
V
CC  
V
CC  
= 5V (3V), V  
= 5V (3V), V  
= 5V (3V), V  
= 0V to 4.095V (0V to 2.5V)  
= 0V to 4.095V (0V to 2.5V)  
= 0V to 4.095V (0V to 2.5V)  
OUT  
OUT  
OUT  
OUT  
Single 12-ꢀit V  
DACs with Parallel Interface  
OUT  
Quad 12-ꢀit Rail-to-Rail Output DACs with Added Functionality  
Single 16-ꢀit V  
Industrial DAC in 16-Pin SO  
= 5V, Low Power, Deglitched, 4-Quadrant Multiplying V  
OUT  
OUT  
LTC1654  
Dual 14-ꢀit V  
DAC  
Programmable Speed/Power, SO-8 Footprint  
OUT  
LTC1655(L)  
Single 16-ꢀit V  
DAC with Serial Interface in SO-8  
V
= 5V (3V), Low Power, Deglitched, V  
= 0V to 4.096V  
OUT  
CC  
OUT  
(0V to 2.5V)  
LTC1658  
Single 14-ꢀit V  
DAC in MSOP Package  
2.7V to 5.5V Operation, Low Power  
OUT  
1657lfa  
LT 0715 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy ꢀlvd., Milpitas, CA 95035-7417  
18  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC1657  
LINEAR TECHNOLOGY CORPORATION 1999  

相关型号:

LTC1657LCN

Parallel 16-Bit Rail-to-Rail Micropower DAC
Linear
Linear

LTC1657LI

Parallel 16-Bit Rail-to-Rail Micropower DAC
Linear

LTC1657LIGN

Parallel 16-Bit Rail-to-Rail Micropower DAC
Linear

LTC1657LIGN#PBF

LTC1657 - Parallel 16-Bit Rail-to-Rail Micropower DAC; Package: SSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1657LIGN#TR

LTC1657 - Parallel 16-Bit Rail-to-Rail Micropower DAC; Package: SSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1657LIN

Parallel 16-Bit Rail-to-Rail Micropower DAC
Linear

LTC1657LIN#PBF

LTC1657 - Parallel 16-Bit Rail-to-Rail Micropower DAC; Package: PDIP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1657L_15

Parallel 16-Bit Rail-to-Rail Micropower DAC
Linear

LTC1657_15

Parallel 16-Bit Rail-to-Rail Micropower DAC
Linear

LTC1658

14-Bit Rail-to-Rail Micropower DAC in MSOP
Linear

LTC1658CMS8

14-Bit Rail-to-Rail Micropower DAC in MSOP
Linear