LTC4440EMS8E-5#TR [Linear]

LTC4440-5 - High Speed, High Voltage, High Side Gate Driver; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C;
LTC4440EMS8E-5#TR
型号: LTC4440EMS8E-5#TR
厂家: Linear    Linear
描述:

LTC4440-5 - High Speed, High Voltage, High Side Gate Driver; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C

栅 驱动 光电二极管 接口集成电路 驱动器
文件: 总14页 (文件大小:226K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4440  
High Speed, High Voltage  
High Side Gate Driver  
FeaTures  
DescripTion  
The LTC®4440 is a high frequency high side N-channel  
MOSFET gate driver that is designed to operate in ap-  
n
Wide Operating V Range: Up to 80V  
IN  
n
Rugged Architecture Tolerant of 100V V  
IN  
Transients  
Powerful 1.5Ω Driver Pull-Down  
plications with V voltages up to 80V. The LTC4440 can  
IN  
n
also withstand and continue to function during 100V V  
IN  
n
Powerful 2.4A Peak Current Driver Pull-Up  
7ns Fall Time Driving 1000pF Load  
10ns Rise Time Driving 1000pF Load  
Drives Standard Threshold MOSFETs  
TTL/CMOS Compatible Inputs with Hysteresis  
Input Thresholds are Independent of Supply  
Undervoltage Lockout  
transients. The powerful driver capability reduces switch-  
ing losses in MOSFETs with high gate capacitances. The  
LTC4440’s pull-up has a peak output current of 2.4A and  
its pull-down has an output impedance of 1.5Ω.  
n
n
n
n
n
n
n
The LTC4440 features supply independent TTL/CMOS  
compatible input thresholds with 350mV of hysteresis.  
The input logic signal is internally level-shifted to the  
bootstrapped supply, which may function at up to 115V  
above ground.  
Low Profile (1mm) SOT-23 (ThinSOT)™ and  
Thermally Enhanced 8-Pin MSOP Packages  
applicaTions  
The LTC4440 contains both high side and low side under-  
voltage lockout circuits that disable the external MOSFET  
when activated.  
n
Telecommunications Power Systems  
n
Distributed Power Architectures  
n
Server Power Supplies  
The LTC4440 is available in the low profile (1mm) SOT-23  
and thermally enhanced 8-lead MSOP packages.  
n
High Density Power Modules  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners. Protected by U.S. Patents, including 6677210.  
PARAMETER  
LTC4440  
80V  
LTC4440-5  
60V  
LTC4440A-5  
80V  
Max Operating TS  
Absolute Max TS  
100V  
80V  
100V  
MOSFET Gate Drive  
8V to 15V  
6.3V  
4V to 15V  
3.2V  
4V to 15V  
3.2V  
+
V
V
UV  
UV  
CC  
CC  
6.0V  
3.04V  
3.04V  
Typical applicaTion  
Synchronous Phase-Modulated Full-Bridge Converter  
V
IN  
36V TO 72V  
100V PEAK TRANSIENT  
(ABS MAX)  
LTC4440 Driving a 1000pF  
Capacitive Load  
V
CC  
8V TO 15V  
LTC4440  
BOOST  
V
CC  
INPUT  
(INP)  
2V/DIV  
INP  
TG  
TS  
GND  
OUTPUT  
(TG – TS)  
5V/DIV  
LTC4440  
V
BOOST  
TG  
V
CC  
CC  
LTC3722-1  
INP  
GND  
TS  
4440 TA01  
4440 F02  
10ns/DIV  
4440fa  
1
For more information www.linear.com//LTC4440  
LTC4440  
absoluTe MaxiMuM raTings (Note 1)  
Supply Voltage  
Peak Output Current < 1µs (TG)................................. 4A  
Driver Output TG (with Respect to TS)....... –0.3V to 15V  
Operating Ambient Temperature Range  
(Note 2) ..............................................–40°C to 85°C  
Junction Temperature (Note 3) ............................ 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
V
........................................................ 0.3V to 15V  
CC  
BOOST – TS........................................... –0.3V to 15V  
INP Voltage ................................................ –0.3V to 15V  
BOOST Voltage (Continuous)..................... –0.3V to 95V  
BOOST Voltage (100ms) ...........................–0.3V to 115V  
TS Voltage (Continuous) ............................... –5V to 80V  
TS Voltage (100ms) .................................... –5V to 100V  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
INP  
GND  
1
2
3
4
8 TS  
7 TG  
6 BOOST  
5 NC  
V
1
6 BOOST  
5 TG  
CC  
9
GND 2  
INP 3  
V
CC  
GND  
4 TS  
MS8E PACKAGE  
S6 PACKAGE  
8-LEAD PLASTIC MSOP  
6-LEAD PLASTIC SOT-23  
T
= 125°C, θ = 40°C/W (NOTE 4)  
JA  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
JMAX  
T
= 125°C, θ = 230°C/W  
JMAX  
JA  
orDer inForMaTion  
LEAD FREE FINISH  
LTC4440EMS8E#PBF  
LTC4440ES6#PBF  
TAPE AND REEL  
PART MARKING  
LTF9  
PACKAGE DESCRIPTION  
8-Lead Plastic MSOP  
6-Lead Plastic SOT-23  
TEMPERATURE RANGE  
–40°C to 85°C  
LTC4440EMS8E#TRPBF  
LTC4440ES6#TRPBF  
LTZY  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
The l denotes the specifications which apply over the full operating  
elecTrical characTerisTics  
temperature range, otherwise specifications are at TA = 25°C. VCC = VBOOST = 12V, VTS = GND = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
Main Supply (V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
)
CC  
I
DC Supply Current  
Normal Operation  
UVLO  
VCC  
INP = 0V  
CC  
250  
25  
400  
80  
µA  
µA  
V
< UVLO Threshold (Falling) – 0.1V  
l
l
UVLO  
Undervoltage Lockout Threshold  
V
V
Rising  
Falling  
5.7  
5.4  
6.5  
6.2  
300  
7.3  
7.0  
V
V
mV  
CC  
CC  
Hysteresis  
Bootstrapped Supply (BOOST – TS)  
I
DC Supply Current  
Normal Operation  
UVLO  
BOOST  
INP = 0V  
BOOST  
110  
86  
180  
170  
µA  
µA  
V
– V < UVLO  
– 0.1V, V = INP = 5V  
HS(FALLING) CC  
TS  
4440fa  
2
For more information www.linear.com/LTC4440  
LTC4440  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = VBOOST = 12V, VTS = GND = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
UVLO Undervoltage Lockout Threshold  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
V
– V Rising  
6.75  
6.25  
7.4  
6.9  
500  
7.95  
7.60  
V
V
mV  
HS  
BOOST  
BOOST  
TS  
– V Falling  
TS  
Hysteresis  
Input Signal (INP)  
l
l
V
V
V
High Input Threshold  
Low Input Threshold  
Input Voltage Hysteresis  
Input Pin Bias Current  
INP Ramping High  
INP Ramping Low  
1.3  
1.6  
1.25  
0.350  
0.01  
2
V
V
IH  
IL  
0.85  
1.6  
– V  
V
IH  
IL  
I
2
µA  
INP  
Output Gate Driver (TG)  
V
V
High Output Voltage  
I
I
= –10mA, V = V  
– V  
TG  
0.7  
150  
2.4  
1.5  
V
mV  
A
OH  
OL  
TG  
OH  
BOOST  
l
l
l
Low Output Voltage  
= 100mA  
220  
2.2  
TG  
I
Peak Pull-Up Current  
Output Pull-Down Resistance  
1.7  
PU  
R
Ω
DS  
Switching Timing  
t
Output Rise Time  
10% – 90%, C = 1nF  
10  
100  
ns  
ns  
r
L
10% – 90%, C = 10nF  
L
t
Output Fall Time  
10% – 90%, C = 1nF  
7
70  
ns  
ns  
f
L
10% – 90%, C = 10nF  
L
l
l
t
t
Output Low-High Propagation Delay  
Output High-Low Propagation Delay  
30  
28  
65  
65  
ns  
ns  
PLH  
PHL  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: T is calculated from the ambient temperature T and power  
dissipation PD according to the following formula:  
J
A
Note 2: The LTC4440 is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
T = T + (PD • θ °C/W)  
J A JA  
Note 4: Failure to solder the exposed back side of the MS8E package to the  
PC board will result in a thermal resistance much higher than 40°C/W.  
Typical perForMance characTerisTics  
VCC Supply Quiescent Current  
vs Voltage  
BOOST – TS Supply Quiescent  
Current vs Voltage  
Output Low Voltage (VOL  
)
vs Supply Voltage  
300  
250  
200  
150  
100  
50  
170  
165  
160  
155  
150  
145  
140  
500  
450  
T
= 25°C  
I
T
= 100mA  
= 25°C  
T
= 25°C  
A
TG  
A
A
INP = 0V  
400  
350  
300  
INP = V  
CC  
INP = V  
CC  
250  
200  
150  
100  
50  
INP = 0V  
0
0
11  
12  
13  
14  
15  
8
9
10  
0
5
10  
15  
0
10  
BOOST – TS SUPPLY VOLTAGE (V)  
15  
5
V
SUPPLY VOLTAGE (V)  
BOOST – TS SUPPLY VOLTAGE (V)  
CC  
4440 G01  
4440 G03  
4440 G02  
4440fa  
3
For more information www.linear.com//LTC4440  
LTC4440  
Typical perForMance characTerisTics  
Output High Voltage (VOH  
)
Input Thresholds (INP)  
vs Supply Voltage  
VCC Supply Current  
at TTL Input Levels  
vs Supply Voltage  
15  
2.0  
1.8  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
T
= 25°C  
T
= 25°C  
T
= 25°C  
A
A
A
14  
13  
V
IH  
INP = 2V  
(INPUT HIGH THRESHOLD)  
I
= –1mA  
TG  
1.6  
1.4  
12  
11  
10  
9
I
= –10mA  
TG  
V
IL  
(INPUT LOW THRESHOLD)  
I
= –100mA  
TG  
INP = 0.8V  
1.2  
1.0  
0.8  
8
7
9
10  
12  
13  
14  
15  
8
11  
7
9
11  
13  
15  
12  
SUPPLY VOLTAGE (V)  
8
10  
14  
V
SUPPLY VOLTAGE (V)  
BOOST – TS SUPPLY VOLTAGE (V)  
V
CC  
CC  
4440 G06  
4440 G04  
4440 G05  
VCC Supply Current (VCC = 12V)  
vs Temperature  
VCC Undervoltage Lockout  
Thresholds vs Temperature  
2MHz Operation  
6.55  
6.50  
300  
250  
INPUT  
(INP)  
INP = 0V  
5V/DIV  
RISING THRESHOLD  
6.45  
6.40  
6.35  
6.30  
6.25  
6.20  
6.15  
INP = 12V  
200  
150  
100  
50  
OUTPUT  
(TG)  
5V/DIV  
FALLING THRESHOLD  
4440 G07  
V
CC  
= 12V  
250ns/DIV  
0
0
30  
60  
90  
120  
–60 –30  
0
30  
60  
90  
120  
–60 –30  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4440 G09  
4440 G08  
Boost Supply (BOOST – TS)  
Undervoltage Lockout Thresholds  
vs Temperature  
Boost Supply Current  
vs Temperature  
Input Threshold vs Temperature  
7.6  
7.5  
7.4  
7.3  
7.2  
7.1  
7.0  
6.9  
6.8  
6.7  
2.0  
1.8  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
INP = 12V  
RISING THRESHOLD  
V
(V = 12V)  
IH CC  
V
(V = 15V)  
IH CC  
1.6  
1.4  
1.2  
1.0  
0.8  
V
V
(V = 8V)  
IH CC  
V
(V = 12V)  
IL CC  
V
(V = 15V)  
IL CC  
(V = 8V)  
IL CC  
FALLING THRESHOLD  
INP = 0V  
0
0
30  
60  
90  
120  
–60 –30  
0
30  
60  
90  
120  
–60 –30  
0
30  
60  
90  
120  
–60 –30  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4440 G11  
4440 G12  
4440 G10  
4440fa  
4
For more information www.linear.com/LTC4440  
LTC4440  
Typical perForMance characTerisTics  
Input Threshold Hysteresis  
vs Temperature  
Peak Driver (TG) Pull-Up Current  
vs Temperature  
500  
480  
460  
440  
420  
400  
380  
360  
340  
320  
300  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
BOOST – TS = 15V  
V
-V (V = 12V)  
IH IL CC  
V
-V (V = 15V)  
IH IL CC  
BOOST – TS = 12V  
V
-V (V = 8V)  
IH IL CC  
0
30  
60  
90  
120  
–60 –30  
0
30  
60  
90  
120  
–60 –30  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4440 G14  
4440 G13  
Output Driver Pull-Down  
Resistance vs Temperature  
Propagation Delay vs Temperature  
(VCC = BOOST = 12V)  
45  
40  
35  
30  
25  
20  
15  
10  
5
3.0  
2.5  
t
BOOST – TS = 12V  
BOOST – TS = 8V  
PLH  
2.0  
1.5  
1.0  
0.5  
0
t
PHL  
BOOST – TS = 15V  
0
0
30  
60  
90  
120  
–60 –30  
0
30  
60  
90  
120  
–60 –30  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4440 G16  
4440 G15  
pin FuncTions  
SOT-23 Package  
V
(Pin 1): Chip Supply. This pin powers the internal low  
TG (Pin 5): High Current Gate Driver Output (Top Gate).  
CC  
side circuitry. A low ESR ceramic bypass capacitor should  
This pin swings between TS and BOOST.  
be tied between this pin and the GND pin (Pin 2).  
BOOST (Pin 6): High Side Bootstrapped Supply. An  
external capacitor should be tied between this pin and  
TS (Pin 4). Normally, a bootstrap diode is connected  
GND (Pin 2): Chip Ground.  
INP (Pin 3): Input Signal. TTL/CMOS compatible input  
referenced to GND (Pin 2).  
between V (Pin 1) and this pin. Voltage swing at this  
CC  
pin is from V – V to V + V – V , where V is the  
CC  
D
IN  
CC  
D
D
TS (Pin 4): Top (High Side) Source Connection.  
forward voltage drop of the bootstrap diode.  
4440fa  
5
For more information www.linear.com//LTC4440  
LTC4440  
pin FuncTions  
Exposed Pad MS8E Package  
INP (Pin 1): Input Signal. TTL/CMOS compatible input  
referenced to GND (Pin 2).  
BOOST(Pin6):HighSideBootstrappedSupply.Anexternal  
capacitor should be tied between this pin and TS (Pin 8).  
Normally, a bootstrap diode is connected between V  
(Pin 3) and this pin. Voltage swing at this pin is from V  
CC  
CC  
GND (Pins 2, 4): Chip Ground.  
V
(Pin 3): Chip Supply. This pin powers the internal low  
– V to V + V – V , where V is the forward voltage  
CC  
D
IN  
CC  
D
D
side circuitry. A low ESR ceramic bypass capacitor should  
drop of the bootstrap diode.  
be tied between this pin and the GND pin (Pin 2).  
TG (Pin 7): High Current Gate Driver Output (Top Gate).  
This pin swings between TS and BOOST.  
NC (Pin 5): No Connect. No connection required. For  
convenience, this pin may be tied to Pin 6 (BOOST) on  
the application board.  
TS (Pin 8): Top (High Side) Source Connection.  
Exposed Pad (Pin 9): Ground. Must be electrically con-  
nected to Pins 2 and 4 and soldered to PCB ground for  
optimum thermal performance.  
block DiagraM  
V
IN  
UP TO 80V,  
TRANSIENT  
UP TO 100V  
BOOST  
HIGH SIDE  
UNDERVOLTAGE  
LOCKOUT  
V
CC  
UNDERVOLTAGE  
LOCKOUT  
TG  
TS  
8V TO 15V  
GND  
INP  
BOOST  
LEVEL SHIFTER  
4440 BD  
GND  
TS  
TiMing DiagraM  
INPUT RISE/FALL TIME <10ns  
V
IH  
INPUT (INP)  
V
IL  
90%  
10%  
OUTPUT (TG)  
t
r
t
f
t
t
PHL  
PLH  
4440 TD  
4440fa  
6
For more information www.linear.com/LTC4440  
LTC4440  
applicaTions inForMaTion  
Overview  
V
BOOST  
IN  
UP TO 100V  
The LTC4440 receives a ground-referenced, low voltage  
digital input signal to drive a high side N-channel power  
MOSFET whose drain can float up to 100V above ground,  
eliminating the need for a transformer between the low  
voltage control signal and the high side gate driver. The  
LTC4440 normally operates in applications with input  
LTC4440  
C
Q1  
N1  
GD  
TG  
POWER  
MOSFET  
C
GS  
LOAD  
INDUCTOR  
4440 F03  
supply voltages (V ) up to 80V, but is able to withstand  
IN  
V
TS  
and continue to function during 100V, 100ms transients  
on the input supply.  
Figure 3. Capacitance Seen by TG During Switching  
The powerful output driver of the LTC4440 reduces the  
switching losses of the power MOSFET, which increase  
with transition time. The LTC4440 is capable of driving a  
1nF load with 10ns rise and 7ns fall times using a boot-  
powerMOSFET’sgateispulledlow(gateshortedtosource  
through N1) by the LTC4440, its source (TS) is pulled low  
by its load (e.g., an inductor or resistor). The slew rate  
of the source/gate voltage causes current to flow back to  
the MOSFET’s gate through the gate-to-drain capacitance  
strapped supply voltage V  
of 12V.  
BOOST–TS  
(C ). If the MOSFET driver does not have sufficient sink  
Input Stage  
GD  
current capability (low output impedance), the current  
TheLTC4440employsTTL/CMOScompatibleinputthresh-  
oldsthatallowalowvoltagedigitalsignaltodrivestandard  
powerMOSFETs.TheLTC4440containsaninternalvoltage  
regulator that biases the input buffer, allowing the input  
through the power MOSFET’s C can momentarily pull  
GD  
the gate high, turning the MOSFET back on.  
AsimilarscenarioexistswhentheLTC4440isusedtodrive  
a low side MOSFET. When the low side power MOSFET’s  
gateispulledlowbytheLTC4440,itsdrainvoltageispulled  
high by its load (e.g., inductor or resistor). The slew rate  
of the drain voltage causes current to flow back to the  
MOSFET’s gate through its gate-to-drain capacitance. If  
the MOSFET driver does not have sufficient sink current  
capability (low output impedance), the current through  
thresholds (V = 1.6V, V = 1.25V) to be independent of  
IH  
IL  
variations in V . The 350mV hysteresis between V and  
CC  
IH  
V eliminates false triggering due to noise during switch-  
IL  
ing transitions. However, care should be taken to keep this  
pin from any noise pickup, especially in high frequency,  
high voltage applications. The LTC4440 input buffer has a  
high input impedance and draws negligible input current,  
simplifying the drive circuitry required for the input.  
the power MOSFET’s C can momentarily pull the gate  
GD  
high, turning the MOSFET back on.  
Output Stage  
Rise/Fall Time  
AsimplifiedversionoftheLTC4440’soutputstageisshown  
inFigure3.Thepull-downdeviceisanN-channelMOSFET  
(N1) and the pull-up device is an NPN bipolar junction  
transistor(Q1). Theoutputswingsfromthelowerrail(TS)  
Since the power MOSFET generally accounts for the ma-  
jority of the power loss in a converter, it is important to  
quickly turn it on or off, thereby minimizing the transition  
time in its linear region. The LTC4440 can drive a 1nF load  
with a 10ns rise time and 7ns fall time.  
to within an NPN V (~0.7V) of the positive rail (BOOST).  
BE  
This large voltage swing is important in driving external  
power MOSFETs, whose R  
is inversely proportional  
DS(ON)  
The LTC4440’s rise and fall times are determined by the  
peak current capabilities of Q1 and N1. The predriver that  
drivesQ1andN1usesanonoverlappingtransitionscheme  
to minimize cross-conduction currents. N1 is fully turned  
off before Q1 is turned on and vice versa.  
to its gate overdrive voltage (V – V ).  
GS  
TH  
The LTC4440’s peak pull-up (Q1) current is 2.4A while the  
pull-down (N1) resistance is 1.5Ω. The low impedance  
of N1 is required to discharge the power MOSFET’s gate  
capacitanceduringhigh-to-lowsignaltransitions.Whenthe  
4440fa  
7
For more information www.linear.com//LTC4440  
LTC4440  
applicaTions inForMaTion  
Power Dissipation  
Undervoltage Lockout (UVLO)  
To ensure proper operation and long-term reliability, the  
LTC4440 must not operate beyond its maximum tem-  
perature rating. Package junction temperature can be  
calculated by:  
The LTC4440 contains both low side and high side un-  
dervoltage lockout detectors that monitor V and the  
CC  
bootstrapped supply V  
. When V falls below  
BOOST–TS  
CC  
6.2V, the internal buffer is disabled and the output pin  
OUT is pulled down to TS. When V falls below  
BOOST – TS  
T = T + PD (θ )  
J
A
JA  
6.9V, OUT is pulled down to TS. When both supplies are  
undervoltage, OUT is pulled low to TS and the chip enters  
a low current mode, drawing approximately 25µA from  
where:  
T = Junction Temperature  
J
V
CC  
and 86µA from BOOST.  
T = Ambient Temperature  
A
PD = Power Dissipation  
Bypassing and Grounding  
θ
JA  
= Junction-to-Ambient Thermal Resistance  
The LTC4440 requires proper bypassing on the V  
CC  
Power dissipation consists of standby and switching  
power losses:  
and V  
supplies due to its high speed switching  
BOOST–TS  
(nanoseconds)andlargeACcurrents(Amperes).Careless  
component placement and PCB trace routing may cause  
excessive ringing and under/overshoot.  
PD = P  
+ P  
AC  
STDBY  
where:  
To obtain the optimum performance from the LTC4440:  
P
P
= Standby Power Losses  
= AC Switching Losses  
STDBY  
A. Mount the bypass capacitors as close as possible  
AC  
between the V and GND pins and the BOOST and  
CC  
The LTC4440 consumes very little current during standby.  
The DC power loss at V = 12V and V = 12V is  
only (250µA + 110µA)(12V) = 4.32mW.  
TS pins. The leads should be shortened as much as  
CC  
BOOST–TS  
possible to reduce lead inductance.  
B. Use a low inductance, low impedance ground plane to  
reduceanygrounddropandstraycapacitance.Remem-  
ber that the LTC4440 switches >2A peak currents and  
anysignificantgrounddropwilldegradesignalintegrity.  
AC switching losses are made up of the output capacitive  
load losses and the transition state losses. The capacitive  
load losses are primarily due to the large AC currents  
needed to charge and discharge the load capacitance dur-  
ing switching. Load losses for the output driver driving a  
C. Plan the power/ground routing carefully. Know where  
the large load switching current is coming from and  
going to. Maintain separate ground return paths for  
the input pin and the output power stage.  
pure capacitive load C  
would be:  
OUT  
2
Load Capacitive Power = (C )(f)(V  
)
OUT  
BOOST–TS  
The power MOSFET’s gate capacitance seen by the driver  
D. Keep the copper trace between the driver output pin  
and the load short and wide.  
output varies with its V voltage level during switching.  
GS  
A power MOSFET’s capacitive load power dissipation can  
be calculated using its gate charge, Q . The Q value  
E. When using the MS8E package, be sure to solder the  
exposed pad on the back side of the LTC4440 package  
G
G
corresponding to the MOSFET’s V value (V in this  
GS  
CC  
2
case) can be readily obtained from the manufacturer’s  
Q vs V curves:  
to the board. Correctly soldered to a 2500mm double-  
sided 1oz copper board, the LTC4440 has a thermal  
resistance of approximately 40°C/W. Failure to make  
good thermal contact between the exposed back side  
and the copper board will result in thermal resistances  
far greater than 40°C/W.  
G
GS  
Load Capacitive Power (MOS) = (V )(Q )(f)  
BOOST–TS G  
Transition state power losses are due to both AC currents  
required to charge and discharge the driver’s internal  
nodal capacitances and cross-conduction currents in the  
internal gates.  
4440fa  
8
For more information www.linear.com/LTC4440  
LTC4440  
Typical applicaTions  
4440fa  
9
For more information www.linear.com//LTC4440  
LTC4440  
Typical applicaTions  
E F F I C I E N C Y ( % )  
4440fa  
10  
For more information www.linear.com/LTC4440  
LTC4440  
package DescripTion  
MS8E Package  
8-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1662 Rev K)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
1.88  
(.074)  
1.68  
1
0.29  
REF  
1.88 ±0.102  
(.074 ±.004)  
0.889 ±0.127  
(.035 ±.005)  
(.066)  
0.05 REF  
DETAIL “B”  
5.10  
(.201)  
MIN  
3.20 – 3.45  
(.126 – .136)  
1.68 ±0.102  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
(.066 ±.004)  
DETAIL “B”  
8
NO MEASUREMENT PURPOSE  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 3)  
0.65  
(.0256)  
BSC  
0.52  
(.0205)  
REF  
0.42 ±0.038  
(.0165 ±.0015)  
8
7 6 5  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
4.90 ±0.152  
(.193 ±.006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ±0.152  
(.021 ±.006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
0.65  
(.0256)  
BSC  
MSOP (MS8E) 0213 REV K  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD  
SHALL NOT EXCEED 0.254mm (.010") PER SIDE.  
4440fa  
11  
For more information www.linear.com//LTC4440  
LTC4440  
package DescripTion  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
4440fa  
12  
For more information www.linear.com/LTC4440  
LTC4440  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
1013  
Added comparison table  
1
4440fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
13  
LTC4440  
Typical applicaTion  
LTC3723-2/LTC4440/LTC3901 240W 42V-56VIN to Unregulated 12V Half-Bridge Converter  
L1  
0.56µH  
V
IN  
V
E
V
IN  
48V  
IN  
–V  
IN  
2
7
9
V
1µF  
100V  
1µF  
OUT  
L2 0.22µH  
1µF  
1µF  
100V  
11V  
1
V
100V  
100V  
D1  
OUT  
T2  
1500pF  
100V  
V
F
20Ω 1W  
70(980H):1  
+
C2  
180µF  
16V  
4
3
11  
+
CS  
V
CC  
3
6
5
1
8
7
A
INP BOOST  
LTC4440ES6  
TG  
1µF  
100V  
1µF  
100V  
1µF  
–V  
Si7370DP  
Si7370DP  
×2  
Si7852DP  
3
5
×2  
×2  
GND TS  
OUT  
2
4
0.22µF  
C1  
2.2nF  
250V  
V
V
E
F
–V  
OUT  
D2  
D3  
12V  
4.7k  
1/4W  
4.7k  
1/4W  
1
6
B
L3  
1mH  
+
C3  
68µF  
T1  
5:4:4:2:2  
Si7852DP  
×2  
10k 3k  
10k 3k  
V
12V  
MMBT3904  
11V  
IN  
11  
+
12 14 15  
6
5
2
3
16  
A
6
T3  
+
33.2k  
100Ω  
MMBT3904  
V
OUT  
CSF  
CSF MF MF2 CSE  
CSE ME ME2 V  
CC  
4
1(1.5mH):0.5  
1
15k  
1/4W  
2
1
4
9
120Ω  
LTC3901EGN  
DRVA DRVB  
SYNC  
PV  
CC  
SDRB  
5
1k  
0.1µF  
100Ω  
5
V
CC  
GND PGND GND2 PGND2  
10 13  
TIMER  
7
22Ω  
3
8
1µF  
1µF  
LTC3723EGN-2  
215k  
SDRA  
8
4
10V  
MMBZ5240B  
15  
11  
220pF  
UVLO  
DPRG  
12  
COMP  
330pF  
+
B
CS  
0.22µF  
V
RAMP  
9
C
T
SPRG GND CS SS FB  
4440 TA04  
REF  
1
1µF, 100V TDK C4532X7R2A105M  
C1: MURATA DE2E3KH222MB3B  
C2: SANYO 16SP180M  
C3: AVX TPSE686M020R0150  
D1-D3: BAS21  
D4, D5: MMBD914  
8
16  
7
10 14 13  
–V  
OUT  
1µF  
100pF  
D4  
D5  
1k  
62k  
1µF  
150pF  
10k  
2N7002  
4.7k  
30.1k  
0.47µF  
330pF  
0.47µF  
470pF  
7.5Ω 7.5Ω  
L1: COILCRAFT DO1813P-561HC  
L2: SUMIDA CDEP105-0R2NC-50  
L3: COILCRAFT DO1608C-105  
T1: PULSE PA0801.005  
12V  
MMBZ5242B  
T2: PULSE P8207  
T3: PULSE PA0785  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
4.5V to 18V Supply Range  
LTC1155  
Dual Micropower High/Low Side Drivers with  
Internal Charge Pump  
LT®1161  
LTC1163  
LT1339  
Quad Protected High Side MOSFET Driver  
Triple 1.8V to 6V High Side MOSFET Driver  
High Power Synchronous DC/DC Controller  
Isolated RS485 Transceiver  
8V to 48V Supply Range, t = 200µs, t = 28µs  
ON OFF  
1.8V to 6V Supply Range, t = 95µs, t = 45µs  
ON  
OFF  
Current Mode Operation Up to 60V, Dual N-Channel Synchronous Drive  
2500V of Isolation Between Line Transceiver and Logic Level Interface  
LTC1535  
RMS  
LTC1693 Family High Speed Dual MOSFET Drivers  
LT3010/LT3010-5 50mA, 3V to 80V Low Dropout Micropower Regulators  
1.5A Peak Output Current, 4.5V ≤ V ≤ 13.2V  
IN  
Low Quiescent Current (30µA), Stable with Small (1µF) Ceramic Capacitor  
LT3430  
High Voltage, 3A, 200kHz Step-Down Switching Regulator Input Voltages Up to 60V, Internal 0.1Ω Power Switch, Current Mode  
Architecture, 16-Pin Exposed Pad TSSOP Package  
LTC3722-1/  
LTC3722-2  
Synchronous Dual Mode Phase Modulated Full-Bridge  
Controllers  
Adaptive Zero Voltage Switching, High Output Power Levels  
(Up to Kilowatts)  
LTC3723-1/  
LTC3723-2  
Synchronous Push-Pull PWM Controllers  
Current Mode or Voltage Mode Push-Pull Controllers  
LTC3900  
LTC3901  
Synchronous Rectifier Driver for Forward Converters  
Programmable Time Out, Reverse Inductor Current Sense  
Programmable Time Out, Reverse Inductor Current Sense  
Secondary Side Synchronous Driver for Push-Pull and  
Full-Bridge Converters  
LTC4441  
6A MOSFET Driver  
Adjustable Gate Drive from 5V to 8V, 5V ≤ V ≤ 28V  
IN  
4440fa  
LT 1013 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
14  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC4440  
LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

LTC4440EMS8E-5#TRPBF

LTC4440-5 - High Speed, High Voltage, High Side Gate Driver; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4440ES6

High Speed, High Voltage High Side Gate Driver
Linear

LTC4440ES6#PBF

IC 2.4 A BUF OR INV BASED MOSFET DRIVER, PDSO6, PLASTIC, MO-193, SOT-23, 6 PIN, MOSFET Driver
Linear

LTC4440ES6#TRM

LTC4440 - High Speed, High Voltage High Side Gate Driver; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4440ES6#TRMPBF

暂无描述
Linear

LTC4440ES6#TRPBF

暂无描述
Linear

LTC4440ES6-5

High Speed, High Voltage, High Side Gate Driver
Linear

LTC4440ES6-5#PBF

IC 1.1 A BUF OR INV BASED MOSFET DRIVER, PDSO6, 1 MM, LEAD FREE, PLASTIC, MO-193, SOT-23, 6 PIN, MOSFET Driver
Linear

LTC4440ES6-5#TR

LTC4440-5 - High Speed, High Voltage, High Side Gate Driver; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4440ES6-5#TRM

LTC4440-5 - High Speed, High Voltage, High Side Gate Driver; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4440ES6-5#TRPBF

LTC4440-5 - High Speed, High Voltage, High Side Gate Driver; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4440IS6#TRPBF

暂无描述
Linear