MAX17505ATP+T [MAXIM]

IC REG BUCK ADJ 1.7A SYNC 20TQFN;
MAX17505ATP+T
型号: MAX17505ATP+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

IC REG BUCK ADJ 1.7A SYNC 20TQFN

信息通信管理 开关
文件: 总26页 (文件大小:1585K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
General Description  
The MAX17505/MAX17505S high-efficiency, high-  
voltage, synchronously rectified step-down converter with  
dual integrated MOSFETs operates over a 4.5V to 60V  
Benefits and Features  
EliminatesꢀExternalꢀComponentsꢀandꢀReducesꢀTotalꢀ  
Cost  
NoꢀSchottky-SynchronousꢀOperationꢀforꢀHighꢀ  
EfficiencyꢀandꢀReducedꢀCost  
input. It delivers up to 1.7A and 0.9V to 90%V output  
IN  
voltage. Built-in compensation across the output voltage  
range eliminates the need for external components. The  
feedback (FB) regulation accuracy over -40NC to +125NC  
is ±1.1%. The device is available in a compact (4mm x  
4mm) TQFN lead(Pb)-free package with an exposed pad.  
Simulation models are available.  
• Internal Compensation for Stable Operation at Any  
Output Voltage  
• All-Ceramic Capacitor Solution: Ultra-Compact  
Layout with as Few as Eight External Components  
ReducesꢀNumberꢀofꢀDC-DCꢀRegulatorsꢀtoꢀStock  
Wideꢀ4.5Vꢀtoꢀ60VꢀInputꢀVoltageꢀRange  
• 0.9V to 90%V Output Voltage  
IN  
The device features a peak-current-mode control  
architecture with a MODE feature that can be used to  
operate the device in pulse-width modulation (PWM),  
pulse-frequency modulation (PFM), or discontinuous-  
conduction mode (DCM) control schemes. PWM operation  
provides constant frequency operation at all loads, and is  
useful in applications sensitive to switching frequency.  
PFM operation disables negative inductor current and  
additionally skips pulses at light loads for high efficiency.  
DCM features constant frequency operation down to  
lighter loads than PFM mode, by not skipping pulses but  
only disabling negative inductor current at light loads.  
DCM operation offers efficiency performance that lies  
between PWM and PFM modes. The MAX17505S offers  
a lower minimum on-time that allows for higher switching  
frequencies and a smaller solution size.  
• Delivers Up to 1.7A Over Temperature  
100kHzꢀtoꢀ2.2MHzꢀAdjustableꢀFrequencyꢀwithꢀ  
External Synchronization  
MAX17505SꢀAllowsꢀHigherꢀFrequencyꢀOfꢀOperation  
• Available in a 20-Pin, 4mm x 4mm TQFN Package  
ReducesꢀPowerꢀDissipation  
PeakꢀEfficiencyꢀ>ꢀ90%  
PFMꢀandꢀDCMꢀModesꢀforꢀHighꢀLight-LoadꢀEfficiency  
• Shutdown Current = 2.8FA (typ)  
OperatesꢀReliablyꢀ  
Hiccup-ModeꢀCurrentꢀLimitꢀandꢀAutoretryꢀStartup  
• Built-In Output-Voltage Monitoring (Open-Drain  
RESET Pin)  
Resistor-ProgrammableꢀEN/UVLOꢀThreshold  
AdjustableꢀSoft-StartꢀandꢀPrebiasedꢀPower-Up  
HighꢀIndustrialꢀ-40°Cꢀtoꢀ+125°CꢀAmbientꢀOperatingꢀ  
TemperatureꢀRange/-40°Cꢀtoꢀ+150°CꢀJunctionꢀ  
TemperatureꢀRange  
A programmable soft-start feature allows users to reduce  
input inrush current. The device also incorporates an  
output enable/undervoltage lockout pin (EN/UVLO) that  
allows the user to turn on the part at the desired input-  
voltage level. An open-drain RESET pin provides a  
delayed power-good signal to the system upon achieving  
successful regulation of the output voltage.  
Applications  
●ꢀ IndustrialꢀPowerꢀSupplies  
Ordering Information appears at end of data sheet.  
●ꢀ DistributedꢀSupplyꢀRegulation  
●ꢀ BaseꢀStationꢀPowerꢀSupplies  
●ꢀ WallꢀTransformerꢀRegulation  
●ꢀ High-VoltageꢀSingle-BoardꢀSystems  
●ꢀ General-PurposeꢀPoint-of-Load  
19-6907; Rev 2; 5/17  
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
Absolute Maximum Ratings (Note 1)  
V
ꢀtoꢀPGND .........................................................-0.3V to +65V  
SGNDꢀtoꢀPGND....................................................-0.3V to +0.3V  
LXꢀTotalꢀRMSꢀCurrent ...........................................................±4A  
Output Short-Circuit Duration....................................Continuous  
IN  
EN/UVLOꢀtoꢀSGND ...............................................-0.3V to +65V  
LXꢀtoꢀPGND................................................-0.3V to (V + 0.3V)  
IN  
BSTꢀtoꢀPGND........................................................-0.3V to +70V  
Continuous Power Dissipation (T = +70ºC) (multilayer board)  
A
BST to LX.............................................................-0.3V to +6.5V  
TQFN (derate 30.3mW/ºC above T = +70ºC) ......2424.2mW  
A
BST to V  
FB, CF, RESET, SS, MODE, SYNC,  
RTꢀtoꢀSGND .....................................................-0.3V to +6.5V  
...........................................................-0.3V to +65V  
JunctionꢀTemperature......................................................+150ºC  
StorageꢀTemperatureꢀRange.............................-65NC to +160ºC  
Lead Temperature (soldering, 10s) .................................+300ºC  
Soldering Temperature (reflow).......................................+260ºC  
CC  
V
ꢀtoꢀSGND.......................................................-0.3V to +6.5V  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
PACKAGE TYPE: 20 TQFN  
Package Code  
T2044+4  
21-0139  
90-0409  
Outline Number  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
JunctionꢀtoꢀAmbientꢀ(θ  
)
33°C/W  
2°C/W  
JA  
JunctionꢀtoꢀCaseꢀ(θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”,ꢀorꢀ“-”ꢀinꢀtheꢀpackageꢀcodeꢀindicatesꢀRoHSꢀstatusꢀonly.ꢀPackageꢀdrawingsꢀmayꢀshowꢀaꢀdifferentꢀsuffixꢀcharacter,ꢀbutꢀtheꢀdrawingꢀ  
pertainsꢀtoꢀtheꢀpackageꢀregardlessꢀofꢀRoHSꢀstatus.  
PackageꢀthermalꢀresistancesꢀwereꢀobtainedꢀusingꢀtheꢀmethodꢀdescribedꢀinꢀJEDECꢀspecificationꢀJESD51-7,ꢀusingꢀaꢀfour-layerꢀboard.ꢀ  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Note 1:ꢀ Junctionꢀtemperatureꢀgreaterꢀthanꢀ+125°Cꢀdegradesꢀoperatingꢀlifetimes.  
Electrical Characteristics  
(V = V  
ꢀ=ꢀ24V,ꢀR  
= 40.2kIꢀ(500kHz),ꢀC  
ꢀ=ꢀ2.2μF,ꢀV  
= V  
= V  
= V  
= 0V, LX = SS = RESET =  
IN  
EN/UVLO  
RT  
VCC  
PGND  
SGND  
MODE  
SYNC  
open, V  
to V = 5V, V = 1V, T =ꢀ-40°Cꢀtoꢀ+125°C,ꢀunlessꢀotherwiseꢀnoted.ꢀTypicalꢀvaluesꢀareꢀatꢀT ꢀ=ꢀ+25°C.ꢀAllꢀvoltagesꢀareꢀ  
BST  
LX FB A A  
referencedꢀtoꢀSGND,ꢀunlessꢀotherwiseꢀnoted.)ꢀ(Noteꢀ2)  
PARAMETER  
INPUT SUPPLY (V  
SYMBOL  
CONDITIONS  
MIN  
TYP MAX UNITS  
)
IN  
InputꢀVoltageꢀRange  
V
4.5  
60  
V
IN  
Input Shutdown Current  
I
V
V
V
= 0V (shutdown mode)  
2.8  
118  
162  
1.16  
4.5  
IN-SH  
EN/UVLO  
ꢀ=ꢀ1V,ꢀMODEꢀ=ꢀRTꢀ=ꢀopen  
µA  
FB  
FB  
I
Q_PFM  
= 1V, MODE = open  
Input Quiescent Current  
I
DCM mode, V = 0.1V  
LX  
1.8  
Q-DCM  
mA  
Normal switching mode, f  
= 0.8V  
=ꢀ500kHz,ꢀV  
FB  
SW  
I
9.5  
Q_PWM  
www.maximintegrated.com  
Maxim Integrated 2  
 
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
Electrical Characteristics (continued)  
(V = V  
ꢀ=ꢀ24V,ꢀR  
= 40.2kIꢀ(500kHz),ꢀC  
ꢀ=ꢀ2.2μF,ꢀV  
= V  
= V  
= V  
= 0V, LX = SS = RESET =  
IN  
EN/UVLO  
RT  
VCC  
PGND  
SGND  
MODE  
SYNC  
open, V  
to V = 5V, V = 1V, T =ꢀ-40°Cꢀtoꢀ+125°C,ꢀunlessꢀotherwiseꢀnoted.ꢀTypicalꢀvaluesꢀareꢀatꢀT ꢀ=ꢀ+25°C.ꢀAllꢀvoltagesꢀareꢀ  
BST  
LX FB A A  
referencedꢀtoꢀSGND,ꢀunlessꢀotherwiseꢀnoted.)ꢀ(Noteꢀ2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP MAX UNITS  
ENABLE/UVLO (EN/UVLO)  
V
V
V
V
rising  
1.19 1.215 1.24  
1.068 1.09 1.111  
ENR  
EN/UVLO  
EN/UVLO  
EN/UVLO  
EN/UVLO Threshold  
V
V
falling  
= 0V, T = +25ºC  
ENF  
EN/UVLO Input Leakage Current  
I
-50  
0
+50  
nA  
EN  
A
LDO  
6V < V < 60V, I  
= 1mA  
IN  
VCC  
V
ꢀOutputꢀVoltageꢀRange  
V
4.75  
5
5.25  
100  
V
CC  
CC  
1mAꢀ≤ꢀI  
ꢀ≤ꢀ25mA  
VCC  
V
V
Current Limit  
Dropout  
I
V
V
V
V
= 4.3V, V = 6V  
26.5  
4.2  
54  
mA  
V
CC  
CC  
VCC-MAX  
CC  
IN  
V
= 4.5V, I  
= 20mA  
CC-DO  
IN  
VCC  
V
rising  
falling  
4.05  
3.65  
4.2  
3.8  
4.3  
3.9  
CC_UVR  
CC  
CC  
V
UVLO  
V
CC  
V
CC_UVF  
POWER MOSFET AND BST DRIVER  
High-SideꢀnMOSꢀOn-Resistance  
Low-SideꢀnMOSꢀOn-Resistance  
LX Leakage Current  
R
I
I
= 0.3A  
= 0.3A  
165  
80  
325  
150  
+2  
mI  
mI  
µA  
DS-ONH  
LX  
LX  
R
DS-ONL  
I
V
= V - 1V, V = V  
+ 1V, T = +25ºC  
-2  
LX_LKG  
LX  
IN  
LX  
PGND  
A
SOFT-START (SS)  
Charging Current  
I
V
= 0.5V  
4.7  
5
5.3  
µA  
SS  
SS  
FEEDBACK (FB)  
MODEꢀ=ꢀSGNDꢀonꢀV  
0.89  
0.9  
0.91  
CC  
FBꢀRegulationꢀVoltage  
V
V
FB_REG  
MODE = OPEN  
0.89 0.915 0.936  
FB Input Bias Current  
I
0 < V < 1V, T = +25ºC  
-50  
+50  
nA  
FB  
FB  
A
MODE  
V
CC  
1.6  
-
V
MODE = V  
(DCM mode)  
M-DCM  
CC  
MODE Threshold  
V
V
MODE = open (PFM mode)  
V
/ 2  
CC  
M-PFM  
V
MODEꢀ=ꢀGNDꢀ(PWMꢀmode)  
1.4  
M-PWM  
CURRENT LIMIT  
Peak Current-Limit Threshold  
I
2.4  
2.9  
2.8  
3.4  
0
3.25  
3.9  
A
A
PEAK-LIMIT  
I
RUNAWAY-LIMIT  
RunawayꢀCurrent-LimitꢀThreshold  
Valley Current-Limit Threshold  
PFM Current-Limit Threshold  
MODE = open/V  
MODEꢀ=ꢀGND  
MODE = open  
-0.16  
+0.16  
CC  
I
A
A
SINK-LIMIT  
-1.8  
0.75  
I
0.6  
0.9  
PFM  
www.maximintegrated.com  
Maxim Integrated 3  
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
Electrical Characteristics (continued)  
(V = V  
ꢀ=ꢀ24V,ꢀR  
= 40.2kIꢀ(500kHz),ꢀC  
ꢀ=ꢀ2.2μF,ꢀV  
= V  
= V  
= V  
= 0V, LX = SS = RESET =  
IN  
EN/UVLO  
RT  
VCC  
PGND  
SGND  
MODE  
SYNC  
open, V  
to V = 5V, V = 1V, T =ꢀ-40°Cꢀtoꢀ+125°C,ꢀunlessꢀotherwiseꢀnoted.ꢀTypicalꢀvaluesꢀareꢀatꢀT ꢀ=ꢀ+25°C.ꢀAllꢀvoltagesꢀareꢀ  
BST  
LX FB A A  
referencedꢀtoꢀSGND,ꢀunlessꢀotherwiseꢀnoted.)ꢀ(Noteꢀ2)  
PARAMETER  
RT AND SYNC  
SYMBOL  
CONDITIONS  
MIN  
TYP MAX UNITS  
R
R
R
R
R
= 210kΩ  
= 102kΩ  
= 40.2kΩ  
= 8.06kΩ  
= open  
90  
100  
200  
500  
110  
220  
525  
RT  
RT  
RT  
RT  
RT  
180  
475  
Switching Frequency  
f
kHz  
SW  
1950 2200 2450  
460  
500  
540  
1.1 x  
1.4 x  
f
SW  
SYNCꢀFrequencyꢀCaptureꢀRange  
SYNC Pulse Width  
f
ꢀsetꢀbyꢀR  
kHz  
ns  
V
SW  
RT  
f
SW  
50  
V
2.1  
IH  
SYNC Threshold  
V
0.8  
0.6  
IL  
FB Undervoltage Trip Level to  
CauseꢀHiccup  
V
0.56  
0.58  
V
FB-HICF  
HiccupꢀTimeout  
(Note 3)  
32,768  
Cycles  
ns  
MAX17505  
MAX17505S  
135  
80  
Minimum On-Time  
t
ON-MIN  
55  
5
ns  
Minimum Off-Time  
LX Dead Time  
t
140  
160  
ns  
OFF-MIN  
ns  
RESET  
RESET Output Level Low  
I
= 10mA  
0.4  
V
RESET  
RESET Output Leakage Current  
T
= T = +25ºC, V  
= 5.5V  
-0.1  
+0.1  
µA  
A
J
RESET  
%V  
FB-  
FB Threshold for RESET Assertion  
V
V
V
falling  
FB  
90.5  
92  
95  
94  
FB-OKF  
REG  
FB Threshold for RESET  
Deassertion  
%V  
FB-  
V
rising  
FB  
93.8  
97.2  
FB-OKR  
REG  
RESET Deassertion Delay After FB  
Reachesꢀ95%ꢀRegulation  
1024  
Cycles  
THERMAL SHUTDOWN  
Thermal-Shutdown Threshold  
Thermal-ShutdownꢀHysteresis  
Temperature rising  
165  
10  
ºC  
ºC  
Note 2:ꢀ Allꢀlimitsꢀareꢀ100%ꢀtestedꢀatꢀ+25°C.ꢀLimitsꢀoverꢀtemperatureꢀareꢀguaranteedꢀbyꢀdesign.  
Note 3: See the Overcurrent Protection/Hiccup Mode section for more details.  
www.maximintegrated.com  
Maxim Integrated 4  
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
Typical Operating Characteristics  
(V = V  
= 24V, V  
= V  
= 0V, C  
= C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ5600pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT ꢀ=ꢀ-40°Cꢀtoꢀ  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A  
+125°C,ꢀunlessꢀotherwiseꢀnoted.ꢀTypicalꢀvaluesꢀareꢀatꢀT ꢀ=ꢀ+25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17505S 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(PWM MODE, FIGURE 5 CIRCUIT)  
MAX17505 3.3V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(PWM MODE, FIGURE 4 CIRCUIT)  
toc02  
MAX17505 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(PWM MODE, FIGURE 3 CIRCUIT)  
toc01  
toc01a  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 48V  
VIN = 36V  
VIN = 48V  
VIN = 36V  
VIN = 48V  
VIN = 24V  
VIN = 12V  
VIN = 36V  
VIN = 24V  
VIN = 24V  
VIN = 12V  
VIN = 12V  
MODE = SGND  
MODE = SGND  
1500  
MODE = SGND  
1500  
1700  
0
500  
1000  
0
500  
1000  
1500  
1700  
1700  
0
500  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
MAX17505 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(PfM MODE, FIGURE 3 CIRCUIT)  
MAX17505S 3.3V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(PWM MODE, FIGURE 6 CIRCUIT)  
toc03  
toc02a  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
V
IN = 48V  
VIN = 36V  
VIN = 36V  
V
IN = 48V  
VIN = 24V  
VIN = 24V  
VIN = 12V  
VIN = 12V  
MODE = OPEN  
100 1000  
MODE = SGND  
1000 1500 1700  
1700  
1
10  
0
500  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
MAX17505 3.3V OUTPUT  
EFFICIENCY VS. LOAD CURRENT  
(PFM MODE, FIGURE 4 CIRCUIT)  
MAX17505S 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(PFM MODE, FIGURE 5 CIRCUIT)  
toc03a  
toc04  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 48V  
VIN = 36V  
VIN = 48V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 24V  
VIN = 12V  
MODE = OPEN  
1000  
MODE = OPEN  
100 1000  
1700  
10  
100  
1700  
1
10  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
www.maximintegrated.com  
Maxim Integrated  
5
 
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, C  
= C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ5600pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT ꢀ=ꢀ-40°Cꢀtoꢀ  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A  
+125°C,ꢀunlessꢀotherwiseꢀnoted.ꢀTypicalꢀvaluesꢀareꢀatꢀT ꢀ=ꢀ+25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17505S 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(DCM MODE, FIGURE 5 CIRCUIT)  
MAX17505S 3.3V OUTPUT  
EFFICIENCY VS. LOAD CURRENT  
(PFM MODE, FIGURE 6 CIRCUIT)  
MAX17505 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(DCM MODE, FIGURE 3 CIRCUIT)  
toc04a  
toc05  
toc05a  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VIN = 48V  
VIN = 36V  
VIN = 48V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 24V  
VIN = 48V  
VIN = 36V  
VIN = 12V  
VIN = 24V  
VIN = 12V  
MODE = VCC  
MODE = OPEN  
1000  
MODE = VCC  
100 1000  
1
10  
100  
1000  
1700  
1700  
10  
100  
LOAD CURRENT (mA)  
1
10  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
MAX17505S 3.3V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(DCM MODE, FIGURE 6 CIRCUIT)  
MAX17505 3.3V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(DCM MODE, FIGURE 4 CIRCUIT)  
toc06a  
toc06  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 48V  
VIN = 48V  
VIN = 36V  
VIN = 36V  
VIN = 24V  
VIN = 24V  
VIN = 12V  
VIN = 12V  
MODE = VCC  
1000 1700  
MODE = VCC  
100 1000 1700  
1
10  
100  
1
10  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
MAX17505 5V OUTPUT  
LOAD AND LINE REGULATION  
(PWM MODE, FIGURE 3 CIRCUIT)  
MAX17505S 5V OUTPUT  
LOAD AND LINE REGULATION  
(PWM MODE, FIGURE 5 CIRCUIT)  
toc07  
toc07a  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
4.94  
4.93  
4.92  
VIN = 48V  
VIN = 24V  
VIN = 12V  
VIN = 36V  
VIN = 24V  
VIN = 48V  
VIN = 36V  
VIN = 12V  
MODE = SGND  
1000 1500  
MODE = SGND  
0
500  
1700  
0
500  
1000  
1500 1700  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
www.maximintegrated.com  
Maxim Integrated 6  
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, C  
= C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ5600pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT ꢀ=ꢀ-40°Cꢀtoꢀ  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A  
+125°C,ꢀunlessꢀotherwiseꢀnoted.ꢀTypicalꢀvaluesꢀareꢀatꢀT ꢀ=ꢀ+25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17505S3.3V OUTPUT  
LOAD AND LINE REGULATION  
(PWM MODE, FIGURE 6 CIRCUIT)  
MAX17505 3.3V OUTPUT  
LOAD AND LINE REGULATION  
(PWM MODE, FIGURE 4 CIRCUIT)  
MAX17505 5V OUTPUT  
LOAD AND LINE REGULATION  
(PFM MODE, FIGURE 3 CIRCUIT)  
toc08a  
toc08  
toc09  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
VIN = 36V  
VIN = 12V VIN = 24V  
VIN = 48V  
VIN = 24V  
VIN = 48V  
VIN = 24V  
VIN = 12V  
VIN = 36V  
VIN = 48V  
VIN = 36V  
VIN = 12V  
MODE = SGND  
MODE = SGND  
1500 1700  
MODE = OPEN  
1000 1500  
1700  
0
500  
1000  
0
500  
LOAD CURRENT (mA)  
0
500  
1000  
1500 1700  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
MAX17505 3.3V OUTPUT  
LOAD AND LINE REGULATION  
(PFM MODE, FIGURE 4 CIRCUIT)  
MAX17505S5V OUTPUT  
LOAD AND LINE REGULATION  
(PFM MODE, FIGURE 5 CIRCUIT)  
toc10  
toc09a  
3.37  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
VIN = 48V  
VIN = 12V  
VIN = 48V  
VIN = 12V  
VIN = 36V  
VIN = 24V  
VIN = 24V  
VIN = 36V  
MODE = OPEN  
1000 1500  
MODE = OPEN  
3.27  
0
1700  
0
500  
500  
1000  
1500 1700  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
MAX17505S3.3V OUTPUT  
LOAD AND LINE REGULATION  
(PFM MODE, FIGURE 6 CIRCUIT)  
SWITCHING FREQUENCY  
vs. RT RESISTANCE  
toc10a  
toc11  
3.60  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
V
IN = 48V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
600  
400  
200  
MODE = OPEN  
1000 1500  
0
0
0
500  
LOAD CURRENT (mA)  
1700  
20  
40  
60  
80  
100  
RRT (kΩ)  
www.maximintegrated.com  
Maxim Integrated  
7
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, C  
= C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ5600pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT ꢀ=ꢀ-40°Cꢀtoꢀ  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A  
+125°C,ꢀunlessꢀotherwiseꢀnoted.ꢀTypicalꢀvaluesꢀareꢀatꢀT ꢀ=ꢀ+25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17505S 5V OUTPUT  
SOFT-START/SHUTDOWN FROM EN/UVLO  
(1.7A LOAD CURRENT, FIGURE 5 CIRCUIT)  
MAX17505 5V OUTPUT  
SOFT-START/SHUTDOWN FROM EN/UVLO  
(1.7A LOAD CURRENT, FIGURE 3 CIRCUIT)  
toc12a  
toc12  
2V/div  
2V/div  
VEN/UVLO  
5V/div  
VEN/UVLO  
VOUT  
VOUT  
IOUT  
2V/div  
1A/div  
IOUT  
1A/div  
5V/div  
VRESET  
VRESET  
5V/div  
MODE = SGND  
1ms/div  
MODE = SGND  
1ms/div  
MAX17505 3.3V OUTPUT  
SOFT-START/SHUTDOWN FROM EN/UVLO  
(1.7A LOAD CURRENT, FIGURE 4 CIRCUIT)  
MAX17505S 3.3V OUTPUT  
SOFT-START/SHUTDOWN FROM EN/UVLO  
(1.7A LOAD CURRENT, FIGURE 6 CIRCUIT)  
toc13  
toc13a  
VEN/UVLO  
2V/div  
2V/div  
VEN/UVLO  
5V/div  
2V/div  
VOUT  
VOUT  
IOUT  
1A/div  
5V/div  
IOUT  
1A/div  
5V/div  
VRESET  
MODE = SGND  
1ms/div  
VRESET  
MODE = SGND  
1mS/div  
MAX17505 5V OUTPUT  
SOFT-START/SHUTDOWN FROM EN/UVLO  
MAX17505S 5V OUTPUT  
SOFT-START/SHUTDOWN FROM EN/UVLO  
(PFM MODE, 5mA LOAD CURRENT, FIGURE 3 CIRCUIT)  
(PFM MODE, 5MA LOAD CURRENT, FIGURE 5 CIRCUIT)  
toc14  
toc14a  
MODE = OPEN  
2V/div  
1V/div  
VEN/UVLO  
VEN/UVLO  
5V/div  
VOUT  
VOUT  
1V/div  
5V/div  
MODE = OPEN  
2mS/div  
VRESET  
5V/div  
VRESET  
2mS/div  
www.maximintegrated.com  
Maxim Integrated 8  
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, C  
= C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ5600pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT ꢀ=ꢀ-40°Cꢀtoꢀ  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A  
+125°C,ꢀunlessꢀotherwiseꢀnoted.ꢀTypicalꢀvaluesꢀareꢀatꢀT ꢀ=ꢀ+25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17505 3.3V OUTPUT  
SOFT-START/SHUTDOWN FROM EN/UVLO  
(PFM MODE, 5mA LOAD CURRENT, FIGURE 4 CIRCUIT)  
MAX17505S 3.3V OUTPUT  
SOFT-START/SHUTDOWN FROM EN/UVLO  
(PFM MODE, 5mA LOAD CURRENT, FIGURE 6 CIRCUIT)  
toc15a  
toc15  
VEN/UVLO  
2V/div  
1V/div  
VEN/UVLO  
5/div  
VOUT  
1V/div  
5V/div  
VOUT  
VRESET  
5V/div  
VRESET  
MODE = OPEN  
MODE = OPEN  
2ms/div  
2mS/div  
MAX17505 5V OUTPUT  
SOFT-START WITH 2.5V PREBIAS  
(PWM MODE, FIGURE 3 CIRCUIT)  
MAX17505S 5V OUTPUT  
SOFT-START WITH 2.5V PREBIAS  
(PWM MODE, FIGURE 5 CIRCUIT)  
toc16  
toc16a  
5V/div  
2V/div  
2V/div  
VEN/UVLO  
VEN/UVLO  
2V/div  
5V/div  
VOUT  
VOUT  
VRESET  
5V/div  
VRESET  
MODE = SGND  
MODE = SGND  
1mS/div  
1mS/div  
MAX17505S 3.3V OUTPUT  
SOFT-START WITH 2.5V PREBIAS  
(PWM MODE, FIGURE 6 CIRCUIT)  
MAX17505 3.3V OUTPUT  
SOFT-START WITH 2.5V PREBIAS  
(PFM MODE, FIGURE 4 CIRCUIT)  
toc17a  
toc17  
2V/div  
1V/div  
VEN/UVLO  
VEN/UVLO  
5V/div  
1V/div  
VOUT  
5V/div  
VOUT  
VRESET  
VRESET  
5V/div  
MODE = OPEN  
MODE = OPEN  
1ms/div  
1mS/div  
www.maximintegrated.com  
Maxim Integrated 9  
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, C  
= C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ5600pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT ꢀ=ꢀ-40°Cꢀtoꢀ  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A  
+125°C,ꢀunlessꢀotherwiseꢀnoted.ꢀTypicalꢀvaluesꢀareꢀatꢀT ꢀ=ꢀ+25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17505 5V OUTPUT  
STEADY-STATE SWITCHING WAVEFORMS  
(PWM MODE, NO LOAD, FIGURE 3 CIRCUIT)  
MAX17505 5V OUTPUT  
STEADY-STATE SWITCHING WAVEFORMS  
(1.7A LOAD CURRENT, FIGURE 3 CIRCUIT)  
MAX17505S 5V OUTPUT  
STEADY-STATE SWITCHING WAVEFORMS  
(1.7A LOAD CURRENT, FIGURE 5 CIRCUIT)  
toc19  
toc18a  
toc18  
MODE = SGND  
VOUT (AC)  
VOUT (AC)  
VOUT (AC)  
20mV/di  
20mV/div  
50mV/div  
VLX  
10V/div  
1A/div  
10V/div  
1A/div  
VLX  
VLX  
10V/div  
1A/div  
ILX  
ILX  
ILX  
MODE = SGND  
MODE = SGND  
400nS/div  
1μs/div  
1μs/div  
MAX17505 5V OUTPUT  
STEADY-STATE SWITCHING WAVEFORMS  
(PFM MODE, 25mA LOAD, FIGURE 3 CIRCUIT)  
MAX17505S 5V OUTPUT  
STEADY-STATE SWITCHING WAVEFORMS  
(NO LOAD CURRENT, FIGURE 5 CIRCUIT)  
toc20  
toc19a  
MODE = SGND  
100mV/div  
VOUT (AC)  
VOUT (AC)  
50mV/div  
VLX  
10V/div  
VLX  
10V/div  
ILX  
500mA/div  
ILX  
500mA/div  
MODE = OPEN  
10μs/div  
400ns/div  
MAX17505S 5V OUTPUT  
STEADY-STATE SWITCHING WAVEFORMS  
(PFM MODE, 25mA LOAD CURRENT, FIGURE 5 CIRCUIT)  
MAX17505 5V OUTPUT  
STEADY-STATE SWITCHING WAVEFORMS  
(DCM MODE, 25mA LOAD, FIGURE 3 CIRCUIT)  
toc20a  
toc21  
VOUT (AC)  
100mV/div  
20mV/div  
VOUT (AC)  
MODE = VCC  
VLX  
VLX  
10V/div  
10V/div  
ILX  
ILX  
200mA/div  
500mA/div  
MODE = OPEN  
1μs/div  
4μs/div  
www.maximintegrated.com  
Maxim Integrated 10  
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, C  
= C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ5600pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT ꢀ=ꢀ-40°Cꢀtoꢀ  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A  
+125°C,ꢀunlessꢀotherwiseꢀnoted.ꢀTypicalꢀvaluesꢀareꢀatꢀT ꢀ=ꢀ+25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17505S 5V OUTPUT  
STEADY-STATE SWITCHING WAVEFORMS  
(DCM MODE, 25mA LOAD CURRENT, FIGURE 5 CIRCUIT)  
MAX17505S 5V OUTPUT  
LOAD CURRENT STEPPED FROM 0.85A TO 1A  
MAX17505 5V OUTPUT  
LOAD CURRENT STEPPED FROM 0.85A TO 1.7A  
(PWM MODE, FIGURE 5 CIRCUIT)  
(PWM MODE, FIGURE 3 CIRCUIT)  
toc21a  
toc22a  
toc22  
VOUT (AC)  
20mV/div  
VOUT (AC)  
100mV/div  
MODE = VCC  
VOUT (AC)  
100mV/div  
VLX  
10V/div  
1A/div  
ILX  
ILX  
IOUT  
200mA/div  
1A/div  
MODE = SGND  
MODE = SGND  
1μs/div  
40μs/div  
40μS/div  
MAX17505 3.3V OUTPUT  
LOAD CURRENT STEPPED FROM 0.85A TO 1.7A  
MAX17505S 3.3V OUTPUT  
LOAD CURRENT STEPPED FROM 0.85A TO 1.7A  
(PWM MODE, FIGURE 6 CIRCUIT)  
(PWM MODE, FIGURE 4 CIRCUIT)  
toc23  
toc23a  
VOUT (AC)  
50mV/div  
VOUT (AC)  
50mV/div  
IOUT  
1A/div  
ILX  
1A/div  
MODE = SGND  
MODE = SGND  
100μs/div  
40μS/div  
MAX17505 5V OUTPUT  
LOAD CURRENT STEPPED FROM NO LOAD TO 0.85A  
MAX17505S 5V OUTPUT  
LOAD CURRENT STEPPED FROM NO LOAD TO 0.85A  
(PWM MODE, FIGURE 3 CIRCUIT)  
(PWM MODE, FIGURE 5 CIRCUIT)  
toc24  
toc24a  
VOUT (AC)  
100mV/div  
VOUT (AC)  
100mV/div  
500mA/div  
IOUT  
500mA/div  
ILX  
MODE = SGND  
MODE = SGND  
40μs/div  
40μS/div  
www.maximintegrated.com  
Maxim Integrated 11  
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, C  
= C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ5600pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT ꢀ=ꢀ-40°Cꢀtoꢀ  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A  
+125°C,ꢀunlessꢀotherwiseꢀnoted.ꢀTypicalꢀvaluesꢀareꢀatꢀT ꢀ=ꢀ+25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17505S 3.3V OUTPUT  
LOAD CURRENT STEPPED FROM NO LOAD TO 0.85A  
MAX17505 3.3V OUTPUT  
LOAD CURRENT STEPPED FROM NO LOAD TO 0.85A  
(PWM MODE, FIGURE 6 CIRCUIT)  
(PWM MODE, FIGURE 4 CIRCUIT)  
toc25a  
toc25  
VOUT (AC)  
50mV/div  
VOUT (AC)  
50mV/div  
500mA/div  
IOUT  
ILX  
500mA/div  
MODE = SGND  
MODE = SGND  
100μs/div  
40μS/div  
MAX17505S 5V OUTPUT  
LOAD CURRENT STEPPED FROM 5MA TO 0.85A  
MAX17505 5V OUTPUT  
LOAD CURRENT STEPPED FROM 5mA TO 0.85A  
(PFM MODE, FIGURE 5 CIRCUIT)  
(PFM MODE, FIGURE 3 CIRCUIT)  
toc26  
toc26a  
100mV/div  
VOUT (AC)  
100mV/div  
VOUT (AC)  
IOUT  
500mA/div  
ILX  
500mA/div  
MODE = OPEN  
MODE = OPEN  
2ms/div  
1mS/div  
MAX17505 3.3V OUTPUT  
LOAD CURRENT STEPPED FROM 5mA TO 0.85A  
MAX17505S 3.3V OUTPUT  
LOAD CURRENT STEPPED FROM 5mA TO 0.85A  
(PFM MODE, FIGURE 4 CIRCUIT)  
(PFM MODE, FIGURE 6 CIRCUIT)  
toc27a  
toc27  
VOUT (AC)  
100mV/div  
VOUT (AC)  
50mV/div  
500mA/div  
ILX  
500mA/div  
IOUT  
MODE = OPEN  
MODE = OPEN  
2ms/div  
2mS/div  
www.maximintegrated.com  
Maxim Integrated 12  
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, C  
= C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ5600pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT ꢀ=ꢀ-40°Cꢀtoꢀ  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A  
+125°C,ꢀunlessꢀotherwiseꢀnoted.ꢀTypicalꢀvaluesꢀareꢀatꢀT ꢀ=ꢀ+25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17505 5V OUTPUT  
MAX17505S 5V OUTPUT  
LOAD CURRENT STEPPED FROM 50mA TO 0.85A  
LOAD CURRENT STEPPED FROM 50mA TO 0.85A  
(DCM MODE, FIGURE 3 CIRCUIT)  
(DCM MODE, FIGURE 5 CIRCUIT)  
toc28  
toc28a  
100mV/div  
VOUT (AC)  
VOUT (AC)  
100mV/div  
500mA/div  
IOUT  
IOUT  
500mA/div  
MODE = VCC  
MODE = VCC  
200μs/div  
200μs/div  
MAX17505S 3.3V OUTPUT  
LOAD CURRENT STEPPED FROM 50mA TO 0.85A  
MAX17505 3.3V OUTPUT  
LOAD CURRENT STEPPED FROM 50mA TO 0.85A  
(DCM MODE, FIGURE 6 CIRCUIT)  
(DCM MODE, FIGURE 4 CIRCUIT)  
toc29a  
toc29  
VOUT (AC)  
100mV/div  
100mV/div  
VOUT (AC)  
500mA/div  
IOUT  
500mA/div  
IOUT  
MODE = VCC  
MODE = VCC  
200μs/div  
200μs/div  
MAX17505 5V OUTPUT  
OVERLOAD PROTECTION  
(FIGURE 3 CIRCUIT)  
MAX17505S 5V OUTPUT  
OVERLOAD PROTECTION  
(FIGURE 5 CIRCUIT)  
toc30a  
toc30  
VOUT  
2V/div  
VOUT  
200mV/div  
IOUT  
1A/div  
IOUT  
1A/div  
MODE = VCC  
MODE = VCC  
20ms/div  
10ms/div  
www.maximintegrated.com  
Maxim Integrated 13  
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, C  
= C  
= 2.2µF, C  
= 0.1µF, C ꢀ=ꢀ5600pF,ꢀRTꢀ=ꢀMODEꢀ=ꢀopen,ꢀT ꢀ=ꢀ-40°Cꢀtoꢀ  
IN  
EN/UVLO  
PGND  
SGND  
VIN  
VCC  
BST SS A  
+125°C,ꢀunlessꢀotherwiseꢀnoted.ꢀTypicalꢀvaluesꢀareꢀatꢀT ꢀ=ꢀ+25°C.ꢀAllꢀvoltagesꢀareꢀreferencedꢀtoꢀGND,ꢀunlessꢀotherwiseꢀnoted.)  
A
MAX17505 5V OUTPUT  
APPLICATION OF EXTERNAL CLOCK AT 700kHz  
MAX17505S 5V OUTPUT  
APPLICATION OF EXTERNAL CLOCK AT 1.2MHz  
(FIGURE 3 CIRCUIT)  
(FIGURE 5 CIRCUIT)  
toc31  
toc31a  
VLX  
10V/div  
VLX  
10V/div  
VSYNC  
2V/div  
2V/div  
VSYNC  
MODE = SGND  
MODE = SGND  
2μs/div  
2μs/div  
MAX17505 5V OUTPUT  
BODE PLOT  
(1.7A LOAD CURRENT, FIGURE 3 CIRCUIT)  
MAX17505S 5V OUTPUT  
BODE PLOT  
(1.7A LOAD CURRENT, FIGURE 5 CIRCUIT)  
toc32 120  
toc32a  
50  
40  
100  
40  
100  
PHASE  
GAIN  
80  
30  
20  
PHASE  
60  
50  
0
20  
0
40  
10  
0
GAIN  
0
-40  
-60  
-80  
-10  
-20  
CROSSOVER FREQUENCY = 60.7kHz  
PHASE MARGIN = 59°  
-30  
-40  
-50  
CROSSOVER FREQUENCY = 101kHz  
PHASE MARGIN = 58.1°  
-50  
-100  
-120  
-20  
100K  
10K  
1K  
105  
104  
103  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
MAX17505S 3.3V OUTPUT  
BODE PLOT  
MAX17505 3.3V OUTPUT  
BODE PLOT  
(1.7A LOAD CURRENT, FIGURE 4 CIRCUIT)  
(1.7A LOAD CURRENT, FIGURE 6 CIRCUIT)  
toc33 120  
100  
80  
toc33a  
60  
50  
40  
30  
100  
40  
30  
PHASE  
PHASE  
20  
10  
0
60  
50  
20  
10  
40  
GAIN  
GAIN  
20  
0
-10  
-20  
-30  
-40  
0
0
-20  
-10  
-40  
CROSSOVER FREQUENCY = 77.7kHz  
PHASE MARGIN = 63.2°  
CROSSOVER FREQUENCY = 58kHz  
PHASE MARGIN = 59°  
-60  
-80  
-20  
-30  
-50  
100K  
10K  
1K  
105  
104  
FREQUENCY (Hz)  
103  
FREQUENCY (Hz)  
www.maximintegrated.com  
Maxim Integrated 14  
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
Pin Configuration  
TOP VIEW  
15  
14  
13  
12  
11  
RT  
FB  
10  
9
PGND 16  
LX  
LX  
LX  
17  
18  
19  
20  
MAX17505/  
MAX17505S  
8
CF  
SS  
7
+
6
SYNC  
BST  
1
2
3
4
5
TQFN  
4mm × 4mm  
* EXPOSED PAD (CONNECT TO GROUND).  
Pin Description  
PIN  
NAME  
FUNCTION  
Power-Supply Input. 4.5V to 60V input supply range. Connect the V ꢀpinsꢀtogether.ꢀDecoupleꢀtoꢀPGNDꢀ  
IN  
1–3  
V
with a 2.2µF capacitor; place the capacitor close to the V ꢀandꢀPGNDꢀpins.ꢀReferꢀtoꢀtheꢀMAX17505/  
IN  
IN  
MAX17505S EV kit data sheets for a layout example.  
Enable/Undervoltage Lockout. Drive EN/UVLO high to enable the output voltage. Connect to the center  
4
5
EN/UVLO of the resistor-divider between V ꢀandꢀSGNDꢀtoꢀsetꢀtheꢀinputꢀvoltageꢀatꢀwhichꢀtheꢀdeviceꢀturnsꢀon.ꢀPullꢀ  
IN  
up to V for always-on operation.  
IN  
Open-Drain RESET Output. The RESET output is driven low if FB drops below 92% of its set value.  
RESET goes high 1024 clock cycles after FB rises above 95% of its set value.  
RESET  
The device can be synchronized to an external clock using this pin. See the External Frequency  
Synchronization section for more details.  
6
7
8
SYNC  
SS  
Soft-StartꢀInput.ꢀConnectꢀaꢀcapacitorꢀfromꢀSSꢀtoꢀSGNDꢀtoꢀsetꢀtheꢀsoft-startꢀtime.  
Atꢀswitchingꢀfrequenciesꢀlowerꢀthanꢀ500kHz,ꢀconnectꢀaꢀcapacitorꢀfromꢀCFꢀtoꢀFB.ꢀLeaveꢀCFꢀopenꢀifꢀ  
switchingꢀfrequencyꢀisꢀequalꢀorꢀmoreꢀthanꢀ500kHz.ꢀSeeꢀtheꢀLoop Compensation section for more details.  
CF  
FeedbackꢀInput.ꢀConnectꢀFBꢀtoꢀtheꢀcenterꢀtapꢀofꢀanꢀexternalꢀresistor-dividerꢀfromꢀtheꢀoutputꢀtoꢀGNDꢀtoꢀ  
set the output voltage. See the Adjusting Output Voltage section for more details.  
9
FB  
ConnectꢀaꢀresistorꢀfromꢀRTꢀtoꢀSGNDꢀtoꢀsetꢀtheꢀregulator’sꢀswitchingꢀfrequency.ꢀLeaveꢀRTꢀopenꢀforꢀtheꢀ  
defaultꢀ500kHzꢀfrequency.ꢀSeeꢀtheꢀSetting the Switching Frequency (RT) section for more details.  
10  
RT  
MODEꢀpinꢀconfiguresꢀtheꢀdeviceꢀtoꢀoperateꢀeitherꢀinꢀPWM,ꢀPFM,ꢀorꢀDCMꢀmodesꢀofꢀoperation.ꢀLeaveꢀ  
MODEꢀunconnectedꢀforꢀPFMꢀoperationꢀ(pulseꢀskippingꢀatꢀlightꢀloads).ꢀConnectꢀMODEꢀtoꢀSGNDꢀforꢀ  
11  
MODE  
constant-frequency PWM operation at all loads. Connect MODE to V  
for DCM operation. See the  
CC  
MODE Setting section for more details.  
www.maximintegrated.com  
Maxim Integrated  
15  
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
Pin Description (continued)  
PIN  
12  
NAME  
FUNCTION  
V
5V LDO Output. Bypass V ꢀwithꢀ2.2µFꢀceramicꢀcapacitanceꢀtoꢀSGND.  
CC  
CC  
13  
SGND  
AnalogꢀGround  
PowerꢀGround.ꢀConnectꢀtheꢀPGNDꢀpinsꢀexternallyꢀtoꢀtheꢀpowerꢀgroundꢀplane.ꢀConnectꢀtheꢀSGNDꢀandꢀ  
14–16  
PGND  
PGNDꢀpinsꢀtogetherꢀatꢀtheꢀgroundꢀreturnꢀpathꢀofꢀtheꢀV ꢀbypassꢀcapacitor.ꢀReferꢀtoꢀtheꢀMAX17505/  
CC  
MAX17505S EV kit data sheets for a layout example.  
SwitchingꢀNode.ꢀConnectꢀLXꢀpinsꢀtoꢀtheꢀswitchingꢀsideꢀofꢀtheꢀinductor.ꢀReferꢀtoꢀtheꢀMAX17505/  
MAX17505S EV kit data sheets for a layout example.  
17–19  
20  
LX  
BST  
Boost Flying Capacitor. Connect a 0.1µF ceramic capacitor between BST and LX.  
Exposedꢀpad.ꢀConnectꢀtoꢀtheꢀSGNDꢀpin.ꢀConnectꢀtoꢀaꢀlargeꢀcopperꢀplaneꢀbelowꢀtheꢀICꢀtoꢀimproveꢀheatꢀ  
dissipationꢀcapability.ꢀAddꢀthermalꢀviasꢀbelowꢀtheꢀexposedꢀpad.ꢀReferꢀtoꢀtheꢀMAX17505/MAX17505SꢀEVꢀ  
kit data sheets for a layout example.  
EP  
Block Diagram  
MAX17505/MAX17505S  
BST  
V
5V  
CC  
LDO  
V
IN  
SGND  
CURRENT-SENSE  
LOGIC  
PWM/  
PFM/  
LX  
EN/UVLO  
HICCUP  
LOGIC  
AND  
DRIVERS  
HICCUP  
1.215V  
RT  
PGND  
OSCILLATOR  
SYNC  
CF  
FB  
MODE  
SELECTION  
LOGIC  
ERROR AMPLIFIER/  
LOOP COMPENSATION  
MODE  
RESET  
V
CC  
V
BG  
= 0.9V  
SWITCHOVER  
LOGIC  
SLOPE  
COMPENSATION  
5µA  
SS  
FB  
EN/UVLO  
RESET  
LOGIC  
HICCUP  
www.maximintegrated.com  
Maxim Integrated 16  
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
PFM Mode Operation  
Detailed Description  
PFM mode of operation disables negative inductor current  
and additionally skips pulses at light loads for high  
efficiency. In PFM mode, the inductor current is forced to  
a fixed peak of 750mA every clock cycle until the output  
rises to 102.3% of the nominal voltage. Once the output  
reaches 102.3% of the nominal voltage, both the high-side  
and low-side FETs are turned off and the device enters  
hibernate operation until the load discharges the output to  
101.1% of the nominal voltage. Most of the internal blocks  
are turned off in hibernate operation to save quiescent  
current. After the output falls below 101.1% of the nominal  
voltage, the device comes out of hibernate operation,  
turns on all internal blocks, and again commences the  
process of delivering pulses of energy to the output until it  
reaches 102.3% of the nominal output voltage.  
The MAX17505/MAX17505S high-efficiency, high-  
voltage, synchronously rectified step-down converter with  
dual integrated MOSFETs operates over a 4.5V to 60V  
input. It delivers up to 1.7A and 0.9V to 90%V output  
IN  
voltage. Built-in compensation across the output voltage  
range eliminates the need for external components. The  
feedback (FB) regulation accuracy over -40NC to +125NC  
is ±1.1%.  
The device features a peak-current-mode control  
architecture. An internal transconductance error amplifier  
produces an integrated error voltage at an internal node,  
which sets the duty cycle using a PWM comparator, a high-  
side current-sense amplifier, and a slope-compensation  
generator. At each rising edge of the clock, the high-  
side MOSFET turns on and remains on until either  
the appropriate or maximum duty cycle is reached, or  
the peak current limit is detected. During the high-side  
MOSFET’sꢀon-time,ꢀtheꢀinductorꢀcurrentꢀrampsꢀup.ꢀDuringꢀ  
the second half of the switching cycle, the high-side  
MOSFET turns off and the low-side MOSFET turns on.  
The inductor releases the stored energy as its current  
ramps down and provides current to the output.  
The advantage of the PFM mode is higher efficiency at  
light loads because of lower quiescent current drawn from  
supply. The disadvantage is that the output-voltage ripple  
is higher compared to PWM or DCM modes of operation  
and switching frequency is not constant at light loads.  
DCM Mode Operation  
DCM mode of operation features constant frequency  
operation down to lighter loads than PFM mode, by not  
skipping pulses but only disabling negative inductor cur-  
rent at light loads. DCM operation offers efficiency perfor-  
mance that lies between PWM and PFM modes.  
The device features a MODE pin that can be used to operate  
the device in PWM, PFM, or DCN control schemes. The  
deviceꢀ integratesꢀ adjustable-inputꢀ undervoltageꢀ lockout,ꢀ  
adjustableꢀsoft-start,ꢀopenꢀRESET, and external frequency  
synchronization features. The MAX17505S offers a  
lower Minimum On-Time that allows for higher switching  
frequencies and a smaller solution size.  
Linear Regulator (VCC  
)
An internal linear regulator (V ) provides a 5V nominal  
CC  
supply to power the internal blocks and the low-side  
Mode Selection (MODE)  
The logic state of the MODE pin is latched when V  
MOSFET driver. The output of the linear regulator (V  
)
CC  
CC  
should be bypassed with a 2.2µF ceramic capacitor to  
SGND.ꢀ Theꢀ deviceꢀ employsꢀ anꢀ undervoltageꢀ lockoutꢀ  
and EN/UVLO voltages exceed the respective UVLO  
rising thresholds and all internal voltages are ready to  
allow LX switching. If the MODE pin is open at power-up,  
the device operates in PFM mode at light loads. If the  
MODE pin is grounded at power-up, the device operates  
in constant-frequency PWM mode at all loads. Finally,  
circuit that disables the internal linear regulator when V  
falls below 3.8V (typ).  
CC  
Setting the Switching Frequency (RT)  
The switching frequency of the device can be programmed  
fromꢀ 100kHzꢀ toꢀ 2.2MHzꢀ byꢀ usingꢀ aꢀ resistorꢀ connectedꢀ  
if the MODE pin is connected to V  
at power-up, the  
CC  
device operates in constant-frequency DCM mode at light  
loads. State changes on the MODE pin are ignored during  
normal operation.  
fromꢀtheꢀRTꢀpinꢀtoꢀSGND.ꢀTheꢀswitchingꢀfrequencyꢀ(f  
)
SW  
isꢀrelatedꢀtoꢀtheꢀresistorꢀconnectedꢀatꢀtheꢀRTꢀpinꢀ(R ) by  
RT  
the following equation:  
3
PWM Mode Operation  
21×10  
R
1.7  
RT  
In PWM mode, the inductor current is allowed to go  
negative. PWM operation provides constant frequency  
operation at all loads, and is useful in applications  
sensitiveꢀ toꢀ switchingꢀ frequency.ꢀ However,ꢀ theꢀ PWMꢀ  
mode of operation gives lower efficiency at light loads  
compared to PFM and DCM modes of operation.  
f
SW  
whereꢀR ꢀisꢀinꢀkΩꢀandꢀf ꢀisꢀinꢀkHz.ꢀLeavingꢀtheꢀRTꢀpinꢀ  
RT  
SW  
open causes the device to operate at the default switching  
frequencyꢀofꢀ500kHz.ꢀSeeꢀTable 1ꢀforꢀRTꢀresistorꢀvaluesꢀ  
for a few common switching frequencies.  
www.maximintegrated.com  
Maxim Integrated 17  
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
switch current at 3.4A (typ) protects the device under  
high input voltage, short-circuit conditions when there is  
insufficient output voltage available to restore the inductor  
current that was built up during the ON period of the  
step-down converter. One occurrence of the runaway  
current limit triggers a hiccup mode. In addition, if due to  
a fault condition, feedback voltage drops to 0.58V (typ)  
any time after soft-start is complete, and hiccup mode  
is triggered. In hiccup mode, the converter is protected  
by suspending switching for a hiccup timeout period of  
32,768 clock cycles. Once the hiccup timeout period  
expires, soft-start is attempted again. Note that when soft-  
start is attempted under overload condition, if feedback  
voltage does not exceed 0.58V, the device switches at  
halftheprogrammedswitchingfrequency.Hiccupmodeꢀ  
of operation ensures low power dissipation under output  
short-circuit conditions.  
Table 1. Switching Frequency vs. RT  
Resistor  
SWITCHING FREQUENCY (kHz)  
RT RESISTOR (kΩ)  
500  
100  
Open  
210  
200  
102  
400  
49.9  
19.1  
8.06  
1000  
2200  
Operating Input Voltage Range  
The minimum and maximum operating input voltages for  
a given output voltage should be calculated as follows:  
V
+ (I  
× (R  
+ 0.15))  
OUT  
OUT(MAX)  
DCR  
)
OFF(MAX)  
V
=
IN(MIN)  
1- (f  
× t  
SW(MAX)  
RESET Output  
+ (I  
× 0.175)  
OUT(MAX)  
The device includes a RESET comparator to monitor the  
output voltage. The open-drain RESET output requires  
an external pullup resistor. RESET goes high (high  
impedance) 1024 switching cycles after the regulator  
output increases above 95% of the designed nominal  
regulated voltage. RESET goes low when the regulator  
output voltage drops to below 92% of the nominal  
regulated voltage. RESET also goes low during thermal  
shutdown.  
V
OUT  
V
=
IN(MAX)  
f
× t  
)
ON(MIN)  
SW(MAX)  
where V  
is the steady-state output voltage, I  
OUT (MAX)  
OUT  
isꢀtheꢀmaximumꢀloadꢀcurrent,ꢀR  
is the DC resistance  
DCR  
of the inductor, f  
is the maximum switching  
is the worst-case minimum switch  
SW(MAX)  
frequency, t  
OFF-MAX  
off-time (160ns), and t  
switch on-time (135ns for the MAX17505, 80ns for the  
MAX17505S).  
is the worst-case minimum  
Prebiased Output  
ON-MIN  
When the device starts into a prebiased output, both the  
high-side and the low-side switches are turned off so that  
theꢀconverterꢀdoesꢀnotꢀsinkꢀcurrentꢀfromꢀtheꢀoutput.ꢀHigh-  
side and low-side switches do not start switching until  
the PWM comparator commands the first PWM pulse, at  
which point switching commences. The output voltage is  
then smoothly ramped up to the target value in alignment  
with the internal reference.  
External Frequency Synchronization (SYNC)  
The internal oscillator of the device can be synchronized  
to an external clock signal on the SYNC pin. The external  
synchronization clock frequency must be between 1.1  
x f  
and 1.4 x f , where f  
is the frequency  
SW  
SW  
SW  
programmedꢀ byꢀ theꢀ RTꢀ resistor.ꢀ Theꢀ minimumꢀ externalꢀ  
clock pulse-width high should be greater than 50ns. See  
the RT AND SYNC section in the Electrical Characteristics  
table for details.  
Thermal-Shutdown Protection  
Thermal-shutdown protection limits total power dissipation  
inꢀtheꢀdevice.ꢀWhenꢀtheꢀjunctionꢀtemperatureꢀofꢀtheꢀdeviceꢀ  
exceeds +165ºC, an on-chip thermal sensor shuts down  
the device, allowing the device to cool. The thermal sensor  
turnsthedeviceonagainafterthejunctiontemperatureꢀ  
cools by 10ºC. Soft-start resets during thermal shutdown.  
Carefully evaluate the total power dissipation (see the  
Power Dissipation section) to avoid unwanted triggering of  
the thermal shutdown in normal operation.  
Overcurrent Protection/Hiccup Mode  
The device is provided with a robust overcurrent protection  
scheme that protects the device under overload and  
output short-circuit conditions. A cycle-by-cycle peak  
current limit turns off the high-side MOSFET whenever  
the high-side switch current exceeds an internal limit  
of 2.8A (typ). A runaway current limit on the high-side  
www.maximintegrated.com  
Maxim Integrated 18  
 
 
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
Select a low-loss inductor closest to the calculated  
value with acceptable dimensions and having the lowest  
possible DC resistance. The saturation current rating  
Applications Information  
Input Capacitor Selection  
The input filter capacitor reduces peak currents drawn  
from the power source and reduces noise and voltage  
rippleꢀ onꢀ theꢀ inputꢀ causedꢀ byꢀ theꢀ circuit’sꢀ switching.ꢀ  
(I  
) of the inductor must be high enough to ensure that  
SAT  
saturation can occur only above the peak current-limit  
value of 2.8A.  
Theꢀ inputꢀ capacitorꢀ RMSꢀ currentꢀ requirementꢀ (I  
defined by the following equation:  
) is  
RMS  
Output Capacitor Selection  
X7Rꢀceramicꢀoutputꢀcapacitorsꢀareꢀpreferredꢀdueꢀtoꢀtheirꢀ  
stability over temperature in industrial applications. The  
output capacitors are usually sized to support a step load  
of 50% of the maximum output current in the application,  
so the output voltage deviation is contained to 3% of the  
output voltage change. The minimum required output  
capacitance can be calculated as follows:  
V
×(V - V  
)
OUT  
OUT  
IN  
I
= I  
×
OUT(MAX)  
RMS  
V
IN  
where, I  
is the maximum load current. I  
a maximum value when the input voltage equals twice  
the output voltage (V = 2 x V ), so I  
has  
RMS  
OUT(MAX)  
=
RMS(MAX)ꢀ  
IN  
OUT  
I
/2.  
OUT(MAX)  
I
× t  
1
2
STEP  
RESPONSE  
V  
Choose an input capacitor that exhibits less than +10ºC  
temperatureꢀ riseꢀ atꢀ theꢀ RMSꢀ inputꢀ currentꢀ forꢀ optimalꢀ  
long-termꢀreliability.ꢀUseꢀlow-ESRꢀceramicꢀcapacitorsꢀwithꢀ  
high-ripple-currentꢀcapabilityꢀatꢀtheꢀinput.ꢀX7Rꢀcapacitorsꢀ  
are recommended in industrial applications for their  
temperature stability. Calculate the input capacitance  
using the following equation:  
C
=
×
OUT  
OUT  
0.33  
1
t
(  
+
)
RESPONSE  
f
f
sw  
C
where I  
is the load current step, t  
is the  
STEP  
RESPONSE  
response time of the controller, DV  
is the allowable  
OUT  
output-voltage deviation, f is the target closed-loop crossover  
C
I
×D ×(1- D)  
OUT(MAX)  
C
=
frequency, and f  
is the switching frequency. For the  
IN  
SW  
η× f  
× ∆V  
IN  
SW  
MAX17505, select f to be 1/9th of f  
if the switching  
C
SW  
where D = V  
/V is the duty ratio of the controller,  
OUT IN  
frequencyꢀ isꢀ lessꢀ thanꢀ orꢀ equalꢀ toꢀ 500kHz.ꢀ Ifꢀ theꢀ switchingꢀ  
frequencyismorethan500kHz,selectf ꢀtobe55kHz.Forꢀ  
f
ꢀisꢀtheꢀswitchingꢀfrequency,ꢀΔV is the allowable input  
voltage ripple, and E is the efficiency.  
SW  
IN  
C
the MAX17505S, select f to be 1/10th of f  
if the switching  
C
SW  
In applications where the source is located distant from  
the device input, an electrolytic capacitor should be  
added in parallel to the ceramic capacitor to provide  
necessary damping for potential oscillations caused by  
the inductance of the longer input power path and input  
ceramic capacitor.  
frequencyꢀ isꢀ lessꢀ thanꢀ orꢀ equalꢀ toꢀ 1MHz.ꢀ Ifꢀ theꢀ switchingꢀ  
frequencyꢀisꢀmoreꢀthanꢀ1MHz,ꢀselectꢀf ꢀtoꢀbeꢀ100kHz.  
C
Derating of ceramic capacitors with DC-voltage must be  
considered while selecting the output capacitor. Derating  
curvesꢀareꢀavailableꢀfromꢀallꢀmajorꢀceramicꢀcapacitorꢀvendors.  
Soft-Start Capacitor Selection  
Inductor Selection  
Three key inductor parameters must be specified for  
operation with the device: inductance value (L), inductor  
Theꢀ deviceꢀ implementsꢀ adjustableꢀ soft-startꢀ operationꢀ toꢀ  
reduce inrush current. A capacitor connected from the SS pin  
toSGNDprogramsthesoft-starttime.Theselectedoutputꢀ  
saturation current (I  
),ꢀandꢀDCꢀresistanceꢀ(R  
). The  
SAT  
DCR  
capacitance (C ) and the output voltage (V ) determine  
SEL OUT  
switching frequency and output voltage determine the  
the minimum required soft-start capacitor as follows:  
inductor value as follows:  
-6  
C
28×10 × C  
× V  
SEL OUT  
SS  
V
f
OUT  
SW  
L =  
The soft-start time (t ) is related to the capacitor  
SS  
connected at SS (C ) by the following equation:  
SS  
where V  
, and f  
are nominal values. Select an  
C
OUT  
SW  
SS  
t
=
SS  
inductor whose value is nearest to the value calculated by  
the previous formula.  
-6  
5.55×10  
For example, to program a 1ms soft-start time, a 5.6nF  
capacitorꢀshouldꢀbeꢀconnectedꢀfromꢀtheꢀSSꢀpinꢀtoꢀSGND.  
www.maximintegrated.com  
Maxim Integrated 19  
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
V
IN  
V
OUT  
R1  
R2  
R3  
EN/UVLO  
FB  
R4  
SGND  
SGND  
Figure 1. Setting the Input Undervoltage Lockout  
Figure 2. Setting the Output Voltage  
Setting the Input Undervoltage-Lockout Level  
Theꢀdeviceꢀoffersꢀanꢀadjustableꢀinputꢀundervoltage-lockoutꢀ  
level. Set the voltage at which the device turns on with  
Adjusting Output Voltage  
Set the output voltage with a resistive voltage-divider  
connected from the positive terminal of the output  
a resistive voltage-divider connected from V ꢀ toꢀ SGND.ꢀ  
capacitor (V  
)toSGND(seeFigure2).Connecttheꢀ  
OUT  
IN  
Connect the center node of the divider to EN/UVLO.  
center node of the divider to the FB pin. Use the following  
procedure to choose the resistive voltage-divider values:  
Calculateꢀ resistorꢀ R3ꢀ fromꢀ theꢀ outputꢀ toꢀ theꢀ FBꢀ pinꢀ asꢀ  
follows:  
ChooseꢀR1ꢀtoꢀbeꢀ3.3MIꢀandꢀthenꢀcalculateꢀR2ꢀasꢀfollows:  
R1×1.215  
R2 =  
3
(V  
-1.215)  
216×10  
INU  
R3 =  
f
× C  
OUT  
C
where V  
is the voltage at which the device is required  
INU  
to turn on. Ensure that V  
is higher than 0.8 x V  
. If  
OUT  
whereꢀR3ꢀisꢀinꢀkΩ,ꢀcrossoverꢀfrequencyꢀf ꢀisꢀinꢀkHz,ꢀandꢀ  
C
INU  
the EN/UVLO pin is driven from an external signal source,  
aseriesresistanceofminimum1isrecommendedtoꢀ  
be placed between the signal source output and the EN/  
UVLO pin, to reduce voltage ringing on the line.  
the output capacitor C  
is in µF. For the MAX17505,  
OUT  
choose f to be 1/9th of the switching frequency, f , if  
C
SW  
theꢀswitchingꢀfrequencyꢀisꢀlessꢀthanꢀorꢀequalꢀtoꢀ500kHz.ꢀ  
Ifꢀtheꢀswitchingꢀfrequencyꢀisꢀmoreꢀthanꢀ500kHz,ꢀselectꢀf  
C
toꢀbeꢀ55kHz.ꢀForꢀtheꢀMAX17505S,ꢀselectꢀf to be 1/10th  
C
Loop Compensation  
of f  
if the switching frequency is less than or equal  
SW  
Theꢀ deviceꢀ isꢀ internallyꢀ loopꢀ compensated.ꢀ However,ꢀ ifꢀ  
theswitchingfrequencyislessthan500kHz,connectaꢀ  
0402 capacitor C6 between the CF pin and the FB pin.  
Use Table 2 to select the value of C6.  
to1MHz.Iftheswitchingfrequencyismorethan1MHz,ꢀ  
select f ꢀtoꢀbeꢀ100kHz.  
C
Table 2. C6 Capacitor Value at Various Switching Frequencies  
SWITCHING FREQUENCY RANGE (kHz)  
C6 (pF)  
2.2  
200 to 300  
300 to 400  
400 to 500  
1.2  
0.75  
www.maximintegrated.com  
Maxim Integrated 20  
 
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
CalculateꢀresistorꢀR4ꢀfromꢀtheꢀFBꢀpinꢀtoꢀSGNDꢀasꢀfollows  
Junctionꢀ temperatureꢀ greaterꢀ thanꢀ +125°Cꢀ degradesꢀ  
operating lifetimes.  
:
R3 × 0.9  
R4 =  
PCB Layout Guidelines  
(V  
- 0.9)  
OUT  
All connections carrying pulsed currents must be very  
short and as wide as possible. The inductance of these  
connections must be kept to an absolute minimum due to  
the high di/dt of the currents. Since inductance of a current  
carrying loop is proportional to the area enclosed by the  
loop, if the loop area is made very small, inductance is  
reduced. Additionally, small-current loop areas reduce  
radiated EMI.  
Power Dissipation  
At a particular operating condition, the power losses that  
lead to temperature rise of the part are estimated as  
follows:  
1
2
P
= (P  
×( - 1)) - I  
×R  
OUT DCR  
)
LOSS  
(
OUT  
η
A ceramic input filter capacitor should be placed close  
P
= V  
×I  
OUT  
OUT OUT  
to the V pins of the IC. This eliminates as much trace  
IN  
where P  
isꢀ theꢀ totalꢀ outputꢀ power,ꢀ ηꢀ isꢀ theꢀ efficiencyꢀ  
OUT  
inductance effects as possible and gives the IC a cleaner  
ofꢀ theꢀ converter,ꢀ andꢀ R  
is the DC resistances of the  
DCR  
voltage supply. A bypass capacitor for the V  
pin also  
CC  
inductor. (See the Typical Operating Characteristics for more  
information on efficiency at typical operating conditions.)  
For a multilayer board, the thermal performance metrics  
for the package are given below:  
should be placed close to the pin to reduce effects of trace  
impedance.  
When routing the circuitry around the IC, the analog  
small-signal ground and the power ground for switching  
currents must be kept separate. They should be connected  
together at a point where switching activity is at a  
θ
= 33°C W  
= 2°C W  
JA  
θ
minimum, typically the return terminal of the V  
bypass  
JC  
CC  
capacitor. This helps keep the analog ground quiet.  
The ground plane should be kept continuous/unbroken  
as far as possible. No trace carrying high switching  
current should be placed directly over any ground plane  
discontinuity.  
Theꢀjunctionꢀtemperatureꢀofꢀtheꢀdeviceꢀcanꢀbeꢀestimatedꢀ  
at any given maximum ambient temperature (T  
from the equation below:  
)
A_MAX  
T
= T  
+ θ ×P  
A_MAX JA LOSS  
(
)
J_MAX  
PCB layout also affects the thermal performance of the  
design. A number of thermal vias that connect to a large  
ground plane should be provided under the exposed pad  
of the part, for efficient heat dissipation.  
If the application has a thermal management system that  
ensures that the exposed pad of the device is maintained  
at a given temperature (T  
) by using proper heat  
EP_MAX  
sinks,ꢀthenꢀtheꢀjunctionꢀtemperatureꢀofꢀtheꢀdeviceꢀcanꢀbeꢀ  
estimated at any given maximum ambient temperature  
from the equation below:  
For a sample layout that ensures first pass success,  
refer to the MAX17505 evaluation kit layout available at  
www.maximintegrated.com.  
T
= T  
+ θ ×P  
(
)
J_MAX  
EP_MAX JC LOSS  
www.maximintegrated.com  
Maxim Integrated 21  
 
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
Recommended Component Placement for MAX17505/MAX17505S  
VOUT  
PLANE  
PGND PLANE  
L1  
LX PLANE  
C1  
C4  
C5  
LX PLANE  
PGND PLANE  
VIN PLANE  
MAX17505/  
MAX17505S  
SGND  
C2  
R1  
R2  
MODE  
R6  
C3  
C6  
R3  
R5  
SGND PLANE  
www.maximintegrated.com  
Maxim Integrated 22  
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
V
IN  
(6.5V TO 60V)  
C1  
2.2µF  
EN/UVLO  
V
IN  
V
IN  
V
IN  
RT  
BST  
LX  
C5  
0.1µF  
L1  
V
OUT  
SYNC  
10µH  
5V, 1.7A  
C4  
22µF  
MAX17505  
LX  
MODE  
R3  
178k  
LX  
FB  
V
CC  
C2  
2.2µF  
R4  
39kΩ  
SGND  
CF  
RESET  
SS  
PGND PGND PGND  
C3  
5.6nF  
f
= 500kHz  
SW  
L1 = 10µH (XAL6060-103ME)  
C4 = 22µF (MURATA GRM32ER71A226K)  
Figure 3. MAX17505 Typical Application Circuit (5V, 500kHz Switching Frequency)  
V
IN  
(4.5V TO 60V)  
C1  
2.2uF  
V
IN  
EN/UVLO  
V
IN  
V
IN  
V
IN  
RT  
BST  
LX  
C5  
0.1µF  
L1  
V
OUT  
SYNC  
6.8µH  
3.3V, 1.7A  
C4  
47µF  
LX  
MODE  
R3  
127k  
MAX17505  
LX  
FB  
V
CC  
C2  
2.2µF  
R4  
47.5kΩ  
SGND  
CF  
RESET  
SS  
PGND PGND PGND  
C3  
5600pF  
f
= 500kHz  
SW  
L1 = 6.8µH (XAL6060-682ME)  
C4 = 47µF (MURATA GRM32ER71A476K)  
Figure 4. MAX17505 Typical Application Circuit (3.3V, 500kHz Switching Frequency)  
www.maximintegrated.com  
Maxim Integrated 23  
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
V
IN  
C1  
2.2µF  
R5  
EN/UVLO  
V
V
IN  
IN  
V
IN  
RT  
BST  
C5  
19.1KΩ  
L1  
4.7µH  
V
OUT  
0.1µF  
5V,1.7A  
SYNC  
MODE  
LX  
LX  
C4  
10µF  
MAX17505S  
R3  
196KΩ  
LX  
FB  
V
CC  
C2  
2.2µF  
R4  
43.2KΩ  
SGND  
CF  
RESET  
PGND  
SS  
PGND  
PGND  
C3  
5.6nF  
f
= 1MHz  
SW  
L1 = 4.7µH (XAL4030, 4mm x 4mm)  
C4 = 10µH (MURATA GRM32DR71A106KA01)  
Figure 5. MAX17505S Typical Application Circuit (5V Output, 1MHz Switching Frequency)  
V
IN  
C1  
2.2µF  
R5  
EN/UVLO  
V
V
IN  
IN  
V
IN  
RT  
BST  
C5  
19.1KΩ  
L1  
3.3µH  
V
OUT  
0.1µF  
3.3V,1.7A  
SYNC  
MODE  
LX  
LX  
C4  
22µF  
MAX17505S  
R3  
115KΩ  
LX  
FB  
V
CC  
C2  
2.2µF  
R4  
43.2KΩ  
SGND  
CF  
RESET  
PGND  
SS  
PGND  
PGND  
C3  
5.6nF  
f
=
1MHz  
L1 = 3.3µH (XAL4030, 4mm x 4mm)  
C4 = 22µH (MURATA GRM32ER71A226KE20)  
SW  
Figure 6. MAX17505S Typical Application Circuit (3.3V Output, 1MHz Switching Frequency)  
www.maximintegrated.com  
Maxim Integrated 24  
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
Ordering Information  
PART  
PIN-PACKAGE  
MAX17505ATP+  
20 TQFN (4mm x 4mm)  
MAX17505SATP+  
20 TQFN-EP* (4mm x 4mm)  
Note: Device operates over the -40ºC to +125ºC temperature  
range, unless otherwise noted.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Chip Information  
PROCESS:ꢀBiCMOS  
www.maximintegrated.com  
Maxim Integrated 25  
 
MAX17505  
4.5V-60V, 1.7A, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
With Internal Compensation  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1
1/14  
Initial release  
10/16  
Added MAX17505S to data sheet  
1–17  
Updated part number in title and TOCs 8a, 12, 12a, 13, 13a, 14a, 15a, 16a, 17a, 18,  
18a, 19a, 20a, 21a, 22, 22a, 23, 23a, 24a, 25a, 26a, 27a, 29a, 31, and 31a  
2
5/17  
1–27  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim  
reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Character-  
istics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2017 Maxim Integrated Products, Inc.  
26  

相关型号:

MAX17509ATJ+

Dual Switching Controller, 2200kHz Switching Freq-Max, BICMOS, 5 X 5 MM, ROHS COMPLIANT, TQFN-32
MAXIM

MAX17509ATJ+T

IC REG BUCK ADJ 3A DL 32TQFN
MAXIM

MAX17510ATB+T

Terminator Support Circuit, BICMOS, PDSO10, 3 X 3 MM, ROHS COMPLIANT, TDFN-10
MAXIM

MAX17511

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7
MAXIM

MAX17511C

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7
MAXIM

MAX17511GTL+

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7
MAXIM

MAX17511N

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7
MAXIM

MAX17511T

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7
MAXIM

MAX17515

5A, 2.4V to 5.5V Input, High-Efficiency Power Module
MAXIM

MAX17521ATG+

Dual Switching Controller, Current-mode, 1.85A, 600kHz Switching Freq-Max, BICMOS, TQFN-24
MAXIM

MAX17523

4.5V to 36V Operating Voltage Range
MAXIM

MAX17523EVKIT

4.5V to 36V Operating Voltage Range
MAXIM