MAX17510ATB+T [MAXIM]

Terminator Support Circuit, BICMOS, PDSO10, 3 X 3 MM, ROHS COMPLIANT, TDFN-10;
MAX17510ATB+T
型号: MAX17510ATB+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Terminator Support Circuit, BICMOS, PDSO10, 3 X 3 MM, ROHS COMPLIANT, TDFN-10

信息通信管理 光电二极管 接口集成电路
文件: 总13页 (文件大小:433K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3279; Rev 5; 3/11  
Low-Voltage DDR Linear Regulators  
/MAX7510  
General Description  
Features  
The MAX1510/MAX17510 DDR linear regulators source  
and sink up to 3A peak (typ) using internal n-channel  
MOSFETs. These linear regulators deliver an accurate  
o Internal Power MOSFETs with Current Limit (3A typ)  
o Fast Load-Transient Response  
o External Reference Input with Reference  
0.5V to 1.5V output from a low-voltage power input (V  
IN  
Output Buffer  
= 1.1V to 3.6V). The MAX1510/MAX17510 use a sepa-  
rate 3.3V bias supply to power the control circuitry and  
drive the internal n-channel MOSFETs.  
o 1.1V to 3.6V Power Input  
o
15mV (max) Load-Regulation Error  
o Thermal-Fault Protection  
o Shutdown Input  
The MAX1510/MAX17510 provide current and thermal  
limits to prevent damage to the linear regulator.  
Additionally, the MAX1510/MAX17510 generate a  
power-good (PGOOD) signal to indicate that the output  
is in regulation. During startup, PGOOD remains low  
until the output is in regulation for 2ms (typ). The internal  
soft-start limits the input surge current.  
o Power-Good Window Comparator with 2ms  
(typ) Delay  
o Small, Low-Profile 10-Pin, 3mm x 3mm TDFN  
Package  
o Ceramic or Polymer Output Capacitors  
The MAX1510/MAX17510 power the active-DDR termi-  
nation bus that requires a tracking input reference. The  
MAX1510/MAX17510 can also be used in low-power  
chipsets and graphics processor cores that require  
dynamically adjustable output voltages. The  
MAX1510/MAX17510 are available in a 10-pin, 3mm x  
3mm thin DFN package.  
Ordering Information  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
TEMP RANGE  
MAX1510ETB  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +125°C  
10 TDFN-EP* ARD  
10 TDFN-EP* ABD  
10 TDFN-EP* AWD  
10 TDFN-EP* AWQ  
10 TDFN-EP* AWQ  
MAX1510ETB+  
MAX1510ATB/V+  
MAX17510ATB+  
Applications  
Notebook/Desktop Computers  
MAX17510ATB/V+ -40°C to +125°C  
DDR Memory Termination  
+Denotes a lead(Pb)-free and RoHS-compliant package.  
*EP = Exposed pad.  
/V denotes an automotive qualified part.  
Active Termination Buses  
Graphics Processor Core Supplies  
Chipset/RAM Supplies as Low as 0.5V  
Pin Configuration  
Typical Operating Circuit  
V
IN  
(1.1V TO 3.6V)  
V
= V  
TT  
OUT  
IN  
OUT  
TOP VIEW  
OUTS  
10  
9
8
7
6
MAX1510  
V
BIAS  
(2.7V TO 3.6V)  
MAX17510  
V
PGND  
MAX1510  
CC  
MAX17510  
AGND  
SHDN  
+
1
2
3
4
5
PGOOD  
V
DDQ  
(2.5V OR 1.8V)  
V
= V  
TTR  
REFOUT  
REFIN  
REFOUT  
TDFN  
3mm x 3mm  
A "+" SIGN WILL REPLACE THE FIRST PIN INDICATOR ON LEAD-FREE PACKAGES.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Low-Voltage DDR Linear Regulators  
ABSOLUTE MAXIMUM RATINGS  
IN to PGND............................................................-0.3V to +4.3V  
Operating Temperature Range  
OUT to PGND ..............................................-0.3V to (V + 0.3V)  
MAX1510ETB...................................................-40°C to +85°C  
MAX17510ATB ..............................................-40°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow)  
IN  
OUTS to AGND............................................-0.3V to (V + 0.3V)  
IN  
V
CC  
to AGND.........................................................-0.3V to +4.3V  
REFIN, REFOUT, SHDN, PGOOD to AGND..-0.3V to (V + 0.3V)  
CC  
PGND to AGND.....................................................-0.3V to +0.3V  
REFOUT Short Circuit to AGND .................................Continuous  
OUT Continuous RMS Current: 100s .................................. 1.6A  
1s...................................... 2.5A  
Lead(Pb)-free packages..............................................+260°C  
Packages containing lead(Pb).....................................+240°C  
Continuous Power Dissipation (T = +70°C)  
A
10-Pin 3mm x 3mm Thin DFN  
(derated 24.4mW/°C above +70°C)...........................1951mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 1.8V, V  
= 3.3V, V  
= V  
= 1.25V, SHDN = V , circuit of Figure 1, T = T = -40°C to +85°C for MAX1510ETB, T =  
IN  
CC  
REFIN  
OUTS  
CC  
J
A
J
/MAX7510  
T
A
= -40°C to +125°C for MAX17510ATB, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.1  
TYP  
MAX  
3.6  
3.6  
1.3  
600  
100  
10  
UNITS  
V
V
Power input  
Bias supply  
Load = 0, V  
IN  
Input-Voltage Range  
V
2.7  
CC  
CC  
Quiescent Supply Current (V  
)
I
> 0.45V  
REFIN  
0.7  
350  
50  
mA  
µA  
CC  
SHDN = GND, V  
> 0.45V  
REFIN  
Shutdown Supply Current (V  
)
I
CC(SHDN)  
CC  
SHDN = GND, REFIN = GND  
Load = 0  
Quiescent Supply Current (V  
)
I
IN  
0.4  
0.1  
0
mA  
µA  
IN  
Shutdown Supply Current (V  
)
I
SHDN = GND  
10  
IN  
IN(SHDN)  
T
T
= +25°C  
-4  
-6  
+4  
A
REFIN to OUTS  
200mA  
+1A  
Feedback-Voltage Error  
V
mV  
OUTS  
I
=
OUT  
= -40°C to +125°C  
+6  
A
Load-Regulation Error  
Line-Regulation Error  
OUTS Input-Bias Current  
OUTPUT  
-1A I  
-15  
+15  
mV  
mV  
µA  
OUT  
1.4V V 3.3V, I  
=
100mA  
1
IN  
OUT  
I
-1  
+1  
OUTS  
Output Adjust Range  
0.5  
1.5  
V
High-side MOSFET (source) (I  
= 0.1A)  
0.14  
0.14  
3
0.25  
0.25  
OUT  
OUT On-Resistance  
Low-side MOSFET (sink) (I  
= -0.1A)  
OUT  
Output Current Slew Rate  
C
= 100µF, I  
= 0.1A to 2A  
A/µs  
dB  
kΩ  
OUT  
OUT  
OUT Power-Supply Rejection  
Ratio  
10Hz < f < 10kHz, I  
= 200mA,  
OUT  
PSRR  
80  
12  
8
C
= 100µF  
OUT  
OUT-to-OUTS Resistance  
R
OUTS  
DISCHARGE  
Discharge MOSFET  
On-Resistance  
R
SHDN = GND  
2
_______________________________________________________________________________________  
Low-Voltage DDR Linear Regulators  
/MAX7510  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 1.8V, V  
IN  
= 3.3V, V  
= V  
= 1.25V, SHDN = V , circuit of Figure 1, T = T = -40°C to +85°C for MAX1510ETB, T =  
CC  
REFIN  
OUTS  
CC  
J
A
J
T
A
= -40°C to +125°C for MAX17510ATB, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
REFERENCE  
REFIN Voltage Range  
REFIN Input-Bias Current  
V
0.5  
-1  
1.5  
+1  
V
REFIN  
I
T
A
= +25°C  
µA  
REFIN  
REFIN Undervoltage-Lockout  
Voltage  
Rising edge, hysteresis = 50mV  
0.35  
0.45  
V
V
V
REFIN  
+ 0.01  
REFIN  
REFOUT Voltage  
V
V
= 3.3V, I  
= 0V  
V
V
REFOUT  
CC  
REFOUT  
REFIN  
- 0.01  
REFOUT Load Regulation  
FAULT DETECTION  
ΔV  
I
=
5mA  
-20  
+20  
mV  
REFOUT  
REFOUT  
Thermal-Shutdown Threshold  
T
Rising edge, hysteresis = 15°C  
Rising edge, hysteresis = 100mV  
+165  
2.55  
°C  
V
SHDN  
V
Undervoltage-Lockout  
CC  
V
2.45  
2.65  
1.1  
UVLO  
Threshold  
IN Undervoltage-Lockout  
Threshold  
Rising edge, hysteresis = 55mV  
0.9  
V
T
T
= -40°C to +85°C  
= -40°C to +125°C  
1.8  
1.5  
3
3
4.2  
4.2  
A
Current-Limit Threshold  
I
A
LIMIT  
A
Soft-Start Current-Limit Time  
t
200  
µs  
SS  
INPUTS AND OUTPUTS  
With respect to feedback threshold,  
hysteresis = 12mV  
PGOOD Lower Trip Threshold  
PGOOD Upper Trip Threshold  
PGOOD Propagation Delay  
-200  
100  
5
-150  
150  
10  
-100  
200  
35  
mV  
mV  
µs  
With respect to feedback threshold,  
hysteresis = 12mV  
OUTS forced 25mV beyond PGOOD trip  
threshold  
t
I
PGOOD  
Startup rising edge, OUTS within 100mV of  
the feedback threshold  
PGOOD Startup Delay  
1
2
3.5  
0.3  
1
ms  
V
PGOOD Output Low Voltage  
PGOOD Leakage Current  
I
= 4mA  
SINK  
OUTS = REFIN (PGOOD high impedance),  
PGOOD = V + 0.3V, T = +25°C  
µA  
PGOOD  
CC  
A
Logic-high  
Logic-low  
2.0  
V
V
SHDN Logic Input Threshold  
SHDN Logic Input Current  
0.8  
-1  
SHDN = V  
or GND, T = +25°C  
+1  
µA  
CC  
A
Note 1: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed through cor-  
A
relation using statistical-quality-control (SQC) methods.  
_______________________________________________________________________________________  
3
Low-Voltage DDR Linear Regulators  
Typical Operating Characteristics  
(Circuit of Figure 1. T = +25°C, unless otherwise noted.)  
A
MAXIMUM OUTPUT CURRENT  
vs. INPUT VOLTAGE  
OUTPUT LOAD REGULATION  
OUTPUT LOAD REGULATION  
3.0  
2.5  
0.96  
0.94  
1.300  
1.275  
1.250  
1.225  
1.200  
V
= 0.9V  
V
= 1.25V  
REFIN  
REFIN  
V
= 0.9V  
OUT  
V
= 1.25V  
OUT  
2.0  
1.5  
1.0  
0.92  
0.90  
0.88  
V
= 1.8V  
IN  
V
= 1.5V  
IN  
THERMALLY LIMITED  
DROPOUT VOLTAGE LIMITED  
V
= 1.2V  
IN  
V
= 1.5V  
1
IN  
0.5  
0
0.86  
0.84  
1.0  
1.5  
2.0  
2.5  
3.0  
-3  
-2  
-1  
0
1
2
3
-3  
-2  
-1  
0
2
3
INPUT VOLTAGE (V)  
I
(A)  
I
(A)  
OUT  
OUT  
/MAX7510  
BIAS CURRENT (I  
)
BIAS CURRENT (I  
)
INPUT CURRENT (I )  
CC  
CC  
IN  
vs. INPUT VOLTAGE (V )  
vs. LOAD CURRENT (I  
)
vs. INPUT VOLTAGE (V )  
IN  
OUT  
IN  
1.4  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
250  
200  
150  
100  
50  
V
= 1.5V  
IN  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
= 1.25V  
= 0.90V  
OUT  
OUT  
V
= 1.25V  
OUT  
V
= 1.25V  
OUT  
V
= 0.90V  
OUT  
ENTERING  
DROPOUT  
DROPOUT  
INPUT UVLO  
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
(V)  
0
-2  
-1  
0
1
2
0
0
0.5 1.0  
1.5 2.0  
(V)  
2.5 3.0 3.5  
I
(A)  
V
V
OUT  
IN  
IN  
POWER GROUND CURRENT (I  
vs. SOURCE LOAD CURRENT (I  
)
)
INPUT CURRENT (I )  
IN  
vs. SINK LOAD CURRENT (I  
DROPOUT VOLTAGE  
vs. OUTPUT CURRENT  
PGND  
OUT  
)
OUT  
7
6
5
4
3
2
1
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.6  
V
= 1.5V  
V
= 1.5V  
IN  
IN  
0.5  
0.4  
0.3  
0.2  
V
= 1.25V  
OUT  
ENTERING  
DROPOUT  
V
= 0.90V  
OUT  
V
= 1.25V  
OUT  
V
= 1.25V  
OUT  
V
= 0.9V  
OUT  
V
= 0.90V  
0.5  
OUT  
0.1  
0
-2.0  
-1.5  
-1.0  
(A)  
-0.5  
0.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
1.0  
(A)  
1.5  
2.0  
I
OUTPUT CURRENT (A)  
I
OUT  
OUT  
4
_______________________________________________________________________________________  
Low-Voltage DDR Linear Regulators  
/MAX7510  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1. T = +25°C, unless otherwise noted.)  
A
REFOUT VOLTAGE ERROR  
vs. REFOUT LOAD CURRENT  
STARTUP WAVEFORM  
SHUTDOWN WAVEFORM  
MAX1510/MAX17510 toc11  
MAX1510/MAX17510 toc12  
5V  
SHDN  
0V  
5V  
SHDN  
0V  
20  
15  
10  
5
R
= 100Ω  
LOAD  
2V  
1V  
1.25V  
V
V
OUT  
OUT  
0V  
0V  
0
4V  
4V  
-5  
-10  
-15  
-20  
PGOOD  
0V  
PGOOD  
0V  
500μs/div  
-10  
-5  
0
5
10  
100μs/div  
REFOUT LOAD CURRENT (mA)  
SOURCE/SINK LOAD TRANSIENT  
SOURCE LOAD TRANSIENT  
MAX1510/MAX17510 toc14  
MAX1510/MAX17510 toc13  
V
OUT  
AC-COUPLED  
5mV/div  
V
OUT  
AC-COUPLED  
1mV/div  
+1.5A  
I
1A  
OUT  
-1.5A  
I
OUT  
0A  
4.00μs/div  
20.0μs/div  
LINE TRANSIENT  
DYNAMIC OUTPUT-VOLTAGE TRANSIENT  
MAX1510/MAX17510 toc15  
MAX1510/MAX17510 toc16  
V
= 1.5V  
2.5V  
IN  
3.3V  
V
DDQ  
V
(1V/div)  
1.8V  
IN  
1.5V  
1.2V  
V
REFOUT  
V
(10mV/div)  
OUT  
0.9V  
1.2V  
AC-COUPLED  
0.9V  
V
OUT  
0.9V  
I
= 100mA  
OUT  
40μs/div  
20.0μs/div  
_______________________________________________________________________________________  
5
Low-Voltage DDR Linear Regulators  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1. T = +25°C, unless otherwise noted.)  
A
SINK CURRENT-LIMIT  
DISTRIBUTION  
SOURCE CURRENT-LIMIT  
DISTRIBUTION  
DYNAMIC OUTPUT-VOLTAGE TRANSIENT  
MAX1510/MAX17510 toc17  
50  
50  
40  
30  
20  
10  
0
V
= 1.8V  
SAMPLE SIZE = 200  
SAMPLE SIZE = 200  
2.5V  
+25°C  
IN  
+25°C  
+85°C  
+85°C  
V
DDQ  
40  
30  
20  
10  
0
1.8V  
1.2V  
V
REFOUT  
0.9V  
1.2V  
V
OUT  
0.9V  
20.0μs/div  
-4.0  
-3.5  
-3.0  
-2.5  
-2.0  
2.0  
2.5  
3.0  
3.5  
4.0  
SINK CURRENT LIMIT (A)  
SOURCE CURRENT LIMIT (A)  
/MAX7510  
SINK CURRENT-LIMIT DISTRIBUTION  
T = +125°C  
SOURCE CURRENT-LIMIT DISTRIBUTION  
T = +125°C  
A
A
50  
50  
40  
30  
20  
10  
0
SAMPLE SIZE = 200  
SAMPLE SIZE = 200  
40  
30  
20  
10  
0
SINK CURRENT LIMIT (A)  
SOURCE CURRENT LIMIT (A)  
SINK LOAD REGULATION DISTRIBUTION  
SINK CURRENT-LIMIT DISTRIBUTION  
I
= -1A, T = +125°C  
T = +125°C  
A
OUT  
A
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
SAMPLE SIZE = 200  
SAMPLE SIZE = 200  
1
2
3
4
5
6
7
8
9
10 11  
SINK LOAD REGULATION (mV)  
SINK CURRENT LIMIT (A)  
6
_______________________________________________________________________________________  
Low-Voltage DDR Linear Regulators  
/MAX7510  
Pin Description  
PIN  
NAME  
FUNCTION  
Buffered Reference Output. The output of the unity-gain reference input buffer sources and sinks over  
5mA. Bypass REFOUT to AGND with a 0.33µF or greater ceramic capacitor.  
1
REFOUT  
Analog Supply Input. Connect to the system supply voltage (+3.3V). Bypass V  
greater ceramic capacitor.  
to AGND with a 1µF or  
CC  
2
V
CC  
3
4
AGND  
REFIN  
Analog Ground. Connect the backside pad to AGND.  
External Reference Input. REFIN sets the output regulation voltage (V  
= V  
).  
REFIN  
OUTS  
Open-Drain Power-Good Output. PGOOD is low when the output voltage is more than 150mV (typ) above  
or below the regulation point, during soft-start, and when shut down. 2ms after the output reaches the  
regulation voltage during startup, PGOOD becomes high impedance.  
5
PGOOD  
Output Sense Input. The OUTS regulation level is set by the voltage at REFIN. Connect OUTS to the  
remote DDR termination bypass capacitors. OUTS is internally connected to OUT through a 12kΩ  
resistor.  
6
7
OUTS  
Shutdown Control Input. Connect to V  
for normal operation. Connect to analog ground to shut down the  
CC  
SHDN  
linear regulator. The reference buffer remains active in shutdown.  
Power Ground. Internally connected to the output sink MOSFET.  
Output of the Linear Regulator  
8
9
PGND  
OUT  
IN  
10  
Power Input. Internally connected to the output source MOSFET.  
Exposed Pad. Internally connected to AGND. Connect EP to AGND PCB ground plane to maximize  
thermal performance. Not intended as an electrical connection point.  
EP  
Detailed Description  
The MAX1510/MAX17510 are low-voltage, low-dropout  
DDR termination linear regulators with an external bias  
supply input and a buffered reference output (see  
V
= V = V /2  
TT DDQ  
OUT  
V
=
IN  
IN  
OUT  
1.1V TO 3.6V  
C
C
10μF  
OUT1  
100μF  
IN2  
Figures 1 and 2). V  
is powered by a 2.7V to 3.6V  
CC  
supply that is commonly available in laptop and desk-  
top computers. The 3.3V bias supply drives the gate of  
the internal pass transistor, while a lower voltage input  
at the drain of the transistor (IN) is regulated to provide  
MAX1510  
MAX17510  
3.3V BIAS  
SUPPLY  
V
PGND  
CC  
C1  
1.0μF  
V
. By using separate bias and power inputs, the  
OUT  
R3  
100kΩ  
AGND  
MAX1510/MAX17510 can drive an n-channel high-side  
MOSFET and use a lower input voltage to provide bet-  
ter efficiency.  
POWER-GOOD  
PGOOD  
SHDN  
OUTS  
ON  
The MAX1510/MAX17510 regulate their output voltage  
to the voltage at REFIN. When used in DDR applica-  
tions as a termination supply, the MAX1510/MAX17510  
deliver 1.25V or 0.9V at 3A peak (typ) from an input  
voltage of 1.1V to 3.6V. The MAX1510/MAX17510 sink  
up to 3A peak (typ) as required in a termination sup-  
ply. The MAX1510/MAX17510 provide shoot-through  
protection, ensuring that the source and sink  
MOSFETs do not conduct at the same time, yet pro-  
duce a fast source-to-sink load transient.  
OFF  
R1  
10kΩ  
V
= V  
REFOUT  
TTR  
V
DDQ  
REFIN  
REFOUT  
C
REFIN  
1000pF  
C
R2  
10kΩ  
REFOUT  
0.33μF  
Figure 1. Standard Application Circuit  
_______________________________________________________________________________________  
7
Low-Voltage DDR Linear Regulators  
INPUT  
1.1V TO 3.6V  
V
CC  
IN  
3.3V BIAS  
SUPPLY  
SOFT-  
START  
EN  
UVLO  
SHDN  
REFIN  
OFF ON  
THERMAL  
SHDN  
V
DDQ  
OUT  
V
TT  
Gm  
/MAX7510  
PGND  
12kΩ  
REFOUT  
AGND  
V
TTR  
OUTS  
REFIN  
+150mV  
EN  
8Ω  
REFIN  
-150mV  
PGOOD  
MAX1510  
MAX17510  
POWER-  
GOOD  
DELAY  
LOGIC  
Figure 2. Functional Diagram  
8
_______________________________________________________________________________________  
Low-Voltage DDR Linear Regulators  
/MAX7510  
The MAX1510/MAX17510 feature an open-drain  
connected to ceramic bypass capacitors (0.33µF to  
PGOOD output that transitions high 2ms after the out-  
put initially reaches regulation. PGOOD goes low within  
10µs of when the output goes out of regulation by  
150mV. The MAX1510/MAX17510 feature current- and  
thermal-limiting circuitry to prevent damage during fault  
conditions.  
1.0µF). REFOUT is active when V  
> 0.45V and  
REFIN  
V
is above V  
. REFOUT is independent of  
UVLO  
CC  
SHDN.  
Shutdown  
Drive SHDN low to disable the error amplifier, gate-  
drive circuitry, and pass transistor (Figure 2). In shut-  
down, OUT is terminated to GND with an 8Ω MOSFET.  
REFOUT is independent of SHDN. Connect SHDN to  
3.3V Bias Supply (V  
)
CC  
The V  
input powers the control circuitry and provides  
CC  
the gate drive to the pass transistor. This improves effi-  
ciency by allowing V to be powered from a lower sup-  
V
CC  
for normal operation.  
IN  
Current Limit  
ply voltage. Power V  
supply. Current drawn from the V  
from a well-regulated 3.3V  
CC  
The MAX1510/MAX17510 feature source and sink cur-  
rent limits to protect the internal n-channel MOSFETs.  
The source and sink MOSFETs have a typical 3A cur-  
rent limit (1.8A min). This current limit prevents damage  
to the internal power transistors, but the device can  
enter thermal shutdown if the power dissipation  
increases the die temperature above +165°C (see the  
Thermal-Overload Protection section).  
supply remains rel-  
CC  
atively constant with variations in V and load current.  
IN  
Bypass V  
with a 1µF or greater ceramic capacitor as  
CC  
close to the device as possible.  
V
Undervoltage Lockout (UVLO)  
CC  
The V  
input undervoltage-lockout (UVLO) circuitry  
CC  
ensures that the regulator starts up with adequate volt-  
age for the gate-drive circuitry to bias the internal pass  
Soft-Start Current Limit  
Soft-start gradually increases the internal source cur-  
rent limit to reduce input surge currents at startup. Full-  
source current limit is available after the 200µs soft-start  
timer has expired. The soft-start current limit is  
given by:  
transistor. The UVLO threshold is 2.55V (typ). V  
remain above this level for proper operation.  
must  
CC  
Power-Supply Input (IN)  
IN provides the source current for the linear regulator’s  
output, OUT. IN connects to the drain of the internal n-  
channel power MOSFET. IN can be as low as 1.1V,  
minimizing power dissipation. The input UVLO prohibits  
operation below 0.8V (typ). Bypass IN with a 10µF or  
greater capacitor as close to the device as possible.  
I
× t  
LIMIT  
I
=
LIMIT(SS)  
t
SS  
where I  
and t  
are from the Electrical  
SS  
LIMIT  
Characteristics.  
Reference Input (REFIN)  
The MAX1510/MAX17510 regulate OUTS to the voltage  
set at REFIN, making the MAX1510/MAX17510 ideal for  
memory applications where the termination supply must  
track the supply voltage. Typically, REFIN is set by an  
external resistive voltage-divider connected to the  
Thermal-Overload Protection  
Thermal-overload protection prevents the linear regula-  
tor from overheating. When the junction temperature  
exceeds +165°C, the linear regulator and reference  
buffer are disabled, allowing the device to cool. Normal  
operation resumes once the junction temperature cools  
by 15°C. Continuous short-circuit conditions result in a  
pulsed output until the overload is removed. A continu-  
ous thermal-overload condition results in a pulsed out-  
put. For continuous operation, do not exceed the  
absolute maximum junction-temperature rating  
of +150°C.  
memory supply (V  
) as shown in Figure 1.  
DDQ  
The maximum output voltage of 1.5V is limited by the  
gate-drive voltage of the internal n-channel power  
transistor.  
Buffered Reference Output (REFOUT)  
REFOUT is a unity-gain transconductance amplifier that  
generates the DDR reference supply. It sources and  
sinks greater than 5mA. The reference buffer is typically  
_______________________________________________________________________________________  
9
Low-Voltage DDR Linear Regulators  
200μs  
SHDN  
CURRENT LIMIT  
OUTPUT OVERLOAD  
CONDITION  
POWER-GOOD  
WINDOW  
OUT  
2ms STARTUP  
DELAY  
PGOOD  
10μs  
PROPAGATION  
DELAY  
10μs  
PROPAGATION  
/MAX7510  
DELAY  
Figure 3. MAX1510/MAX17510 PGOOD and Soft-Start Waveforms  
Power-Good (PGOOD)  
The MAX1510/MAX17510 provide an open-drain  
PGOOD output that goes high 2ms (typ) after the out-  
put initially reaches regulation during startup as shown  
in Figure 3. PGOOD transitions low 10µs after the out-  
put goes out of regulation by 150mV, or when the  
device enters shutdown. Connect a pullup resistor from  
REFERENCE  
VOLTAGE  
(V  
)
REF  
R1  
PGOOD to V  
for a logic-level output. Use a 100kΩ  
CC  
MAX1510  
MAX17510  
resistor to minimize current consumption.  
C
REFIN  
REFIN  
Applications Information  
Dynamic Output-Voltage Transitions  
By changing the voltage at REFIN, the MAX1510/  
MAX17510 can be used in applications that require  
dynamic output-voltage changes between two set  
points (graphics processors). Figure 4 shows a dynam-  
ically adjustable resistive voltage-divider network at  
REFIN. Using an external signal MOSFET, a resistor  
can be switched in and out of the REFIN resistor-  
divider, changing the voltage at REFIN. The two output  
voltages are determined by the following equations:  
R2  
R3  
V
OUT(LOW)  
V
OUT(HIGH)  
R2  
V
V
=
V
REF  
OUT(LOW)  
OUT(HIGH)  
)
(
R1 + R2  
R2  
(R2 + R3)  
V
=
V
= V  
REF  
REF  
OUT(LOW)  
R1 + (R2 + R3)  
R1 + R2  
R2 +R3  
(
)
V
= V  
REF  
OUT(HIGH)  
Figure 4. Dynamic Output-Voltage Change  
R1 + R2 +R3  
(
)
10 ______________________________________________________________________________________  
Low-Voltage DDR Linear Regulators  
/MAX7510  
For a step voltage change at REFIN, the rate of change  
SAFE OPERATING REGION  
of the output voltage is limited by the total output  
capacitance, the current limit, and the load during the  
transition. Adding a capacitor across REFIN and AGND  
filters noise and controls the rate of change of the  
REFIN voltage during dynamic transitions. With the  
additional capacitance, the REFIN voltage slews  
between the two set points with a time constant given  
3.5  
DROPOUT VOLTAGE  
3.0 LIMITED  
MAXIMUM CURRENT LIMIT  
1s RMS  
LIMIT  
2.5  
2.0  
1.5  
1.0  
0.5  
°
°
T
= 0 C TO +70 C  
A
100s RMS  
LIMIT  
by R  
x C  
, where R  
is the equivalent parallel  
EQ  
REFIN  
EQ  
V
- V  
OUT(MIN)  
resistance seen by the slew capacitor.  
IN(MAX)  
Operating Region and Power Dissipation  
The maximum power dissipation of the MAX1510/  
MAX17510 depends on the thermal resistance of the 10-  
pin TDFN package and the circuit board, the tempera-  
ture difference between the die and ambient air, and the  
rate of airflow. The power dissipated in the device is:  
°
T
= +100 C  
A
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
INPUT-OUTPUT DIFFERENTIAL VOLTAGE (V)  
P
= I  
SINK  
x (V – V  
IN  
SINK  
)
OUT  
SRC  
P
SRC  
= I  
Figure 5. Power Operating Region—Maximum Output Current  
vs. Input-Output Differential Voltage  
x V  
OUT  
The resulting maximum power dissipation is:  
V
= R  
x I  
DROPOUT  
DS(ON) OUT  
For low output-voltage applications, the sink current is  
T
- T  
A
J(MAX)  
limited by the output voltage and the R  
MOSFET.  
of the  
DS(ON)  
P
=
DIS(MAX)  
θ
+ θ  
CA  
JC  
Input Capacitor Selection  
where T  
is the maximum junction temperature  
J(MAX)  
Bypass IN to PGND with a 10µF or greater ceramic  
(+150°C), T is the ambient temperature, θ is the ther-  
A
JC  
capacitor. Bypass V  
to AGND with a 1µF ceramic  
CC  
mal resistance from the die junction to the package case,  
and θ is the thermal resistance from the case through  
capacitor for normal operation in most applications.  
Typically, the LDO is powered from the output of a  
step-down controller (memory supply) that has addi-  
tional bulk capacitance (polymer or tantalum) and dis-  
tributed ceramic capacitors.  
CA  
the PCB, copper traces, and other materials to the sur-  
rounding air. For optimum power dissipation, use a large  
ground plane with good thermal contact to the backside  
pad, and use wide input and output traces.  
When 1 square inch of copper is connected to the  
device, the maximum allowable power dissipation of a  
10-pin DFN package is 1951mW. The maximum power  
Output Capacitor Selection  
The MAX1510/MAX17510 output stability is indepen-  
dent of the output capacitance for C  
from 10µF to  
OUT  
dissipation is derated by 24.4mW/°C above T = +70°C.  
A
220µF. Capacitor ESR between 2mΩ and 50mΩ is  
needed to maintain stability. Within the recommended  
capacitance and ESR limits, the output capacitor  
should be chosen to provide good transient response:  
Extra copper on the PCB increases thermal mass and  
reduces thermal resistance of the board. Refer to the  
MAX1510 evaluation kit for a layout example.  
The MAX1510/MAX17510 deliver up to 3A and oper-  
ates with input voltages up to 3.6V, but not simultane-  
ously. High output currents can only be achieved when  
the input-output differential voltages are low (Figure 5).  
ΔI  
x ESR = ΔV  
OUT(P-P)  
is the maximum peak-to-peak load-  
OUT(P-P)  
where ΔI  
OUT(P-P)  
current step (typically equal to the maximum source  
load plus the maximum sink load), and ΔV is  
the allowable peak-to-peak voltage tolerance.  
OUT(P-P)  
Dropout Operation  
A regulator’s minimum input-to-output voltage differen-  
tial (dropout voltage) determines the lowest usable sup-  
ply voltage. Because the MAX1510/MAX17510 use an  
n-channel pass transistor, the dropout voltage is a func-  
Using larger output capacitance can improve efficiency  
in applications where the source and sink currents  
change rapidly. The capacitor acts as a reservoir for  
the rapid source and sink currents, so no extra current  
is supplied by the MAX1510/MAX17510 or discharged  
to ground, improving efficiency.  
tion of the drain-to-source on-resistance (R  
=
DS(ON)  
0.25Ω max) multiplied by the load current (see the  
Typical Operating Characteristics):  
______________________________________________________________________________________ 11  
Low-Voltage DDR Linear Regulators  
Noise, PSRR, and Transient Response  
PCB Layout Guidelines  
The MAX1510/MAX17510 operate with low-dropout  
voltage and low quiescent current in notebook comput-  
ers while maintaining good noise, transient response,  
and AC rejection specifications. Improved supply-noise  
rejection and transient response can be achieved by  
increasing the values of the input and output capaci-  
tors. Use passive filtering techniques when operating  
from noisy sources.  
The MAX1510/MAX17510 require proper layout to  
achieve the intended output power level and low noise.  
Proper layout involves the use of a ground plane,  
appropriate component placement, and correct routing  
of traces using appropriate trace widths. Refer to the  
MAX1510 evaluation kit for a layout example:  
• Minimize high-current ground loops. Connect the  
ground of the device, the input capacitor, and the  
output capacitor together at one point.  
The MAX1510/MAX17510 load-transient response  
graphs (see the Typical Operating Characteristics) show  
two components of the output response: a DC shift from  
the output impedance due to the load-current change  
and the transient response. A typical transient response  
for a step change in the load current from -1.5A to  
+1.5A is 10mV. Increasing the output capacitor’s value  
and decreasing the ESR attenuate the overshoot.  
• To optimize performance, a ground plane is essen-  
tial. Use all available copper layers in applications  
where the device is located on a multilayer board.  
• Connect the input filter capacitor less than 10mm  
from IN. The connecting copper trace carries large  
currents and must be at least 2mm wide, preferably  
5mm wide.  
• Connect the backside pad to a large ground plane.  
Use as much copper as necessary to decrease the  
thermal resistance of the device. In general, more  
copper provides better heatsinking capabilities.  
/MAX7510  
Chip Information  
PROCESS: BiCMOS  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
10 TDFN  
T1033+1  
21-0137  
90-0003  
12 ______________________________________________________________________________________  
Low-Voltage DDR Linear Regulators  
/MAX7510  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
DESCRIPTION  
CHANGED  
0
1
2
3
5/04  
1/05  
8/05  
4/09  
Initial release  
Raised Absolute Maximum rating  
Added MAX1510ETB  
1, 14  
1
Added automotive-qualified part MAX1510ETB/V+  
1, 2, 7, 12, 13  
Added MAX17510 to data sheet; added temperature grades for MAX1510ATB+ and  
MAX1510ATB/V+; minor edits  
1, 2, 3, 6,  
7, 12, 13  
4
5
7/09  
3/11  
Added MAX17510 automotive qualified part  
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX17511

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7
MAXIM

MAX17511C

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7
MAXIM

MAX17511GTL+

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7
MAXIM

MAX17511N

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7
MAXIM

MAX17511T

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7
MAXIM

MAX17515

5A, 2.4V to 5.5V Input, High-Efficiency Power Module
MAXIM

MAX17521ATG+

Dual Switching Controller, Current-mode, 1.85A, 600kHz Switching Freq-Max, BICMOS, TQFN-24
MAXIM

MAX17523

4.5V to 36V Operating Voltage Range
MAXIM

MAX17523EVKIT

4.5V to 36V Operating Voltage Range
MAXIM

MAX17524

4.5V to 60V, 3A, Dual-Output, High-Efficiency,Synchronous Step-Down DC-DC Converter
MAXIM

MAX17524ATJ+

4.5V to 60V, 3A, Dual-Output, High-Efficiency,Synchronous Step-Down DC-DC Converter
MAXIM

MAX17525

Robust, High-Power Protection Reduces System
MAXIM