MAX4019ESD-T [MAXIM]

Buffer Amplifier, 3 Func, PDSO14, SO-14;
MAX4019ESD-T
型号: MAX4019ESD-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Buffer Amplifier, 3 Func, PDSO14, SO-14

放大器 光电二极管
文件: 总12页 (文件大小:271K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1284; Rev 2; 8/01  
Low-Cost, High-Speed, Single-Supply, Gain of +2  
Buffers with Rail-to-Rail Outputs in SOT23  
_______________General Description  
____________________________Features  
Internal Precision Resistors for Closed-Loop  
The MAX4014/MAX4017/MAX4019/MAX4022 are preci-  
sion, closed-loop, gain of +2 (or -1) buffers featuring  
high slew rates, high output current drive, and low dif-  
ferential gain and phase errors. These single-supply  
devices operate from +3.15V to +11V, or from 1.575V  
to 5.5V dual supplies. The input voltage range eꢀtends  
100mV beyond the negative supply rail and the outputs  
swing Rail-to-Rail®.  
Gains of +2 or -1  
High Speed:  
200MHz -3dB Bandwidth  
30MHz 0.1dB Gain Flatness (6MHz min)  
600V/µs Slew Rate  
Single 3.3V/5.0V Operation  
Outputs Swing Rail-to-Rail  
These devices require only 5.5mA of quiescent supply  
current while achieving a 200MHz -3dB bandwidth and  
a 600V/µs slew rate. In addition, the MAX4019 has a  
disable feature that reduces the supply current to  
400µA. Input voltage noise for these parts is only  
10nV/Hz and input current noise is only 1.3pA/Hz.  
This buffer family is ideal for low-power/low-voltage  
applications that require wide bandwidth, such as  
video, communications, and instrumentation systems.  
For space-sensitive applications, the MAX4014 comes  
in a tiny 5-pin SOT23 package.  
Input Voltage Range Extends Beyond V  
EE  
Low Differential Gain/Phase: 0.04%/0.02°  
Low Distortion at 5MHz:  
-78dBc Spurious-Free Dynamic Range  
-75dB Total Harmonic Distortion  
High Output Drive: 120mA  
Low, 5.5mA Supply Current  
400µA Shutdown Supply Current  
Space-Saving SOT23-5, µMAX, or QSOP Packages  
_____________________Selector Guide  
______________Ordering Information  
NO. OF  
AMPS  
PART  
ENABLE  
No  
PIN-PACKAGE  
5-Pin SOT23  
PIN-  
SOT  
PART  
TEMP. RANGE  
PACKAGE TOP MARK  
MAX4014  
MAX4017  
MAX4019  
MAX4022  
1
MAX4014EUK -40°C to +85°C  
MAX4017ESA -40°C to +85°C  
MAX4017EUA -40°C to +85°C  
MAX4019ESD -40°C to +85°C  
5 SOT23-5  
8 SO  
ABZQ  
2
3
4
No  
8-Pin SO/µMAX  
8 µMAX  
14 SO  
14-Pin SO,  
16-Pin QSOP  
Yes  
MAX4019EEE  
MAX4022ESD -40°C to +85°C  
MAX4022EEE -40°C to +85°C  
-40°C to +85°C  
16 QSOP  
14 SO  
14-Pin SO,  
16-Pin QSOP  
No  
16 QSOP  
________________________Applications  
__________Typical Operating Circuit  
Portable/Battery-Powered Instruments  
Video Line Driver  
IN+  
75Ω  
V
Analog-to-Digital Converter Interface  
CCD Imaging Systems  
OUT  
75Ω  
Video Routing and Switching Systems  
MAX4014  
500Ω  
500Ω  
IN-  
Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.  
GAIN OF +2 VIDEO/RF CABLE DRIVER  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Cost, High-Speed, Single-Supply, Gain of +2  
Buffers with Rail-to-Rail Outputs in SOT23  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V  
to V )..................................................12V  
8-pin µMAX (derate 4.1mW/°C above +70°C)..............330mW  
14-pin SO (derate 8.3mW/°C above +70°C).................667mW  
16-pin QSOP (derate 8.3mW/°C above +70°C)............667mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
EE  
IN_-, IN_+, OUT_, EN_ ....................(V - 0.3V) to (V  
+ 0.3V)  
EE  
CC  
Output Short-Circuit Duration to V  
or V ..............Continuous  
CC  
EE  
Continuous Power Dissipation (T = +70°C)  
A
5-pin SOT23 (derate 7.1mW/°C above+70°C)..............571mW  
8-pin SO (derate 5.9mW/°C above +70°C)...................471mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= +5V, V = 0V, IN_- =0V, EN_ = 5V, R = to ground, V  
= V  
/ 2, noninverting configuration, T = T  
to T  
, unless  
MAX  
CC  
EE  
L
CC  
A
MIN  
OUT  
otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
IN_+  
IN_-  
V
EE  
V
EE  
- 0.1  
V
- 2.25  
+ 0.1  
20  
CC  
Input Voltage Range  
V
V
IN  
- 0.1  
V
CC  
Input Offset Voltage  
V
OS  
R = 50Ω  
L
4
8
mV  
Input Offset Voltage Drift  
TC  
µV/°C  
VOS  
Any channels for  
MAX4017/MAX4019/MAX4022  
Input Offset Voltage Matching  
1
mV  
Input Bias Current  
Input Resistance  
Voltage Gain  
I
IN_+ (Note 2)  
5.4  
3
20  
µA  
MΩ  
V/V  
mΩ  
B
R
IN_+, over input voltage range  
R 50, (V + 0.5V) V  
IN  
A
(V  
CC  
- 2.0V)  
MAX  
1.9  
2
2.1  
V
L
EE  
OUT  
Output Resistance  
R
f = DC  
25  
120  
OUT  
T
T
= +25°C  
70  
60  
A
R = 20to V  
or  
L
CC  
Output Current  
I
mA  
OUT  
V
EE  
= T  
to T  
A
MIN  
Short-Circuit Output Current  
I
Sinking or sourcing  
R = 50Ω  
150  
1.60  
0.04  
0.75  
0.04  
0.06  
0.06  
57  
mA  
SC  
V
V
V
V
V
V
- V  
2.00  
0.50  
1.50  
0.50  
CC  
OH  
L
- V  
OL  
CC  
OL  
CC  
OL  
EE  
- V  
OH  
Output Voltage Swing  
V
OUT  
R =150Ω  
L
V
- V  
- V  
EE  
OH  
EE  
R = 2kΩ  
L
- V  
V
CC  
V
CC  
V
CC  
V
CC  
= 5V, V = 0V, V  
= 2V  
46  
EE  
OUT  
Power-Supply Rejection Ratio  
(Note 3)  
PSRR  
= 5V, V = -5V, V  
= 0V  
OUT  
54  
66  
dB  
EE  
= 3.3V, V = 0V, V  
= 0.9V  
OUT  
45  
EE  
Operating Supply-Voltage Range  
Disabled Output Resistance  
EN_ Logic-Low Threshold  
EN_ Logic-High Threshold  
to V  
3.15  
11.0  
V
kΩ  
V
EE  
R
MAX4019, EN_ = 0V, 0V V  
MAX4019  
5V  
OUT  
1
OUT(OFF)  
V
V
- 2.6  
IL  
CC  
V
MAX4019  
V
- 1.5  
V
IH  
CC  
(V + 0.2V) EN_ V  
0.5  
200  
0.5  
5.5  
0.4  
EE  
CC  
EN_ Logic Input Low Current  
EN_ Logic Input High Current  
I
MAX4019  
µA  
µA  
IL  
EN_ = V  
550  
10  
EE  
I
IH  
MAX4019, EN_ = V  
CC  
Enabled (EN_ = V  
8.0  
0.7  
CC)  
Quiescent Supply Current  
(per Buffer)  
I
mA  
CC  
MAX4019, disabled (EN_ = V  
)
EE  
2
_______________________________________________________________________________________  
Low-Cost, High-Speed, Single-Supply, Gain of +2  
Buffers with Rail-to-Rail Outputs in SOT23  
AC ELECTRICAL CHARACTERISTICS  
(V  
= +5V, V  
= 0V, IN_- = 0V, EN_ = 5V, R = 100to ground, noninverting configuration, T = T  
to T unless  
MAX,  
CC  
EE  
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 20mVp-p  
MIN  
TYP  
200  
140  
MAX  
UNITS  
MHz  
Small-Signal -3dB Bandwidth  
Large-Signal -3dB Bandwidth  
BW  
BW  
V
V
SS  
LS  
OUT  
= 2Vp-p  
MHz  
OUT  
Bandwidth for 0.1dB Gain  
Flatness  
BW  
V
OUT  
= 20mVp-p (Note 4)  
6
30  
MHz  
0.1dB  
Slew Rate  
SR  
V
OUT  
V
OUT  
V
OUT  
= 2V step  
= 2V step  
= 100mVp-p  
600  
45  
1
V/µs  
ns  
Settling Time to 0.1%  
Rise/Fall Time  
t
S
t , t  
R
ns  
F
Spurious-Free Dynamic  
Range  
SFDR  
f
= 5MHz, V  
= 2Vp-p  
-78  
dBc  
dBc  
C
OUT  
Second harmonic  
-78  
-82  
Third harmonic  
V
= 2Vp-p,  
OUT  
Harmonic Distortion  
HD  
IP3  
f
C
= 5MHz  
Total harmonic  
distortion  
-75  
Third-Order Intercept  
Input 1dB Compression Point  
Differential Phase Error  
Differential Gain Error  
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
f = 10.0MHz  
= 10MHz, A  
35  
11  
0.02  
0.04  
10  
1.3  
1
dBm  
dBm  
degrees  
%
f
C
= +2V/V  
VCL  
DP  
NTSC, R = 150Ω  
L
DG  
NTSC, R = 150Ω  
L
e
n
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
pF  
i
n
C
IN  
OUT(OFF)  
Disabled Output Capacitance  
Output Impedance  
C
MAX4019, EN_ = 0V  
f = 10MHz  
2
pF  
Z
OUT  
6
Buffer Enable Time  
t
MAX4019  
100  
1
ns  
ON  
Buffer Disable Time  
t
MAX4019  
µs  
OFF  
MAX4017/MAX4019/MAX4022,  
f = 10MHz, V = 20mVp-p  
Buffer Gain Matching  
Buffer Crosstalk  
0.1  
-95  
dB  
dB  
OUT  
MAX4017/MAX4019/MAX4022,  
f = 10MHz, V = 2Vp-p  
X
TALK  
OU  
T
Note 1: The MAX4014EUK is 100% production tested at T = +25°C. Specifications over temperature limits are guaranteed by  
A
design.  
Note 2: Tested with V  
= +2.5V.  
OUT  
Note 3: PSRR for single +5V supply tested with V = 0V, V  
= +4.5V to +5.5V; for dual 5V supply with V = -4.5V to -5.5V,  
EE  
EE  
CC  
V
CC  
= +4.5V to +5.5V; and for single +3V supply with V = 0V, V  
= +3.15V to +3.45V.  
EE  
CC  
Note 4: Guaranteed by design.  
_______________________________________________________________________________________  
3
Low-Cost, High-Speed, Single-Supply, Gain of +2  
Buffers with Rail-to-Rail Outputs in SOT23  
__________________________________________Typical Operating Characteristics  
(V  
= +5V, V = 0V, A  
= +2, R = 150to V / 2, T = +25°C, unless otherwise noted.)  
CC  
A
CC  
EE  
VCL  
L
SMALL-SIGNAL GAIN vs. FREQUENCY  
GAIN FLATNESS vs. FREQUENCY  
LARGE-SIGNAL GAIN vs. FREQUENCY  
8
6.8  
8
7
6
5
4
3
6.7  
7
6
5
4
3
2
1
6.6  
6.5  
6.4  
6.3  
6.2  
6.1  
6.0  
2
1
5.9  
0
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
CLOSED-LOOP OUTPUT IMPEDANCE  
vs. FREQUENCY  
HARMONIC DISTORTION  
vs. FREQUENCY  
MAX4017/19/22  
CROSSTALK vs. FREQUENCY  
1000  
100  
10  
0
50  
30  
V
= 2Vp-p  
OUT  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
10  
-10  
-30  
-50  
-70  
2ND HARMONIC  
-90  
1
-110  
-130  
3RD HARMONIC  
10M  
0.1  
-100  
-150  
0.1M  
1M  
10M  
100M  
100k  
1M  
100M  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
MAX4019  
OFF ISOLATION vs. FREQUENCY  
HARMONIC DISTORTION  
vs. LOAD  
HARMONIC DISTORTION  
vs. OUTPUT SWING  
0
0
10  
0
f = 5MHz  
= 2Vp-p  
f = 5MHz  
-10  
-10  
V
OUT  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-20  
-30  
-40  
-50  
-60  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-70  
-80  
-90  
2rd HARMONIC  
2ND HARMONIC  
3RD HARMONIC  
-80  
-90  
3rd HARMONIC  
200  
-100  
-100  
100k  
1M  
10M  
100M  
0
400  
600  
800  
1000  
0.5  
1.0  
1.5  
2.0  
FREQUENCY (Hz)  
LOAD ()  
OUTPUT SWING (Vp-p)  
4
_______________________________________________________________________________________  
Low-Cost, High-Speed, Single-Supply, Gain of +2  
Buffers with Rail-to-Rail Outputs in SOT23  
__________________________________________Typical Operating Characteristics  
(V  
= +5V, V = 0V, A  
= +2, R = 150to V  
/ 2, T = +25°C, unless otherwise noted.)  
A
CC  
EE  
VCL  
L
CC  
POWER-SUPPLY REJECTION  
vs. FREQUENCY  
CURRENT NOISE DENSITY  
vs. FREQUENCY  
VOLTAGE NOISE DENSITY  
vs. FREQUENCY  
20  
10  
100  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
10  
-80  
1
1
100k  
1M  
10M  
100M  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
OUTPUT SWING  
vs. LOAD RESISTANCE  
OUTPUT SWING  
vs. LOAD RESISTANCE (R )  
BANDWIDTH  
vs. LOAD RESISTANCE  
L
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
400  
350  
300  
250  
200  
150  
100  
50  
5
4
3
2
0
10  
100  
1k  
10k  
100k  
1M  
25  
50  
75  
100  
125  
150  
0
100  
200  
300  
400  
500  
600  
LOAD RESISTANCE ()  
LOAD RESISTANCE ()  
LOAD RESISTANCE ()  
POWER-SUPPLY CURRENT (PER AMPLIFIER)  
vs. TEMPERATURE  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
INPUT OFFSET CURRENT  
vs. TEMPERATURE  
7
6.0  
5.5  
5.0  
4.5  
4.0  
0.20  
0.16  
0.12  
0.08  
0.04  
0
6
5
4
3
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Low-Cost, High-Speed, Single-Supply, Gain of +2  
Buffers with Rail-to-Rail Outputs in SOT23  
__________________________________________Typical Operating Characteristics  
(V  
= +5V, V = 0V, A  
= +2, R = 150to V / 2, T = +25°C, unless otherwise noted.)  
CC  
A
CC  
EE  
VCL  
L
POWER-SUPPLY CURRENT (PER AMPLIFIER)  
vs. POWER-SUPPLY VOLTAGE  
INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
VOLTAGE SWING vs. TEMPERATURE  
5.0  
10  
5
R = 150TO V / 2  
L
CC  
8
4.8  
4.6  
4.4  
4.2  
4.0  
4
3
2
1
0
6
4
2
0
-50  
-25  
0
25  
50  
75  
100  
3
4
5
6
7
8
9
10 11  
-50  
-25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
POWER-SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SMALL-SIGNAL PULSE RESPONSE  
DIFFERENTIAL GAIN AND PHASE  
(C = 5pF)  
SMALL-SIGNAL PULSE RESPONSE  
L
MAX4014-24  
0.01  
0.00  
-0.01  
-0.02  
IN  
IN  
-0.03  
-0.04  
-0.05  
0
100  
IRE  
0.010  
0.005  
0.000  
OUT  
OUT  
-0.005  
-0.010  
-0.015  
-0.020  
-0.025  
TIME (20ns/div)  
0
100  
TIME (20ns/div)  
IRE  
V
= 1.25V, R = 100to GROUND  
CM L  
LARGE-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
ENABLE RESPONSE TIME  
(C = 5pF)  
L
MAX4014-25  
MAX4014-27  
MAX4014-26  
5.0V  
(ENABLE)  
IN  
EN_  
OUT  
IN  
0V  
(DISABLE)  
OUT  
1V  
0V  
OUT  
TIME (20ns/div)  
TIME (1µs/div)  
TIME (20ns/div)  
V = 0.5V  
IN  
V
= 0.9V, R = 100to GROUND  
V
= 1.75V, R = 100to GROUND  
CM  
L
CM  
L
6
_______________________________________________________________________________________  
Low-Cost, High-Speed, Single-Supply, Gain of +2  
Buffers with Rail-to-Rail Outputs in SOT23  
______________________________________________________________Pin Description  
PIN  
MAX4014 MAX4017  
MAX4019  
QSOP  
MAX4022  
QSOP  
NAME  
FUNCTION  
SOT23-5  
SO/µMAX  
SO  
SO  
No Connect. Not internally connected. Tie to  
ground or leave open.  
1
4
8, 9  
8, 9  
N.C.  
OUT  
Amplifier Output  
Negative Power Supply or Ground  
(in single-supply operation)  
2
11  
13  
11  
13  
V
EE  
3
8
4
4
4
4
IN+  
IN-  
Noninverting Input  
4
Inverting Input  
5
V
CC  
Positive Power Supply  
Amplifier A Output  
1
7
7
1
1
OUTA  
INA-  
2
6
6
2
2
Amplifier A Inverting Input  
Amplifier A Noninverting Input  
Amplifier B Output  
3
5
5
3
3
INA+  
OUTB  
INB-  
7
8
10  
11  
12  
16  
15  
14  
1
7
7
6
9
6
6
Amplifier B Inverting Input  
Amplifier B Noninverting Input  
Amplifier C Output  
5
10  
14  
13  
12  
1
5
5
INB+  
OUTC  
INC-  
8
10  
11  
12  
16  
15  
14  
9
Amplifier C Inverting Input  
Amplifier C Noninverting Input  
Amplifier D Output  
10  
14  
13  
12  
INC+  
OUTD  
IND-  
Amplifier D Inverting Input  
Amplifier D Noninverting Input  
Enable Input for Amplifier A  
Enable Input for Amplifier B  
Enable Input for Amplifier C  
IND+  
ENA  
3
3
ENB  
2
2
ENC  
_______________________________________________________________________________________  
7
Low-Cost, High-Speed, Single-Supply, Gain of +2  
Buffers with Rail-to-Rail Outputs in SOT23  
+2V/V, ground the inverting terminal. Use the noninvert-  
_______________Detailed Description  
ing terminal as the signal input of the buffer (Figure 1a).  
The MAX4014/MAX4017/MAX4019/MAX4022 are sin-  
Grounding the noninverting terminal and using the  
gle-supply, rail-to-rail output, voltage-feedback, closed-  
inverting terminal as the signal input configures the  
loop buffers that employ current-feedback techniques  
buffer for a gain of -1V/V (Figure 1b).  
to achieve 600V/µs slew rates and 200MHz band-  
Since the inverting input eꢀhibits a 500input imped-  
ance, terminate the input with a 56resistor when the  
device is configured for an inverting gain in 50appli-  
cations (terminate with 88in 75applications).  
Terminate the input with a 49.9resistor in the nonin-  
verting case. Output terminating resistors should direct-  
ly match cable impedances in either configuration.  
widths. These buffers use internal 500resistors to  
provide a preset closed-loop gain of +2V/V in the non-  
inverting configuration or -1V/V in the inverting configu-  
ration. Eꢀcellent harmonic distortion and differential  
gain/phase performance make these buffers an ideal  
choice for a wide variety of video and RF signal-pro-  
cessing applications.  
Local feedback around the buffer’ s output stage  
ensures low output impedance, which reduces gain  
sensitivity to load variations. This feedback also pro-  
duces demand-driven current bias to the output tran-  
sistors for 120mA drive capability, while constraining  
total supply current to less than 7mA.  
Layout Techniques  
Maꢀim recommends using microstrip and stripline tech-  
niques to obtain full bandwidth. To ensure that the PC  
board does not degrade the buffer’s performance, design  
it for a frequency greater than 1GHz. Pay careful attention  
to inputs and outputs to avoid large parasitic capaci-  
tance. Whether or not you use a constant-impedance  
board, observe the following guidelines when designing  
the board:  
__________Applications Information  
Power Supplies  
These devices operate from a single +3.15V to +11V  
power supply or from dual supplies of 1.575V to  
• Don’t use wire-wrapped boards. They are too inductive.  
• Don’t use IC sockets. They increase parasitic capac-  
itance and inductance.  
5.5V. For single-supply operation, bypass the V  
pin  
CC  
to ground with a 0.1µF capacitor as close to the pin as  
possible. If operating with dual supplies, bypass each  
supply with a 0.1µF capacitor.  
• Use surface-mount instead of through-hole compon-  
ents for better high-frequency performance.  
• Use a PC board with at least two layers; it should be  
as free from voids as possible.  
Selecting Gain Configuration  
Each buffer in the MAX4014 family can be configured  
for a voltage gain of +2V/V or -1V/V. For a gain of  
• Keep signal lines as short and as straight as possi-  
ble. Do not make 90° turns; round all corners.  
IN+  
IN+  
IN  
*R  
*R  
OUT  
OUT  
R
OUT  
TIN  
R
OUT  
*R  
S
*R  
500Ω  
IN-  
IN  
500Ω  
500Ω  
MAX40_ _  
500Ω  
IN-  
R
TIN  
MAX40_ _  
*R = 2R  
L
*R = 2R  
L
Figure 1a. Noninverting Gain Configuration (A = +2V/V)  
Figure 1b. Inverting Gain Configuration (A = -1V/V)  
V
V
8
_______________________________________________________________________________________  
Low-Cost, High-Speed, Single-Supply, Gain of +2  
Buffers with Rail-to-Rail Outputs in SOT23  
0
-1  
20  
0
-2  
-20  
-40  
-3  
-4  
-60  
-80  
-5  
-6  
-100  
-120  
-140  
-160  
-7  
-8  
-9  
-10  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
V
IL  
(mV ABOVE V  
)
EE  
V
IL  
(mV ABOVE V  
)
EE  
Figure 2. Enable Logic-Low Input Current vs. Enable Logic-  
Low Threshold  
Figure 4. Enable Logic-Low Input Current vs. Enable Logic-  
Low Threshold with 10kSeries Resistor  
the output-drive capability, since the buffers have a  
fiꢀed voltage gain of +2 or -1.  
ENABLE  
10k  
For eꢀample, a 50load can typically be driven from  
40mV above V to 1.6V below V , or 40mV to 3.4V  
EE  
CC  
when operating from a single +5V supply. If the buffer is  
operated in the noninverting, gain of +2 configuration  
with the inverting input grounded, the effective input  
voltage range becomes 20mV to 1.7V, instead of the  
-100mV to 2.75V indicated by the Electrical Character-  
istics. Beyond the effective input range, the buffer out-  
put is a nonlinear function of the input, but it will not  
undergo phase reversal or latchup.  
IN+  
IN-  
EN_  
MAX40_ _  
OUT  
500Ω  
500Ω  
Enable  
The MAX4019 has an enable feature (EN_) that allows  
the buffer to be placed in a low-power state. When the  
buffers are disabled, the supply current will not eꢀceed  
550µA per buffer.  
Figure 3. Circuit to Reduce Enable Logic-Low Input Current  
Input Voltage Range and Output Swing  
The input range for the MAX4014 family eꢀtends from  
(V - 100mV) to (V  
EE  
- 2.25V). Input ground sensing  
CC  
As the voltage at the EN_ pin approaches the negative  
supply rail, the EN_ input current rises. Figure 2 shows  
a graph of EN_ input current versus EN_ pin voltage.  
Figure 3 shows the addition of an optional resistor in  
series with the EN pin, to limit the magnitude of the cur-  
rent increase. Figure 4 displays the resulting EN pin  
input current to voltage relationship.  
increases the dynamic range for single-supply applica-  
tions. The outputs drive a 2kload to within 60mV of  
the power-suply rails. With heavier loads, the output  
swing is reduced as shown in the Electrical Character-  
istics and the Typical Operating Characteristics. As the  
load increases, the input range is effectively limited by  
_______________________________________________________________________________________  
9
Low-Cost, High-Speed, Single-Supply, Gain of +2  
Buffers with Rail-to-Rail Outputs in SOT23  
MAX4014  
MAX4017  
MAX4019  
MAX4022  
500Ω  
500Ω  
IN+  
R
ISO  
OUT  
V
OUT  
MAX40_ _  
V
C
IN  
L
R
TIN  
50Ω  
IN-  
500Ω  
500Ω  
Figure 5. Input Protection Circuit  
Figure 7. Driving a Capacitive Load through an Isolation Resistor  
conditions, the input protection diodes will be forward  
biased, lowering the disabled output resistance to 500.  
6
5
4
3
Output Capacitive Loading and Stability  
The MAX4014/MAX4017/MAX4019/MAX4022 provide  
maꢀimum AC performance with no load capacitance.  
This is the case when the load is a properly terminated  
transmission line. However, they are designed to drive  
up 25pF of load capacitance without oscillating, but  
with reduced AC performance.  
C = 15pF  
L
C = 10pF  
L
2
1
0
Driving large capacitive loads increases the chance of  
oscillations occurring in most amplifier circuits. This is  
especially true for circuits with high loop gains, such as  
voltage followers. The buffer’s output resistance and  
the load capacitor combine to add a pole and eꢀcess  
phase to the loop response. If the frequency of this  
pole is low enough to interfere with the loop response  
and degrade phase margin sufficiently, oscillations can  
occur.  
C = 5pF  
-1  
-2  
-3  
-4  
L
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 6. Small-Signal Gain vs. Frequency with Load  
Capacitance and No Isolation Resistor  
A second problem when driving capacitive loads  
results from the amplifier’s output impedance, which  
looks inductive at high frequencies. This inductance  
forms an L-C resonant circuit with the capacitive load,  
which causes peaking in the frequency response and  
degrades the amplifier’s gain margin.  
Disabled Output Resistance  
The MAX4014/MAX4017/MAX4019/MAX4022 include  
internal protection circuitry that prevents damage to the  
precision input stage from large differential input volt-  
ages, as shown in Figure 5. This protection circuitry con-  
sists of five back-to-back Schottky diodes between IN_+  
and IN_-. These diodes lower the disabled output resis-  
tance from 1kto 500when the output voltage is 3V  
greater or less than the voltage at IN_+. Under these  
Figure 6 shows the frequency response of the MAX4014/  
MAX4017/MAX4019/MAX4022 under different capacitive  
loads. To drive loads with greater than 25pF of capaci-  
tance or to settle out some of the peaking, the output  
requires an isolation resistor like the one shown in  
10 ______________________________________________________________________________________  
Low-Cost, High-Speed, Single-Supply, Gain of +2  
Buffers with Rail-to-Rail Outputs in SOT23  
30  
25  
20  
15  
10  
5
3
2
R
= 27Ω  
ISO  
C = 47pF  
L
1
0
C = 68pF  
L
-1  
-2  
-3  
-4  
-5  
-6  
-7  
C = 120pF  
L
0
100k  
1M  
10M  
100M  
1G  
0
50  
100  
150  
200  
250  
FREQUENCY (Hz)  
CAPACITIVE LOAD (pF)  
Figure 8. Capacitive Load vs. Isolation Resistance  
Figure 9. Small-Signal Gain vs. Frequency with Load  
Capacitance and 27Isolation Resistor  
Figure 7. Figure 8 is a graph of the optimal isolation resis-  
tor versus load capacitance. Figure 9 shows the frequen-  
cy response of the MAX4014/MAX4017/MAX4019/  
MAX4022 when driving capacitive loads with a 27isola-  
tion resistor.  
Coaꢀial cables and other transmission lines are easily dri-  
ven when properly terminated at both ends with their  
characteristic impedance. Driving back-terminated trans-  
mission lines essentially eliminates the lines’ capacitance.  
______________________________________________________________________________________ 11  
Low-Cost, High-Speed, Single-Supply, Gain of +2  
Buffers with Rail-to-Rail Outputs in SOT23  
__________________________________________________________Pin Configurations  
TOP VIEW  
ENA  
ENC  
ENB  
1
2
3
4
5
6
7
14 OUTC  
13 INC-  
12 INC+  
OUT  
1
2
3
5
4
V
CC  
OUTA  
INA-  
1
2
3
4
8
7
6
5
V
CC  
OUTB  
INB-  
MAX4014  
MAX4017  
MAX4019  
V
EE  
INA+  
V
11  
V
EE  
CC  
V
INB+  
INA+  
INA-  
10 INB+  
EE  
IN+  
IN-  
9
8
INB-  
SO/µMAX  
SOT23-5  
OUTA  
OUTB  
SO  
OUTA  
INA-  
1
2
3
4
5
6
7
14 OUTD  
13 IND-  
12 IND+  
ENA  
1
2
3
4
5
6
7
8
16 OUTC  
15 INC-  
14 INC+  
OUTA  
INA-  
1
2
3
4
5
6
7
8
16 OUTD  
15 IND-  
14 IND+  
ENC  
ENB  
INA+  
INA+  
MAX4019  
MAX4022  
MAX4022  
V
11  
V
EE  
V
13 V  
EE  
CC  
V
CC  
13 V  
EE  
CC  
INB+  
INB-  
10 INC+  
INA+  
INA-  
12 INB+  
11 INB-  
10 OUTB  
INB+  
INB-  
12 INC+  
11 INC-  
10 OUTC  
9
8
INC-  
OUTB  
OUTC  
OUTA  
N.C.  
OUTB  
N.C.  
9
N.C.  
9
N.C.  
SO  
QSOP  
QSOP  
___________________Chip Information  
NO. OF  
PART NUMBER  
TRANSISTORS  
MAX4014  
MAX4017  
MAX4019  
MAX4022  
95  
190  
299  
362  
SUBSTRATE CONNECTED TO V  
EE  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2001 Maꢀim Integrated Products  
Printed USA  
is a registered trademark of Maꢀim Integrated Products.  

相关型号:

MAX4020

Low-Cost, High-Speed, SOT23, Single-Supply Op Amps with Rail-to-Rail Outputs
MAXIM

MAX40200

Ultra-Tiny Micropower, 1A Ideal Diode
MAXIM

MAX40200ANS+

Analog Circuit,
MAXIM

MAX40200AUK+

Analog Circuit,
MAXIM

MAX40200AUK+*

Ultra-Tiny Micropower, 1A Ideal Diode
MAXIM

MAX40200AUK+T

暂无描述
MAXIM

MAX40200_V01

Ultra-Tiny Micropower, 1A Ideal Diode with Ultra-Low Voltage Drop
MAXIM

MAX40201FAUA+T

Operational Amplifier,
MAXIM

MAX40203AUK+T

Analog Circuit,
MAXIM

MAX4020EEE

Low-Cost, High-Speed, SOT23, Single-Supply Op Amps with Rail-to-Rail Outputs
MAXIM

MAX4020EEE+

Video Amplifier, 1 Channel(s), 4 Func, PDSO16, 0.150 INCH, 0.025 INCH PITCH, MO-137AB, QSOP-16
MAXIM

MAX4020EEE+T

Video Amplifier, 1 Channel(s), 4 Func, PDSO16, 0.150 INCH, 0.025 INCH PITCH, MO-137AB, QSOP-16
MAXIM