MIC2619_11 [MICREL]

1.2MHz PWM Boost Converter with OVP;
MIC2619_11
型号: MIC2619_11
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

1.2MHz PWM Boost Converter with OVP

文件: 总15页 (文件大小:685K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2619  
1.2MHz PWM Boost Converter  
with OVP  
General Description  
Features  
The MIC2619 is a 1.2MHz pulse width modulated (PWM)  
step-up switching regulator that is optimized for low power,  
high output voltage applications. With a maximum output  
voltage of 35V, and a switch current of over 350mA, the  
MIC2619 can easily supply most high voltage bias  
applications, such as TV tuners.  
2.8V to 6.5V Input Voltage  
350mA Switch Current  
Output Voltage up to 35V  
1.2MHz PWM Operation  
1.265V Feedback Voltage  
Programmable Over-Voltage Protection (OVP)  
<1% Line Regulation  
<1µA Shutdown Current  
Over-Temperature Protection  
Under-Voltage Lock Out (UVLO)  
Low Profile Thin SOT-23-6 Package  
–40°C to +125°C Junction Temperature Range  
The MIC2619 implements a constant frequency 1.2MHz  
PWM current-mode control scheme. The high frequency  
PWM operation saves board space by reducing external  
component sizes. The additional benefit of the constant  
frequency PWM control scheme as opposed to variable  
frequency control schemes is lower output noise and  
smaller input ripple injected back to the battery source.  
The MIC2619 has programmable overvoltage protection to  
ensure output protection in case of fault condition.  
Applications  
The MIC2619 is available in a low profile Thin SOT-23 6-  
pin package. The MIC2619 has a junction temperature  
range of –40°C to +125°C.  
Bias Supply Applications:  
-
-
-
-
Tuner Varactor Bias  
All support documentation can be found on Micrel’s web  
site at: www.micrel.com.  
High Voltage Bias Supplies  
Avalanche Photo Diode  
High Voltage Display Bias  
DSL/Broadband applications  
Constant Current Power Supplies  
_________________________________________________________________________________________________________________________  
Typical Application  
1.2MHz Boost Converter with OVP in Thin SOT-23-6  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-030410-A  
March 2010  
Micrel, Inc.  
MIC2619  
Ordering Information  
Part Number  
Marking(1)  
Overvoltage  
Protection  
Junction Temp.  
Range  
Package  
Lead Finish  
MIC2619YD6  
2619  
Programmable  
-40°C to +125°C  
Thin SOT-23-6  
Lead Free  
Note:  
1. Under bar( ) symbol may not be to scale.  
Pin Configuration  
6-Pin TSOT-23 (YD6)  
Pin Description  
Pin Number  
Pin Name Pin Function  
1
2
3
SW  
GND  
FB  
Switch Node (Input): Internal power bipolar collector.  
Ground.  
Feedback (Input): Output voltage sense node. Connect external resistor network to set  
output voltage. Nominal feedback voltage is 1.265V.  
4
5
6
EN  
OVP  
VIN  
Enable (Input): Logic high enables regulator. Logic low shuts down regulator. Do not  
leave floating.  
Over-Voltage Protection (Input): Programmable to 35V, adjustable through resistor divider  
network.  
Supply (Input): 2.8V to 6.5V for internal circuitry. Requires a minimum 1.0µF ceramic  
capacitor.  
M9999-030410-A  
March 2010  
2
Micrel, Inc.  
MIC2619  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage (VIN).........................................................7V  
Switch Voltage (VSW)....................................... –0.3V to 40V  
Enable Pin Voltage (VEN)..................................... –0.3 to VIN  
Feedback Voltage (VFB), (VOVP)........................................6V  
Ambient Storage Temperature (TS)...........65°C to +150°C  
ESD Rating (3) .................................................................2kV  
Supply Voltage (VIN)......................................... 2.8V to 6.5V  
Output Voltage (VOUT) .......................................... VIN to 35V  
Junction Temperature Range (TJ).............40°C to +125°C  
Package Thermal Impedance  
Thin SOT-23-6 (θJA).........................................177°C/W  
Electrical Characteristics (4)  
TA = 25°C, VIN = VEN = 3.6V, VOUT = 10V, IOUT = 10mA, unless otherwise noted. Bold values indicate –40°C TJ 125°C.  
Min  
2.8  
1.8  
Typ  
Max  
6.5  
2.4  
5
Units  
V
Parameter  
Condition  
Supply Voltage Range  
Under Voltage Lockout  
Quiescent Current  
Shutdown Current  
Feedback Voltage  
Feedback Input Current  
Line Regulation  
2.1  
2.1  
V
mA  
µA  
V
VFB > 1.265V, (not switching)  
VEN = 0V  
0.04  
1.265  
-450  
0.2  
1
1.227  
1.303  
nA  
%
VFB = 1.265V  
1
2.8V VIN 6.5V  
5mA IOUT 20mA  
0.3  
%
Load Regulation  
85  
90  
%
Maximum Duty Cycle  
Switch Current Limit  
Switch Saturation Voltage  
Switch Leakage Current  
Enable Threshold  
VIN = 3.6V(5)  
350  
mA  
mV  
µA  
400  
VIN = 3.6V, ISW = 300mA  
VEN = 0V, VSW = 10V  
TURN ON  
0.01  
1
1.5  
V
0.4  
TURN OFF  
14  
1.2  
40  
µA  
MHz  
V
Enable Pin Current  
Oscillator Frequency  
Overvoltage Protection  
OVP Input Current  
VEN = 6.5V  
1.202  
1.265  
–200  
150  
10  
1.328  
nA  
°C  
VOVP = 1.265V  
Hysteresis  
Overtemperature Threshold  
Shutdown  
°C  
Notes:  
1. Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating  
the device outside of its operating ratings. The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(max),  
the junction-to-ambient thermal resistance,  
, and the ambient temperature, TA. The maximum allowable power dissipation will result in excessive  
θJA  
die temperature, and the regulator will go into thermal shutdown.  
2. This device is not guaranteed to operate beyond its specified operating ratings.  
3. Devices are inherently ESD sensitive. Handling precautions required. Human body model: 1.5kin series with 100pF.  
4. Specification for packaged product only.  
5. Guaranteed by design.  
M9999-030410-A  
March 2010  
3
Micrel, Inc.  
MIC2619  
Typical Characteristics  
Efficiency VOUT = 10V  
Efficiency VOUT = 5V  
Efficiency VOUT = 12V  
100%  
90%  
80%  
70%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
VIN=5V  
VIN=4.2V  
60%  
50%  
VIN=5V  
VIN=3.6V  
VIN=3.3V  
VIN=3.3V  
VIN=3V  
40%  
30%  
20%  
L = 10µH  
C = 1µF  
L = 10µH  
C = 1µF  
L = 10µH  
C = 1µF  
10%  
0%  
0
20  
40  
60  
80  
100  
0
50  
100  
150  
200  
0
20  
40  
60  
80  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Load Regulation (VOUT=35V)  
Efficiency VOUT = 35V  
Load Regulation (VOUT=10V)  
35.5  
35.4  
35.3  
35.2  
35.1  
35.0  
34.9  
34.8  
34.7  
34.6  
34.5  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
10.10  
10.08  
10.06  
10.04  
10.02  
10.00  
9.98  
VIN=5V  
VIN=6.5V  
9.96  
VIN = 3.6V  
VIN = 5V  
9.94  
L = 10µH  
C = 1µF  
L = 10µH  
C = 1µF  
L = 10µH  
C = 1µF  
9.92  
9.90  
0
4
8
12  
16  
0
10 20 30 40 50 60 70  
0
2
4
6
8
10  
12  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Frequency  
vs. Input Voltage  
Line Regulation (VOUT=12V)  
Line Regulation (VOUT=35V)  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
12.20  
12.16  
12.12  
12.08  
12.04  
12.00  
11.96  
11.92  
11.88  
11.84  
11.80  
35.5  
35.4  
35.3  
35.2  
35.1  
35.0  
34.9  
34.8  
34.7  
34.6  
34.5  
VOUT = 12V  
L = 10µH  
C = 1µF  
IOUT = 10mA  
IOUT = 40mA  
L = 10µH  
C = 1µF  
L = 10µH  
C = 1µF  
ILOAD = 40mA  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
4.5  
4.9  
5.3  
5.7  
6.1  
6.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Quiescent Current  
vs. Input Voltage  
Switch Current Limit  
vs. Input Voltage  
Switch Current Limit  
vs. Temperature  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
VIN = 3.6V  
VOUT  
= 12V  
VOUT = 12V  
L = 10µH  
C = 1µF  
VFB = 3V  
L = 10µH  
C = 1µF  
No Switching  
-40 -20  
0
20 40 60 80 100 120  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
M9999-030410-A  
March 2010  
4
Micrel, Inc.  
MIC2619  
Typical Characteristics (Continued)  
Feedback Voltage  
vs. Temperature  
Switching Frequency  
vs. Temperature  
1.40  
1.34  
1.32  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
VIN = 3.6V  
VOUT 12V  
VIN = 3.6V  
VOUT = 12V  
IOUT = 25mA  
=
IOUT = 25mA  
L = 10µH  
C = 1µF  
L = 10µH  
C = 1µF  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
Temperature (°C)  
M9999-030410-A  
March 2010  
5
Micrel, Inc.  
MIC2619  
Functional Characteristics  
M9999-030410-A  
March 2010  
6
Micrel, Inc.  
MIC2619  
Functional Characteristics (Continued)  
M9999-030410-A  
March 2010  
7
Micrel, Inc.  
MIC2619  
Functional Diagram  
MIC2619 Block Diagram  
VIN  
Functional Description  
VIN provides power to the control and reference circuitry  
as well as the switch mode regulator MOSFETs. Due to  
The MIC2619 is a constant frequency, PWM current  
mode boost regulator. It is composed of an oscillator,  
slope compensation ramp generator, current amplifier,  
gm error amplifier, PWM generator, and bipolar output  
transistor. The oscillator generates a 1.2MHz clock  
which triggers the PWM generator to turn on the output  
transistor and resets the slope compensation ramp  
generator. The current amplifier is used to measure  
switch current by amplifying the voltage signal from the  
internal sense resistor. The output of the current  
amplifier is summed with the output of the slope  
compensation ramp generator. This summed current-  
loop signal is then fed to one of the inputs of the PWM  
generator.  
the high speed switching,  
a
1µF capacitor is  
recommended as close as possible to the VIN and GND  
pin.  
EN  
The enable pin provides a logic level control of the  
output. In the off state, supply current of the device is  
greatly reduced (typically <0.1µA). Also, in the off state,  
the output drive is placed in a “tri-stated” condition,  
where the bipolar output transistor is in an “off” state or  
non-conducting state.  
OVP  
The gm error amplifier measures the feedback voltage  
through the external feedback resistors and amplifies the  
error between the detected signal and the 1.265V  
reference voltage. The output of the gm error amplifier  
provides the voltage-loop signal that is fed to the other  
input of the PWM generator. When the current-loop  
signal exceeds the voltage loop signal, the PWM  
generator turns off the bipolar output transistor. The next  
clock period initiates the next switching cycle,  
maintaining the constant frequency current-mode PWM  
control.  
The OVP pin provides over-voltage protection on the  
output of the MIC2619. When the OVP circuit is tripped,  
the output voltage remains at the set OVP voltage.  
Because the OVP circuit operates at a lower frequency  
than the feedback circuit, output ripple will be higher  
while in an OVP state. OVP requires a resistor divider  
network to the output and GND to set the OVP voltage.  
If the output voltage overshoots the set OVP voltage,  
then the MIC2619 OVP circuit will shut off the switch;  
saving itself and other sensitive circuitry downstream.  
The accuracy of the OVP pin is ±5% and therefore  
should be set above the output voltage to ensure noise  
or other variations will not cause a false triggering of the  
OVP circuit.  
M9999-030410-A  
March 2010  
8
Micrel, Inc.  
FB  
MIC2619  
voltage associated with this pin, the switch node should  
be routed away from sensitive nodes.  
The feedback pin provides the control path to control the  
output. FB requires a resistor divider network to the  
output and GND to set the output voltage.  
GND  
The ground pin is the ground path for high current PWM  
mode. The current loop for the power ground should be  
kept as small as possible.  
SW  
The switching pin connects directly to one end of the  
inductor to VIN and the anode of the Schottky diode to  
the output. Due to the high switching speed and high  
M9999-030410-A  
March 2010  
9
Micrel, Inc.  
MIC2619  
The duty cycle required for voltage conversion should be  
less than the maximum duty cycle of 85%. Also, in light  
load conditions where the input voltage is close to the  
output voltage, the minimum duty cycle can cause pulse  
skipping. This is due to the energy stored in the inductor  
causing the output to slightly overshoot the regulated  
output voltage. During the next cycle, the error amplifier  
detects the output as being high and skips the following  
pulse. This effect can be reduced by increasing the  
minimum load or by increasing the inductor value.  
Increasing the inductor value also reduces the peak  
current.  
Application Information  
DC-to-DC PWM Boost Conversion  
The MIC2619 is a constant-frequency boost converter. It  
can convert a low DC input voltage to a higher DC  
output voltage. Figure 1 shows a typical circuit. Boost  
regulation is achieved by turning on an internal switch,  
which draws current through the inductor. When the  
switch turns off, the inductor’s magnetic field collapses.  
This causes the current to be discharged into the output  
capacitor through an external Schottky diode (D1). The  
Functional Characteristics show Input Voltage ripple,  
Output Voltage ripple, SW Voltage, and Inductor Current  
for 10mA load current. Regulation is achieved by  
modulating the pulse width i.e., pulse-width modulation  
(PWM).  
Input Capacitors  
A 1µF ceramic capacitor is recommended on the VIN pin  
for bypassing. Increasing input capacitance will improve  
performance and provide greater noise immunity. The  
input capacitor should be as close as possible to the  
inductor and the MIC2619, with short traces for good  
noise performance.  
X5R or X7R dielectrics are recommended for the input  
capacitor. Y5V dielectrics lose most of their capacitance  
over temperature and are therefore not recommended.  
Also, tantalum and electrolytic capacitors alone are not  
recommended because of their reduced RMS current  
handling, reliability, and ESR increases.  
Output Capacitors  
Output capacitor selection is also a trade-off between  
Figure 1. Typical Application Circuit  
Duty Cycle Considerations  
performance,  
size,  
and  
cost.  
The  
minimum  
recommended output capacitor is 1µF. Increasing output  
capacitance will lead to an improved transient response  
but also an increase in size and cost. X5R or X7R  
dielectrics are recommended for the output capacitor.  
Y5V dielectrics lose most of their capacitance over  
temperature and are therefore not recommended.  
Duty cycle refers to the switch on-to-off time ratio and  
can be calculated as follows for a boost regulator:  
VIN  
D = 1−  
VOUT  
Inductor  
However at light loads, the inductor will completely  
discharge before the end of a switching cycle. The  
current in the inductor reaches 0A before the end of the  
switching cycle. This is known as discontinuous  
conduction mode (DCM). DCM occurs when:  
Inductor selection will be determined by the following  
(not necessarily in order of importance);  
Inductance  
Rated current value  
Size requirements  
DC resistance (DCR)  
VIN IPEAK  
IOUT  
<
VOUT  
2
The MIC2619 was designed for use with a 10µH  
inductor. Proper selection should ensure the inductor  
can handle the maximum average and peak currents  
required by the load. Maximum current ratings of the  
inductor are generally given in two methods; permissible  
DC current and saturation current. Permissible DC  
current can be rated either for a 40°C temperature rise  
or a 10 to 20% loss in inductance. Ensure the inductor  
selected can handle the maximum operating current.  
When saturation current is specified, make sure that  
there is enough margin so that the peak current will not  
Where  
(
VOUT VIN  
)
VIN  
IPEAK  
=
L f  
VOUT  
In DCM, the duty cycle is smaller than in continuous  
conduction mode. In DCM the duty cycle is given by:  
f 2 L IOUT  
(
VOUT VIN  
)
D =  
VIN  
M9999-030410-A  
March 2010  
10  
Micrel, Inc.  
MIC2619  
saturate the inductor. Peak current can be calculated as  
follows:  
Diode Selection  
The MIC2619 requires an external diode for operation. A  
Schottky diode is recommended for most applications  
due to their lower forward voltage drop and reverse  
recovery time. Ensure the diode selected can deliver the  
peak inductor current and the maximum reverse voltage  
is rated greater than the output voltage.  
1V  
V  
IN  
OUT  
IPEAK = I  
OUT  
+ VOUT  
2 × f × L  
As shown by the previous calculation, the peak inductor  
current is inversely proportional to the switching  
frequency and the inductance; the lower the switching  
frequency or the inductance the higher the peak current.  
As input voltage increases the peak current also  
increases.  
Soft-start  
Feed-forward capacitors can be used to provide soft-  
start for the MIC2619. Figure 2 shows a typical circuit  
for soft-start applications. Typically a 0.22nF feed-  
forward capacitor will yield 5ms in rise time.  
The size of the inductor depends on the requirements of  
the application.  
DC resistance (DCR) is also important. While DCR is  
inversely proportional to size, DCR can represent a  
significant efficiency loss. Refer to the Efficiency  
Considerations.  
To maintain stability, increasing inductor size will have to  
be met with an increase in output capacitance. This is  
due to the unavoidable “right half plane zero” effect for  
the continuous current boost converter topology. The  
frequency at which the right half plane zero occurs can  
be calculated as follows:  
2
VIN  
Frequency =  
VOUT L IOUT 2π  
Figure 2. Soft-start Circuit  
Feedback resistors  
The right half plane zero has the undesirable effect of  
increasing gain, while decreasing phase. This requires  
that the loop gain is rolled off before this has significant  
effect on the total loop response. This can be  
accomplished by either reducing inductance (increasing  
RHPZ frequency) or increasing the output capacitor  
value (decreasing loop gain).  
The MIC2619 utilizes a feedback pin to compare the  
output to an internal reference. The output voltage is  
adjusted by selecting the appropriate feedback resistor  
network values. Using the evaluation board schematic  
as a reference, the desired output voltage can be  
calculated as follows:  
R4  
R5  
VOUT = VREF  
+1  
Where VREF is equal to 1.265V. Over-voltage Protection  
uses the same equation as the feedback pin.  
R1  
R2  
VOVP = VREF  
+1  
M9999-030410-A  
March 2010  
11  
Micrel, Inc.  
MIC2619  
MIC2619 Evaluation Board Schematic  
Bill of Materials  
Item  
Part Number  
Manufacturer Description  
Qty.  
C1  
C1608X5R1A105K  
GRM185R61A105KE36D  
0603ZD105KT2A  
TAJA106M010R  
TDK(1)  
Murata(2)  
AVX(3)  
Capacitor, 1.0µF, 10V, X5R, 0603 size  
1
1
1
Capacitor, 1.0µF, 10V, X5R, 0603 size  
Capacitor, 1.0µF, 10V, X5R, 0603 size  
Capacitor, 10.0µF, 10V, A Case  
C2  
C3  
AVX  
C1608X7R11H223K  
GRM188R71H223KA01D  
06035C223JAT2A  
08055D105MAT2A  
GRM21BR71H105KA12L  
CL21B105KBFNNNE  
SK14  
TDK  
Capacitor, 22nF, 50V, X7R, 0603 size  
Capacitor, 22nF, 50V, X7R, 0603 size  
Capacitor, 22nF, 50V, X7R, 0603 size  
Capacitor, 1.0µF, 50V, X5R, 0805 size  
Capacitor, 1.0µF, 50V, X5R, 0805 size  
Capacitor, 1.0µF, 50V, X7R, 0805 size  
Schottky Diode, 1A, 40V  
Murata  
AVX  
C4  
AVX  
1
1
1
Murata  
Samsung(4)  
MCC(5)  
Diode, Inc.(6)  
Samsung  
TDK  
D1  
L1  
B140/B  
Schottky Diode, 1A, 40V  
C1G22L100MNE  
Inductor, 10.0µH, 0.8A, 2.5 x 2.0 x 1.0mm  
Inductor, 10.0µH, 0.59A, 2.8 x 3.0 x 1.2mm  
Inductor, 10.0µH, 0.7A, 3.2 x 2.5 x 1.55mm  
Resistor, 267k, 1%, 1/16W, 0603 size  
Resistor, 10k, 1%, 1/16W, 0603 size  
Resistor, 100k, 1%, 1/16W, 0603 size  
Resistor, 226k, 1%, 1/16W, 0603 size  
1.2MHz PWM Boost Converter with OVP  
VLF3012ST-100MR59  
LQH32PN100MN0L  
CRCW0603267KFKEA  
CRCW060310K0FKEA  
CRCW0603100KFKEA  
CRCW0603226KFKEA  
MIC2619YD6  
Murata  
Vishay(7)  
Vishay  
R1  
R2, R5  
R3  
1
2
1
1
1
Vishay  
R4  
Vishay  
Micrel, Inc.(8)  
U1  
Notes:  
1. TDK: www.tdk.com  
2. Murata: www.murata.com  
3. AVX: www.avx.com  
4. Samsung: www.sem.samsung.com  
5. MCC: www.mccsemi.com  
6. Diode, Inc.: www.diodes.com  
7. Vishay: www.vishay.com  
8. Micrel, Inc.: www.micrel.com  
M9999-030410-A  
March 2010  
12  
Micrel, Inc.  
MIC2619  
Recommended Layout  
Top Layout  
Bottom Layout  
M9999-030410-A  
March 2010  
13  
Micrel, Inc.  
MIC2619  
Package Information  
6-Pin TSOT (YD6)  
M9999-030410-A  
March 2010  
14  
Micrel, Inc.  
MIC2619  
Recommended Land Pattern  
6-Pin TSOT (YD6)  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its  
use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant  
into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A  
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully  
indemnify Micrel for any damages resulting from such use or sale.  
© 2009 Micrel, Incorporated.  
M9999-030410-A  
March 2010  
15  

相关型号:

MIC26400

5A Hyper Speed Control Synchronous DC/DC Buck Regulator
MICREL

MIC26400YJL

5A Hyper Speed Control Synchronous DC/DC Buck Regulator
MICREL

MIC26400_11

5A Hyper Speed Control Synchronous DC/DC Buck Regulator
MICREL

MIC2660

IttyBitty Charge Pump
MICREL

MIC26600

7A Hyper Speed Control Synchronous DC-DC Buck Regulator
MICREL

MIC26600YJL

7A Hyper Speed Control Synchronous DC-DC Buck Regulator
MICREL

MIC26600YJL-TR

IC REG BUCK ADJ 7A SYNC 28-MLF
MICROCHIP

MIC26600_1107

7A Hyper Speed ControlTM Synchronous DC-DC Buck Regulator
MICREL

MIC26601

28V, 6A Hyper Speed Control™ Synchronous DC/DC Buck Regulator
MICREL

MIC26601YJL

28V, 6A Hyper Speed Control™ Synchronous DC/DC Buck Regulator
MICREL

MIC26603

28V, 6A Hyper Light Load Synchronous DC/DC Buck Regulator
MICREL

MIC26603-ZAYJL

28V, 6A Hyper Speed Control Synchronous DC/DC Buck Regulator
MICREL