APT50GS60SRDQ2 [MICROSEMI]

Thunderbolt High Speed NPT IGBT with Anti-Parallel DQ Diode; 迅雷高速NPT IGBT与反并联二极管DQ
APT50GS60SRDQ2
型号: APT50GS60SRDQ2
厂家: Microsemi    Microsemi
描述:

Thunderbolt High Speed NPT IGBT with Anti-Parallel DQ Diode
迅雷高速NPT IGBT与反并联二极管DQ

二极管 双极性晶体管
文件: 总7页 (文件大小:610K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APT50GS60BRDQ2(G)  
APT50GS60SRDQ2(G)  
600V, 50A, V  
= 2.8V Typical  
CE(ON)  
Thunderbolt® High Speed NPT IGBT with Anti-Parallel 'DQ' Diode  
The Thunderbolt HSseries is based on thin wafer non-punch through (NPT) technology similar to  
the Thunderbolt® series, but trades higher VCE(ON) for significantly lower turn-on energy Eoff. The low  
switching losses enable operation at switching frequencies over 100kHz, approaching power MOSFET  
performance but lower cost.  
An extremely tight parameter distribution combined with a positive VCE(ON) temperature coefficient  
make it easy to parallel Thunderbolts HSIGBT's. Controlled slew rates result in very good noise  
and oscillation immunity and low EMI. The short circuit duration rating of 10µs make these IGBT's  
suitable for motor drive and inverter applications. Reliability is further enhanced by avalanche energy  
ruggedness. Combi versions are packaged with a high speed, soft recovery DQ series diode.  
D3PAK  
APT50GS60BRDQ2(G)  
Features  
Typical Applications  
APT50GS60SRDQ2(G)  
• Fast Switching with low EMI  
• Very Low EOFF for Maximum Efficiency  
• ZVS Phase Shifted and other Full Bridge  
• Half Bridge  
Single die  
IGBT with  
separate DQ  
diode die  
• Short circuit rated  
• Low Gate Charge  
• High Power PFC Boost  
• Welding  
• Tight parameter distribution  
• Easy paralleling  
• Induction heating  
• High Frequency SMPS  
• RoHS Compliant  
Absolute Maximum Ratings  
Symbol Parameter  
Rating  
93  
Unit  
A
Continuous Collector Current T = @ 25°C  
IC1  
IC1  
C
Continuous Collector Current T = @ 100°C  
C
50  
195  
±30V  
195  
280  
1
ICM  
VGE  
Pulsed Collector Current  
Gate-Emitter Voltage  
V
SSOA  
EAS  
Switching Safe Operating Area  
2
Single Pulse Avalanche Energy  
mJ  
µs  
3
tSC  
Short Circut Withstand Time  
10  
90  
55  
T
T
= 25°C  
C
C
IF  
Diode Continuous Forward Current  
= 100°C  
A
IFRM  
Diode Max. Repetitive Forward Current  
195  
Thermal and Mechanical Characteristics  
Symbol Parameter  
Min  
Typ  
Max  
415  
0.30  
0.67  
-
Unit  
PD  
Total Power Dissipation T = @ 25°C  
C
-
-
-
-
W
IGBT  
RθJC  
Junction to Case Thermal Resistance  
Diode  
°C/W  
RθCS  
TJ, TSTG  
TL  
Case to Sink Thermal Resistance, Flat Greased Surface  
Operating and Storage Junction Temperature Range  
-
0.11  
-55  
-
150  
300  
-
°C  
Soldering Temperature for 10 Seconds (1.6mm from case)  
Package Weight  
-
-
-
-
-
-
0.22  
5.9  
-
oz  
g
WT  
-
10  
in·lbf  
N·m  
Torque Mounting Torque (TO-247), 6-32 M3 Screw  
-
1.1  
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should be Followed.  
Microsemi Website - http://www.microsemi.com  
Static Characteristics  
T = 25°C unless otherwise specified  
J
APT50GS60B_SRDQ2(G)  
Symbol  
VBR(CES)  
Parameter  
Test Conditions  
VGE = 0V, IC = 250µA  
Min  
Typ  
-
Max  
Unit  
V
Collector-Emitter Breakdown Voltage  
Breakdown Voltage Temperature Coeff  
600  
-
∆VBR(CES)/∆TJ  
Reference to 25°C, I = 250µA  
C
-
-
0.60  
2.8  
3.25  
2.15  
1.8  
4
-
V/°C  
TJ = 25°C  
VGE = 15V  
IC = 50A  
3.15  
Collector-Emitter On Voltage 4  
Diode Forward Voltage 4  
VCE(ON)  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
-
-
-
-
-
V
VEC  
IC = 50A  
-
VGE(th)  
Gate-Emitter Threshold Voltage  
Threshold Voltage Temp Coeff  
3
-
5
VGE = VCE, IC = 1mA  
∆VGE(th)/∆TJ  
6.7  
-
-
mV/°C  
µA  
TJ = 25°C  
TJ = 125°C  
VCE = 600V,  
VGE = 0V  
-
50  
TBD  
±100  
ICES  
IGES  
Zero Gate Voltage Collector Current  
Gate-Emitter Leakage Current  
-
-
VGE = ±20V  
-
-
nA  
Dynamic Characteristics  
T = 25°C unless otherwise specified  
J
Symbol  
Parameter  
Test Conditions  
VCE = 50V, IC = 50A  
Min  
Typ  
31  
Max  
Unit  
gfs  
Forward Transconductance  
Input Capacitance  
-
-
-
-
-
-
-
-
S
Cies  
Coes  
Cres  
2635  
240  
145  
VGE = 0V, VCE = 25V  
f = 1MHz  
Output Capacitance  
pF  
Reverse Transfer Capacitance  
Reverse Transfer Capacitance  
Charge Related  
Co(cr)  
Co(er)  
-
115  
85  
-
5
VGE = 0V  
VCE = 0 to 400V  
Reverse Transfer Capacitance  
6
Current Related  
Qg  
Qge  
Ggc  
td(on)  
tr  
Total Gate Charge  
Gate-Emitter Charge  
Gate-Collector Charge  
Turn-On Delay Time  
Rise Time  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
235  
18  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VGE = 0 to 15V  
IC = 50A, VCE = 300V  
nC  
ns  
100  
16  
33  
Inductive Switching IGBT and  
Diode:  
t
Turn-Off Delay Time  
Fall Time  
225  
37  
d(off)  
tf  
TJ = 25°C, VCC = 400V,  
IC = 50A  
8
Eon1  
Eon2  
Eoff  
td(on)  
tr  
Turn-On Switching Energy  
TBD  
1.2  
0.755  
33  
7
9
RG = 4.7Ω , VGG = 15V  
Turn-On Switching Energy  
mJ  
ns  
Turn-Off Switching Energy 10  
Turn-On Delay Time  
Rise Time  
Inductive Switching IGBT and  
Diode:  
33  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
250  
23  
TJ = 125°C, VCC = 400V,  
IC = 50A  
8
Eon1  
Eon2  
Eoff  
trr  
Turn-On Switching Energy  
TBD  
1.7  
0.950  
25  
7
RG = 4.7Ω , VGG = 15V  
9
Turn-On Switching Energy  
mJ  
Turn-Off Switching Energy 10  
Diode Reverse Recovery Time  
Diode Reverse Recovery Charge  
Peak Reverse Recovery Current  
ns  
nC  
A
IF = 50A  
VR = 400V  
diF/dt = 200A/µs  
Qrr  
35  
Irrm  
3
TYPICAL PERFORMANCE CURVES  
APT50GS60B_SRDQ2(G)  
250  
225  
200  
175  
150  
125  
100  
75  
150  
VGE = 15V  
T
= 125°C  
J
V
GE = 13 & 15V  
11V  
125  
100  
75  
10V  
9V  
TJ = 25°C  
8V  
50  
T
J = 125°C  
7V  
6V  
50  
25  
TJ = 150°C  
25  
0
0
0
1
2
3
4
5
6
0
5
10  
15  
20  
25  
30  
V
, COLLECTER-TO-EMITTER VOLTAGE (V)  
V
, COLLECTER-TO-EMITTER VOLTAGE (V)  
CE(ON)  
CE  
FIGURE 1, Output Characteristics  
FIGURE 2, Output Characteristics  
150  
125  
100  
75  
6
5
4
250µs PULSE  
TEST<0.5 % DUTY  
CYCLE  
TJ = 25°C.  
250µs PULSE TEST  
<0.5 % DUTY CYCLE  
I
= 100A  
C
I
= 50A  
C
3
2
1
0
I
= 25A  
C
50  
TJ = 25°C  
TJ = 125°C  
25  
0
0
2
4
6
8
10  
12  
6
8
10  
12  
14  
16  
V
, GATE-TO-EMITTER VOLTAGE (V)  
V
GE  
, GATE-TO-EMITTER VOLTAGE (V)  
GE  
FIGURE 3, Transfer Characteristics  
FIGURE 4, On State Voltage vs Gate-to- Emitter Voltage  
5
4
3
2
1
0
16  
V
GE = 15V.  
250µs PULSE TEST  
<0.5 % DUTY CYCLE  
I
= 100A  
14  
I
T
= 25A  
= 25°C  
C
C
V
= 120V  
J
CE  
12  
10  
V
= 300V  
CE  
I
= 50A  
C
8
6
4
2
0
V
= 480V  
CE  
I
= 25A  
C
0
25  
50  
75  
100  
125  
150  
0
50  
100  
150  
200  
250  
T , Junction Temperature (°C)  
GATE CHARGE (nC)  
J
FIGURE 5, On State Voltage vs Junction Temperature  
FIGURE 6, Gate Charge  
5000  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Cies  
1000  
100  
Coes  
Cres  
10  
0
10  
0
100  
200  
300  
400  
500  
600  
25  
50  
75  
100  
125  
150  
V
, COLLECTOR-TO-EMITTER VOLTAGE (V)  
T , CASE TEMPERATURE (°C)  
CE  
C
FIGURE 7, Capacitance vs Collector-To-Emitter Voltage  
FIGURE 8, DC Collector Current vs Case Temperature  
TYPICAL PERFORMANCE CURVES  
APT50GS60B_SRDQ2(G)  
300  
250  
200  
150  
100  
50  
20  
18  
16  
V
= 15V  
GE  
VGE =15V,TJ=125°C  
14  
12  
10  
8
VGE =15V,TJ=25°C  
6
VCE = 400V  
4
VCE = 400V  
RG = 4.7  
L = 100µH  
TJ = 25°C, TJ =125°C  
RG = 4.7Ω  
2
L = 100µH  
0
I
0
I
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
, COLLECTOR TO EMITTER CURRENT (A)  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 9, Turn-On Delay Time vs Collector Current  
FIGURE 10, Turn-Off Delay Time vs Collector Current  
80  
100  
RG = 4.7, L = 100µH, VCE = 400V  
RG = 4.7, L = 100µH, VCE = 400V  
70  
60  
50  
40  
80  
TJ = 25 or 125°C,VGE = 15V  
60  
40  
20  
T
J = 125°C, VGE = 15V  
30  
20  
10  
TJ = 25°C, VGE = 15V  
0
I
0
I
0
CE  
20  
40  
60  
80  
100  
120  
0
CE  
20  
40  
60  
80  
100  
120  
, COLLECTOR TO EMITTER CURRENT (A)  
, COLLECTOR TO EMITTER CURRENT (A)  
FIGURE 11, Current Rise Time vs Collector Current  
FIGURE 12, Current Fall Time vs Collector Current  
6000  
5000  
4000  
3000  
2000  
2500  
2000  
1500  
1000  
V
V
R
=
=
400V  
+15V  
V
V
R
=
=
400V  
+15V  
CE  
GE  
CE  
GE  
= 4.7  
= 4.7  
G
G
T
J = 125°C, VGE = 15V  
T
J = 125°C,VGE =15V  
500  
0
1000  
0
T
J = 25°C, VGE = 15V  
T
J = 25°C,VGE =15V  
60 80  
0
CE  
20  
40  
100  
120  
0
CE  
20  
40  
60  
80  
100  
120  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
FIGURE 13, Turn-On Energy Loss vs Collector Current  
FIGURE 14, Turn Off Energy Loss vs Collector Current  
6
10  
V
V
T
=
=
400V  
+15V  
V
V
R
=
=
400V  
+15V  
CE  
GE  
CE  
GE  
E
100A  
= 125°C  
= 4.7  
J
on2,  
G
5
4
3
2
1
0
8
6
4
2
0
Eon2,100A  
E
100A  
off,  
Eoff,100A  
E
50A  
25A  
on2,  
Eon2,50A  
E
50A  
Eoff,50A  
off,  
E
25A  
off,  
Eon2,25A  
Eoff,25A  
E
on2,  
0
10  
20  
30  
40  
50  
0
25  
50  
75  
100  
125  
R , GATE RESISTANCE (OHMS)  
T , JUNCTION TEMPERATURE (°C)  
G
J
FIGURE 15, Switching Energy Losses vs. Gate Resistance  
FIGURE 16, Switching Energy Losses vs Junction Temperature  
TYPICAL PERFORMANCE CURVES  
APT50GS60B_SRDQ2(G)  
200  
100  
200  
100  
I
I
CM  
CM  
V
CE(on)  
V
10  
1
10  
1
CE(on)  
13µs  
100µs  
13µs  
100µs  
1ms  
10ms  
100ms  
DC line  
1ms  
10ms  
100ms  
DC line  
T = 150°C  
C = 25°C  
J
T
Scaling for Different Case & Junction  
Temperatures:  
T = 125°C  
J
I
C = IC(T = 25°C)*(T - TC)/125  
T
C = 75°C  
J
C
0.1  
0.1  
1
V
10  
100  
800  
1
V
10  
100  
800  
, COLLECTOR-TO-EMITTER VOLTAGE (V)  
, COLLECTOR-TO-EMITTER VOLTAGE (V)  
CE  
CE  
Figure 17, Forward Safe Operating Area  
Figure 18, Maximum Forward Safe Operating Area  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.9  
0.7  
0.5  
0.3  
Note:  
t
1
t
2
t
1
t
/
2
Duty Factor D =  
Peak T = P x Z  
SINGLE PULSE  
10-3  
0.1  
+ T  
C
J
DM  
θJC  
0.05  
10-5  
10-4  
10-2  
10-1  
1.0  
RECTANGULAR PULSE DURATION (SECONDS)  
Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration  
160  
140  
120  
75°C  
100  
80  
60  
40  
20  
0
Fmax = min (fmax, fmax2  
)
TJ (°C)  
TC (°C)  
0.05  
fmax1  
=
=
td(on) + tr + td(off) + tf  
0.0731  
0.226  
Dissipated Power  
(Watts)  
Pdiss - Pcond  
Eon2 + Eoff  
100°C  
fmax2  
Pdiss  
T
T
=
125°C  
75°C  
0.00606  
0.260  
J
=
C
D = 50 %  
V
R
TJ - TC  
RθJC  
ZEXT are the external thermal  
impedances: Case to sink,  
sink to ambient, etc. Set to  
zero when modeling only  
the case to junction.  
=
400V  
CE  
=
= 4.7  
G
0
10 20 30 40 50 60 70 80 90  
I , COLLECTOR CURRENT (A)  
C
Figure 21, Operating Frequency vs Collector Current  
Figure 20, Transient Thermal Impedance Model  
APT50GS60B_SRDQ2(G)  
10%  
td(on)  
Gate Voltage  
T
= 125°C  
APT40DQ60  
J
tr  
Collector Current  
Collector Voltage  
VCE  
IC  
VCC  
90%  
10%  
5%  
5%  
Switching Energy  
A
D.U.T.  
Figure 23, Turn-on Switching Waveforms and Definitions  
Figure 22, Inductive Switching Test Circuit  
Gate Voltage  
90%  
T
= 125°C  
J
td(off)  
90%  
Collector Voltage  
tf  
10%  
Collector Current  
0
Switching Energy  
Figure 24, Turn-off Switching Waveforms and Definitions  
FOOT NOTE:  
1
2
3
4
5
6
Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.  
Starting at TJ = 25°C, L = 224µH, RG = 25Ω, IC = 50A  
Short circuit time: VGE = 15V, VCC ≤ 600V, TJ ≤ 150°C  
Pulse test: Pulse width < 380µs, duty cycle < 2%  
Co(cr) is defined as a fixed capacitance with the same stored charge as Coes with VCE = 67% of V(BR)CES  
Co(er) is defined as a fixed capacitance with the same stored energy as Coes with VCE = 67% of V(BR)CES. To calculate Co(er) for any value of  
.
VCE less than V(BR)CES, use this equation: Co(er) = 5.57E-8/VDS^2 + 7.15E-8/VDS + 2.75E-10.  
7
8
RG is external gate resistance, not including internal gate resistance or gate driver impedance (MIC4452).  
Eon1 is the inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the  
IGBT turn-on switching loss. It is measured by clamping the inductance with a Silicon Carbide Schottky diode.  
Eon2 is the inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on energy.  
9
10 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.  
Microsemi reserves the right to change, without notice, the specifications and information contained herein.  
APT50GS60B_SRDQ2(G)  
3
TO-247 Package Outline  
D Pak Package Outline  
e1 SAC: Tin, Silver, Copper  
4.98 (.196)  
5.08 (.200)  
1.47 (.058)  
1.57 (.062)  
4.69 (.185)  
15.95 (.628)  
16.05(.632)  
13.41 (.528)  
13.51(.532)  
5.31 (.209)  
15.49 (.610)  
16.26 (.640)  
1.04 (.041)  
1.15(.045)  
1.49 (.059)  
2.49 (.098)  
5.38 (.212)  
6.20 (.244)  
6.15 (.242) BSC  
Revised  
8/29/97  
11.51 (.453)  
11.61 (.457)  
13.79 (.543)  
13.99(.551)  
20.80 (.819)  
21.46 (.845)  
3.50 (.138)  
3.81 (.150)  
0.46 (.018)  
0.56 (.022)  
{3 Plcs}  
1.27 (.050)  
1.40 (.055)  
0.020 (.001)  
0.178 (.007)  
2.87 (.113)  
3.12 (.123)  
3.81 (.150)  
4.50 (.177) Max.  
1.98 (.078)  
2.08 (.082)  
4.06 (.160)  
2.67 (.105)  
2.84 (.112)  
(Base of Lead)  
1.65 (.065)  
2.13 (.084)  
1.22 (.048)  
1.32 (.052)  
0.40 (.016)  
0.79 (.031)  
19.81 (.780)  
20.32 (.800)  
Heat Sink (Collector)  
and Leads (Cathode)  
are Plated  
5.45 (.215) BSC  
{2 Plcs.}  
1.01 (.040)  
1.40 (.055)  
Gate  
Collector (Cathode)  
Emitter (Anode)  
Emitter (Anode)  
Collector (Cathode)  
Gate  
Dimensions in Millimeters (Inches)  
2.21 (.087)  
2.59 (.102)  
5.45 (.215) BSC  
2-Plcs.  
Dimensions in Millimeters and (Inches)  
Microsemi’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786  
5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.  

相关型号:

APT50GS60SRDQ2(G)

Insulated Gate Bipolar Transistor, 93A I(C), 600V V(BR)CES, N-Channel, ROHS COMPLIANT, D3PAK-3
MICROSEMI

APT50GS60SRDQ2G

Thunderbolt High Speed NPT IGBT with Anti-Parallel DQ Diode
MICROSEMI

APT50GS60SRG

Thunderbolt High Speed NPT IGBT
MICROSEMI

APT50GT120B2R

Thunderbolt IGBT
MICROSEMI

APT50GT120B2RDL

Resonant Mode IGBT
MICROSEMI

APT50GT120B2RDLG

Resonant Mode IGBT
MICROSEMI

APT50GT120B2RDQ2G

Thunderbolt IGBT
MICROSEMI

APT50GT120B2RG

Thunderbolt IGBT
MICROSEMI

APT50GT120JRDQ2

Thunderbolt IGBT
ADPOW

APT50GT120JU2

Boost chopper Trench + Field Stop IGBT
MICROSEMI

APT50GT120JU3

ISOTOP® Buck chopper Trench + Field Stop IGBT®
MICROSEMI

APT50GT120JU3

ISOTOP Buck chopper Trench IGBT
ADPOW