APT50GT120B2RDLG [MICROSEMI]

Resonant Mode IGBT; 谐振模式的IGBT
APT50GT120B2RDLG
型号: APT50GT120B2RDLG
厂家: Microsemi    Microsemi
描述:

Resonant Mode IGBT
谐振模式的IGBT

晶体 晶体管 电动机控制 瞄准线 双极性晶体管 局域网
文件: 总9页 (文件大小:213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1200V  
APT50GT120B2RDL(G)  
*G Denotes RoHS Compliant, Pb Free Terminal Finish.  
Resonant Mode IGBT®  
The Thunderbolt IGBT® used in this Resonant Mode Combi is a new generation of high  
voltage power IGBTs. Using Non- Punch Through Technology, the Thunderblot IGBT® of-  
fers superior ruggedness and ultrafast switching speed.  
Typical Applications  
Induction Heating  
Welding  
Features  
SSOA Rated  
Low Conduction Loss  
RoHS Compliant  
Low Gate Charge  
C
E
Medical  
Ultrafast Tail Current shutoff  
Low forward Diode Voltage (VF)  
Ultrasoft Recovery Diode  
G
High Power Telecom  
Resonant Mode Phase Shifted  
Bridge  
MAXIMUM RATINGS  
All Ratings: T = 25°C unless otherwise specied.  
C
Parameter  
Symbol  
UNIT  
APT50GT120B2RDL(G)  
VCES  
VGE  
IC1  
Collector-Emitter Voltage  
Gate-Emitter Voltage  
1200  
Volts  
±30  
8
Continuous Collector Current @ TC = 25°C  
106  
IC2  
Continuous Collector Current @ TC = 110°C  
50  
Amps  
1
ICM  
Pulsed Collector Current  
@ TC = 150°C  
150  
Switching Safe Operating Area @ TJ = 150°C  
150A @ 1200V  
694  
SSOA  
PD  
Watts  
°C  
Total Power Dissipation  
TJ,TSTG  
Operating and Storage Junction Temperature Range  
-55 to 150  
300  
TL  
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.  
STATIC ELECTRICAL CHARACTERISTICS  
Symbol Characteristic / Test Conditions  
MIN  
TYP  
MAX  
Units  
V(BR)CES  
VGE(TH)  
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 3mA)  
Gate Threshold Voltage (VCE = VGE, IC = 2mA, Tj = 25°C)  
Collector-Emitter On Voltage (VGE = 15V, IC = 50A, Tj = 25°C)  
Collector-Emitter On Voltage (VGE = 15V, IC = 50A, Tj = 125°C)  
1200  
4.5  
5.5  
3.2  
4.0  
6.5  
3.7  
Volts  
2.7  
VCE(ON)  
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)  
300  
ICES  
μA  
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)  
Gate-Emitter Leakage Current (VGE = ±20V)  
Intergrated Gate Resistor  
1500  
300  
IGES  
nA  
RG(int)  
Ω
5
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.  
Microsemi Website - http://www.microsemi.com  
DYNAMIC CHARACTERISTICS  
Symbol Characteristic  
APT50GT120B2RDL(G)  
UNIT  
Test Conditions  
Capacitance  
MIN  
TYP  
MAX  
Cies  
Coes  
Cres  
VGEP  
Qg  
Input Capacitance  
2500  
250  
155  
7.5  
pF  
V
Output Capacitance  
V
GE = 0V, VCE = 25V  
f = 1 MHz  
Reverse Transfer Capacitance  
Gate-to-Emitter Plateau Voltage  
Gate Charge  
3
V
GE = 15V  
Total Gate Charge  
240  
20  
VCE = 600V  
IC = 50A  
Qge  
Qgc  
nC  
Gate-Emitter Charge  
Gate-Collector ("Miller") Charge  
110  
TJ = 150°C, RG = 1.0Ω 7, VGE  
=
Switching Safe Operating Area  
SSOA  
td(on)  
A
150  
15V, L = 100μH, VCE = 1200V  
Inductive Switching (25°C)  
Turn-on Delay Time  
Current Rise Time  
Turn-off Delay Time  
Current Fall Time  
23  
50  
VCC = 800V  
VGE = 15V  
IC = 50A  
tr  
ns  
td(off)  
215  
26  
tf  
RG = 4.7Ω 7  
4
Eon1  
Eon2  
Turn-on Switching Energy  
3585  
4835  
1910  
23  
TJ = +25°C  
5
μJ  
Turn-on Switching Energy (Diode)  
6
Eoff  
Turn-off Switching Energy  
td(on)  
Inductive Switching (125°C)  
Turn-on Delay Time  
Current Rise Time  
Turn-off Delay Time  
tr  
V
CC = 800V  
50  
ns  
VGE = 15V  
td(off)  
tf  
255  
50  
IC = 50A  
RG = 4.7Ω 7  
TJ = +125°C  
Current Fall Time  
4 4  
Eon1  
Eon2  
Eoff  
3580  
6970  
2750  
Turn-on Switching Energy  
55  
μJ  
Turn-on Switching Energy (Diode)  
6
Turn-off Switching Energy  
THERMAL AND MECHANICAL CHARACTERISTICS  
Symbol  
Characteristic  
UNIT  
MIN  
TYP  
MAX  
.18  
R
Junction to Case (IGBT)  
Junction to Case (DIODE)  
Package Weight  
θJC  
°C/W  
gm  
R
.61  
θJC  
WT  
5.9  
1
2
3
4
Repetitive Rating: Pulse width limited by maximum junction temperature.  
For Combi devices, Ices includes both IGBT and FRED leakages  
See MIL-STD-750 Method 3471.  
Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current  
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in gure 21, but with a Silicon Carbide diode.  
5
Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching  
loss. (See Figures 21, 22.)  
6
7
Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)  
RG is external gate resistance, not including RG(int) nor gate driver impedance.  
8
Continuous current limited by package lead temperature.  
Microsemi reserves the right to change, without notice, the specifications and information contained herein.  
TYPICAL PERFORMANCE CURVES  
APT50GT120B2RDL(G)  
150  
150  
125  
15V  
V
= 15V  
GE  
13V  
TJ= 25°C  
TJ= 55°C  
125  
100  
75  
50  
25  
0
11V  
10V  
100  
75  
50  
25  
0
TJ= 125°C  
9V  
8V  
TJ= 150°C  
7V  
6V  
0
1
2
3
4
5
6
7
8
0
V
10  
, COLLECTOR-TO-EMITTER VOLTAGE (V)  
CE  
15  
20  
25  
30  
5
V
, COLLECTOR-TO-EMITTER VOLTAGE (V)  
CE  
FIGURE 1, Output Characteristics (T = 25°C)  
FIGURE 2, Output Characteristics (T = 25°C)  
J
J
150  
125  
100  
16  
14  
12  
10  
250μs PULSE  
TEST<0.5 % DUTY  
CYCLE  
I
= 50A  
V
V
= 240V  
= 600V  
C
CE  
T
= 25°C  
J
CE  
V
= 960V  
CE  
75  
50  
25  
0
8
6
4
2
0
TJ= -55°C  
TJ= 25°C  
TJ= 125°C  
0
2
4
6
10  
12  
14  
0
50  
100 150 200 250 300 350  
GATE CHARGE (nC)  
8
V
, GATE-TO-EMITTER VOLTAGE (V)  
CE  
FIGURE 4, Gate charge  
FIGURE 3, Transfer Characteristics  
6
5
4
3
2
1
0
7
TJ = 25°C.  
VGE = 15V.  
250μs PULSE TEST  
<0.5 % DUTY CYCLE  
250μs PULSE TEST  
<0.5 % DUTY CYCLE  
6
5
4
3
2
1
0
I
= 100A  
C
I
= 100A  
C
I
= 50A  
C
I
= 50A  
= 25A  
C
I
= 25A  
C
I
C
25  
50  
75  
100  
125  
150  
8
9
V
10 11 12 13 14 15 16  
, GATE-TO-EMITTER VOLTAGE (V)  
T , Junction Temperature (°C)  
GE  
J
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage  
FIGURE 6, On State Voltage vs Junction Temperature  
1.10  
100  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
80  
60  
40  
20  
0
-.50 -.25  
0
25  
50 75 100 125 150  
25  
50  
75  
100  
125  
150  
T , JUNCTION TEMPERATURE  
T , Case Temperature (°C)  
J
C
FIGURE 7, Threshold Voltage vs Junction Temperature  
FIGURE 8, DC Collector Current vs Case Temperature  
APT50GT120B2RDL(G)  
300  
250  
200  
150  
100  
50  
35  
30  
25  
20  
15  
10  
5
V
= 15V  
GE  
VGE =15V,TJ=125°C  
VGE =15V,TJ=25°C  
VCE = 800V  
TJ = 25°C, or 125°C  
G = 5Ω  
L = 100μH  
VCE = 800V  
RG = 5Ω  
L = 100μH  
R
0
I
0
I
10  
30  
50  
70  
90  
110  
10  
30  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
50  
70  
90  
110  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 9, Turn-On Delay Time vs Collector Current  
FIGURE 10, Turn-Off Delay Time vs Collector Current  
160  
60  
RG = 5Ω, L = 100μH, VCE = 800V  
RG = 5Ω, L = 100μH, VCE = 800V  
140  
120  
100  
80  
50  
40  
30  
20  
10  
T
J = 125°C, VGE = 15V  
60  
T
J = 25°C, VGE = 15V  
40  
TJ = 25 or 125°C,VGE = 15V  
20  
0
I
0
I
10  
CE  
30  
50  
70  
90  
110  
10  
CE  
30  
50  
70  
90  
110  
, COLLECTOR TO EMITTER CURRENT (A)  
, COLLECTOR TO EMITTER CURRENT (A)  
FIGURE 11, Current Rise Time vs Collector Current  
FIGURE 12, Current Fall Time vs Collector Current  
6000  
5000  
4000  
3000  
2000  
25,000  
20,000  
15,000  
10,000  
5,000  
0
V
V
=
=
800V  
+15V  
V
V
=
=
800V  
+15V  
CE  
GE  
CE  
GE  
R
= 5Ω  
R
= 5Ω  
G
G
T
J = 125°C  
T
J = 125°C  
T
J = 25°C  
1000  
0
T
J = 25°C  
10  
30  
50  
70  
90  
110  
10  
30  
50  
70  
90  
110  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 13, Turn-On Energy Loss vs Collector Current  
FIGURE 14, Turn Off Energy Loss vs Collector Current  
25,000  
60,000  
50,000  
40,000  
30,000  
20,000  
V
V
T
=
=
800V  
+15V  
V
V
=
=
800V  
+15V  
CE  
GE  
CE  
GE  
E
100A  
E
100A  
on2,  
on2,  
= 125°C  
R
= 5Ω  
J
G
20,000  
15,000  
10,000  
5,000  
0
E
50A  
on2,  
E
50A  
E
100A  
25A  
on2,  
E
100A  
off,  
off,  
10,000  
0
E
25A  
25A  
E
50A  
off,  
on2,  
E
50A  
off,  
E
25A  
on2,  
E
E
off,  
off,  
0
10  
20  
30  
40  
50  
0
25  
50  
75  
100  
125  
R , GATE RESISTANCE (OHMS)  
T , JUNCTION TEMPERATURE (°C)  
G
J
FIGURE 15, Switching Energy Losses vs. Gate Resistance  
FIGURE 16, Switching Energy Losses vs Junction Temperature  
TYPICAL PERFORMANCE CURVES  
APT50GT120B2RDL(G)  
160  
140  
120  
100  
80  
4,000  
Cies  
1,000  
500  
60  
40  
Coes  
Cres  
20  
100  
0
0
10  
20  
30  
40  
50  
0
200 400 600 800 1000 1200 1400  
V , COLLECTOR TO EMITTER VOLTAGE  
CE  
V
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)  
CE  
Figure 17, Capacitance vs Collector-To-Emitter Voltage  
Figure 18,Minimim Switching Safe Operating Area  
0.20  
D = 0.9  
0.16  
0.7  
0.12  
0.5  
Note:  
0.08  
t
1
0.3  
t
2
0.04  
t
1
t
/
2
SINGLE PULSE  
Duty Factor D =  
Peak T = P x Z  
0.1  
+ T  
C
J
DM  
θJC  
0.05  
0
10-5  
10-4  
10-3  
RECTANGULAR PULSE DURATION (SECONDS)  
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration  
10-2  
10-1  
1.0  
140  
50  
Fmax = min (fmax, fmax2  
)
0.05  
fmax1  
=
t d(on) + tr + td(off) + tf  
Pdiss - Pcond  
Eon2 + E off  
fmax2  
Pdiss  
=
10  
4
T
J
=
125°C  
T
= 75°C  
C
D = 50 %  
TJ - T C  
R θJC  
V
=
800V  
=
CE  
R
= 5Ω  
G
10 20 30 40 50 60 70 80 90 100  
I , COLLECTOR CURRENT (A)  
C
Figure 20, Operating Frequency vs Collector Current  
APT50GT120B2RDL(G)  
Gate Voltage  
10%  
APT30DL120  
T
= 125°C  
J
td(on)  
tr  
VCE  
IC  
Collector Current  
VCC  
90%  
5%  
5%  
10%  
Collector Voltage  
A
Switching Energy  
D.U.T.  
Figure 21, Inductive Switching Test Circuit  
Figure 22, Turn-on Switching Waveforms and Denitions  
90%  
Gate Voltage  
T
= 125°C  
J
td(off)  
90%  
Collector Voltage  
tf  
10%  
0
Collector Current  
Switching Energy  
Figure 23, Turn-off Switching Waveforms and Denitions  
TYPICAL PERFORMANCE CURVES  
APT50GT120B2RDL(G)  
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE  
MAXIMUM RATINGS  
All Ratings: T = 25°C unless otherwise specied.  
C
Symbol  
IF(AV)  
Characteristic / Test Conditions  
APT50GT120B2RDL(G)  
UNIT  
Maximum Average Forward Current (TC = 145°C, Duty Cycle = 0.5)  
RMS Forward Current (Square wave, 50% duty)  
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)  
30  
81  
60  
IF(RMS)  
Amps  
IFSM  
STATIC ELECTRICAL CHARACTERISTICS  
Symbol  
UNIT  
Characteristic / Test Conditions  
MIN  
TYP  
MAX  
IF = 30A  
1.6  
2.0  
1.6  
2.1  
Volts  
Forward Voltage  
IF = 60A  
VF  
IF = 30A, TJ = 125°C  
DYNAMIC CHARACTERISTICS  
Characteristic  
Symbol  
MIN  
TYP  
61  
MAX  
UNIT  
Test Conditions  
Reverse Recovery Time  
trr  
trr  
IF = 1A, diF/dt = -100A/μs, VR = 30V, TJ = 25°C  
-
ns  
Reverse Recovery Time  
-
592  
IF = 30A, diF/dt = -200A/μs  
Qrr  
IRRM  
trr  
Reverse Recovery Charge  
-
-
-
-
-
2694  
9
nC  
Amps  
ns  
VR = 800V, TC = 25°C  
Maximum Reverse Recovery Current  
Reverse Recovery Time  
-
-
389  
3459  
15  
IF =30A, diF/dt = -200A/μs  
Qrr  
Reverse Recovery Charge  
nC  
Amps  
ns  
VR = 800V, TC = 125°C  
IRRM  
trr  
Maximum Reverse Recovery Current  
Reverse Recovery Time  
-
-
-
165  
4646  
44  
IF = 30A, diF/dt = -1000A/μs  
Qrr  
Reverse Recovery Charge  
nC  
VR = 800V, TC = 125°C  
IRRM  
Maximum Reverse Recovery Current  
Amps  
0.9  
0.8  
0.9  
0.7  
0.7  
0.5  
0.3  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
Note:  
t
1
t
2
t
1
t
/
2
Duty Factor D =  
Peak T = P x Z  
0.1  
+ T  
C
J
DM  
θJC  
SINGLE PULSE  
10-3  
0.05  
0
10-5  
10-4  
10-2  
10-1  
1.0  
RECTANGULAR PULSE DURATION (seconds)  
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION  
APT50GT120B2RDL(G)  
100  
80  
60  
40  
20  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
T
= 125°C  
= 800V  
TJ= 125°C  
J
V
R
TJ= 150°C  
60A  
30A  
TJ= 55°C  
TJ= 25°C  
15A  
0
0
200  
400  
600  
800  
1000  
0
0.5  
1
1.5  
2
2.5  
3
-diF/dt, CURRENT RATE OF CHANGE (A/s)  
V , ANODE-TO-CATHODE VOLTAGE (V)  
F
FIGURE 3, Reverse Recovery Time vs. Current Rate of Change  
FIGURE 2, Forward Current vs. Forward Voltage  
70  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
T
= 125°C  
= 800V  
T
= 125°C  
= 800V  
J
J
V
V
R
R
60  
50  
40  
30  
20  
10  
0
60A  
30A  
60A  
30A  
15A  
15A  
0
0
200  
400  
60  
800  
1000  
0
200  
400  
600  
800  
1000  
-diF/dt, CURRENT RATE OF CHANGE (A/s)  
-diF/dt, CURRENT RATE OF CHANGE (A/s)  
FIGURE 5, Reverse Recovery Current vs. Current Rate of Change  
FIGURE 4, Reverse Recovery Charge vs. Current Rate of Change  
1.2  
100  
90  
80  
70  
60  
50  
40  
30  
20  
1.0  
0.8  
tRR  
IRRM  
0.6  
QRR  
0.4  
0.2  
0
Duty cycle = 0.5  
TJ = 45°C  
10  
0
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
Case Temperature (°C)  
FIGURE 7, Maximum Average Forward Current vs. Case Temperature  
100  
125  
150  
T , JUNCTION TEMPERATURE (°C)  
J
FIGURE 6, Dynamic Parameters vs Junction Temperature  
1400  
1200  
1000  
800  
600  
400  
200  
0
1
10  
100  
800  
V , REVERSE VOLTAGE (V)  
R
FIGURE 8, Junction Capacitance vs. Reverse Voltage  
TYPICAL PERFORMANCE CURVES  
APT50GT120B2RDL(G)  
V
r
diF/dt Adjust  
+18V  
0V  
APT10078BLL  
D.U.T.  
t
Q
/
30μH  
rr rr  
Waveform  
PEARSON 2878  
CURRENT  
TRANSFORMER  
Figure 32. Diode Test Circuit  
1
2
IF - Forward Conduction Current  
diF/dt - Rate of Diode Current Change Through Zero Crossing.  
1
4
5
Zero  
3
4
IRRM - Maximum Reverse Recovery Current.  
0.25 I  
RRM  
t
- Reverse Recovery Time, measured from zero crossing where diode  
current goes from positive to negative, to the point at which the straight  
line through IRRM and 0.25 IRRM passes through zero.  
3
rr  
2
5
Q
- Area Under the Curve Defined by IRRM and t .  
rr  
rr  
Figure 33, Diode Reverse Recovery Waveform and Definitions  
T-MAX® (B2) Package Outline  
e1 SAC: Tin, Silver, Copper  
4.69 (.185)  
5.31 (.209)  
15.49 (.610)  
16.26 (.640)  
1.49 (.059)  
2.49 (.098)  
5.38 (.212)  
6.20 (.244)  
20.80 (.819)  
21.46 (.845)  
4.50  
(.177) Max.  
2.87 (.113)  
3.12 (.123)  
0.40 (.016)  
0.79 (.031)  
1.65 (.065)  
2.13 (.084)  
19.81 (.780)  
20.32 (.800)  
Gate  
Collector  
(Cathode)  
Emmiter  
1.01 (.040)  
1.40 (.055)  
(Anode)  
2.21 (.087)  
2.59 (.102)  
5.45 (.215) BSC  
2-Plcs.  
Dimensions in Millimeters and (Inches)  
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583  
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262  
and foreign patents. US and Foreign patents pending. All Rights Reserved.  

相关型号:

APT50GT120B2RDQ2G

Thunderbolt IGBT
MICROSEMI

APT50GT120B2RG

Thunderbolt IGBT
MICROSEMI

APT50GT120JRDQ2

Thunderbolt IGBT
ADPOW

APT50GT120JU2

Boost chopper Trench + Field Stop IGBT
MICROSEMI

APT50GT120JU3

ISOTOP® Buck chopper Trench + Field Stop IGBT®
MICROSEMI

APT50GT120JU3

ISOTOP Buck chopper Trench IGBT
ADPOW

APT50GT120LR

Thunderbolt IGBT
MICROSEMI

APT50GT120LRDQ2

Insulated Gate Bipolar Transistor
MICROSEMI

APT50GT120LRDQ2G

Insulated Gate Bipolar Transistor, 106A I(C), 1200V V(BR)CES, N-Channel, TO-264AA, TO-264, 3 PIN
MICROSEMI

APT50GT120LRG

Thunderbolt IGBT
MICROSEMI

APT50GT60BR

Thunderbolt IGBT
MICROSEMI

APT50GT60BR

Thunderbolt IGBT
ADPOW