MMBF0202PLT1 [MOTOROLA]

P-CHANNEL ENHANCEMENT-MODE TMOS MOSFET; P沟道增强型MOSFET TMOS
MMBF0202PLT1
型号: MMBF0202PLT1
厂家: MOTOROLA    MOTOROLA
描述:

P-CHANNEL ENHANCEMENT-MODE TMOS MOSFET
P沟道增强型MOSFET TMOS

文件: 总6页 (文件大小:193K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MMBF0202PLT1/D  
SEMICONDUCTOR TECHNICAL DATA  
Motorola Preferred Device  
P–CHANNEL  
ENHANCEMENT–MODE  
TMOS MOSFET  
Part of the GreenLine Portfolio of devices with energy–con-  
serving traits.  
r
= 1.4 OHM  
DS(on)  
These miniature surface mount MOSFETs utilize Motorola’s High  
Cell Density, HDTMOS process. Low r  
assures minimal  
DS(on)  
power loss and conserves energy, making this device ideal for use  
in small power management circuitry. Typical applications are  
dc–dc converters, power management in portable and battery–  
powered products such as computers, printers, PCMCIA cards,  
cellular and cordless telephones.  
3
3 DRAIN  
1
2
CASE 318–07, Style 21  
SOT–23 (TO–236AB)  
Low r  
Provides Higher Efficiency and Extends Battery Life  
Miniature SOT–23 Surface Mount Package Saves Board Space  
DS(on)  
1
GATE  
2 SOURCE  
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
J
Rating  
Drain–to–Source Voltage  
Symbol  
V
Value  
20  
Unit  
Vdc  
Vdc  
DSS  
Gate–to–Source Voltage — Continuous  
V
GS  
± 20  
Drain Current — Continuous @ T = 25°C  
I
I
300  
240  
750  
mAdc  
A
D
D
Drain Current — Continuous @ T = 70°C  
A
Drain Current — Pulsed Drain Current (t 10 µs)  
I
p
DM  
(1)  
Total Power Dissipation @ T = 25°C  
P
225  
– 55 to 150  
625  
mW  
°C  
A
D
Operating and Storage Temperature Range  
Thermal Resistance — Junction–to–Ambient  
T , T  
J
stg  
R
°C/W  
°C  
θJA  
Maximum Lead Temperature for Soldering Purposes, 1/8from case for 10 seconds  
T
260  
L
DEVICE MARKING  
P3  
(1) Mounted on G10/FR4 glass epoxy board using minimum recommended footprint.  
ORDERING INFORMATION  
Device  
Reel Size  
Tape Width  
Quantity  
3000  
MMBF0202PLT1  
MMBF0202PLT3  
7″  
12 mm embossed tape  
12 mm embossed tape  
13″  
10,000  
GreenLine is a trademark of Motorola, Inc.  
HDTMOS is a trademark of Motorola, Inc. TMOS is a registered trademark of Motorola, Inc.  
Thermal Clad is a registered trademark of the Berquist Company.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
(Replaces MMBF0202P/D)  
Motorola, Inc. 1995
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain–to–Source Breakdown Voltage  
V
20  
Vdc  
(BR)DSS  
(V  
GS  
= 0 Vdc, I = 10 µA)  
D
Zero Gate Voltage Drain Current  
I
µAdc  
DSS  
(V  
DS  
(V  
DS  
= 16 Vdc, V  
= 16 Vdc, V  
= 0 Vdc)  
= 0 Vdc, T = 125°C)  
1.0  
10  
GS  
GS  
J
Gate–Body Leakage Current (V  
GS  
= ± 20 Vdc, V  
DS  
= 0)  
I
±100  
nAdc  
GSS  
(1)  
ON CHARACTERISTICS  
Gate Threshold Voltage  
V
1.0  
1.7  
2.4  
Vdc  
GS(th)  
(V  
DS  
= V , I = 250 µAdc)  
GS  
D
Static Drain–to–Source On–Resistance  
r
Ohms  
DS(on)  
(V  
GS  
(V  
GS  
= 10 Vdc, I = 200 mAdc)  
0.9  
2.0  
1.4  
3.5  
D
= 4.5 Vdc, I = 50 mAdc)  
D
Forward Transconductance (V  
DS  
= 10 Vdc, I = 200 mAdc)  
g
600  
mMhos  
pF  
D
FS  
DYNAMIC CHARACTERISTICS  
Input Capacitance  
(V  
DS  
(V  
DS  
DG  
= 5.0 V)  
= 5.0 V)  
= 5.0 V)  
C
50  
45  
20  
iss  
Output Capacitance  
C
oss  
Transfer Capacitance  
(V  
C
rss  
(2)  
SWITCHING CHARACTERISTICS  
Turn–On Delay Time  
t
2.5  
1.0  
ns  
d(on)  
(V  
= –15 Vdc,  
= 75 , I = 200 mAdc,  
Rise Time  
DD  
t
r
R
V
L
D
Turn–Off Delay Time  
Fall Time  
t
16  
d(off)  
= –10 V, R = 6.0 )  
G
GEN  
t
f
8.0  
Gate Charge (See Figure 5)  
(V  
DS  
= 16 V, V  
I
= 10 V,  
= 200 mA)  
Q
2700  
pC  
GS  
T
D
SOURCE–DRAIN DIODE CHARACTERISTICS  
Continuous Current  
I
0.3  
0.75  
A
V
S
Pulsed Current  
I
SM  
(2)  
Forward Voltage  
V
SD  
1.5  
(1) Pulse Test: Pulse Width 300 µs, Duty Cycle 2%.  
(2) Switching characteristics are independent of operating junction temperature.  
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TYPICAL ELECTRICAL CHARACTERISTICS  
1.0  
0.8  
0.6  
0.4  
0.2  
1.0  
5 V  
T
= 55°C  
C
25°C  
V
= 10, 9, 8, 7, 6 V  
4 V  
0.8  
0.6  
0.4  
0.2  
0
GS  
125°C  
3 V  
0
0
2
4
6
8
0
1
2
3
4
V
, GATE–TO–SOURCE VOLTAGE (VOLTS)  
V , DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
DS  
GS  
Figure 1. Transfer Characteristics  
Figure 2. On–Region Characteristics  
5
4
3
2
1
0
5
4
3
2
1
0
200 mA  
V
= 4.5 V  
= 10 V  
200  
50 mA  
GS  
V
GS  
0
100  
300  
400  
500  
0
–5  
–10  
–15  
–20  
I
, DRAIN CURRENT (AMPS)  
V , GATE–TO–SOURCE VOLTAGE (VOLTS)  
GS  
D
Figure 3. On–Resistance versus Drain Current  
Figure 4. On–Resistance versus  
Gate–to–Source Voltage  
16  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
14  
12  
10  
8
I
= 200 mA  
I = 250 µA  
D
D
2160  
V
= 10 V  
DS  
V
= 16 V  
6
DS  
590  
4
2
0
0
230  
690  
2270  
3500  
–50  
–25  
0
25  
50  
75  
C)  
100  
125  
150  
Q , TOTAL GATE CHARGE (pC)  
g
TEMPERATURE (  
°
Figure 5. Gate Charge  
Figure 6. Threshold Voltage Variance  
Over Temperature  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
TYPICAL ELECTRICAL CHARACTERISTICS  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
140  
120  
V
= 4.5 V @ 50 mA  
GS  
100  
80  
V
= 10 V @ 200 mA  
GS  
60  
40  
C
C
iss  
oss  
20  
0
C
rss  
0.80  
–50  
–25  
0
25  
50  
75  
100  
C)  
125  
150  
0
5
10  
15  
20  
T , JUNCTION TEMPERATURE (  
°
V
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
J
DS  
Figure 7. On–Resistance versus  
Junction Temperature  
Figure 8. Capacitance  
10  
1.0  
T
= 150°C  
55°C  
J
0.1  
25°C  
0.01  
0.001  
0
1
2
3
4
4.5  
SOURCE–TO–DRAIN FORWARD VOLTAGE (VOLTS)  
Figure 9. Source–to–Drain Forward Voltage  
versus Continuous Current (I )  
S
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
The power dissipation of the SOT–23 is a function of the  
SOLDERING PRECAUTIONS  
drain pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipation.  
Power dissipation for a surface mount device is determined  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
by T  
, the maximum rated junction temperature of the  
, the thermal resistance from the device junction to  
J(max)  
die, R  
θJA  
ambient, and the operating temperature, T . Using the  
A
values provided on the data sheet for the SOT–23 package,  
P
can be calculated as follows:  
D
Always preheat the device.  
The delta temperature between the preheat and soldering  
should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
calculate the power dissipation of the device which in this  
A
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
case is 225 milliwatts.  
When shifting from preheating to soldering, the maximum  
temperature gradient shall be 5°C or less.  
150°C – 25°C  
556°C/W  
P
=
= 225 milliwatts  
D
After soldering has been completed, the device should be  
allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed circuit  
board to achieve a power dissipation of 225 milliwatts. There  
are other alternatives to achieving higher power dissipation  
from the SOT–23 package. Another alternative would be to  
use a ceramic substrate or an aluminum core board such as  
Thermal Clad . Using a board material such as Thermal  
Clad, an aluminum core board, the power dissipation can be  
doubled using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
PACKAGE DIMENSIONS  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. MAXIUMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS OF  
BASE MATERIAL.  
A
L
3
INCHES  
MIN MAX  
MILLIMETERS  
S
C
B
DIM  
A
B
C
D
G
H
J
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
0.013  
0.085  
0.45  
0.89  
2.10  
0.45  
MAX  
3.04  
1.40  
1.11  
0.50  
2.04  
0.100  
0.177  
0.60  
1.02  
2.50  
0.60  
1
2
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
0.0005 0.0040  
0.0034 0.0070  
0.0180 0.0236  
0.0350 0.0401  
0.0830 0.0984  
0.0177 0.0236  
V
G
K
L
S
H
J
D
V
K
STYLE 21:  
PIN 1. GATE  
2. SOURCE  
3. DRAIN  
CASE 318–07  
SOT–23 (TO–236AB)  
ISSUE AD  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
To order literature by mail:  
USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.  
JAPAN: Nippon Motorola Ltd.; 4–32–1, Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan.  
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.  
To order literature electronically:  
MFAX: RMFAX0@email.sps.mot.com –TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
MMBF0202PLT1/D  

相关型号:

MMBF0202PLT1G

300mA, 20V, P-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-236, LEAD FREE, CASE 318-08, 3 PIN
ONSEMI

MMBF0202PLT3

300mA, 20V, P-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-236AB
MOTOROLA

MMBF102

N-Channel RF Amplifier
FAIRCHILD

MMBF112L

Transistor
MOTOROLA

MMBF1374T1

50mA, 20V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, SC-70, 3 PIN
ONSEMI

MMBF1374T1

50mA, 20V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, SC-70, 3 PIN
ROCHESTER

MMBF170

N 沟道增强型场效应晶体管
ONSEMI

MMBF170

N-CHANNEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR
DIODES

MMBF170

N-Channel Enhancement Mode Field Effect Transistor
FAIRCHILD

MMBF170

0.5A, 60V N-CHANNEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR
UTC

MMBF170

SOT-23
TYSEMI

MMBF170

500mA, 60V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-236AB
TI