NJU6824CJ [NJRC]

Liquid Crystal Driver, 518-Segment, CMOS, 22.07 X 2.55 MM, DIE-817;
NJU6824CJ
型号: NJU6824CJ
厂家: NEW JAPAN RADIO    NEW JAPAN RADIO
描述:

Liquid Crystal Driver, 518-Segment, CMOS, 22.07 X 2.55 MM, DIE-817

驱动 接口集成电路
文件: 总110页 (文件大小:957K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NJU6824  
Preliminary  
(128+2) x RGB-Segment, 128-common 4096-Color  
STN LCD DRIVER  
ꢀꢀ GENERAL DESCRIPTION  
PACKAGE OUTLINE  
The NJU6824 is a (128+2) x RGB segment, 128-  
common 4096-color STN LCD driver consisted of  
384(128xRGB)-segment + 6(2xRGB)-icon segment and  
128-common drivers, serial and parallel MPU interface  
circuits, internal power supply circuits, color palettes and  
196,608-bit for graphic display data RAM.  
Each of the 128-RGB segment drivers outputs 16  
gradation levels out of 32-gradation level of color palette.  
The display rotate function makes easily rotated display  
without original display data change.  
NJU6824CJ  
Since the NJU6824 provides a low operating voltage of  
1.7V and low operating current, it is ideally suited for  
battery-powered handheld applications.  
ꢀꢀ FEATURES  
ꢀꢀ 4096-color STN LCD driver  
ꢀꢀ LCD drivers  
ꢀꢀ Display data RAM (DDRAM)  
ꢀꢀ Color display mode  
ꢀꢀ Black & white display mode  
ꢀꢀ 256-color driving mode  
128 x 3(RGB) segments, 2 x 3(RGB) icon segments, 128 commons  
196,608-bit for graphic display  
16 gradation levels out of 32 gradation levels of color palette  
128 x 384 pixels 16 gradation levels or 128 x 384 pixels in B&W display  
ꢀꢀ 8/16bit Parallel interface direct connection to 68/80 series MPU  
ꢀꢀ Programmable 8- or 16-bit data bus length for display data  
ꢀꢀ Serial interface 3-/4-line  
ꢀꢀ Programmable duty and bias ratios  
ꢀꢀ Programmable internal voltage booster (6-times maximum)  
ꢀꢀ Programmable clock frequency for internal voltage booster operation (1/2, 1, 2, 4times)  
ꢀꢀ Programmable contrast control using 128-step EVR  
ꢀꢀ Display Rotate Function / Display Mirror Inverse Function  
ꢀꢀ Various instructions  
Display data read/write, Display ON/OFF, Reverse display ON/OFF, All pixels ON/OFF,  
column address, row address, N-line inversion, Initial display line, Initial COM line, Read-modify-write,  
Gradation mode control, Increment control, Data bus length, Discharge ON/OFF,  
Duty cycle ratio, LCD bias ratio, Boost level, EVR control, Power save ON/OFF, etc  
ꢀꢀ Low operating current  
ꢀꢀ Low logic supply voltage  
ꢀꢀ LCD driving supply voltage  
ꢀꢀ C-MOS technology  
ꢀꢀ Package  
1.7V to 3.3V  
5.0V to 18.0V  
Bumped chip / TCP  
02/05/11  
- 1 -  
NJU6824  
ꢀꢀ PAD LOCATION  
DMY44  
DMY45  
DMY46  
COM114  
COM127  
DMY47  
DMY71  
1
Note1) The PADs of (L), (R) and (C) are shorted mutually in the LSI.  
Note2) The DMY PADs are electrically open.  
Chip Center  
Chip Size  
:X= 0µm, Y= 0µm  
:22.07mm x 2.55mm  
Chip Thickness  
Bump Size  
:625µm ± 25µm  
:28µm x 110µm(COM/SEG Output, DMY10 ~ DMY71),  
60µm x 100µm(Interface),  
28µm x 100µm(DMY0 ~ DMY9)  
:43µm(Min)  
Bump Pitch  
Bump Height  
Bump Material  
:14.0~22.5µm (Typical 18µm) <tolerance : ±3µm >  
:Au  
Alignment marks  
a
a: 30µm  
b: 6µm  
d
c: 120µm  
d: 27µm  
d
b
Alignment mark coordinates  
c
a
X=-10866µm, Y= 1106µm  
X= 10866µm, Y=-1106µm  
b
c
- 2 -  
NJU6824  
Y
X
- 3 -  
NJU6824  
DMY37  
DMY36  
DMY35  
COM50  
Y
X
COM63  
DMY34  
DMY10  
- 4 -  
NJU6824  
ꢀꢀ PAD COORDINATES 1  
Chip Size 22070µm x 2550µm (Chip Center 0µm x 0µm )  
PAD  
No.  
1
2
3
4
5
6
PAD  
No.  
PAD  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
No.  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
DMY0  
DMY1  
DMY2  
VSSA  
VSSA  
SEL68  
SEL68  
VDDA  
VDDA  
P/S  
-10642.5 -1090.0 52  
-10599.5 -1090.0 53  
-10556.5 -1090.0 54  
-10475.5 -1090.0 55  
-10402.5 -1090.0 56  
-10293.0 -1090.0 57  
-10220.0 -1090.0 58  
-10110.5 -1090.0 59  
-10037.5 -1090.0 60  
-9928.0 -1090.0 61  
-9855.0 -1090.0 62  
-9745.5 -1090.0 63  
-9672.5 -1090.0 64  
-9563.0 -1090.0 65  
-9490.0 -1090.0 66  
-9380.5 -1090.0 67  
-9271.0 -1090.0 68  
-9198.0 -1090.0 69  
-9088.5 -1090.0 70  
-8979.0 -1090.0 71  
-8906.0 -1090.0 72  
-8796.5 -1090.0 73  
-8687.0 -1090.0 74  
-8614.0 -1090.0 75  
-8504.5 -1090.0 76  
-8395.0 -1090.0 77  
-8322.0 -1090.0 78  
-8212.5 -1090.0 79  
-8139.5 -1090.0 80  
-7993.5 -1090.0 81  
-7920.5 -1090.0 82  
-7774.5 -1090.0 83  
-7701.5 -1090.0 84  
-7555.5 -1090.0 85  
-7482.5 -1090.0 86  
D10  
D10  
D11  
D11  
D12  
D12  
D13  
D13  
D14  
-5584.5 -1090.0  
-5511.5 -1090.0  
-5365.5 -1090.0  
-5292.5 -1090.0  
-5146.5 -1090.0  
-5073.5 -1090.0  
-4927.5 -1090.0  
-4854.5 -1090.0  
-4708.5 -1090.0  
-4635.5 -1090.0  
-4489.5 -1090.0  
-4416.5 -1090.0  
-4197.5 -1090.0  
-4124.5 -1090.0  
-4051.5 -1090.0  
-3978.5 -1090.0  
-3905.5 -1090.0  
-3832.5 -1090.0  
-3759.5 -1090.0  
-3613.5 -1090.0  
-3540.5 -1090.0  
-3394.5 -1090.0  
-3321.5 -1090.0  
-3175.5 -1090.0  
-3102.5 -1090.0  
-2956.5 -1090.0  
-2883.5 -1090.0  
-2701.0 -1090.0  
-2628.0 -1090.0  
-2409.0 -1090.0  
-2336.0 -1090.0  
-2044.0 -1090.0  
-1971.0 -1090.0  
-1898.0 -1090.0  
-1825.0 -1090.0  
-1752.0 -1090.0  
-1679.0 -1090.0  
-1606.0 -1090.0  
-1460.0 -1090.0  
-1387.0 -1090.0  
-1277.5 -1090.0  
-1204.5 -1090.0  
-1095.0 -1090.0  
-1022.0 -1090.0  
V4A2  
VSSA  
VSSA  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
V1  
V1  
V1  
V1  
V1  
V1  
V2  
V2  
V2  
V2  
V2  
V2  
V3  
V3  
V3  
V3  
V3  
V3  
V4  
V4  
V4  
V4  
V4  
V4  
VREG  
VREG  
VREG  
VREG  
VREG  
VREG  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VBA  
VBA  
VBA  
VBA  
VBA  
VBA  
-292.0  
-182.5  
-109.5  
0.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
73.0  
146.0  
219.0  
292.0  
365.0  
511.0  
584.0  
657.0  
730.0  
803.0  
876.0  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
D14  
D15  
D15  
P/S  
VSSA  
VSSA  
RES  
RES  
DMY3  
CS  
CS  
DMY4  
RS  
RS  
DMY5  
WR  
WR  
DMY6  
RD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
CL  
1022.0 -1090.0  
1095.0 -1090.0  
1168.0 -1090.0  
1241.0 -1090.0  
1314.0 -1090.0  
1387.0 -1090.0  
1533.0 -1090.0  
1606.0 -1090.0  
1679.0 -1090.0  
1752.0 -1090.0  
1825.0 -1090.0  
1898.0 -1090.0  
2044.0 -1090.0  
2117.0 -1090.0  
2190.0 -1090.0  
2263.0 -1090.0  
2336.0 -1090.0  
2409.0 -1090.0  
2555.0 -1090.0  
2628.0 -1090.0  
2701.0 -1090.0  
2774.0 -1090.0  
2847.0 -1090.0  
2920.0 -1090.0  
3029.5 -1090.0  
3102.5 -1090.0  
3175.5 -1090.0  
3248.5 -1090.0  
3321.5 -1090.0  
3394.5 -1090.0  
3504.0 -1090.0  
3577.0 -1090.0  
3650.0 -1090.0  
3723.0 -1090.0  
3796.0 -1090.0  
3869.0 -1090.0  
CL  
FLM  
FLM  
FR  
FR  
CLK  
CLK  
OSC1  
OSC1  
OSC2  
OSC2  
VSS  
VSS  
VSS  
VSS  
VSS  
RD  
VDDA  
VDDA  
D0/SCL  
D0/SCL  
D1/SDA  
D1/SDA  
D2  
D2  
36 D3/SMODE -7336.5 -1090.0 87  
37 D3/SMODE -7263.5 -1090.0 88  
VSS  
VSS  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
D4/SPOL  
D4/SPOL  
D5  
-7117.5 -1090.0 89  
-7044.5 -1090.0 90  
-6898.5 -1090.0 91  
-6825.5 -1090.0 92  
-6679.5 -1090.0 93  
-6606.5 -1090.0 94  
-6460.5 -1090.0 95  
-6387.5 -1090.0 96  
-6241.5 -1090.0 97  
-6168.5 -1090.0 98  
-6022.5 -1090.0 99  
-5949.5 -1090.0 100  
-5803.5 -1090.0 101  
-5730.5 -1090.0 102  
V1A1  
V1A1  
VDDA  
VDDA  
V1A2  
V1A2  
VSSA  
VSSA  
V4A1  
V4A1  
VDDA  
VDDA  
V4A2  
D5  
D6  
D6  
D7  
D7  
-912.5  
-839.5  
-730.0  
-657.0  
-547.5  
-474.5  
-365.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
VSSA  
VSSA  
D8  
D8  
D9  
D9  
- 5 -  
NJU6824  
ꢀꢀ PAD COORDINATES 2  
Chip Size 22070µm x 2550µm (Chip Center 0µm x 0µm )  
PAD  
PAD  
No.  
PAD  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
No.  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
No.  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
VSSH  
VSSH  
VSSH  
VSSH  
VSSH  
VSSH  
VSSH  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
C1+  
C1+  
C1+  
C1+  
C1+  
C1+  
C1-  
4051.5 -1090.0 205  
4124.5 -1090.0 206  
4197.5 -1090.0 207  
4270.5 -1090.0 208  
4343.5 -1090.0 209  
4416.5 -1090.0 210  
4489.5 -1090.0 211  
4672.0 -1090.0 212  
4745.0 -1090.0 213  
4818.0 -1090.0 214  
4891.0 -1090.0 215  
4964.0 -1090.0 216  
5037.0 -1090.0 217  
5110.0 -1090.0 218  
5292.5 -1090.0 219  
5365.5 -1090.0 220  
5438.5 -1090.0 221  
5511.5 -1090.0 222  
5584.5 -1090.0 223  
5657.5 -1090.0 224  
5730.5 -1090.0 225  
5840.0 -1090.0 226  
5913.0 -1090.0 227  
5986.0 -1090.0 228  
6059.0 -1090.0 229  
6132.0 -1090.0 230  
6205.0 -1090.0 231  
6314.5 -1090.0 232  
6387.5 -1090.0 233  
6460.5 -1090.0 234  
6533.5 -1090.0 235  
6606.5 -1090.0 236  
6679.5 -1090.0 237  
6789.0 -1090.0 238  
6862.0 -1090.0 239  
6935.0 -1090.0 240  
7008.0 -1090.0 241  
7081.0 -1090.0 242  
7154.0 -1090.0 243  
7263.5 -1090.0 244  
7336.5 -1090.0 245  
7409.5 -1090.0 246  
7482.5 -1090.0 247  
7555.5 -1090.0 248  
7628.5 -1090.0 249  
7738.0 -1090.0 250  
7811.0 -1090.0 251  
7884.0 -1090.0 252  
7957.0 -1090.0 253  
8030.0 -1090.0 254  
8103.0 -1090.0 255  
C3-  
C3-  
C3-  
C3-  
C3-  
C3-  
C4+  
C4+  
C4+  
C4+  
C4+  
C4+  
C4-  
C4-  
C4-  
C4-  
C4-  
C4-  
C5+  
C5+  
C5+  
C5+  
C5+  
C5+  
C5-  
C5-  
C5-  
C5-  
C5-  
8212.5 -1090.0  
8285.5 -1090.0  
8358.5 -1090.0  
8431.5 -1090.0  
8504.5 -1090.0  
8577.5 -1090.0  
8687.0 -1090.0  
8760.0 -1090.0  
8833.0 -1090.0  
8906.0 -1090.0  
8979.0 -1090.0  
9052.0 -1090.0  
9161.5 -1090.0  
9234.5 -1090.0  
9307.5 -1090.0  
9380.5 -1090.0  
9453.5 -1090.0  
9526.5 -1090.0  
9636.0 -1090.0  
9709.0 -1090.0  
9782.0 -1090.0  
9855.0 -1090.0  
9928.0 -1090.0  
10001.0 -1090.0  
10110.5 -1090.0  
10183.5 -1090.0  
10256.5 -1090.0  
10329.5 -1090.0  
10402.5 -1090.0  
10475.5 -1090.0  
10556.5 -1090.0  
10599.5 -1090.0  
10642.5 -1090.0  
10845.0 -881.5  
10845.0 -838.5  
10845.0 -795.5  
10845.0 -752.5  
10845.0 -709.5  
10845.0 -666.5  
10845.0 -623.5  
10845.0 -580.5  
10845.0 -537.5  
10845.0 -494.5  
10845.0 -451.5  
10845.0 -408.5  
10845.0 -365.5  
10845.0 -322.5  
10845.0 -279.5  
10845.0 -236.5  
10845.0 -193.5  
10845.0 -150.5  
DMY28  
DMY29  
DMY30  
DMY31  
DMY32  
DMY33  
DMY34  
COM63  
COM62  
COM61  
COM60  
COM59  
COM58  
COM57  
COM56  
COM55  
COM54  
COM53  
COM52  
COM51  
COM50  
DMY35  
DMY36  
DMY37  
DMY38  
DMY39  
DMY40  
COM49  
COM48  
COM47  
COM46  
COM45  
COM44  
COM43  
COM42  
COM41  
COM40  
COM39  
COM38  
COM37  
COM36  
COM35  
COM34  
COM33  
COM32  
COM31  
COM30  
COM29  
COM28  
COM27  
COM26  
10845.0 -107.5  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10642.5 1085.0  
10599.5 1085.0  
10556.5 1085.0  
10513.5 1085.0  
10470.5 1085.0  
10427.5 1085.0  
10384.5 1085.0  
10341.5 1085.0  
10298.5 1085.0  
10255.5 1085.0  
10212.5 1085.0  
10169.5 1085.0  
10126.5 1085.0  
10083.5 1085.0  
10040.5 1085.0  
-64.5  
-21.5  
21.5  
64.5  
107.5  
150.5  
193.5  
236.5  
279.5  
322.5  
365.5  
408.5  
451.5  
494.5  
537.5  
580.5  
623.5  
666.5  
709.5  
752.5  
795.5  
838.5  
881.5  
C1-  
C1-  
C1-  
C1-  
C5-  
DMY7  
DMY8  
DMY9  
DMY10  
DMY11  
DMY12  
DMY13  
DMY14  
DMY15  
DMY16  
DMY17  
DMY18  
DMY19  
DMY20  
DMY21  
DMY22  
DMY23  
DMY24  
DMY25  
DMY26  
DMY27  
C1-  
C2+  
C2+  
C2+  
C2+  
C2+  
C2+  
C2-  
C2-  
C2-  
C2-  
C2-  
9997.5  
9954.5  
9911.5  
9868.5  
9825.5  
9782.5  
9739.5  
9696.5  
9653.5  
9610.5  
9567.5  
9524.5  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
C2-  
C3+  
C3+  
C3+  
C3+  
C3+  
C3+  
- 6 -  
NJU6824  
ꢀꢀ PAD COORDINATES 3  
Chip Size 22070µm x 2550µm (Chip Center 0µm x 0µm )  
PAD  
PAD  
No.  
PAD  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
No.  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
No.  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
COM25  
COM24  
COM23  
COM22  
COM21  
COM20  
COM19  
COM18  
COM17  
COM16  
COM15  
COM14  
COM13  
COM12  
COM11  
COM10  
COM9  
COM8  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
9481.5 1085.0 358  
9438.5 1085.0 359  
9395.5 1085.0 360  
9352.5 1085.0 361  
9309.5 1085.0 362  
9266.5 1085.0 363  
9223.5 1085.0 364  
9180.5 1085.0 365  
9137.5 1085.0 366  
9094.5 1085.0 367  
9051.5 1085.0 368  
9008.5 1085.0 369  
8965.5 1085.0 370  
8922.5 1085.0 371  
8879.5 1085.0 372  
8836.5 1085.0 373  
8793.5 1085.0 374  
8750.5 1085.0 375  
8707.5 1085.0 376  
8664.5 1085.0 377  
8621.5 1085.0 378  
8578.5 1085.0 379  
8535.5 1085.0 380  
8492.5 1085.0 381  
8449.5 1085.0 382  
8406.5 1085.0 383  
8363.5 1085.0 384  
8320.5 1085.0 385  
8277.5 1085.0 386  
8234.5 1085.0 387  
8191.5 1085.0 388  
8148.5 1085.0 389  
8105.5 1085.0 390  
8062.5 1085.0 391  
8019.5 1085.0 392  
7976.5 1085.0 393  
7933.5 1085.0 394  
7890.5 1085.0 395  
7847.5 1085.0 396  
7804.5 1085.0 397  
7761.5 1085.0 398  
7718.5 1085.0 399  
7675.5 1085.0 400  
7632.5 1085.0 401  
7589.5 1085.0 402  
7546.5 1085.0 403  
7503.5 1085.0 404  
7460.5 1085.0 405  
7417.5 1085.0 406  
7374.5 1085.0 407  
7331.5 1085.0 408  
SEGB7  
SEGC7  
SEGA8  
SEGB8  
SEGC8  
SEGA9  
7288.5 1085.0  
7245.5 1085.0  
7202.5 1085.0  
7159.5 1085.0  
SEGB24  
SEGC24  
SEGA25  
SEGB25  
SEGC25  
SEGA26  
SEGB26  
SEGC26  
SEGA27  
SEGB27  
SEGC27  
SEGA28  
SEGB28  
SEGC28  
SEGA29  
SEGB29  
SEGC29  
SEGA30  
SEGB30  
SEGC30  
SEGA31  
SEGB31  
SEGC31  
SEGA32  
SEGB32  
SEGC32  
SEGA33  
SEGB33  
SEGC33  
SEGA34  
SEGB34  
SEGC34  
SEGA35  
SEGB35  
SEGC35  
SEGA36  
SEGB36  
SEGC36  
SEGA37  
SEGB37  
SEGC37  
SEGA38  
SEGB38  
SEGC38  
SEGA39  
SEGB39  
SEGC39  
SEGA40  
SEGB40  
SEGC40  
SEGA41  
5095.5  
5052.5  
5009.5  
4966.5  
4923.5  
4880.5  
4837.5  
4794.5  
4751.5  
4708.5  
4665.5  
4622.5  
4579.5  
4536.5  
4493.5  
4450.5  
4407.5  
4364.5  
4321.5  
4278.5  
4235.5  
4192.5  
4149.5  
4106.5  
4063.5  
4020.5  
3977.5  
3934.5  
3891.5  
3848.5  
3805.5  
3762.5  
3719.5  
3676.5  
3633.5  
3590.5  
3547.5  
3504.5  
3461.5  
3418.5  
3375.5  
3332.5  
3289.5  
3246.5  
3203.5  
3160.5  
3117.5  
3074.5  
3031.5  
2988.5  
2945.5  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
7116.5  
1085.0  
7073.5 1085.0  
7030.5 1085.0  
6987.5 1085.0  
6944.5 1085.0  
6901.5 1085.0  
6858.5 1085.0  
6815.5 1085.0  
6772.5 1085.0  
6729.5 1085.0  
6686.5 1085.0  
6643.5 1085.0  
6600.5 1085.0  
6557.5 1085.0  
6514.5 1085.0  
6471.5 1085.0  
6428.5 1085.0  
6385.5 1085.0  
6342.5 1085.0  
6299.5 1085.0  
6256.5 1085.0  
6213.5 1085.0  
6170.5 1085.0  
6127.5 1085.0  
6084.5 1085.0  
6041.5 1085.0  
5998.5 1085.0  
5955.5 1085.0  
5912.5 1085.0  
5869.5 1085.0  
5826.5 1085.0  
5783.5 1085.0  
5740.5 1085.0  
5697.5 1085.0  
5654.5 1085.0  
SEGB9  
SEGC9  
SEGA10  
SEGB10  
SEGC10  
SEGA11  
SEGB11  
SEGC11  
SEGA12  
SEGB12  
SEGC12  
SEGA13  
SEGB13  
SEGC13  
SEGA14  
SEGB14  
SEGC14  
SEGA15  
SEGB15  
SEGC15  
SEGA16  
SEGB16  
SEGC16  
SEGA17  
SEGB17  
SEGC17  
SEGA18  
SEGB18  
SEGC18  
SEGA19  
SEGB19  
SEGC19  
SEGA20  
SEGB20  
SEGC20  
SEGA21  
SEGB21  
SEGC21  
SEGA22  
SEGB22  
SEGC22  
SEGA23  
SEGB23  
SEGC23  
SEGA24  
COM0  
SEGSA0  
SEGSB0  
SEGSC0  
SEGA0  
SEGB0  
SEGC0  
SEGA1  
SEGB1  
SEGC1  
SEGA2  
SEGB2  
SEGC2  
SEGA2  
SEGB3  
SEGC3  
SEGA4  
SEGB4  
SEGC4  
SEGA5  
SEGB5  
SEGC5  
SEGA6  
SEGB6  
SEGC6  
SEGA7  
5611.5  
1085.0  
5568.5 1085.0  
5525.5 1085.0  
5482.5 1085.0  
5439.5 1085.0  
5396.5 1085.0  
5353.5 1085.0  
5310.5 1085.0  
5267.5 1085.0  
5224.5 1085.0  
5181.5 1085.0  
5138.5 1085.0  
- 7 -  
NJU6824  
ꢀꢀ PAD COORDINATES 4  
Chip Size 22070µm x 2550µm (Chip Center 0µm x 0µm )  
PAD  
PAD  
No.  
PAD  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
No.  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
No.  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
SEGB41  
SEGC41  
SEGA42  
SEGB42  
SEGC42  
SEGA43  
SEGB43  
SEGC43  
SEGA44  
SEGB44  
SEGC44  
SEGA45  
SEGB45  
SEGC45  
SEGA46  
SEGB46  
SEGC46  
SEGA47  
SEGB47  
SEGC47  
SEGA48  
SEGB48  
SEGC48  
SEGA49  
SEGB49  
SEGC49  
SEGA50  
SEGB50  
SEGC50  
SEGA51  
SEGB51  
SEGC51  
SEGA52  
SEGB52  
SEGC52  
SEGA53  
SEGB53  
SEGC53  
SEGA54  
SEGB54  
SEGC54  
SEGA55  
SEGB55  
SEGC55  
SEGA56  
SEGB56  
SEGC56  
SEGA57  
SEGB57  
SEGC57  
SEGA58  
2902.5 1085.0  
2859.5 1085.0  
2816.5 1085.0  
2773.5 1085.0  
2730.5 1085.0  
2687.5 1085.0  
2644.5 1085.0  
2601.5 1085.0  
2558.5 1085.0  
2515.5 1085.0  
2472.5 1085.0  
2429.5 1085.0  
2386.5 1085.0  
2343.5 1085.0  
2300.5 1085.0  
2257.5 1085.0  
2214.5 1085.0  
2171.5 1085.0  
2128.5 1085.0  
2085.5 1085.0  
2042.5 1085.0  
1999.5 1085.0  
1956.5 1085.0  
1913.5 1085.0  
1870.5 1085.0  
1827.5 1085.0  
1784.5 1085.0  
1741.5 1085.0  
1698.5 1085.0  
1655.5 1085.0  
1612.5 1085.0  
1569.5 1085.0  
1526.5 1085.0  
1483.5 1085.0  
1440.5 1085.0  
1397.5 1085.0  
1354.5 1085.0  
1311.5 1085.0  
1268.5 1085.0  
1225.5 1085.0  
1182.5 1085.0  
1139.5 1085.0  
1096.5 1085.0  
1053.5 1085.0  
1010.5 1085.0  
967.5 1085.0  
924.5 1085.0  
881.5 1085.0  
838.5 1085.0  
795.5 1085.0  
752.5 1085.0  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
SEGB58  
SEGC58  
SEGA59  
SEGB59  
SEGC59  
SEGA60  
SEGB60  
SEGC60  
SEGA61  
SEGB61  
SEGC61  
SEGA62  
SEGB62  
SEGC62  
SEGA63  
SEGB63  
SEGC63  
SEGA64  
SEGB64  
SEGC64  
SEGA65  
SEGB65  
SEGC65  
SEGA66  
SEGB66  
SEGC66  
SEGA67  
SEGB67  
SEGC67  
SEGA68  
SEGB68  
SEGC68  
SEGA69  
SEGB69  
SEGC69  
SEGA70  
SEGB70  
SEGC70  
SEGA71  
SEGB71  
SEGC71  
SEGA72  
SEGB72  
SEGC72  
SEGA73  
SEGB73  
SEGC73  
SEGA74  
SEGB74  
SEGC74  
SEGA75  
709.5  
666.5  
623.5  
580.5  
537.5  
494.5  
451.5  
408.5  
365.5  
322.5  
279.5  
236.5  
193.5  
150.5  
107.5  
64.5  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
SEGB75  
SEGC75  
SEGA76  
SEGB76  
SEGC76  
SEGA77  
SEGB77  
SEGC77  
SEGA78  
SEGB78  
SEGC78  
SEGA79  
SEGB79  
SEGC79  
SEGA80  
SEGB80  
SEGC80  
SEGA81  
SEGB81  
SEGC81  
SEGA82  
SEGB82  
SEGC82  
SEGA83  
SEGB83  
SEGC83  
SEGA84  
SEGB84  
SEGC84  
SEGA85  
SEGB85  
SEGC85  
SEGA86  
SEGB86  
SEGC86  
SEGA87  
SEGB87  
SEGC87  
SEGA88  
SEGB88  
SEGC88  
SEGA89  
SEGB89  
SEGC89  
SEGA90  
SEGB90  
SEGC90  
SEGA91  
SEGB91  
SEGC91  
SEGA92  
-1483.5 1085.0  
-1526.5 1085.0  
-1569.5 1085.0  
-1612.5 1085.0  
-1655.5 1085.0  
-1698.5 1085.0  
-1741.5 1085.0  
-1784.5 1085.0  
-1827.5 1085.0  
-1870.5 1085.0  
-1913.5 1085.0  
-1956.5 1085.0  
-1999.5 1085.0  
-2042.5 1085.0  
-2085.5 1085.0  
-2128.5 1085.0  
-2171.5 1085.0  
-2214.5 1085.0  
-2257.5 1085.0  
-2300.5 1085.0  
-2343.5 1085.0  
-2386.5 1085.0  
-2429.5 1085.0  
-2472.5 1085.0  
-2515.5 1085.0  
-2558.5 1085.0  
-2601.5 1085.0  
-2644.5 1085.0  
-2687.5 1085.0  
-2730.5 1085.0  
-2773.5 1085.0  
-2816.5 1085.0  
-2859.5 1085.0  
-2902.5 1085.0  
-2945.5 1085.0  
-2988.5 1085.0  
-3031.5 1085.0  
-3074.5 1085.0  
-3117.5 1085.0  
-3160.5 1085.0  
-3203.5 1085.0  
-3246.5 1085.0  
-3289.5 1085.0  
-3332.5 1085.0  
-3375.5 1085.0  
-3418.5 1085.0  
-3461.5 1085.0  
-3504.5 1085.0  
-3547.5 1085.0  
-3590.5 1085.0  
-3633.5 1085.0  
21.5  
-21.5  
-64.5  
-107.5  
-150.5  
-193.5  
-236.5  
-279.5  
-322.5  
-365.5  
-408.5  
-451.5  
-494.5  
-537.5  
-580.5  
-623.5  
-666.5  
-709.5  
-752.5  
-795.5  
-838.5  
-881.5  
-924.5  
-967.5  
-1010.5 1085.0  
-1053.5 1085.0  
-1096.5 1085.0  
-1139.5 1085.0  
-1182.5 1085.0  
-1225.5 1085.0  
-1268.5 1085.0  
-1311.5 1085.0  
-1354.5 1085.0  
-1397.5 1085.0  
-1440.5 1085.0  
- 8 -  
NJU6824  
ꢀꢀ PAD COORDINATES 5  
Chip Size 22070µm x 2550µm (Chip Center 0µm x 0µm )  
PAD  
PAD  
No.  
PAD  
Terminal  
SEGB92  
SEGC92 -3719.5 1085.0  
SEGA93  
SEGB93  
SEGC93 -3848.5 1085.0  
SEGA94  
SEGB94  
SEGC94 -3977.5 1085.0  
SEGA95  
SEGB95  
SEGC95 -4106.5 1085.0  
SEGA96  
SEGB96  
SEGC96 -4235.5 1085.0  
SEGA97  
SEGB97  
SEGC97 -4364.5 1085.0  
SEGA98  
SEGB98  
SEGC98 -4493.5 1085.0  
SEGA99  
SEGB99  
SEGC99 -4622.5 1085.0  
SEGA100 -4665.5 1085.0  
SEGB100 -4708.5 1085.0  
SEGC100 -4751.5 1085.0  
SEGA101 -4794.5 1085.0  
SEGB101 -4837.5 1085.0  
SEGC101 -4880.5 1085.0  
SEGA102 -4923.5 1085.0  
SEGB102 -4966.5 1085.0  
SEGC102 -5009.5 1085.0  
SEGA103 -5052.5 1085.0  
SEGB103 -5095.5 1085.0  
SEGC103 -5138.5 1085.0  
SEGA104 -5181.5 1085.0  
SEGB104 -5224.5 1085.0  
SEGC104 -5267.5 1085.0  
SEGA105 -5310.5 1085.0  
SEGB105 -5353.5 1085.0  
SEGC105 -5396.5 1085.0  
SEGA106 -5439.5 1085.0  
SEGB106 -5482.5 1085.0  
SEGC106 -5525.5 1085.0  
SEGA107 -5568.5 1085.0  
SEGB107 -5611.5 1085.0  
SEGC107 -5654.5 1085.0  
SEGA108 -5697.5 1085.0  
SEGB108 -5740.5 1085.0  
SEGC108 -5783.5 1085.0  
SEGA109 -5826.5 1085.0  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
No.  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
660  
661  
662  
663  
No.  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
760  
761  
762  
763  
764  
765  
-3676.5 1085.0  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
710  
711  
712  
713  
714  
SEGB109  
SEGC109  
SEGA110  
SEGB110  
SEGC110  
SEGA111  
SEGB111  
SEGC111  
SEGA112  
SEGB112  
SEGC112  
SEGA113  
SEGB113  
SEGC113  
SEGA114  
SEGB114  
SEGC114  
SEGA115  
SEGB115  
SEGC115  
SEGA116  
SEGB116  
SEGC116  
SEGA117  
SEGB117  
SEGC117  
SEGA118  
SEGB118  
SEGC118  
SEGA119  
SEGB119  
SEGC119  
SEGA120  
SEGB120  
SEGC120  
SEGA121  
SEGB121  
SEGC121  
SEGA122  
SEGB122  
SEGC122  
SEGA123  
SEGB123  
SEGC123  
SEGA124  
SEGB124  
SEGC124  
SEGA125  
SEGB125  
SEGC125  
SEGA126  
-5869.5 1085.0  
-5912.5 1085.0  
-5955.5 1085.0  
-5998.5 1085.0  
-6041.5 1085.0  
-6084.5 1085.0  
-6127.5 1085.0  
-6170.5 1085.0  
-6213.5 1085.0  
-6256.5 1085.0  
-6299.5 1085.0  
-6342.5 1085.0  
-6385.5 1085.0  
-6428.5 1085.0  
-6471.5 1085.0  
-6514.5 1085.0  
-6557.5 1085.0  
-6600.5 1085.0  
-6643.5 1085.0  
-6686.5 1085.0  
-6729.5 1085.0  
-6772.5 1085.0  
-6815.5 1085.0  
-6858.5 1085.0  
-6901.5 1085.0  
-6944.5 1085.0  
-6987.5 1085.0  
-7030.5 1085.0  
-7073.5 1085.0  
-7116.5 1085.0  
-7159.5 1085.0  
-7202.5 1085.0  
-7245.5 1085.0  
-7288.5 1085.0  
-7331.5 1085.0  
-7374.5 1085.0  
-7417.5 1085.0  
-7460.5 1085.0  
-7503.5 1085.0  
-7546.5 1085.0  
-7589.5 1085.0  
-7632.5 1085.0  
-7675.5 1085.0  
-7718.5 1085.0  
-7761.5 1085.0  
-7804.5 1085.0  
-7847.5 1085.0  
-7890.5 1085.0  
-7933.5 1085.0  
-7976.5 1085.0  
-8019.5 1085.0  
SEGB126  
SEGC126  
SEGA127  
SEGB127  
SEGC127  
SEGSA1  
SEGSB1  
SEGSC1  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COM80  
COM81  
COM82  
COM83  
COM84  
COM85  
COM86  
COM87  
COM88  
COM89  
COM90  
COM91  
COM92  
COM93  
COM94  
COM95  
COM96  
COM97  
COM98  
COM99  
COM100  
COM101  
COM102  
COM103  
COM104  
COM105  
COM106  
-8062.5 1085.0  
-8105.5 1085.0  
-8148.5 1085.0  
-8191.5 1085.0  
-8234.5 1085.0  
-8277.5 1085.0  
-8320.5 1085.0  
-8363.5 1085.0  
-8406.5 1085.0  
-8449.5 1085.0  
-8492.5 1085.0  
-8535.5 1085.0  
-8578.5 1085.0  
-8621.5 1085.0  
-8664.5 1085.0  
-8707.5 1085.0  
-8750.5 1085.0  
-8793.5 1085.0  
-8836.5 1085.0  
-8879.5 1085.0  
-8922.5 1085.0  
-8965.5 1085.0  
-9008.5 1085.0  
-9051.5 1085.0  
-9094.5 1085.0  
-9137.5 1085.0  
-9180.5 1085.0  
-9223.5 1085.0  
-9266.5 1085.0  
-9309.5 1085.0  
-9352.5 1085.0  
-9395.5 1085.0  
-9438.5 1085.0  
-9481.5 1085.0  
-9524.5 1085.0  
-9567.5 1085.0  
-9610.5 1085.0  
-9653.5 1085.0  
-9696.5 1085.0  
-9739.5 1085.0  
-9782.5 1085.0  
-9825.5 1085.0  
-9868.5 1085.0  
-9911.5 1085.0  
-9954.5 1085.0  
-9997.5 1085.0  
-10040.5 1085.0  
-10083.5 1085.0  
-10126.5 1085.0  
-10169.5 1085.0  
-10212.5 1085.0  
-3762.5 1085.0  
-3805.5 1085.0  
-3891.5 1085.0  
-3934.5 1085.0  
-4020.5 1085.0  
-4063.5 1085.0  
-4149.5 1085.0  
-4192.5 1085.0  
-4278.5 1085.0  
-4321.5 1085.0  
-4407.5 1085.0  
-4450.5 1085.0  
-4536.5 1085.0  
-4579.5 1085.0  
- 9 -  
NJU6824  
ꢀꢀ PAD COORDINATES 6  
Chip Size 22070µm x 2550µm (Chip Center 0µm x 0µm )  
PAD  
PAD  
No.  
817  
PAD  
No.  
Terminal  
X(µm)  
Y(µm)  
Terminal  
DMY71  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
No.  
766  
767  
768  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
810  
811  
812  
813  
814  
815  
816  
COM107 -10255.5 1085.0  
COM108 -10298.5 1085.0  
COM109 -10341.5 1085.0  
-10845.0 -881.5  
COM110  
COM111  
COM112  
COM113  
DMY41  
DMY42  
DMY43  
DMY44  
DMY45  
DMY46  
COM114  
COM115  
COM116  
COM117  
COM118  
COM119  
COM120 -10845.0 494.5  
COM121 -10845.0 451.5  
COM122 -10845.0 408.5  
COM123 -10845.0 365.5  
COM124 -10845.0 322.5  
COM125 -10845.0 279.5  
COM126 -10845.0 236.5  
COM127 -10845.0 193.5  
DMY47  
DMY48  
DMY49  
DMY50  
DMY51  
DMY52  
DMY53  
DMY54  
DMY55  
DMY56  
DMY57  
DMY58  
DMY59  
DMY60  
DMY61  
DMY62  
DMY63  
DMY64  
DMY65  
DMY66  
DMY67  
DMY68  
DMY69  
DMY70  
-10384.5 1085.0  
-10427.5 1085.0  
-10470.5 1085.0  
-10513.5 1085.0  
-10556.5 1085.0  
-10599.5 1085.0  
-10642.5 1085.0  
-10845.0 881.5  
-10845.0 838.5  
-10845.0 795.5  
-10845.0 752.5  
-10845.0 709.5  
-10845.0 666.5  
-10845.0 623.5  
-10845.0 580.5  
-10845.0 537.5  
-10845.0 150.5  
-10845.0 107.5  
-10845.0  
-10845.0  
64.5  
21.5  
-10845.0 -21.5  
-10845.0 -64.5  
-10845.0 -107.5  
-10845.0 -150.5  
-10845.0 -193.5  
-10845.0 -236.5  
-10845.0 -279.5  
-10845.0 -322.5  
-10845.0 -365.5  
-10845.0 -408.5  
-10845.0 -451.5  
-10845.0 -494.5  
-10845.0 -537.5  
-10845.0 -580.5  
-10845.0 -623.5  
-10845.0 -666.5  
-10845.0 -709.5  
-10845.0 -752.5  
-10845.0 -795.5  
-10845.0 -838.5  
- 10 -  
NJU6824  
ꢀꢀ BLOCK DIAGRAM  
VSSH  
VSS  
VSSA  
VVDDA  
VDD  
Segment Driver  
Common Driver  
5
V
LCD, V1 -V4  
Gradation Circuit  
Data Latch Circuit  
Shift Register  
V1A1, V1A2,  
V4A1, V4A2  
4
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
Voltage  
booster  
Voltage  
regulator  
VOUT  
VEE  
Display Data RAM  
(DD RAM)  
128x128x(4+4+4)bit  
VREF  
VBA  
VREG  
D15  
Column Address Decoder  
Column Address Counter  
Column Address Register  
D14  
FR  
D13  
RAM  
Interface  
Display  
Timing  
Generator  
FLM  
CL  
D12  
D11  
D10  
D9  
CLK  
D8  
OSC2  
OSC1  
Oscillator  
D7  
D6  
D5  
D4/SPOL  
D3/SMODE  
D2  
Instruction  
Decoder  
Register Read  
Control  
Bus Holder  
Pole Control  
Internal Bus  
D1/SDA  
D0/SCL  
MPU Interface  
CS  
RS  
RD  
WR  
P/S  
SEL68 RES  
- 11 -  
NJU6824  
POWER SUPPLY CIRCUITS BLOCK DIAGRAM  
Reference  
Voltage  
Generator  
+
-
+
-
VBA  
VLCD  
+
-
Voltage regulator  
VREG  
V1  
VREF  
+
-
+
-
V2  
Gain  
Control  
(1x-7x)  
+
-
V3  
E.V.R  
1/2VREG  
+
-
V4  
EVR register  
V1/V4 Bias Voltage  
Adjustment  
Boost level register  
V1A1  
V1A2  
V4A1  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
Voltage  
Booster  
VOUT  
VEE  
- 12 -  
NJU6824  
ꢀꢀ TERMINAL DESCRIPTION 1  
No.  
Symbol  
VDD  
VSS  
VSSH  
VDDA  
I/O  
Function  
Power supply for logic circuits  
GND for logic circuits  
64~70  
83~89  
154~160  
8,9,  
28,29,  
92,93,  
100,101  
4,5,  
12,13,  
46,47,  
Power  
Power  
Power  
Power  
GND for high voltage circuits  
This terminal is internally connected to the VDD level.  
This terminal is used to fix the select-terminals of the SEL68  
and P/S to the VDD level.  
Note) Do not use this terminal for a main power supply.  
This terminal is internally connected to the VSS level.  
This terminal is used to fix the select-terminals of the SEL68  
and P/S to the VSS level.  
VSSA  
Power  
96,97,  
Note) Do not use this terminal for a main GND.  
104,105  
106~111  
112~117  
118~123  
124~129  
130~135  
VLCD  
V1  
V2  
V3  
V4  
Power/O LCD driving voltages  
When the internal voltage booster is not used, external LCD  
driving voltages (V1 to V4 and VLCD) should be supplied onto  
these terminals. The external voltages should be maintained  
with the following relationship.  
VSS<V4<V3<V2<V1<VLCD  
When the internal voltage booster is used, the LCD driving  
voltages (V1 to V4 and VLCD) are enabled by the “Power control”  
instruction. The capacitors between these terminals and Vss  
terminal must be connected.  
175~180  
181~186  
187~192  
193~198  
199~204  
205~210  
211~216  
217~222  
223~228  
229~234  
148~153  
142~147  
168~174  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
VBA  
VREF  
VEE  
O
O
O
O
O
Capacitor connection terminal for the voltage booster  
Capacitor connection terminal for the voltage booster  
Capacitor connection terminal for the voltage booster  
Capacitor connection terminal for the voltage booster  
Capacitor connection terminal for the voltage booster  
O
I
Power  
Reference-voltage generator output  
Voltage regulator input  
Voltage booster input  
This terminal is normally connected to the VDD level.  
161~167  
VOUT  
Power/O Voltage booster output for high voltage circuits (in external  
power supply)  
136~141  
90,91  
94,95  
98,99  
102,103  
VREG  
V1A1  
V1A2  
V4A1  
V4A2  
RES  
O
I
Voltage regulator output  
V1 bias voltage adjustment terminal  
I
I
I
V4 bias voltage adjustment terminal  
14,15  
Reset  
Active “0”  
MPU interface type select  
6,7  
SEL68  
SEL86  
Status  
H
L
68 series  
80 series  
- 13 -  
NJU6824  
ꢀꢀ TERMINAL DESCRIPTION 2  
No.  
30,31  
Symbol  
D0/SCL  
I/O  
I/O  
Function  
Parallel interface:  
D7 to D0 : 8-bit bi-directional bus  
In the parallel interface mode (P/S=“1”), these terminals should  
be connected to 8-bit bi-directional bus of MPU.  
32,33  
36,37  
D1/SDA  
I/O  
I/O  
Serial interface:  
SDA : serial data  
SCL : serial clock  
D3/SMODE  
SMODE : 3-/4-line serial interface mode select  
SPOL : RS polarity select (in the 3-line serial interface mode)  
38,39  
D4/SPOL  
I/O  
I/O  
In the 3-/4-line serial interface mode (P/S=“0”), the D0 terminal is  
assigned to the SCL and the D1 terminal to the SDA.  
In the 3-line serial interface mode, the D4 terminal is assigned to  
the SPOL.  
The serial data on the SDA is fetched at the rising edge of the  
SCL signal in the order of the D7, D6…D0, and the fetched data  
is converted into 8-bit parallel data at the falling edge of the 8th  
SCL signal.  
34,35  
40,41  
42,43  
44,45  
D2  
D5  
D6  
D7  
The SCL signal should be set to “0” after data transmissions or  
during non-access.  
48,49  
50,51  
52,53  
54,55  
56,57  
58,59  
60,61  
62,63  
17,18  
D8  
D9  
I/O  
8-bit bi-directional bus  
In the 16-bit data bus mode, these terminals are assigned to the  
upper 8-bit data bus.  
In the serial interface mode or 8-bit data bus mode in the parallel  
interface, these terminals should be fixed to “1” or “0”.  
D10  
D11  
D12  
D13  
D14  
D15  
I
I
Chip select  
Active “0”  
Resister select  
CS  
RS  
20,21  
This signal distinguishes an instruction data and display data for  
transferred data.  
RS  
H
L
Distinct.  
Instruction  
Display data  
26,27  
23,24  
I
I
80 series MPU interface (P/S=“1”, SEL68=“0”)  
RD signal. Active “0”.  
RD (E)  
68 series MPU interface (P/S=“1”, SEL68=“1”)  
Enable signal. Active “1”.  
80 series MPU interface (P/S=“1”, SEL68=“0”)  
WR signal. Active “0”.  
WR (R/W)  
68 series MPU interface (P/S=“1”, SEL68=“1”)  
R/W signal.  
R/W  
H
L
Status  
Read  
Write  
- 14 -  
NJU6824  
ꢀꢀ TERMINAL DESCRIPTION 3  
No.  
10,11  
Symbol  
P/S  
I/O  
I
Function  
Parallel / serial interface mode select  
Chip  
Select  
Data/  
Instruction  
Read/Writ  
e
P/S  
Data  
Serial clock  
-
H
L
RS  
RS  
D0 ~ D7  
CS  
CS  
RD, WR  
SDA (D1)  
Write only  
SCL (D0)  
In the serial interface mode (P/S=“0”), the D15 to D5 and D2 terminals  
are in the high impedance status therefore those terminals should be  
fixed to “1” or “0”. The RD and WR terminals also should be “1” or “0”.  
This terminal should be opened.  
71,72  
CL  
O
73,74  
75,76  
77,78  
FLM  
FR  
CLK  
O
O
O
This terminal should be opened.  
This terminal should be opened.  
This terminal should be opened.  
79,80  
81,82  
OSC1  
OSC2  
I
O
OSC  
When the internal oscillator clock is used, OSC1 terminal must be  
fixed to “1” or “0”. OSC2 terminal should be opened. When the  
oscillation frequency from the internal oscillator is adjusted by an  
external resistor between OSC1 terminal and OSC2  
When an external oscillator is used, external clocks should be input  
onto the OSC1 terminal or an external resistor should be connected  
between the OSC1 and OSC2 terminals.  
- 15 -  
NJU6824  
ꢀꢀ TERMINAL DESCRIPTION 4  
No.  
336~719  
Symbol  
SEGA0 ~ SEGA127  
SEGB0 ~ SEGB127  
SEGC0 ~ SEGC127  
I/O  
O
Function  
,
,
Segment output  
REF Mode  
Turn-off  
Turn-on  
0
1
1
0
Normal  
Reverse  
These terminals output LCD driving waveforms in accordance  
with the combination of FR signal and display data.  
In the B/W mode  
FR signal  
Display data  
Normal display mode  
V2  
VLCD  
V2  
V 3  
VSS  
V3  
Reverse  
mode  
display  
VLCD  
VSS  
333,720  
334,721  
335,722  
332~283,  
276~263,  
723~772,  
779~792  
SEGSA0, SEGSA1  
SEGSB0, SEGSB1  
SEGSC0, SEGSC1  
COM0 ~ COM127  
O
O
Icon segment output terminal  
These terminals are assigned at both edge of normal segment  
output terminals line for out line frame display.  
Common output  
These terminals output LCD driving waveforms in accordance  
with the combination of the FR signal and scanning data.  
Data  
H
L
H
L
FR  
H
H
L
Output level  
VSS  
V1  
VLCD  
V4  
L
(Terminal No. 1~3,16,19,22,25,235~262,277~282,773~778,793~817 are dummy.)  
- 16 -  
NJU6824  
ꢀꢀ Functional Description  
(1) MPU Interface  
(1-1) Parallel / serial interface mode select  
The P/S terminal is used to select parallel or serial interface mode as shown in the following table. In the  
serial interface mode, it is impossible to read out display data from the DDRAM and status from the  
internal resistor.  
Table1  
WR  
WR  
-
P/S  
H
P/S mode  
Parallel I/F  
Serial I/F  
CS  
CS  
CS  
RS  
RS  
RS  
RD  
RD  
-
SEL68  
SEL68  
-
SDA  
SDA  
SCL  
SCL  
Data  
D7-D0 (D15-D0)  
-
L
Note 1) “ -” : Fix to “1” or “0”.  
(1-2) MPU interface type select  
In the parallel interface mode, the SEL68 terminal is used to select 68- or 80-series MPU interface type  
as shown in the following table.  
Table2  
WR  
R/W  
WR  
SEL68  
MPU type  
CS  
CS  
CS  
RS  
RS  
RS  
RD  
E
Data  
D7-D0 (D15-D0)  
D7-D0 (D15-D0)  
H
L
68 series MPU  
80 series MPU  
RD  
(1-3) Data distinction  
In the parallel interface mode, the combination of RS, RD, and WR (R/W) signals distinguishes an  
instruction data or display data for the transferred data from or to MPU as shown in the following table.  
Table3  
68 series  
80 series  
Function  
RS  
RD  
WR  
H
R/W  
H
Read out instruction data  
Write instruction data  
Read out display data  
Write display data  
H
H
L
L
H
L
L
L
H
H
L
L
H
L
(1-4) 3- / 4-line serial interface mode select  
In the serial interface mode, the SMODE is used to select 3- or 4-line serial interface mode as shown in  
the following table.  
Table4  
SMODE  
Serial interface mode  
H
L
3-line  
4-line  
- 17 -  
NJU6824  
(1-5) 4-line serial interface mode  
In the 4-line serial interface mode, during the chip select is active (CS=“0”), the SDA and SCL are  
enabled. During the chip select is not active (CS=“1”), the SDA and SCL are disabled and the internal shift  
register and counter are being initialized. The 8-bit serial data on the SDA is fetched at the rising edge of  
the SCL signal (serial clock) in order of the D7, D6…D0, and the fetched data is converted into the 8-bit  
parallel data at the rising edge of the 8th SCL signal.  
In the 4-line serial interface mode, the transferred data on the SDA is distinguished as display data or  
instruction data in accordance with the condition of the RS signal.  
Table5  
RS  
H
Data distinction  
Instruction data  
Display data  
L
Since the serial interface operation is sensitive to external noises, the SCL should be set to “0” after data  
transmissions or during non-access. To prevent for the continuous mal-function caused by the external  
noises, the chip-selected status should be released (CS=“1”) after each of the 8-bit data transmissions.  
The following figure illustrates the interface timing for the 4-line serial interface operation.  
CS  
RS  
VALID  
D0  
SDA  
D7  
1
D6  
2
D5  
3
D4  
4
D3  
5
D2  
D1  
SCL  
6
7
8
Fig1 4-line serial interface timing  
(1-6) 3-line serial interface mode  
In the 3-line serial interface mode, during the chip select is active (CS=“0”), the SDA and SCL are  
enabled. During the chip select is not active (CS=“1”), the SDA and SCL are disabled and the internal shift  
register and counter are being initialized. The 9-bit serial data on the SDA is fetched at the rising edge of  
the SCL signal in order of the RS, D7, D6…D0, and the fetched data is converted into the 9-bit parallel data  
at the rising edge of the 9th SCL signal.  
In the 3-line serial interface mode, the data on the SDA is distinguished as display data or instruction  
data in accordance with the condition of the RS bit of SDA data and the status of the SPOL, as follows.  
Table6  
SPOL=L  
Data distinction  
SPOL=H  
Data distinction  
RS  
L
RS  
L
Display data  
Instruction data  
Display data  
H
Instruction data  
H
- 18 -  
NJU6824  
Since the serial interface operation is sensitive to external noises, the SCL should be set to “0” after data  
transmissions or during non-access. To prevent for the continuous mal-function caused by the external  
noises, the chip-selected status should be released (CS=“1”) after each of the 9-bit data transmissions.  
The following figure illustrates the interface timing for the 3-line serial interface operation.  
CS  
SDA  
SCL  
RS  
1
D7  
2
D6  
D5  
4
D4  
5
D3  
D2  
D1  
D0  
3
6
7
8
9
Fig2 3-line serial interface timing  
- 19 -  
NJU6824  
(2) Access to the DDRAM  
During the CS signal is ”0”, the transferred data is written into the DDRAM or instruction register in  
accordance with the condition of the RS signal.  
In condition that the RS signal is “1”, the transferred data is distinguished as display data. After the “column  
address” and “row address” instructions are executed, the display data is written into the DDRAM by the  
“display data write” instruction. The data is written at the rising edge of the WR signal in the 80 series MPU  
mode or falling edge of the E signal in the 68 series MPU mode.  
Table6  
RS  
L
Data  
Display RAM Data  
H
Internal Command Register  
In the sequence of the “display data read” operation, the transferred data from MPU is temporarily held in the  
internal bus-holder and then transferred to the internal data-bus. When the “display data read” operation is  
executed just after the “column address” and “row address” instructions or “display data write” instruction,  
unexpected data on the bus-holder is read out at the 1st execution and then the correct designated DDRAM  
address data is read out from the 2nd execution. For this reason, a dummy read cycle must be executed to  
avoid the unexpected 1st data read.  
Display data write operation  
n
n+1  
n+2  
n+3  
n+4  
D0 to D15  
WR  
n
n+1  
n+2  
n+3  
n+4  
Bus Holder  
WR  
Display data read operation  
WR  
D0 to D7(D0 to D15)  
n
n
n+1  
Data Read  
n+1 Address n+2 Address  
n+2  
Address Set  
n
Dummy  
Read  
Data Read  
n Address  
Data Read  
RD  
Fig3  
Note) In 16-bit operation mode, command operation must set “Write” or “Read” with 16-bit data length as same  
as the access to RAM.  
- 20 -  
NJU6824  
(3) Access to the instruction register  
Each of the instruction resisters is assigned to the address in between 0H and FH in order that it is possible to  
read out the content of the instruction registers by the combination instructions of the “Instruction resister  
address” and ”Instruction resister read”.  
WR  
M
m
N
n
D0 to D7  
Instruction resister  
address set  
Instruction resister Instruction resister Instruction resister  
contents read  
address set  
contents read  
RD  
Fig4  
(4) 8-/16-bit data bus length for display data (in the parallel interface mode)  
The 8- or 16-bit data bus length for display data is determined by the “WLS” in the “Data bus length”  
instruction.  
In the 16-bit data bus mode, not only the display data but also the instruction data is required to be  
transferred by 16-bit data (D15 to D0). However, in case of the access to the instruction register, the only lower  
8-bit data (D7 to D0) of the 16-bit data is valid. In case of the access to the DDRAM, all of the 16-bit data (D15 to  
D0) is valid.  
Table8  
WLS  
L
Data bus length mode  
8-bit  
H
16-bit  
(5) Initial display line register  
The initial display line resister specifies the line address, corresponding to the initial COM line, by the “Initial  
display line” instruction. The initial COM line signifies the common driver, starting scanning the display data in  
the DDRAM, and specified by the “Initial COM line” instruction.  
The line address, established in the initial display line resister, is preset into the line counter whenever the  
FLM signal becomes “1”. At the rising edge of the CL signal, the line counter is counted-up and addressed 384-  
bit display data is latched into the data latch circuit. At the falling edge of the CL signal, the latched data output  
to the segment drivers.  
- 21 -  
NJU6824  
(6) DDRAM mapping  
The DDRAM is capable of 1,536-bit (12-bit x 128-segment) for the column address and 128-bit for the row  
address.  
In the gradation mode, each pixel for RGB corresponds to the successive 3-segment drivers with 16-  
gradation per segment, so that the LSI can drive a 4096-color display (16-gradation x 16-gradation x 16-  
gradation) with up to 128x128 pixels.  
In 8-bit access mode(C256 mode) for DDRAM, sequential twice accesses to DDRAM complete one pixel  
data access. Therefore, it must be accessed with a couple of operation.  
In the 8-bit data bus length mode  
column-address  
0H  
7FH  
0 H  
7bit  
5bit  
7bit  
5bit  
row-address  
7FH  
7bit  
4bit  
5bit  
8bit  
7bit  
4bit  
5bit  
8bit  
column-address  
0H  
7FH  
ABS=’1’  
0 H  
row-address  
7FH  
4bit  
8bit  
4bit  
8bit  
column-address  
0H  
8bit  
1H  
8bit  
7EH  
8bit  
7FH  
8bit  
C256=’1’  
0 H  
row-address  
7FH  
8bit  
8bit  
8bit  
8bit  
Fig5  
- 22 -  
NJU6824  
In the 16-bit data bus length mode  
column-address  
0H  
7FH  
0 H  
12bit  
12bit  
row-address  
7FH  
12bit  
12bit  
Fig6  
In the B&W mode, only MSB data from each 4-bit display data group in the DDRAM is used. Therefore, 384 x  
128 pixels B&W display or 128 x 128 pixels 8 kinds display is also available.  
The column address range varies depending on the data bus length. The range between 00H and 7FH is used  
in the 8-bit or 16-bit data bus length.  
The DDRAM is accessing 8-bit or 16-bit unit addressed by column and row address. In the 8-bit or 16-bit data  
bus length mode, over 80H address setting is prohibited.  
The increment for the column address and row address can be set in the auto-increment mode by  
programming “AXI” and “AYI” registers in the “Increment control” instruction. In this mode, the contents of the  
column address and row address counters automatically increment whenever the DDRAM is accessed.  
The column address and row address counters are independent of the line counter. They are used to  
designate the column address and row address for the display data transferred from MPU. On the other hand,  
the line counter is used to generate the line address and output the display data to the segment drivers, being  
synchronized with the display control timing of the FLM and CL signals.  
- 23 -  
NJU6824  
SWAP  
A3  
WLS  
ABS  
256  
WLS  
ABS  
256  
A2  
A1  
A0  
A3  
A3  
B3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
- 24 -  
NJU6824  
SWAP  
A3  
WLS  
ABS  
256  
WLS  
ABS  
256  
A2  
A1  
A0  
B3  
A3  
A3  
B2  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
B1  
B0  
C3  
C2  
C1  
C0  
- 25 -  
NJU6824  
(7) Window addressing mode  
Window area must be designated before RAM access.  
In the window addressing mode, the address space of the DDRAM designated by the start and end point is  
defined. The start point is determined by the “column address” and “row address” instructions, and the end  
point is determined by the “Window end column address “and ”Window end row address” instructions. The  
setting for the window addressing is listed in the following.  
1. “Increment control” instruction set (HV, XD, YD)  
2. Set “column address” and “row address” instructions for the start point  
3. Set “Window end column address” and “Window end row address” instructions for the end point  
4. Enable to access to the DDRAM by the window addressing mode  
In addition, the read-modify-write operation is available by setting “AIM” register to ”L” in the “Increment  
control” instruction.  
For the window area designation, the address directions of RAM (HV, XD, YD) must be set first, and Column  
address and Row of Start point must be set second, Column address and Row of Stop point must be set third,  
then RAM should be accessed. Low address must be set first and High address must be set second in all of  
addresses. The directions of HV, XD, YD should be check to keep the area in RAM.  
Also in the window addressing mode, correct start and end point setting is required to abide to access invalid  
addressing space.  
column address  
(X, Y)  
Start point  
End point  
Window display area  
(X, Y)  
Whole DDRAM area  
Fig7  
(8) Reverse display ON/OFF  
The “Reverse display ON/OFF” function is used to reverse the display data without changing the display data  
in the DDRAM.  
Table9  
REV  
Display  
Normal  
DDRAM data Display data  
0
1
0
1
0
1
1
0
0
1
Reverse  
(9) Address directions of RAM access (Display rotation)  
The bellow picture shows display image after set of HV, XD and YD for address directions. The display data  
from CPU can be written into RAM with rotation to 90 degrees or 180 degrees or 270 degrees, and also  
mirrored.  
The address directions of RAM access is set by HV, XD and YD.  
* : The segments of Icon are not rotated.  
- 26 -  
NJU6824  
No.  
HVXDYD  
Valid address  
Xs < Xe  
Data writing direction  
(Xs, Ys)  
Display image  
1 0 0 0  
2 0 0 1  
3 0 1 0  
4 0 1 1  
5 1 0 0  
6 1 0 1  
7 1 1 0  
8 1 1 1  
Ys < Ye  
Xs < Xe  
Ys > Ye  
Xs > Xe  
Ys < Ye  
Xs > Xe  
Ys > Ye  
Xs < Xe  
Ys < Ye  
Xs < Xe  
Ys > Ye  
Xs > Xe  
Ys < Ye  
Xs > Xe  
Ys > Ye  
(Xe, Ye)  
(Xe, Ye)  
(Xs, Ys)  
(Xs, Ys)  
(Xe, Ye)  
(Xe, Ye)  
(Xs, Ys)  
(Xs, Ys)  
(Xe, Ye)  
(Xe, Ye)  
(Xs, Ys)  
(Xs, Ys)  
(Xe, Ye)  
(Xe, Ye)  
(Xs, Ys)  
*:The display image shows the display direction when the same data as No.1 are written into RAM for  
condition change.  
*: The outside address of RAM must not be set for correct operation.  
Xs : start address of X , Ys : Start address of Y, Xe : End address of X, Ye : End address of Y  
- 27 -  
NJU6824  
(10) The relationship among the DDRAM column address, display data and segment drivers  
Color mode, 16-bit data bus mode  
ABS SWAP  
X address / bit / segment assign  
0
0
X=00H  
X=00H  
X=00H  
X=00H  
ꢂꢃ  
X=7FH  
X=7FH  
X=7FH  
X=7FH  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
ABS SWAP  
0
X address / bit / segment assign  
1
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
ABS SWAP  
1
X address / bit / segment assign  
0
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
ABS SWAP  
1
X address / bit / segment assign  
1
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
- 28 -  
NJU6824  
Color mode, 8-bit data bus mode  
ABS SWAP  
X address / bit / segment assign  
0
0
X=00H(Upper)  
X=00H(Lower)  
ꢂꢃ  
X=7FH(Upper)  
X=7FH(Lower)  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
ABS SWAP  
X address / bit / segment assign  
0
1
X=00H(Upper)  
X=00H(Lower)  
ꢂꢃ  
X=7FH(Upper)  
X=7FH(Lower)  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
ABS SWAP  
X address / bit / segment assign  
1
0
X=00H(Upper)  
X=00H(Lower)  
ꢂꢃ  
X=7FH(Upper)  
X=7FH(Lower)  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
ABS SWAP  
X address / bit / segment assign  
1
1
X=00H(Upper)  
X=00H(Lower)  
ꢂꢃ  
X=7FH(Upper)  
X=7FH(Lower)  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
- 29 -  
NJU6824  
Color mode, 8-bit data bus mode, C256 mode (C256=1)  
ABS SWAP  
X address / bit / segment assign  
*
0
X=00H  
ꢂꢃ  
X=7FH  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
ABS SWAP  
X address / bit / segment assign  
*
1
X=00H  
ꢂꢃ  
X=7FH  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
- 30 -  
NJU6824  
B&W mode, 16-bit data bus mode  
ABS SWAP  
X address / bit / segment assign  
0
0
X=00H  
X=00H  
X=00H  
X=00H  
ꢂꢃ  
X=7FH  
X=7FH  
X=7FH  
X=7FH  
ꢂꢃ  
ꢂꢃ  
ABS SWAP  
0
X address / bit / segment assign  
1
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
ABS SWAP  
1
X address / bit / segment assign  
0
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
ABS SWAP  
1
X address / bit / segment assign  
1
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
- 31 -  
NJU6824  
B&W mode, 8-bit data bus mode  
ABS SWAP  
X address / bit / segment assign  
0
0
X=00H(Upper)  
X=00H(Lower)  
ꢂꢃ  
X=7FH(Upper)  
X=7FH(Lower)  
ꢂꢃ  
ꢂꢃ  
ABS SWAP  
X address / bit / segment assign  
0
1
X=00H(Upper)  
X=00H(Lower)  
ꢂꢃ  
X=7FH(Upper)  
X=7FH(Lower)  
ꢂꢃ  
ꢂꢃ  
ABS SWAP  
X address / bit / segment assign  
1
0
X=00H(Upper)  
X=00H(Lower)  
ꢂꢃ  
X=7FH(Upper)  
X=7FH(Lower)  
ꢂꢃ  
ꢂꢃ  
ABS SWAP  
X address / bit / segment assign  
1
1
X=00H(Upper)  
X=00H(Lower)  
ꢂꢃ  
X=7FH(Upper)  
X=7FH(Lower)  
ꢂꢃ  
ꢂꢃ  
- 32 -  
NJU6824  
Write and read data bit assignment (in the 16-bit data bus mode)  
ABS=0  
Write data  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D7  
D6  
*
D5  
*
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
*
Read data  
D15  
D14  
D13  
D12  
*
D10  
D9  
D8  
ABS=1  
Write data  
D15  
D14  
D13  
D12  
D11  
D11  
D10  
D10  
D9  
D9  
D8  
D8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Read data  
*
*
*
*
Examples for write and read display data (In 8 bit bus mode)  
ABS=0, C256=0 (Address; Upper bit)  
Write data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
Read data  
D7  
D6  
D5  
D4  
*
D2  
D1  
ABS=0, C256=0 (Address; Lower bit)  
Write data  
D7  
D6  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
*
Read data  
D7  
*
*
ABS=1, C256=0 (Address; Upper bit)  
Write data  
D7  
D6  
D5  
D4  
*
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Read data  
*
*
*
ABS=1, C256=0 (Address; Lower bit)  
Write data  
D7  
D6  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Read data  
D7  
D6  
D5  
ABS=0, C256=1  
Write data  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Read data  
*: Invalid Data  
- 33 -  
NJU6824  
Icon segment register address bit assignment  
Color mode, 16-bit data bus mode  
ABS SWAP  
X address / bit / segment assign  
0
0
X=00H  
X=01H  
ABS SWAP  
X address / bit / segment assign  
0
1
X=00H  
X=01H  
ABS SWAP  
X address / bit / segment assign  
1
0
X=00H  
X=01H  
ABS SWAP  
X address / bit / segment assign  
1
1
X=00H  
X=01H  
- 34 -  
NJU6824  
Color mode, 8-bit data bus mode  
ABS SWAP  
X address / bit / segment assign  
0
0
X=00H(Upper)  
X=00H(Lower)  
X=01H(Upper)  
X=01H(Lower)  
ABS SWAP  
X address / bit / segment assign  
0
1
X=00H(Upper)  
X=00H(Lower)  
X=01H(Upper)  
X=01H(Lower)  
ABS SWAP  
X address / bit / segment assign  
1
0
X=00H(Upper)  
X=00H(Lower)  
X=01H(Upper)  
X=01H(Lower)  
ABS SWAP  
X address / bit / segment assign  
1
1
X=00H(Upper)  
X=00H(Lower)  
X=01H(Upper)  
X=01H(Lower)  
- 35 -  
NJU6824  
B/W mode, 16-bit data bus mode  
ABS SWAP  
X address / bit / segment assign  
X address / bit / segment assign  
X address / bit / segment assign  
X address / bit / segment assign  
0
0
X=00H  
X=00H  
X=00H  
X=00H  
X=01H  
X=01H  
X=01H  
X=01H  
ABS SWAP  
0
1
ABS SWAP  
1
0
ABS SWAP  
1
1
- 36 -  
NJU6824  
B/W mode, 8-bit data bus mode  
ABS SWAP  
X address / bit / segment assign  
0
0
X=00H(Upper)  
X=00H(Lower)  
X=01H(Upper)  
X=01H(Lower)  
ABS SWAP  
X address / bit / segment assign  
0
1
X=00H(Upper)  
X=00H(Lower)  
X=01H(Upper)  
X=01H(Lower)  
ABS SWAP  
X address / bit / segment assign  
1
0
X=00H(Upper)  
X=00H(Lower)  
X=01H(Upper)  
X=01H(Lower)  
ABS SWAP  
X address / bit / segment assign  
1
1
X=00H(Upper)  
X=00H(Lower)  
X=01H(Upper)  
X=01H(Lower)  
- 37 -  
NJU6824  
(11) Gradation palette  
In the gradation mode, variable or fixed gradation mode is selected by programming the “PWM” register in  
the “Gradation control” instruction.  
PWM=0:  
PWM=1:  
Variable gradation mode  
(Select 16 gradation levels out of a palette consisting of 32-gradation levels)  
Fixed gradation mode  
(Fixed 8-gradation levels)  
In the gradation mode, each of the gradation palettes Aj, Bj and Cj can select 16-gradation levels out of a  
palette consisting of 32-gradation levels by setting 5-bit palette value into the “PA” registers in the “Gradation  
palette j” instructions (j=0 to Fh).  
The gradation palettes Aj correspond to the SEGAi, the Bj to SEGBj and the Cj to SEGCi (j=0 to 15, i=0 to  
127).  
- 38 -  
NJU6824  
The correspondence between display data and gradation palettes  
Table 10 (Palette Aj, Palette Bj, Palette Cj (j=0 to 15))  
(MSB) Display data (LSB)  
Gradation palette  
Palette 0  
Palette 1  
Palette 2  
Palette 3  
Palette 4  
Palette 5  
Palette 6  
Palette 7  
Palette 8  
Palette 9  
Palette10  
Palette11  
Palette12  
Palette13  
Palette14  
Palette15  
Default palette value  
0 0 0 0 0  
0 0 0 1 1  
0 0 1 0 1  
0 0 1 1 1  
0 1 0 0 1  
0 1 0 1 1  
0 1 1 0 1  
0 1 1 1 1  
1 0 0 0 1  
1 0 0 1 1  
1 0 1 0 1  
1 0 1 1 1  
1 1 0 0 1  
1 1 0 1 1  
1 1 1 0 1  
1 1 1 1 1  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Gradation palette table (PWM=”0”, MON=”0”, Variable gradation mode)  
Table 11 (Palette Aj, Palette Bj, Palette Cj (j=0 to 15))  
Palette  
value  
Gradation  
level  
Palette value  
Gradation level  
Gradation palette  
Palette 0(default)  
Gradation palette  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 0  
0 0 1 0 1  
0 0 1 1 0  
0 0 1 1 1  
0 1 0 0 0  
0 1 0 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 0 0  
0 1 1 0 1  
0 1 1 1 0  
0 1 1 1 1  
0
1 0 0 0 0  
1 0 0 0 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 0 0  
1 0 1 0 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 0 0  
1 1 0 0 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 1 0  
1 1 1 1 1  
16/31  
17/31  
18/31  
19/31  
20/31  
21/31  
22/31  
23/31  
24/31  
25/31  
26/31  
27/31  
28/31  
29/31  
30/31  
31/31  
1/31  
2/31  
3/31  
4/31  
5/31  
6/31  
7/31  
8/31  
9/31  
10/31  
11/31  
12/31  
13/31  
14/31  
15/31  
Palette 0(default)8  
Palette 9(default)  
Palette 10(default)  
Palette 11(default)  
Palette 12(default)  
Palette 13(default)  
Palette 14(default)  
Palette 15(default)  
Palette 1(default)  
Palette 2(default)  
Palette 3(default)  
Palette 4(default)  
Palette 5(default)  
Palette 6(default)  
Palette 7(default)  
- 39 -  
NJU6824  
Gradation palette table (PWM=”1”, MON=”0”, Fixed gradation mode)  
Table 12 8-gradation segment drivers  
Gradation  
level  
(MSB) Display data (LSB)  
Gradation level  
0/7  
(MSB) Display data (LSB)  
0/7  
0
0
*
*
0
0
0
*
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
*
*
*
*
*
*
*
1/7  
2/7  
3/7  
4/7  
5/7  
6/7  
7/7  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3/7  
5/7  
7/7  
The correspondence between display data and gradation level (MON=”1”, B&W mode)  
Table 13  
Gradation  
level  
(MSB) Display data (LSB)  
0
1
*
*
*
*
*
*
0
1
*:Don’t care  
- 40 -  
NJU6824  
(12) Gradation control and display data  
(12-1)Gradation mode  
In the graduation mode, each pixel for RGB corresponds to the successive 3 segment drivers that each  
segment driver provides 16-gradation PWM output, so that NJU6824 can drive a 4096-color display (16-  
gradation x 16-gradation x 16-gradation = 4-bit x 4-bit x 4-bit) with up to 128x128 pixels. The 16-gradation  
segment drivers can generate 16-gradation levels controlled by using 4-bit of display data in the DDRAM.  
In addition, the LSI can transfer 16-bit display data for 1-pixel RGB by one-time access or 8-bit by two-  
time access. The display data assignments for the gradation palettes and segment drivers vary in  
accordance with the setting for the “SWAP” bit in the "Display control (2)" instruction.  
- SWAP = 0  
SEGAi  
SEGBi  
SEGCi  
(i=0 to 127)  
Gradation palette  
j=0 to 15  
Paltte Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
Display data in DDRAM  
0
0
0
0
0
0
0
1
1
1
1
1
MSB  
LSB MSB  
LSB MSB  
LSB  
Display data from MPU  
0
0
0
0
D4  
D0  
*
0
0
0
1
D7  
D4  
*
1
1
1
D2  
D1  
*
1
D7  
D6  
D5  
D1  
D5  
D2  
D7  
D4  
D1  
D6  
D3  
D0  
D5  
D2  
D4  
D3  
D1  
D3  
D2  
D0  
D1  
D0)  
* )  
(Upper bit / Lower bit)  
ABS=1  
(D3 D2  
(D7 D6  
C256=1  
- SWAP = 1  
SEGAi  
SEGBi  
SEGCi  
(i=0 to 127)  
Gradation palette  
j=0 to 15  
Palette Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
Display data in DDRAM  
1
1
1
1
1
0
0
0
0
0
0
0
LSB  
MSB LSB  
MSB LSB  
MSB  
Display data from MPU  
0
0
0
0
0
0
0
1
1
1
1
1
D7  
D6  
D5  
D1  
D4  
D0  
D2  
D7  
D1  
D6  
D0  
D5  
D7  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0)  
(Upper bit / Lower bit)  
ABS=1  
(D3 D2  
(D7 D6  
C256=1  
D5  
*
D4  
D3  
D2  
*
D1  
D0  
*
* )  
- 41 -  
NJU6824  
In the 16-bit data bus mode, the display data assignments for the gradation palettes and segment  
drivers vary in accordance with the setting for the “SWAP” bit in the "Display control (2)" instruction as well  
as the assignment in the 8-bit data bus mode.  
- SWAP = 0  
SEGAi  
SEGBi  
SEGCi  
(i=0 to 127)  
Gradation palette  
j=0 to 15  
Paltte Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
Display data in DDRAM  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
MSB  
LSB MSB  
LSB MSB  
LSB  
Display data from MPU  
0
0
0
0
0
1
1
1
1
1
D15 D14 D13 D12 D10 D9  
D8  
D5  
D7  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0)  
ABS=1  
(D11 D10 D9  
D8  
D7  
D6  
- SWAP = 1  
SEGAi  
SEGBi  
SEGCi  
(i=0 to 127)  
Gradation palette  
j=0 to 15  
Palette Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
Display data in DDRAM  
1
1
0
1
0
1
1
0
0
0
0
0
0
0
0
LSB  
MSB LSB  
MSB LSB  
MSB  
Display data from MPU  
0
0
0
0
1
1
1
1
1
D15 D14 D13 D12 D10 D9  
D8  
D5  
D7  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0)  
ABS=1  
(D11 D10 D9  
D8  
D7  
D6  
- 42 -  
NJU6824  
(12-2)B&W mode (MON=”1”)  
In the B&W mode, only 3 of MSB of each display data are used for the display by the 16-bit data bus  
mode and 8-bit.  
16-bit data bus access example (Similarly 8-bit data bus access)  
- SWAP = 0  
SEGAi  
SEGBi  
SEGCi  
(i=0 to 127)  
Gradation palette  
j=0 to 15  
Palette Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
Display data in DDRAM  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
MSB  
LSB MSB  
LSB MSB  
LSB  
Display data in DDRAM  
0
0
0
0
1
1
1
1
1
D15 D14 D13 D12 D10 D9  
(D11 D10 D9 D8 D7 D6  
D8  
D5  
D7  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0)  
ABS=1  
- SWAP = 1  
SEGAi  
SEGBi  
SEGCi  
(i=0 to 127)  
Gradation palette  
j=0 to 15  
Palette Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
Display data in DDRAM  
1
1
0
1
0
1
1
0
0
0
0
0
0
0
1
0
1
0
LSB  
MSB LSB  
MSB LSB  
MSB  
Display data in DDRAM  
0
0
0
1
1
1
D15 D14 D13 D12 D10 D9  
(D11 D10 D9 D8 D7 D6  
D8  
D5  
D7  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
Column address; nH  
D0)  
ABS=1  
The correlation of display data with gradation control is also applied to Icon segment.  
- 43 -  
NJU6824  
(13) Display timing generator  
The display-timing generator creates the timing pulses such as the CL, FLM, FR and CLK by dividing the  
oscillation frequency oscillate an external or internal resister mode. The each of timing pulses is outputted  
through the each output terminals by “SON” = 1.  
(14) LCD line clock (CL)  
The LCD line clock (CL) is used as the count-up signal for the line counter and the latch signal for the data  
latch circuit. At the rising edge of the CL signal, the line counter is counted-up and the 384-bit display data,  
corresponding to the counted-up line address, is latched into the data latch circuit. And at the falling edge of the  
CL signal, the latched data output onto the segment drivers. The read out operation from DDRAM to the latch  
is completely independent from the MPU accessing. Therefore, MPU can access to the LSI regardless the  
internal operation.  
(15) LCD alternate signal (FR) and LCD synchronous signal (FLM)  
Both of the FR and FLM signals are created from the CL signal. The FR signal is used to alternate inverse  
driving for the LCD panel. It can be programmed so that the FR signal is toggle on every frame in the default  
setting or once every N frames in the N-line inversion mode. The FLM signal is used to indicate the start line of  
a new display frame. It presets an initial display line address into the line counter when the FLM signal  
becomes ”1”.  
(16) Data latch circuit  
The data latch circuit is used temporarily store the display data that will output to the segment drivers. The  
display data in this circuit is updated in synchronization of the CL signal.  
The “All pixels ON/OFF”, “Display ON/OFF” and “Reverse display ON/OFF” instructions change the display  
data in this circuit but do not change the display data in the DDRAM.  
(17) Common and segment drivers  
The LSI includes 384+6-segment drivers and 128-common drivers for a graphic display. The common drivers  
generate the LCD driving waveforms composed of the VLCD, V1, V4 and VSS in accordance with the FR signal  
and scanning data. The segment drivers generate the waveforms composed of the VLCD, V2, V3 and VSS in  
accordance with the FR signal and display data.  
- 44 -  
NJU6824  
LCD Driving waveforms (Reverse display OFF, 1/129 duty, B&W mode)  
COM0  
1
2
3
4
5
1
2
3
4
5
1
129  
163  
129  
COM1  
CL  
FLM  
FR  
VLCD  
V1  
V2  
V3  
COM0  
V4  
VSS  
VLCD  
V1  
V2  
V3  
V4  
VSS  
COM1  
SEG0  
VLCD  
V1  
V2  
V3  
V4  
VSS  
VLCD  
V1  
V2  
SEG1  
V3  
V4  
VSS  
Fig 8  
- 45 -  
NJU6824  
(18) Icon Segment Driver Circuit  
Each 3 outputs (SEGSA0 to SEGSA1, SEGSB0 to SEGSB1, SEGSC0 to SEGSC1) placed at both edges of  
normal segment output terminals line are Segment outputs for Icon. Although normal Segment output generates  
the LCD driving voltage corresponding with the data in Display Data RAM, Icon segment driver provides the  
register instead of the display data RAM. The data corresponding to SEGSA0, SEGSB0 and SEGSC0 are in 12-  
bit register and output the same driving voltage on the row direction. (The data corresponding to SEGSA1,  
SEGSB1 and SEGSC1 are same as SEGSA0, SEGSB0 and SEGSC0.)  
The outputs of SEGSA0 to SEGSA1 assign the same gradation pallet as SEGA0 to SEGA127, SEGSB0 to  
SEGSB1 are SEGB0 to SEGB127 and SEGSC0 to SEGSC1 are SEGC0 to SEGC127.  
Icon Segment Driver Circuit operates for the outline frame display or background. These displays are  
changed in accordance with attribute of ALLON or REV command, but no change by LREV command.  
The capacity of register corresponding with Icon segment driver (SEGSA0 to SEGSA1, SEGSB0 to SEGSB1,  
SEGSC0 to SEGSC1) is 24 bits. The access to from this register performed at DMY="1"..  
Table14  
80 type  
68type  
RS  
DMY  
Function  
Display data read  
Display data write  
Icon segment register read  
Icon segment register read  
R/W  
H
L
H
L
RD  
WR  
H
L
H
L
L
L
L
L
0
0
1
1
L
H
L
H
Read out function from the Icon segment register is restricted as same as the display data read out function  
from Display Data RAM. After address set, the addressed data does not come out by the first read instruction  
immediately but comes out by the second read instruction. Therefore, one dummy read out function is required  
for data read from Icon segment register after the address set or the data write operation.  
When the Icon segment registers are accessed in DMY="1", the valid addressing is just a column address.  
Because of 24 bits Icon register, the valid addresses are "00h" and "01h" in 8-bit or 16-bit mode.  
When the Icon segment registers are accessed in DMY="1", the data write operation into Icon register is  
enabled with the increment / decrement operation.  
The column address increment operates as shown below. But the auto carry up operation like as the  
maximum address to "00h" does not operate of the display data RAM access.  
00h -> Max.  
8-bit or 16-bit data bus mode (DMY=”1”)  
Column address  
00H:  
01H:  
SEGSA0, SEGSB0, SEGSC0  
SEGSA1, SEGSB1, SEGSC1  
Note) Refer the “Icon segment register address bit assignment” in (10) The relationship among the DDRAM  
column address, display data and segment drivers. Both of Icon segment register and Display data RAM  
operate a same address counter so that the address is set again in the status transition of DMY = "0" to "1"  
or "1" to "0".  
The access to Icon register must be operated in the condition of HV=0.  
- 46 -  
NJU6824  
Examples for the dummy segment registers (DMY=”1”)  
(In the 16-bit data bus mode, gradation mode, (REF,SWAP)=(0,0))  
Column address: 00H  
SEGSA0  
SEGSB0  
SEGSC0  
Gradation palette  
j=0 to 15  
Palette Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
Display data in DDRAM  
Display data in DDRAM  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
MSB  
LSB MSB  
LSB MSB  
LSB  
0
0
0
0
1
1
1
1
1
D15 D14 D13 D12 D10 D9  
D8  
D7  
D4  
D3  
D2  
D1  
(D11 D10 D9 D8 D7 D6  
D5  
D4  
D3  
D2  
D1  
D0)  
ABS=1  
Column address: 01H  
SEGSA1  
SEGSB1  
SEGSC1  
Gradation palette  
j=0 to 15  
Palette Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
Display data in DDRAM  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
MSB  
LSB MSB  
LSB MSB  
LSB  
Display data in DDRAM  
0
0
0
0
1
1
1
1
1
D15 D14 D13 D12 D10 D9  
D8  
D7  
D4  
D3  
D2  
D1  
(D11 D10 D9 D8 D7 D6  
D5  
D4  
D3  
D2  
D1  
D0)  
ABS=1  
- 47 -  
NJU6824  
(19) Oscillator  
The oscillator generates the internal clock for the display timing and voltage booster. The C and R for the  
oscillator are on chipped, therefore, there is no C, R required as an external components. Use an external R  
instead of internal R is also available (CSK=1), in this time connect the resister between OSC1 and OSC2  
terminals. However, when the internal oscillator is not used, an external clock, which duty should be 50%,  
inputs onto the OSC1 terminal.  
In addition, the value of the feed back resister for the oscillator can be varied by programming the “Rf”  
register in the “Frequency control” instruction so that it is possible to optimize the frame frequency for a LCD  
panel.  
[Setting of MON(B&W /Gradation) and PWM(Variable gradation/Fixed gradation)]  
In case of the internal oscillation mode (CSK=0)  
Symbol  
FR1  
FR2  
MON PWM  
Display mode  
0
0
1
0
1
*
Variable gradation mode  
Fixed gradation mode  
B&W mode  
FR3  
*: Don’t care  
In case of the external resistor oscillation mode(CSK=1)  
In case of the external resistor oscillation, clock frequency should be adjusted with resistor as same as  
the frequency of internal oscillation. And also MON and PWM should be set.  
In case of the external clock input mode(CSK=1)  
In case of the external clock input operation, clock frequency should be input as same as the frequency  
of internal oscillation on a display mode. And also MON and PWM should be set. Because the frame  
frequency and the internal voltage booster circuit operation frequency are determined by the external clock  
frequency and conditions of MON and PWM.  
(20) Power supply circuits  
The internal power supply circuits are composed of the voltage booster, electrical variable resister (EVR),  
voltage regulator, reference voltage generator and voltage followers.  
The status of the power supply circuits is arranged by programming the “DCON” and “AMPON” registers in  
the “Power control” instruction. For this arrangement, the part of the internal power supply circuits can be used  
in combination with an external power supply as described in the following table.  
Table 15  
Voltage followers  
DCON  
AMPON  
Voltage booster  
Voltage regulator  
EVR  
External voltage  
Note  
0
0
1
0
1
1
Disable  
Disable  
Enable  
Disable  
Enable  
Enable  
1, 3  
2, 3  
V
OUT, VLCD, V1, V2, V3, V4  
VOUT  
Note1) The internal power circuits are not used. The C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+, C5-, VOUT, VREF  
VREG and VEE terminals should be open.  
,
Note2) The internal power circuits are used, excluding the voltage booster. The external VOUT voltage is required  
and the C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+, C5- and VEE terminals should be open. The reference  
voltage is required into VREF terminal.  
Note3) The relation among the voltages should be maintained.  
VOUT  
VLCD V1 V2 V3 V4 VSS  
- 48 -  
NJU6824  
(21) Voltage booster  
The voltage booster generates maximum 6x voltage of the VEE level. It is programmed so that the boost level  
can be selected out of 1x, 2x, 3x, 4x, 5x and 6x by the “Boost level select” instruction. The boosted voltage  
VOUT must not exceed beyond 18.0V, otherwise the voltage stress may cause a permanent damage to the LSI.  
Boosted voltages  
VOUT=18V  
VOUT=9V  
VEE=3V  
VSS=0V  
VEE=3V  
VSS=0V  
6-time boost  
3-time boost  
Capacitor connections for the voltage Booster  
6-time boost  
5-time boost  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
VOUT  
VSS  
C1+  
+
+
+
+
+
+
+
+
+
+
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
VOUT  
VSS  
+
4-time boost  
3-time boost  
2-time boost  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
+
+
+
+
+
+
C4+  
C4-  
C4+  
C4-  
C4+  
C4-  
C5+  
C5-  
C5+  
C5-  
C5+  
C5-  
VOUT  
VSS  
VOUT  
VSS  
VOUT  
VSS  
+
+
+
Fig 9  
- 49 -  
NJU6824  
(22) Reference voltage generator  
The reference voltage generator is used to produce the reference voltage (VBA) that is output from the VBA  
terminal and input to the VREF terminal.  
VBA = VEE x 0.9  
(23) Voltage regulator  
The voltage regulator, composed of the gain control circuit and operational amplifier, is used to gain the  
reference voltage (VREF) and create the regulated voltage (VREG). The VREG is used for the input voltage for the  
EVR by programming the “VU” register in the “Boost level” instruction.  
VREG = VREF x N  
(N: register value for the boost level)  
(24) Electrical variable resister (EVR)  
The EVR, variable with 128-step, is used to fine-tune the LCD driving voltage (VLCD) by programming the “DV”  
register in the “EVR control” instruction, so that it is possible to optimize the contrast level for a LCD panel.  
VLCD = 0.5 x VREG + M (VREG - 0.5 x VREG) / 127 (M: register value for the EVR)  
(25) LCD driving voltage generation circuit  
LCD driving voltage generation circuit generates the VLCD voltage levels as VLCD, V1, V2, V3 and V4 with  
internal E.V.R and Bleeder resistors. And a BIAS ratio of LCD driving voltage can be selected out of follows; 1/5,  
1/6, 1/7, 1/8, 1/9, 1/10, 1/11 or 1/12.  
In case of internal power supply operation, a voltage stabilization capacitor CA2 must be connected to VLCD  
V1, V2, V3 and V4 terminals, and the value of CA2 is fixed with the result of actual LCD display evaluation.  
,
In case of external power supply operation, the LCD driving voltages as VLCD, V1, V2, V3 and V4 should be  
supplied from the external power supply in OFF state of internal power supply (DCON = AMPON = "0"). In this  
mode, voltage booster terminals as C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+, C5-, VEE, VREF and VREG  
should be opened.  
In case of external power supply operation and a part of internal (Voltage converter), C1+, C1-, C2+, C2-,  
C3+, C3-, C4+, C4-, C5+ and C5- terminals should be opened because the voltage booster circuit does not  
operate, a power for the voltage converter circuit should supply into VOUT terminal, and a reference voltage is  
supplied into VREF terminal.  
In addition, a capacitor CA3 should connect into VREG terminal for stabilization.  
< Bias adjustment function >  
NJU6823 prepares bias adjustment terminals V1A1, V1A2, V4A1 and V4A2 for fine adjustment of V1 and V4  
out of voltages.  
The status combination of V1A1 terminal and V1A2 can adjust V1 voltage in below table and V4A1 and V4A2  
can adjust V4 voltage. These adjustment performs by the connection change between the Bleeder resistors  
and the output buffer operational amplifier as voltage follower circuit.  
V1A1  
V1A2  
Fluctuation  
V4A1  
V4A2  
Fluctuation  
terminal  
terminal  
voltage [mV] *1  
terminal  
terminal  
voltage [mV] *1  
0
0
1
1
0
1
0
1
0
+5  
-5  
0
0
1
1
0
1
0
1
0
+5  
-5  
+10  
-10  
Note 1) The fluctuation voltage is a adjusted voltage against the default voltage at (V1A1, V1A2 = "0, 0" and  
V4A1, V4A2 = "0, 0"). The "+" mark means a direction of voltage fluctuation to VLCD and the "-" is to VSS.  
Note 2) The fluctuation voltage is an ideal value.  
Note 3) The fluctuation voltage is at VLCD=13.5V.  
Note 4) "0" of V1A1, V1A2, V4A1 and V4A2 means VSS and "1" means VDD  
.
- 50 -  
NJU6824  
Capacitor connections for the voltage booster  
All of the internal power supply circuits  
(6-time boost)  
None of the internal power supply circuits  
VDD  
VDD  
VDD  
VDD  
VEE  
VEE  
VBA  
VBA  
VREF  
VREF  
VREG  
CA3  
VREG  
CA3  
VSS  
VSS  
C1-  
C1-  
C1+  
C2-  
C2+  
C3-  
C3+  
C4-  
C4+  
C5-  
C5+  
CA1  
C1+  
C2-  
CA1  
C2+  
C3-  
CA1  
C3+  
C4-  
NJU6824  
NJU6824  
CA1  
C4+  
C5-  
CA1  
C5+  
VOUT  
VOUT  
CA1  
VSS  
VLCD  
CA2  
VLCD  
V1  
VLCD  
V1  
V1  
CA2  
External  
V2  
V2  
V3  
V4  
V2  
Power  
circuit  
CA2  
V3  
V3  
CA2  
V4  
V4  
CA2  
VSS  
Fig 10  
Fig11  
Reference values  
CA1  
CA2  
CA3  
1.0 to 4.7uF  
1.0 to 2.2uF  
0.1uF  
Note) B grade capacitors are required.  
- 51 -  
NJU6824  
The internal power supply circuits  
The internal power supply circuit  
Excluding the reference voltage generator(1)  
(6-time boost)  
Excluding the reference voltage generator(2)  
(6-time boost, temperature compensation)  
VDD  
VDD  
VDD  
VDD  
VEE  
VBA  
VREF  
VEE  
VBA  
VREF  
VREG  
VREG  
CA3  
VSS  
CA3  
VSS  
C1-  
C1-  
CA1  
C1+  
CA1  
C1+  
C2-  
CA1  
C2-  
CA1  
C2+  
C2+  
C3-  
CA1  
C3-  
CA1  
C3+  
C3+  
C4-  
C4-  
CA1  
CA1  
NJU6824  
NJU6824  
C4+  
C4+  
C5-  
CA1  
C5-  
CA1  
C5+  
C5+  
VOUT  
VOUT  
CA1  
CA1  
VSS  
VSS  
VLCD  
CA2  
VLCD  
CA2  
V1  
V1  
CA2  
CA2  
V2  
V2  
CA2  
CA2  
V3  
V3  
CA2  
CA2  
V4  
V4  
CA2  
VSS  
CA2  
VSS  
Fig 12  
Fig 13  
Reference value  
CA1  
CA2  
CA3  
1.0 to 4.7  
1.0 to 2.2  
µ
µ
F
F
0.1µF  
Note) B grade capacitors are required.  
- 52 -  
NJU6824  
The internal power supply circuits  
Excluding the voltage booster  
VDD  
VDD  
VEE  
VBA  
CA3  
VREF  
VREG  
CA3  
VSS  
C1-  
C1+  
C2-  
C2+  
C3-  
C3+  
C4-  
C4+  
C5-  
C5+  
VSS  
NJU6824  
External  
power  
circuit  
VOUT  
VLCD  
V1  
CA2  
CA2  
V2  
CA2  
CA2  
CA2  
V3  
V4  
VSS  
Fig 14  
Reference value  
CA1  
CA2  
CA3  
1.0 to 4.7  
1.0 to 2.2  
µ
µ
F
F
0.1µF  
Note) B grade capacitors are required.  
- 53 -  
NJU6824  
(26) Partial display function  
The partial display function is used to specify the partial display area on a LCD panel in the condition of lower  
duty cycle ratio, lower LCD bias ratio, lower boost level and lower LCD driving voltage, so that it is possible to  
display a time and calendar in the extremely low power consumption. It can be programmed to select a duty  
cycle ratio (1/17, 1/25, 1/33, 1/41, 1/49, 1/57, 1/65, 1/73, 1/81, 1/89, 1/97, 1/105, 1/113, 1/121, 1/129, in case of  
DSE=0), LCD bias ratio, boost level and EVR value by the instructions so that it is possible to optimize the LSI  
condition in accordance with the display status.  
Partial display image  
NJRC  
LCD DRIVER  
Low Power and  
Low Voltage  
LCD DRIVER  
Partial display  
Normal display  
Partial display sequence  
Optional status  
Display OFF (ON/OFF=”0”)  
Internal Power supply OFF (DCON=”0”, AMPON=”0”)  
WAIT  
Setting for LCD driving voltage-related functions  
Internal Power supply ON (DCON=”1”, AMPON=”1”)  
- Boost level  
- EVR value  
- LCD bias ratio  
WAIT  
- Duty cycle ratio  
- Initial display line  
- Initial COM line  
- Other instructions  
Setting for display-related functions  
Display ON (ON/OFF =”1”)  
Partial display Status  
- 54 -  
NJU6824  
(27) Discharge circuit  
The discharge circuit is used to discharge the electric charge in the capacitors connected to the V1 to V4 and  
VLCD terminals. It is activated by setting “0” into the “DIS” register in the “Discharge” instruction or by setting  
“RES” terminal to ”0” level. The “Discharge ON/OFF” instruction is usually required just after the internal power  
supply is turned off by setting “0” into the “DCON” and “AMPON” registers, or just after the external power  
supply is turned off. During the discharge operation, it is required that no supply the power neither from an  
internal or external power supply to the LSI.  
(28) Reset circuit  
The reset circuit initializes the LSI into the following default status. It is activated by setting the RES terminal  
to “0” level. The RES terminal is usually required to connect to the MPU’s reset terminal in order that the LSI  
can be initialized at the same timing of the MPU reset.  
ꢀꢀ Default status  
1. DDRAM display data  
2. column address  
:Undefined  
:(00)H  
3. row address  
:(00)H  
4. Initial display line  
5. Display ON/OFF  
6. Reverse display ON/OFF  
7. Duty cycle ratio  
8. N-line Inversion ON/OFF  
9. COM scan direction  
10. Address direction of RAM  
11. Read modify write  
12. SWAP mode  
:(0)H (1st line)  
:OFF  
:OFF (normal)  
:1/129 duty(DSE=0)  
:OFF  
:COM0  
COM127  
:(HV, XD, YD) = (0, 0, 0)  
:OFF (AIM=0)  
:OFF (normal)  
:(0, 0, 0, 0, 0, 0, 0)  
:OFF  
13. EVR value  
14. Internal power supply  
15. Display mode  
:Gradation display mode  
:1/9 bias  
16. LCD bias ratio  
17. Gradation Palette 0  
18. Gradation Palette 1  
19. Gradation Palette 2  
20. Gradation Palette 3  
21. Gradation Palette 4  
22. Gradation Palette 5  
23. Gradation Palette 6  
24. Gradation Palette 7  
25. Gradation Palette 8  
26. Gradation Palette 9  
27. Gradation Palette 10  
28. Gradation Palette 11  
29. Gradation Palette 12  
30. Gradation Palette 13  
31. Gradation Palette 14  
32. Gradation Palette 15  
33. Gradation mode control  
34. Data bus length  
:(0, 0, 0, 0, 0)  
:(0, 0, 0, 1, 1)  
:(0, 0, 1, 0, 1)  
:(0, 0, 1, 1, 1)  
:(0, 1, 0, 0, 1)  
:(0, 1, 0, 1, 1)  
:(0, 1, 1, 0, 1)  
:(0, 1, 1, 1, 1)  
:(1, 0, 0, 0, 1)  
:(1, 0, 0, 1, 1)  
:(1, 0, 1, 0, 1)  
:(1, 0, 1, 1, 1)  
:(1, 1, 0, 0, 1)  
:(1, 1, 0, 1, 1)  
:(1, 1, 1, 0, 1)  
:(1, 1, 1, 1, 1)  
:Variable gradation mode  
:8-bit data bus length  
:OFF  
35. Discharge circuit  
- 55 -  
NJU6824  
(29) Power supply ON/OFF sequences  
The following paragraphs describes the power supply ON/OFF sequences to prevent high current flowing into  
the LSI, otherwise the current may cause a permanent damage to the LSI.  
(29-1)Using an external power supply  
Power supply ON sequence  
The logic voltage (VDD) is turned on first, and then the LCD driving voltages (V1 to V4 and VLCD) can  
be turned on. When supply the VOUT from outside, turn on the logic voltage (VDD), then reset, after  
then supply the VOUT is required.  
Power supply OFF sequence  
The reset operation, cut off the V1 to V4 and VLCD from the LSI by the RES terminal or the “Power  
control” instruction first, and then the VDD can be turned off. It is recommended that a series-resister  
between 50 ohms and 100 ohms is inserted in the VLCD line (or VOUT line in case of using only an  
external VOUT voltage) in order to protect the LSI from an over current.  
(29-2)Using the internal power supply circuits  
Power supply ON sequence  
The VDD is turned on and the reset operation is required first, and then the V1 to V4 and VLCD can be  
turned on by setting “1” into the “DCON” and “AMPON” registers in the “Power control” instruction.  
Power supply OFF sequence  
The reset operation is required first in order to cut off the V1 to V4 and VLCD from the LSI, and then  
the input voltage for the voltage booster (VEE) and the VDD can be turned off.  
In case that the VEE and VDD are supplied from deferent voltage sources, the VEE is required to be  
turned off first, and then the VDD can be turned off.  
- 56 -  
NJU6824  
(30) Referential instruction sequences  
(30-1)Initialization in using the internal power supply circuits  
VDD, VEE power ON  
Wait for power-ON stabilization  
RESET Input  
WAIT  
Setting for LCD driving voltage-related functions  
End of initialization  
- EVR value  
- LCD bias ratio  
- Power control (DCON=”1”, AMPON=”1”)  
(30-2)Display data writing  
End of Initialization  
Setting for display-related functions  
- Initial display line  
- Address direction of RAM (HV, XD, YD)  
- Column address / -Row address (Start)  
- Column address / -Row address (End)  
Display data write  
Display ON (ON/OFF =”1”)  
*: Before display data write / read operation, the address directions should be set first , then Column  
address set / Row address set of start point and end are set in order. (Display data write / read for whole  
display area or a portion requires the same procedure as above.)  
To avoid incorrect data writing into registers by noise and so forth, the written data from registers should  
be checked after write operation.  
- 57 -  
NJU6824  
(30-3)Power OFF  
Optional status  
- All COM/SEG output VSS level.  
Power save or reset operation  
Discharge ON  
WAIT  
VEE, VDD power OFF  
- 58 -  
NJU6824  
(31) Instruction table  
Instruction Table (1)  
Code (80 series MPU I/F)  
Code  
Functions  
Instructions  
CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3  
D2  
D1  
D0  
Display data write  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0/1 0/1 0/1  
0/1 0/1 0/1  
Write Data  
Read Data  
Write display data to DDRAM  
Display data read  
column address  
Read display data from DDRAM  
DDRAM column address  
DDRAM column address  
DDRAM row address  
AX3  
AX7  
AY3  
*
AX2  
AX6  
AY2  
AY6  
LA2  
LA6  
N2  
AX1  
AX5  
AY1  
AY5  
LA1  
LA5  
N1  
AX0  
AX4  
AY0  
AY4  
LA0  
LA4  
N0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
(Lower) [0H]  
column address  
(Upper) [1H]  
row address  
(Lower) [2H]  
row address  
(Upper) [3H]  
DDRAM row address  
Initial display line  
(Lower) [4H]  
Sets row address corresponding to  
initial COM line (scan-starting line)  
LA3  
*
Initial display line  
(Upper) [5H]  
Sets row address corresponding to  
initial COM line (scan-starting line)  
N-line inversion  
(Lower) [6H]  
N3  
*
Sets the number of N-line inversion  
N-line inversion  
(Upper) [7H]  
N6  
N5  
N4  
Sets the number of N-line inversion  
SHIFT: Common direction  
Display control (1)  
Display control (2)  
Increment control  
ALL  
ON  
ON/ MON: Gradation or B/W display mode  
SHIFT MON  
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
0
1
0
OFF  
ALLON: All pixels ON/OFF  
ON/OFF: Display ON/OFF  
[8H]  
[9H]  
[AH]  
REV: Reverse display ON/OFF  
NLIN: N-line inversion ON/OFF,  
SWAP: SWAP mode ON/OFF  
REV NLIN SWAP  
*
AIM: Read-modify-write ON/OFF  
HV: Increment / Decrement direction  
XD: Column Increment / Decrement set  
YD: Row Increment / Decrement set  
AMPON: Voltage followers ON/OFF  
HALT: Power save ON/OFF  
AIM  
HV  
XD  
YD  
Power control  
AMP  
ON  
DC  
ON  
HALT  
ACL  
0
1
1
0
0
0
0
1
0
1
1
DCON: Voltage booster ON/OFF  
ACL: Reset  
[BH]  
Duty cycle ratio  
Boost level  
DS3 DS2 DS1 DS0  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
Sets LCD duty cycle ratio  
Sets boost level  
[CH]  
[DH]  
[EH]  
[FH]  
VU2 VU1 VU0  
*
*
LCD bias ratio  
RE register  
B2  
B1  
B0  
Sets LCD bias ratio  
RE flag set  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
Note 1)  
Note 2) [ ]  
Note 3)  
*
: Don’t care.  
: Instruction register address  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 59 -  
NJU6824  
Instruction Table (2)  
Instructions  
Code (80 series MPU I/F)  
Code  
Functions  
CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0  
Gradation palette A0/A8  
(Lower) [0H]  
Sets palette values to gradation  
palette A0(PS=0)/A8(PS=1)  
PA03/ PA02/ PA01/ PA00/  
PA83 PA82 PA81 PA80  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
Gradation palette A0/A8  
(Upper) [1H]  
Sets palette values to gradation  
palette A0(PS=0)/A8(PS=1)  
PA04/  
PA84  
*
*
*
Gradation palette A1/A9  
(Lower) [2H]  
Sets palette values to gradation  
palette A1(PS=0)/A9(PS=1)  
PA13/ PA12/ PA11/ PA10/  
PA93 PA92 PA91 PA90  
Gradation palette A1/A9  
(Upper) [3H]  
Sets palette values to gradation  
palette A1(PS=0)/A9(PS=1)  
PA14/  
PA94  
*
*
*
Gradation palette A2/A10  
(Lower) [4H]  
Sets palette values to gradation  
palette A2(PS=0)/A10(PS=1)  
PA23/ PA22/ PA21/ PA20/  
PA103 PA102 PA101 PA100  
Gradation palette A2/A10  
(Upper) [5H]  
Sets palette values to gradation  
palette A2(PS=0)/A10(PS=1)  
PA24/  
PA104  
*
*
*
Gradation palette A3/A11  
(Lower) [6H]  
Sets palette values to gradation  
palette A3(PS=0)/A11(PS=1)  
PA33/ PA32/ PA31/ PA30/  
PA113 PA112 PA111 PA110  
Gradation palette A3/A11  
(Upper) [7H]  
Sets palette values to gradation  
palette A3(PS=0)/A11(PS=1)  
PA34/  
PA114  
*
*
*
Gradation palette A4/A12  
(Lower) [8H]  
Sets palette values to gradation  
palette A4(PS=0)/A12(PS=1)  
PA43/ PA42/ PA41/ PA40/  
PA123 PA122 PA121 PA120  
Gradation palette A4/A12  
(Upper) [9H]  
Sets palette values to gradation  
palette A4(PS=0)/A12(PS=1)  
PA44/  
PA124  
*
*
*
Gradation palette A5/A13  
(Lower) [AH]  
Sets palette values to gradation  
palette A5(PS=0)/A13(PS=1)  
PA53/ PA52/ PA51/ PA50/  
PA133 PA132 PA131 PA130  
Gradation palette A5/A13  
(Upper) [BH]  
Sets palette values to gradation  
palette A5(PS=0)/A13(PS=1)  
PA54/  
PA134  
*
*
*
Gradation palette A6/A14  
(Lower) [CH]  
Sets palette values to gradation  
palette A6(PS=0)/A14(PS=1)  
PA63/ PA62/ PA61/ PA60/  
PA143 PA142 PA141 PA140  
Gradation palette A6/A14  
(Upper) [DH]  
Sets palette values to gradation  
palette A6(PS=0)/A14(PS=1)  
PA64/  
PA144  
*
*
*
RE register  
[FH]  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
RE flag set  
Note 1)  
Note 2) [ ]  
Note 3)  
*
: Don’t care.  
: Instruction register address  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 60 -  
NJU6824  
Instruction Table (3)  
Code (80 series MPU I/F)  
Code  
Instructions  
Functions  
CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0  
Gradation palette A7/A15  
(Lower) [0H]  
Sets palette values to gradation  
palette A7(PS=0)/A15(PS=1)  
PA73/ PA72/ PA71/ PA70/  
PA153 PA152 PA151 PA150  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
Gradation palette A7/A15  
(Upper) [1H]  
Sets palette values to gradation  
palette A7(PS=0)/A15(PS=1)  
PA74/  
PA154  
*
*
*
Gradation palette B0/B8  
(Lower) [2H]  
Sets palette values to gradation  
palette B0(PS=0)/B8(PS=1)  
PB03/ PB02/ PB01/ PB00/  
PB83 PB82 PB81 PB80  
Gradation palette B0/B8  
(Upper) [3H]  
Sets palette values to gradation  
palette B0(PS=0)/B8(PS=1)  
PB04/  
PB84  
*
*
*
Gradation palette B1/B9  
(Lower) [4H]  
Sets palette values to gradation  
palette B1(PS=0)/B9(PS=1)  
PB13/ PB12/ PB11/ PB10/  
PB93 PB92 PB91 PB90  
Gradation palette B1/B9  
(Upper) [5H]  
Sets palette values to gradation  
palette B1(PS=0)/B9(PS=1)  
PB14/  
PB94  
*
*
*
Gradation palette B2/B10  
(Lower) [6H]  
Sets palette values to gradation  
palette B2(PS=0)/B10(PS=1)  
PB23/ PB22/ PB21/ PB20/  
PB103 PB102 PB101 PB100  
Gradation palette B2/B10  
(Upper) [7H]  
Sets palette values to gradation  
palette B2(PS=0)/B10(PS=1)  
PB24/  
PB104  
*
*
*
Gradation palette B3/B11  
(Lower) [8H]  
Sets palette values to gradation  
palette B3(PS=0)/B11(PS=1)  
PB33/ PB32/ PB31/ PB30/  
PB113 PB112 PB111 PB110  
Gradation palette B3/B11  
(Upper) [9H]  
Sets palette values to gradation  
palette B3(PS=0)/B11(PS=1)  
PB34/  
PB114  
*
*
*
Gradation palette B4/B12  
(Lower) [AH]  
Sets palette values to gradation  
palette B4(PS=0)/B12(PS=1)  
PB43/ PB42/ PB41/ PB40/  
PB123 PB122 PB121 PB120  
Gradation palette B4/B12  
(Upper) [BH]  
Sets palette values to gradation  
palette B4(PS=0)/B12(PS=1)  
PB44/  
PB124  
*
*
*
Gradation palette B5/B13  
(Lower) [CH]  
Sets palette values to gradation  
palette B5(PS=0)/B13(PS=1)  
PB53/ PB52/ PB51/ PB50/  
PB133 PB132 PB131 PB130  
Gradation palette B5/B13  
(Upper) [DH]  
Sets palette values to gradation  
palette B5(PS=0)/B13(PS=1)  
PB54/  
PB134  
*
*
*
RE register  
[FH]  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
RE flag set  
Note 1)  
Note 2) [ ]  
Note 3)  
*
: Don’t care.  
: Instruction register address  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 61 -  
NJU6824  
Instruction Table (4)  
Instructions  
Code (80 series MPU I/F)  
Code  
Functions  
CS RS RD WR RE2 RE1 RE0 D7  
D6  
0
D5  
0
D4  
D3 D2  
D1 D0  
Gradation palette B6/B14  
(Lower) [0H]  
Sets palette values to gradation  
palette B6(PS=0)/B14(PS=1)  
PB63/ PB62/ PB61/ PB60/  
PB143 PB142 PB141 PB140  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
Gradation palette B6/B14  
(Upper) [1H]  
Sets palette values to gradation  
palette B6(PS=0)/B14(PS=1)  
PB64/  
PB144  
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
*
*
*
Gradation palette B7/B15  
(Lower) [2H]  
Sets palette values to gradation  
palette B7(PS=0)/B15(PS=1)  
PB73/ PB72/ PB71/ PB70/  
PB153 PB152 PB151 PB150  
Gradation palette B7/B15  
(Upper) [3H]  
Sets palette values to gradation  
palette B7(PS=0)/B15(PS=1)  
PB74/  
PB154  
*
*
*
Gradation palette C0/C8  
(Lower) [4H]  
Sets palette values to gradation  
palette C0(PS=0)/C8(PS=1)  
PC03/ PC02/ PC01/ PC00/  
PC83 PC82 PC81 PC80  
Gradation palette C0/C8  
(Upper) [5H]  
Sets palette values to gradation  
palette C0(PS=0)/C8(PS=1)  
PC04/  
PC84  
*
*
*
Gradation palette C1/C9  
(Lower) [6H]  
Sets palette values to gradation  
palette C1(PS=0)/C9(PS=1)  
PC13/ PC12/ PC11/ PC10/  
PC93 PC92 PC91 PC90  
Gradation palette C1/C9  
(Upper) [7H]  
Sets palette values to gradation  
palette C1(PS=0)/C9(PS=1)  
PC14/  
PC94  
*
*
*
Gradation palette C2/C10  
(Lower) [8H]  
Sets palette values to gradation  
palette C2(PS=0)/C10(PS=1)  
PC23/ PC22/ PC21/ PC20/  
PC103 PC102 PC101 PC100  
Gradation palette C2/C10  
(Upper) [9H]  
Sets palette values to gradation  
palette C2(PS=0)/C10(PS=1)  
PC24/  
PC104  
*
*
*
Gradation palette C3/C11  
(Lower) [AH]  
Sets palette values to gradation  
palette C3(PS=0)/C11(PS=1)  
PC33/ PC32/ PC31/ PC30/  
PC113 PC112 PC111 PC110  
Gradation palette C3/C11  
(Upper) [BH]  
Sets palette values to gradation  
palette C3(PS=0)/C11(PS=1)  
PC34/  
PC114  
*
*
*
Gradation palette C4/C12  
(Lower) [CH]  
Sets palette values to gradation  
palette C4(PS=0)/C12(PS=1)  
PC43/ PC42/ PC41/ PC40/  
PC123 PC122 PC121 PC120  
Gradation palette C4/C12  
(Upper) [DH]  
Sets palette values to gradation  
palette C4(PS=0)/C12(PS=1)  
PC44/  
PC124  
*
*
*
RE register  
[FH]  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
RE flag set  
Note 1)  
Note 2) [ ]  
Note 3)  
*
: Don’t care.  
: Instruction register address  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 62 -  
NJU6824  
Instruction Table (5)  
Code (80 series MPU I/F)  
Code  
Instructions  
Functions  
CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0  
Gradation palette C5/C13  
(Lower) [0H]  
Sets palette values to gradation  
palette C5(PS=0)/C13(PS=1)  
PC53/ PC52/ PC51/ PC50/  
PC133 PC132 PC131 PC130  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
*
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
*
0
0
1
1
0
0
1
1
0
0
1
1
0
1
1
0
*
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
0
*
Gradation palette C5/C13  
(Upper) [1H]  
Sets palette values to gradation  
palette C5(PS=0)/C13(PS=1)  
PC54/  
PC134  
*
*
*
Gradation palette C6/C14  
(Lower) [2H]  
Sets palette values to gradation  
palette C6(PS=0)/C14(PS=1)  
PC63/P PC62/ PC61/ PC60/  
C143 PC142 PC141 PC140  
Gradation palette C6/C14  
(Upper) [3H]  
Sets palette values to gradation  
palette C6(PS=0)/C14(PS=1)  
PC64/  
PC154  
*
*
*
Gradation palette C7/C15  
(Lower) [4H]  
Sets palette values to gradation  
palette C7(PS=0)/C15(PS=1)  
PC73/ PC72/ PC71/ PC70/  
PC153 PC152 PC151 PC150  
Gradation palette C7/C15  
(Upper) [5H]  
Sets palette values to gradation  
palette C7(PS=0)/C15(PS=1)  
PC74/  
PC154  
*
*
*
Initial COM line  
[6H]  
SC3 SC2 SC1 SC0  
Sets scan-starting common driver  
Display control Signal/  
Duty Select  
[7H]  
SON : CL, FLM, FR, CLK signal  
DSE : Duty select  
SON  
DSE  
*
*
PWM : Variable 16 Gradation Mode  
Stability 8 Gradation Mode  
C256 : 256 Color Mode  
Gradation mode control  
[8H]  
PWM C256 FDC1 FDC2  
FDC : Boost Clock  
ABS : 12bits RAM Data Select  
ABS CKS WLS CKS : OSC Select  
Data bus length  
[9H]  
*
WLS : Data Length at Data Access  
EVR control  
Sets EVR level  
(Lower bit)  
DV3 DV2 DV1 DV0  
(Lower) [AH]  
EVR control  
Sets EVR level  
(Upper bit)  
DV6 DV5 DV4  
RF2 RF1 RF0  
*
*
*
(Upper) [BH]  
Frequency control  
[DH]  
Controls oscillation frequency  
Discharge ON/OFF  
[EH]  
Discharge the electric charge in  
capacitors on V1 to V4 and VLCD  
DIS  
DIS2  
*
RE register  
[FH]  
TST0 RE2 RE1 RE0  
Reading register address  
Read Data  
0/1 0/1 0/1  
RE flag  
Instruction register address  
[CH]  
1
0
0
Sets instruction register address  
Read out instruction register data  
Instruction register read  
0/1 0/1 0/1  
Note 1)  
Note 2) [ ]  
Note 3)  
*
: Don’t care.  
: Instruction register address  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
Note 4)  
CKS=0: Internal oscillation mode (default)  
CKS=1: External oscillation mode  
- 63 -  
NJU6824  
Instruction Table (6)  
Instructions  
Code (80 series MPU I/F)  
Code  
Functions  
CS RS RD WR RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0  
Window end  
column address  
(Lower) [0H]  
Window end  
column address  
(Upper) [1H]  
EX3 EX2 EX1 EX0  
EX7 EX6 EX5 EX4  
EY3 EY2 EY1 EY0  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
Sets column address for end point  
Sets column address for end point  
Sets row address for end point  
Sets row address for end point  
Sets address for reverse line  
Sets address for reverse line  
Sets address for reverse line  
Sets address for reverse line  
Window end row address  
(Lower) [2H]  
Window end row address  
(Upper) [3H]  
*
EY6 EY5 EY4  
Initial reverse line  
(Lower) [4H]  
LS3 LS2 LS1 LS0  
Initial reverse line  
(Upper) [5H]  
*
LS6 LS5 LS4  
Last reverse line  
(Lower) [6H]  
LE3 LE2 LE1 LE0  
Last reverse line  
(Upper) [7H]  
*
LE6 LE5 LE4  
Reverse line display  
ON/OFF  
BT : Blink type setting  
LREV : Reverse line display ON/OFF  
BT LREV  
*
*
*
[8H]  
Gradation palette setting  
control  
address  
[9H]  
/
Icon SEG  
set  
PS : gradation setting  
DMY : Icon SEG address set  
PS  
DMY  
0
1
1
0
1
1
0
0
1
1
1
0
0
1
*
PWM control  
PWM PWM PWM PWM  
0
0
1
1
1
1
0
0
1
1
0
1
1
1
0
1
Sets PWM mode  
RE flag  
S
A
B
C
[AH]  
[FH]  
RE register  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
Note 1)  
Note 2) [ ]  
Note 3)  
*
: Don’t care.  
: Instruction register address  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 64 -  
NJU6824  
(32) Instruction descriptions  
This chapter provides detail description of the instructions, registers, their settings and programming  
examples. The non-existent instruction codes in the instruction tables (1), (2)…(6) are required not to be  
programmed.  
(32-1)Display data write  
The “Display data write” instruction is used to write 8-bit display data into the DDRAM.  
CS  
0
RS  
0
RD WR RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
0
Display data  
(32-2)Display data read  
The “Display data read” instruction is used to read out 8-bit display data from the DDRAM, where the  
column address and row address are required to be specified beforehand by the “column address” and  
“row address” instructions. The dummy read is required just after the “column address” and “row address”  
instructions.  
CS  
0
RS  
0
RD WR RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
Display data  
(32-3)Column address  
The “column address” instruction is used to specify the column address for the display data read and  
write operations. It includes dual instructions for lower 4-bit and upper 4-bit data. The instruction for the  
lower 4-bit data is required to be executed first.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
1
0
0
0
0
AX3 AX2 AX1 AX0  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
D2  
D1  
D0  
1
0
0
0
0
AX7 AX6 AX5 AX4  
(32-4)Row address  
The “row address” instruction is used to specify the row address for the display data read and write  
operations. It includes dual instructions for lower 4-bit and upper 3-bit data. The instruction for the lower 4-  
bit data is required to be executed first.  
The row address can be specified in between 00H and 7FH. The setting for the non-existence row  
address between 80H and FFH is prohibited.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
1
0
0
0
0
AY3  
AY2  
AY1 AY0  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
D1  
D0  
1
0
0
0
0
AY6  
AY5 AY4  
- 65 -  
NJU6824  
(32-5) Initial display line  
The “Initial display line” instruction is used to specify the line address corresponding to the initial COM  
line. The initial COM line indicates the common driver that starts scanning the display data, which is  
specified by the “Initial COM line” instruction.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
1
0
0
0
0
LA3  
LA2  
LA1 LA0  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
D1  
D0  
1
0
0
0
0
LA6  
LA5 LA4  
LA6  
0
LA5  
LA4  
0
LA3  
0
LA2  
LA1  
0
LA0  
Line address  
0
0
0
0
0
1
0
1
0
0
0
0
:
:
:
:
1
1
1
1
1
1
1
127  
(32-6)N-line inversion  
The “N-line inversion” instruction is used to control the alternate rates of the liquid crystal direction. It is  
programmed to select the N value between 2 and 128, so that the FR signal toggles once every N frames  
by setting “1” into the “NLIN” register in the “Display control (2)” instruction. In case that the N-line  
inversion is disabled by setting “0” into “NLIN” register, the FR signal toggles by the frame.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
1
0
0
0
0
N3  
N2  
N1  
N0  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
D1  
D0  
1
0
0
0
0
N6  
N5  
N4  
N6  
N5  
0
N4  
0
N3  
N2  
0
N1  
N0  
0
N value  
Inhibited  
2
0
0
0
0
0
0
0
0
0
1
:
:
:
:
0
1
0
0
0
0
0
128  
- 66 -  
NJU6824  
N-line Inversion Timing (1/129 duty cycle ratio)  
N-line inversion OFF  
1st line  
3rd line  
128th line  
1st line  
2nd line  
129th line  
CL  
FLM  
FR  
N-line inversion ON  
N-line control  
1st line  
3rd line  
N line  
2nd line  
2nd line  
1st line  
CL  
FR  
(32-7)Display control (1)  
The “Display control (1)” instruction is used to control the display conditions for the “Display ON/OFF”,  
“All pixels ON/OFF”, Display mode” and “Common direction” registers.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
SHIFT  
MON  
ALLON ON/OFF  
1
0
0
0
0
ON/OFF register  
ON/OFF=0 : Display OFF (All COM/SEG output Vss level.)  
ON/OFF=1 : Display ON  
All ON register  
The “All pixels ON/OFF” register is used to turn on all pixels without changing the display data in the  
DDRAM. The setting for the “All pixels ON/OFF” register has a priority over the “Reverse display  
ON/OFF” register.  
ALLON=0  
ALLON=1  
: Normal  
: All pixels turn on.  
MON register  
MON=0  
MON=1  
: Gradation mode  
: B&W mode  
SHIFT register  
SHIFT=0  
SHIFT=1  
: COM0  
: COM127  
COM127  
COM0  
- 67 -  
NJU6824  
(32-8)Display control (2)  
The “Display control (2)” instruction is used to control the display conditions for the “SWAP mode  
ON/OFF”, “N-line inversion ON/OFF” and “Reverse display ON/OFF”.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
D2  
D1  
D0  
REV  
NLIN  
SWAP  
*
1
0
0
0
0
SWAP register  
The “SWAP” register is used to reverse the arrangement for the display data in the DDRAM.  
SWAP=0  
SWAP=1  
: SWAP mode OFF  
: SWAP mode ON  
(Normal)  
SWAP=”0”  
SWAP=”1”  
Write data  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 d6 d5 d4 d3 d2 d1 d0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
RAM data  
d0 d1 d2 d3 d4 d5 d6 d7  
D7 D6 D5 D4 D3 D2 D1 D0  
Read data  
NLIN register  
The “NLIN” is used to enable or disable the N-line inversion.  
NLIN=0  
NLIN=1  
: N-line inversion OFF  
: N-line inversion ON  
(The FR signal toggles by the flame.)  
(The FR signal toggles once every N frames.)  
REV register  
The “REV” register is used to enable or disable the reverse display mode that reverses the polarity  
of the display data without changing the display data in the DDRAM.  
REV=0  
REV=1  
: Reverse display mode OFF  
: Reverse display mode ON  
REV  
Display  
Normal  
DDRAM data  
Display data  
0
1
0
1
0
1
1
0
0
1
Reverse  
- 68 -  
NJU6824  
(32-9)Increment control  
The “Increment control” instruction is used to control the conditions for the increment mode. In the auto-  
increment mode, the DDRAM address is automatically incremented (+1) whenever the DDRAM is  
accessed by the “Display data write” and “Display data read” instructions, so that it is possible to  
continuously access to the DDRAM without executing the “column address” and “row address” instructions  
after each “Display data write” or “Display data read” instruction. The settings for the “AIM”, “HV”, “XD” and  
“YD” registers are listed in the following tables.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
1
0
0
0
0
AIM HV  
XD  
YD  
AIM, HV, XD and YD registers  
AIM  
Increment mode  
Note  
Auto-increment for both of the display data read and write operations  
Auto-increment for the display write operation (Read modify write)  
0
1
1
2
Note 1) It is valid during continuing to write or read serial address area.  
Note 2) It is valid at writing modified data that read, write, and read every address.  
HV  
0
0
0
0
1
1
1
1
XD  
0
0
1
1
0
0
1
1
YD  
0
1
0
1
0
1
0
1
Increment / Decrement mode / Scanning Direction  
Column increment / Row increment / Horizontal direction  
Column increment / Row decrement / Horizontal direction  
Column decrement / Row increment / Horizontal direction  
Column decrement / Row decrement / Horizontal direction  
Column increment / Row increment / Vertical direction  
Column increment / Row decrement / Vertical direction  
Column decrement / Row increment / Vertical direction  
Column decrement / Row decrement / Vertical direction  
For the window area designation, the address directions of RAM (HV, XD, YD) must be set first, and  
Column address and Row of Start point must be set second, Column address and Row of Stop point must  
be set third, then RAM should be accessed. Low address must be set first and High address must be set  
second in all of addresses. The directions of HV, XD, YD should be check to keep the area in RAM.  
- 69 -  
NJU6824  
(32-10)Power control  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
D2  
D1  
D0  
AMPON HALT DCON  
ACL  
1
0
0
0
0
ACL register  
The “ACL” register is used to initialize the internal power supply circuits. It is available only in the  
master mode.  
ACL=0  
ACL=1  
: Initialization OFF (Normal)  
: Initialization ON  
When the data in the “ACL register” is read out by the “Instruction register read” instruction, the  
read-out data is “1” during the initialization and “0” after the initialization. This initialization is  
performed using the internal reset signal produced by 2 clocks on the OSC1. For this reason, the wait  
time for 2 clocks on the OSC1 is required until the next instruction after the initialization by  
programming “ACL” register.  
DCON register  
The “DCON” register is used to enable or disable the voltage booster.  
DCON=0  
DCON=1  
: Voltage booster OFF  
: Voltage booster ON  
HALT register  
The “HALT” register is used to enable or disable the power save mode. It is possible to reduce the  
operating current down to the stand-by level in the power save mode. The internal status in the power  
save mode is listed below.  
HALT=0  
HALT=1  
: Power save OFF (Normal)  
: Power save ON  
Internal status in the power save mode  
The oscillation circuits and internal power supply circuits are halted.  
All segment and common drivers output VSS level.  
The display data in the DDRAM is maintained.  
The operational modes before the power save mode are maintained.  
The V1 to V4 and VLCD are in the high impedance.  
The clock input into the OSC1 is inhibited.  
In the power save ON sequence, it is required that the “Display OFF” instruction is executed before  
the “Power save ON” instruction, so that all common and segment drivers output VSS level. And in the  
power save OFF sequence, it is required that the “Power save OFF” instruction is executed first and  
then the “Display ON” instruction is executed. If the “Power save OFF” instruction is executed in the  
display ON status, unexpected pixels may be instantly turned on.  
AMPON register  
The “AMPON” register is used to enable or disable the voltage followers, voltage regulator and EVR.  
AMPON=0 : The voltage followers, voltage regulator and EVR OFF  
AMPON=1 : The voltage followers, voltage regulator and EVR ON  
- 70 -  
NJU6824  
(32-11)Duty cycle ratio  
The “Duty cycle ratio” instruction is used to select the LCD duty cycle ratio for the partial display function.  
The partial display function specifies the partial display area on a LCD panel in the condition of lower duty  
cycle ratio, lower LCD bias ratio, lower boost level and lower LCD driving voltage, so that it is possible to  
display a time and calendar in the extremely low power consumption.  
It can be also programmed to select not only the duty cycle ratio but also the LCD bias ratio, boost level  
and EVR value by the instructions so that it is possible to optimize the LSI conditions in accordance with  
the display.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
1
0
0
0
0
DS3 DS2 DS1 DS0  
DS3  
0
0
0
0
0
0
0
0
DS2  
0
0
0
0
1
1
1
1
DS1  
DS0  
0
1
0
1
0
1
0
1
Duty cycle ratio  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
Row way 128 dots display, 1/129 Duty  
Row way 120 dots display, 1/121 Duty  
Row way 112 dots display, 1/113 Duty  
Row way 104 dots display, 1/105 Duty  
Row way 96 dots display, 1/97 Duty  
Row way 88 dots display, 1/89 Duty  
Row way 80 dots display, 1/81 Duty  
Row way 72 dots display, 1/73 Duty  
Row way 64 dots display, 1/75 Duty  
Row way 56 dots display, 1/57 Duty  
Row way 48 dots display, 1/49 Duty  
Row way 40 dots display, 1/41 Duty  
Row way 32 dots display, 1/33 Duty  
Row way 24 dots display, 1/25 Duty  
Row way 16 dots display, 1/17 Duty  
Inhibited  
1
1
0
0
0
1
1
1
1
1
1
1
0
0
1
1
1
1
0
1
0
1
0
1
All of duty value are decreased “1” by Duty selection set (DSE=1).  
Ex.) In case of (DS3,DS2,DS1,DS0)=(0,0,0,0)  
DSE=”0”  
DSE=”1”  
:1/129Duty  
:1/128Duty  
In period of last Common driving, all of Commons are not selected and Segment outputs are not change from  
previous condition.  
Ex.) Conditions of Commons and segments at 129th line in case of 1/129 duty  
COM output : All of Commons are not selected  
SEG output : Not change from previous condition (same 128 line).  
(32-12)Boost level  
The “Boost level” is used to select the multiple for the voltage booster for the partial display function.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
D1  
D0  
1
0
0
0
0
VU2 VU1 VU0  
VU2  
0
0
VU1  
0
0
VU0  
0
1
Boost level  
1-time (No boost)  
2-time  
0
1
0
3-time  
0
1
1
4-time  
1
0
0
5-time  
1
0
1
6-time  
1
1
1
1
0
1
Inhibited  
Inhibited  
- 71 -  
NJU6824  
(32-13)LCD bias ratio  
The “LCD bias ratio” is used to select the LCD bias ratio for the partial display function.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
1
D5  
1
D4  
0
D3  
*
D2  
B2  
D1  
B1  
D0  
B0  
1
0
0
0
0
B2  
0
0
0
0
1
1
1
1
B1  
0
0
1
1
0
0
1
1
B0  
0
1
0
1
0
1
0
1
LCD bias ratio  
1/9  
1/8  
1/7  
1/6  
1/5  
1/10  
1/11  
1/12  
(32-14)RE flag  
The “RE flag” registers are used to determine the contents for the RE registers (RE2, RE1 and RE0) in  
order that it is possible to access to the instruction registers.  
The data in the “TST0” register must be “0”, which is used only for maker tests.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
1
D6  
1
D5  
1
D4  
1
D3  
D2  
D1  
D0  
1
0
TST0 RE2 RE1 RE0  
- 72 -  
NJU6824  
(32-15)Gradation palette A, B and C  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PA03  
PA83  
/
PA02  
PA82  
/
PA01  
PA81  
/
PA00/  
PA80  
1
0
0
0
1
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA04  
PA84  
/
1
0
0
0
1
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PA13  
PA93  
/
PA12  
PA92  
/
PA11/ PA10/  
PA91  
1
0
0
0
1
PA90  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA14  
PA94  
/
1
0
0
0
1
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PA23  
/
PA22  
/
PA21  
/
PA20/  
1
0
0
0
1
PA103 PA102 PA101 PA100  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA24  
PA104  
/
1
0
0
0
1
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PA33  
/
PA32  
/
PA31  
/
PA30/  
1
0
0
0
1
PA113 PA112 PA111 PA110  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA34  
PA114  
/
1
0
0
0
1
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PA43  
/
PA42  
/
PA41  
/
PA40/  
1
0
0
0
1
PA123 PA122 PA121 PA120  
- 73 -  
NJU6824  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA44  
PA124  
/
1
0
0
0
1
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PA53  
/
PA52  
/
PA51  
/
PA50/  
1
0
0
0
1
PA133 PA132 PA131 PA130  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA54  
PA134  
/
1
0
0
0
1
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PA63  
/
PA62  
/
PA61  
/
PA60/  
1
0
0
0
1
PA143 PA142 PA141 PA140  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA64  
PA144  
/
1
0
0
0
1
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PA73  
/
PA72  
/
PA71  
/
PA70/  
1
0
0
1
0
PA153 PA152 PA151 PA150  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA74  
PA154  
/
1
0
0
1
0
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PB03  
PB83  
/
PB02  
PB82  
/
PB01  
PB81  
/
PB00/  
PB80  
1
0
0
1
0
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB04  
PB84  
/
1
0
0
1
0
- 74 -  
NJU6824  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PB13  
PB93  
/
PB12  
PB92  
/
PB11/ PB10/  
PB91  
1
0
0
1
0
PB90  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB14  
PB94  
/
1
0
0
1
0
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PB23  
/
PB22  
/
PB21  
/
PB20/  
1
0
0
1
0
PB103 PB102 PB101 PB100  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB24  
PB104  
/
1
0
0
1
0
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PB33  
/
PB32  
/
PB31  
/
PB30/  
1
0
0
1
0
PB113 PB112 PB111 PB110  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB34  
PB114  
/
1
0
0
1
0
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PB43  
/
PB42  
/
PB41  
/
PB40/  
1
0
0
1
0
PB123 PB122 PB121 PB120  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB44  
PB124  
/
1
0
0
1
0
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PB53  
/
PB52  
/
PB51  
/
PB50/  
1
0
0
1
0
PB133 PB132 PB131 PB130  
- 75 -  
NJU6824  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB54  
PB134  
/
1
0
0
1
0
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PB63  
/
PB62  
/
PB61  
/
PB60/  
1
0
0
1
1
PB143 PB142 PB141 PB140  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB64  
PB144  
/
1
0
0
1
1
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PB73  
/
PB72  
/
PB71  
/
PB70/  
1
0
0
1
1
PB153 PB152 PB151 PB150  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB74  
PB154  
/
1
0
0
1
1
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC03/ PC02/ PC01/ PC00/  
PC83  
1
0
0
1
1
PC82  
PC81  
PC80  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC04/  
PC84  
1
0
0
1
1
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PC13/ PC12/ PC11/ PC10/  
PC93  
1
0
0
1
1
PC92  
PC91  
PC90  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC14/  
PC94  
1
0
0
1
1
- 76 -  
NJU6824  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC23/ PC22/ PC21/ PC20/  
PC103 PC102 PC101 PC100  
1
0
0
1
1
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC24/  
PC104  
1
0
0
1
1
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PC33/ PC32/ PC31/ PC30/  
PC113 PC112 PC111 PC110  
1
0
0
1
1
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC34/  
PC114  
1
0
0
1
1
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC43/ PC42/ PC41/ PC40/  
PC123 PC122 PC121 PC120  
1
0
0
1
1
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC44/  
PC124  
1
0
0
1
1
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC53/ PC52/ PC51/ PC50/  
PC133 PC132 PC131 PC130  
1
0
1
0
0
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC54/  
PC134  
1
0
1
0
0
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PC63/ PC62/ PC61/ PC60/  
PC143 PC142 PC141 PC140  
1
0
1
0
0
- 77 -  
NJU6824  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC64/  
PC144  
1
0
1
0
0
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC73/ PC72/ PC71/ PC70/  
PC153 PC152 PC151 PC150  
1
0
1
0
0
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC74/  
PC154  
1
0
1
0
0
Gradation Level Table  
(PAj, PBj, PCj, j=0  
Note  
15)  
Gradation  
Level  
Gradation  
Level  
Palette Value  
Note  
Palette Value  
Gradation Palette 0  
Initial Value  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0/31  
1/31  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
16/31  
17/31  
18/31  
19/31  
20/31  
21/31  
22/31  
23/31  
24/31  
25/31  
26/31  
27/31  
28/31  
29/31  
30/31  
31/31  
Gradation Palette 8  
Initial Value  
2/31  
Gradation Palette 1  
Initial Value  
Gradation Palette 9  
Initial Value  
3/31  
4/31  
Gradation Palette2  
Initial Value  
Gradation Palette 10  
Initial Value  
5/31  
6/31  
Gradation Palette 3  
Initial Value  
Gradation Palette 11  
Initial Value  
7/31  
8/31  
Gradation Palette 4  
Initial Value  
Gradation Palette 12  
Initial Value  
9/31  
10/31  
11/31  
12/31  
13/31  
14/31  
15/31  
Gradation Palette 5  
Initial Value  
Gradation Palette 13  
Initial Value  
Gradation Palette 6  
Initial Value  
Gradation Palette 14  
Initial Value  
Gradation Palette 7  
Initial Value  
Gradation Palette 15  
Initial Value  
- 78 -  
NJU6824  
(32-16)Initial COM line  
The “Initial COM line” instruction is used to specify the common driver that starts scanning the display  
data. The line address, corresponding to the initial COM line, is specified by the “Initial display line”  
instruction.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
0
SC3 SC2 SC1 SC0  
SC3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
SC2 SC1 SC0  
Initial COM line (SHIFT=0)  
COM0  
Initial COM line (SHIFT=1)  
COM127  
COM123  
COM119  
COM111  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
COM4  
COM8  
COM16  
COM24  
COM32  
COM40  
COM48  
COM56  
COM64  
COM72  
COM80  
COM88  
COM96  
COM104  
COM112  
COM103  
COM95  
COM87  
COM79  
COM71  
COM63  
COM55  
COM47  
COM39  
COM31  
COM23  
COM15  
SHIFT=0: Positive scan direction  
SHIFT=1: Negative scan direction  
(for instance, COM0 COM127  
(for instance, COM127 COM0)  
)
(32-17)Display control signal / Duty select  
CL, FLM, FR, and CLK signal outputs control ON/OFF and Duty select.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
D0  
SON  
1
0
1
0
0
DSE  
SON=0:  
SON=1:  
CL, FLM, FR, and CLK outputs level “0”.  
CL, FLM, FR, and CLK outputs are active.  
DSE=0:  
DSE=1:  
Refer the table of (32-11) Duty cycle ratio. (Default)  
The duty ratio is set by the value subtracted "1" from the content of the table.  
- 79 -  
NJU6824  
(32-18)Gradation mode control  
The “Gradation mode control” is selecting the gradation mode, selecting the 256-color mode, and setting  
boost clock.  
CS  
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PWM C256  
0
1
0
1
0
0
FDC1 FDC2  
PWM register  
PWM=0:  
Variable gradation mode  
(16-gradation levels out of a palette consisting of 32-gradation levels)  
Fixed gradation mode  
PWM=1:  
(Fixed 8-gradation levels)  
C256 register  
C256=0  
Variable gradation mode  
(16-gradation levels out of a palette consisting of 32-gradation levels.)  
C256=1  
256-color mode  
(8-gradation levels out of a palette consisting of 32-gradation levels.)  
(4-gradation levels out of a palette consisting of 32-gradation levels at the palette  
B.)  
FDC1 and FDC2 register  
FDC1  
FDC2  
Boost Clock  
0
0
1
1
0
1
0
1
×
×
×
1
2
4
×1/2  
- 80 -  
NJU6824  
(32-19)Data bus length  
The “Data bus length” instruction is used to select the 8- or 16- bit data bus length and determine the  
internal or external oscillation. In the 16-bit data bus mode, not only the display data but also the  
instruction data is required to be transferred by 16-bit data (D15 to D0). However, in case of the access to  
the instruction register, the only lower 8-bit data (D7 to D0) of the 16-bit data is valid. In case of the access  
to the DDRAM, all of the 16-bit data (D15 to D0) is valid.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
D1  
D0  
1
0
1
0
0
ABS CKS WLS  
ABS register  
ABS=0:  
ABS=1:  
Normal Mode  
ABS Mode  
WLS register  
WLS=0:  
WLS =1:  
8-bit data bus length  
16-bit data bus length  
CKS register  
CKS =0:  
Internal oscillation  
(The OSC1 terminal must be fixed “1” or “0”.)  
External oscillation  
CKS =1:  
(By the external clock into the OSC1 or external resister between the OSC1 and  
OSC2. OSC2 should be open when clock is inputted from OSC1.)  
- 81 -  
NJU6824  
(32-20)EVR control  
The “EVR control” instruction is used to fine-tune the LCD driving voltage (VLCD) so that it is possible to  
optimize the contrast level for the display.  
The “EVR control” instruction requires to be programmed by the upper 3-bit data first and then lower 4-  
bit data, where programming the only upper 3-bit data has not enabled it, so that it is possible to prevent  
unexpected high voltage for the VLCD  
.
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
0
DV3 DV2 DV1 DV0  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
D1  
D0  
1
0
1
0
0
DV6 DV5 DV4  
DV6 DV5 DV4 DV3 DV2 DV1 DV0  
VLCD  
0
0
0
0
0
0
0
0
:
0
0
0
0
0
1
Low  
:
:
:
:
1
1
1
1
1
1
1
High  
The VLCD is calculated by the following equation.  
VLCD [V] = 0.5 x VREG + M (VREG – 0.5 x VREG) / 127  
VBA = VEE x 0.9  
VREG = VREF x N  
VBA  
VREF  
VREG  
N
: Output voltage of the reference voltage generator  
: Input voltage of the voltage regulator  
: Output voltage of the voltage regulator  
: Register value for the voltage booster  
: Register value for the EVR  
M
- 82 -  
NJU6824  
(32-21)Frequency control  
The “Frequency control” instruction is used to control the frame frequency for a LCD panel.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
D1  
D0  
1
0
1
0
0
Rf2  
Rf1  
Rf0  
Rfx register (x=0, 1, 2)  
The “Rfx” register is used to determine the feed back resister value for the internal oscillator in  
order that it is possible to adjust the frame frequency.  
Rf 2 Rf 1 Rf 0  
Feedback resistor value  
Reference value  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0.8 x reference value  
0.9 x reference value  
1.1 x reference value  
1.2 x reference value  
0.7 x reference value  
1.3 x reference value  
Inhibited  
(32-22)Discharge ON/OFF  
The “Discharge ON/OFF” instruction is used to enable or disable the discharge circuits, so that it is  
possible to prevent unexpected pixels turned on just after the internal or external power supply is turned  
off. During the discharge operation, do not supply the power neither from an internal or external power  
supplies to the LSI.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
1
D5  
1
D4  
0
D3  
*
D2  
*
D1  
D0  
1
0
1
0
0
DIS2 DIS  
DIS=0:  
DIS=1:  
Discharge OFF: Capacitors for VLCD, V1, V2, V3 and V4  
Discharge ON : Capacitors for VLCD, V1, V2, V3 and V4  
DIS2=0:  
DIS2=1:  
Discharge OFF: Resistance between VOUT and VEE  
Discharge ON : Resistance between VOUT and VEE  
*In the power on, 100k(Typ.) resistance is connected between VOUT and VEE.  
- 83 -  
NJU6824  
(32-23)Instruction register address  
The “Instruction register address” is used to specify the instruction register address, so that it is possible  
to read out the contents of the instruction registers in combination with the “Instruction register read”  
instruction.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
0
RA3 RA2 RA1 RA0  
(32-24)Instruction register read  
The “Instruction register read” instruction is used to read out the contents of the instruction register in  
combination with the “Instruction register address” instruction.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
*
D6  
*
D5  
*
D4  
*
D3  
D2  
D1  
D0  
0
1
Internal register data read  
(32-25)Window end column address  
The “Window end column address” is used to specify the column address for the window end point. The  
lower 4-bit data is required to be programmed first and then the upper 4-bit data can be programmed.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
1
EX3 EX2 EX1 EX0  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
D2  
D1  
D0  
1
0
1
0
1
EX7 EX6 EX5 EX4  
(32-26)Window end row address set  
The “Window end row address” is used to specify the row address for the window end point. The lower  
4-bit data is required to be programmed first and then the upper 3-bit data can be programmed.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
1
EY3 EY2 EY1 EY0  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
D1  
D0  
1
0
1
0
1
EY6 EY5 EY4  
- 84 -  
NJU6824  
(32-27)Initial reverse line  
The “Initial reverse line” instruction is used to specify the initial reverse line address for the reverse line  
display. The lower 4-bit data is required to be programmed first and then the upper 3-bit data can be  
programmed. It can be programmed in between 00H and 7FH and the line address beyond 7FH is inhibited.  
The address relationship: LSi < LEi (i=7 to 0) must be maintained in the reverse line display.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
1
LS3 LS2 LS1 LS0  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
D1  
D0  
1
0
1
0
1
LS6 LS5 LS4  
(32-28)Last reverse line  
The “Last reverse line” instruction is used to specify the last reverse line address for the reverse line  
display. The lower 4-bit data is required to be programmed first and then the upper 3-bit data can be  
programmed. It can be programmed in between 00H and 7FH and the line address beyond 7FH is inhibited.  
The address relationship: LSi < LEi (i=7 to 0) must be maintained in the reverse line display.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
1
0
1
0
1
LE3 LE2 LE1 LE0  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
D1  
D0  
1
0
1
0
1
LE6 LE5 LE4  
(32-29)Reverse line display ON/OFF  
The “Reverse line display ON/OFF” is used to enable or disable the reverse line display for the blink  
operation and determine the reverse line display mode.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
*
D2  
*
D1  
D0  
1
0
1
0
1
BT LREV  
LREV register  
The “LREV” register is used to enable or disable the reverse line display.  
LREV =0:  
LREV =1:  
Reverse line display OFF (Normal)  
Reverse line display ON  
- 85 -  
NJU6824  
BT register  
The “BT” register is used to determine the reverse line display mode in the reverse line display ON  
(LREV=1) status.  
BT =0:  
BT =1:  
Normal reverse line display  
Blink once every 32 frames  
Display examples in the LREV=”1” and BT=”1”  
ꢀ„ „ „ ꢀ  
„ꢀ ꢀ ꢀ „  
„ꢀ ꢀ ꢀ ꢀ  
ꢀ„ „ „ ꢀ  
ꢀꢀ ꢀ ꢀ „  
„ꢀ ꢀ ꢀ „  
ꢀ„ „ „ ꢀ  
ꢀꢀ ꢀ ꢀ ꢀ  
„ ꢀ ꢀ ꢀ „  
ꢀ „ „ „ ꢀ  
ꢀ „ „ „ „  
„ ꢀ ꢀ ꢀ „  
„ „ „ „ ꢀ  
ꢀ „ „ „ ꢀ  
„ ꢀ ꢀ ꢀ „  
„ „ „ „ „  
Blink once every 32 frames  
NJRC  
LCD DRIVER  
Low Power and  
Low Voltage  
Blink once every 32 frames  
NJRC  
Initial reverse line address  
Last reverse line address  
LCD DRIVER  
Low Power and  
Low Voltage  
- 86 -  
NJU6824  
(32-30)Gradation palette setting control / Icon SEG address set  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
D0  
1
0
1
0
1
DMY PS  
PS register  
PS=0: Lower 8 Gradation setting  
PS=1: Upper 8 Gradation setting  
DMY register  
Although segment drivers in normal condition output LCD driving voltage corresponding to data in  
Display data RAM, Icon segment driver output LCD driving voltage corresponding to registers. The 24  
bits register corresponds to SEGSA0 ~ SEGSA1, SEGSB0 ~ SEGSB1, SEGSC0 ~ SEGSC1.  
DMY=0: Normal RAM access  
DMY=1: Icon segment driver RAM access  
- 87 -  
NJU6824  
(32-31)PWM control  
The “PWM control” is used to determine the PWM type for the segment waveforms, where the type can  
be specified for each of the SEGAi, SEGBi and SEGCi (i=0-127) drivers.  
CS  
0
RS  
1
RD WR RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PWMS PWMA PWMB PWMC  
1
0
1
0
1
PWMS register  
PWMS=0: Type 1  
PWMS=1: Type 2  
PWMA, B and C registers  
The “PWMA, PWMB and PWMC” registers are used to select the type 1-O or type 1-E.  
PWMZ=0 (Z=A, B and C): Type 1-O  
PWMZ=1 (Z=A, B and C): Type 1-E  
PWM type1 (PWMS=”0”)  
Odd line  
Even line  
“H”  
CL  
“L”  
VLCD  
Type-O  
Type-E  
V2  
VLCD  
V2  
SEG  
PWM type2 (PWMS=”1”)  
“H”  
CL  
“L”  
VLCD  
V2  
SEG  
- 88 -  
NJU6824  
(33) The relationship between Common driver and row address  
The row address assignment for the common driver can be programmed by the “SHIF” register in the  
“Display control (1), and “Duty cycle ratio”, “Initial display line” and “Initial COM line” instructions.  
When initial display line is “0”  
The relation between common drivers and row address of DDRAM (MY) is changing by the “Duty  
cycle ratio” and “Initial COM line” instructions. If the shift bit is “0”, the order of common scanning is  
normal and if it is “1”, the common scanning order is inversed. When LA0 to LA6 of initial display line  
setting is “0”, the “MY” corresponding to the Initial COM line is also “0”. And “MY” is increasing.  
When initial display line is not “0”  
The relation between common drivers and row address of DDRAM (MY) is changing by the “Duty  
cycle ratio” and “Initial COM line” instructions. If the shift bit is “0”, the order of common scanning is  
normal and if it is “1”, the common scanning order is inversed. When LA0 to LA6 of initial display line  
setting is not “0”, the “MY” corresponding to the Initial COM line is biased by the setting value. During  
the display, MY” is increasing up to “127”. When “MY” over than “127”, its back to “0”. And “MY” is  
increasing from 0 continuously.  
The following are Examples of setting the start-line 0 or 5 at 1/129, 1/128, or 1/17 duty.  
- 89 -  
NJU6824  
(33-1)Initial display line “0”, 1/129 duty cycle (Common forward scan)  
SHIFT=”0”(Common forward scan), DS3, 2, , 0=”0000”, LA7….LA0=”00000000”(Initial display line 0)  
1
SC3  
SC2  
SC1  
SC0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
48  
1100  
40  
1101  
32  
1110  
24  
1111  
16  
COM0  
0
124  
120  
112  
104  
96  
88  
80  
72  
64  
56  
COM1  
COM2  
COM3  
COM4  
127  
0
COM5  
COM6  
COM7  
COM8  
127  
0
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COM80  
COM81  
COM82  
COM83  
COM84  
COM85  
COM86  
COM87  
COM88  
COM89  
COM90  
COM91  
COM92  
COM93  
COM94  
COM95  
COM96  
:
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
COM103  
COM104  
:
127  
0
COM111  
COM112  
:
127  
0
COM125  
COM126  
COM127  
(129th COM period) *1  
127  
127  
123  
127  
119  
127  
111  
103  
127  
95  
87  
79  
71  
63  
55  
47  
39  
31  
23  
15  
127  
127  
127  
127  
127  
127  
127  
127  
127  
127  
127  
127  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
*1 : 129th COM period is not selected.  
- 90 -  
NJU6824  
(33-2)Initial display line “0”, 1/17 duty cycle (Common forward scan)  
SHIFT=”0”(Common forward scan), DS3, 2, , 0=”1110”, LA7….LA0=”00000000”(Initial display line 0)  
1
SC3  
SC2  
SC1  
SC0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COM80  
COM81  
COM82  
COM83  
COM84  
COM85  
COM86  
COM87  
COM88  
:
0
0
0
15  
0
15  
15  
0
15  
0
15  
0
15  
0
15  
0
15  
0
15  
0
15  
0
15  
0
COM95  
COM96  
:
15  
0
COM103  
COM104  
:
15  
0
COM111  
COM112  
:
15  
0
COM119  
:
COM127  
(17th COM period) *1  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
*1 : 17th COM period is not selected.  
- 91 -  
NJU6824  
(33-3)Initial display line “0”, 1/129 duty cycle (Common backward scan)  
SHIFT=”1”(Common backward scan), DS3, 2, , 0=”0000”, LA7….LA0=”00000000”(Initial display line 0)  
1
SC3  
SC2  
SC1  
SC0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
47  
1100  
39  
1101  
31  
1110  
23  
1111  
15  
COM0  
127  
123  
119  
111  
103  
95  
87  
79  
71  
63  
55  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
:
COM15  
COM16  
:
0
127  
COM23  
COM24  
:
0
127  
COM31  
COM32  
:
0
127  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COM80  
COM81  
COM82  
COM83  
COM84  
COM85  
COM86  
COM87  
COM88  
COM89  
COM90  
COM91  
COM92  
COM93  
COM94  
COM95  
COM96  
COM97  
COM98  
COM99  
COM100  
COM101  
COM102  
COM103  
COM104  
COM105  
COM106  
COM107  
COM108  
COM109  
COM110  
COM111  
COM112  
COM113  
COM114  
COM115  
COM116  
COM117  
COM118  
COM119  
COM120  
COM121  
COM122  
COM123  
COM124  
COM125  
COM126  
COM127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
124  
127  
120  
127  
112  
127  
104  
127  
96  
88  
80  
72  
64  
56  
48  
40  
32  
24  
16  
(129th COM period) *1  
127  
127  
127  
127  
127  
127  
127  
127  
127  
127  
127  
127  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
*1 : 129th COM period is not selected.  
- 92 -  
NJU6824  
(33-4)Initial display line “5”, 1/129 duty cycle (Common forward scan)  
SHIFT=”0”(Common forward scan), DS3, 2, , 0=”0000”, LA7….LA0=”00000101”(Initial display line 5)  
1
SC3  
SC2  
SC1  
SC0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
53  
1100  
45  
1101  
37  
1110  
29  
1111  
21  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
:
5
1
125  
126  
127  
0
117  
109  
101  
93  
85  
77  
69  
61  
5
5
127  
0
5
127  
0
5
127  
0
5
127  
0
5
127  
0
5
127  
0
5
127  
0
5
127  
0
5
127  
0
COM80  
COM81  
COM82  
COM83  
:
5
127  
0
COM88  
COM89  
COM90  
COM91  
:
5
127  
0
COM96  
COM97  
COM98  
COM99  
:
5
127  
0
COM104  
COM105  
COM106  
COM107  
:
5
127  
0
COM112  
:
5
COM122  
COM123  
COM124  
COM125  
COM126  
COM127  
127  
0
:
127  
0
4
124  
127  
116  
127  
108  
127  
100  
127  
92  
84  
76  
68  
60  
52  
44  
38  
28  
20  
(129th COM period) *1  
127  
127  
127  
127  
127  
127  
127  
127  
127  
127  
127  
127  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
*1 : 129th COM period is not selected.  
- 93 -  
NJU6824  
(33-5)Initial display line “0”, 1/128 duty cycle (Common forward scan, DSE=”1”)  
SHIFT=”0”(Common forward scan), DS3, 2, , 0=”0000”, LA7….LA0=”00000000”(Initial display line 0) DSE=”1”  
1
SC3  
SC2  
SC1  
SC0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
48  
1100  
40  
1101  
32  
1110  
24  
1111  
16  
COM0  
0
124  
120  
112  
104  
96  
88  
80  
72  
64  
56  
COM1  
COM2  
COM3  
COM4  
127  
0
COM5  
COM6  
COM7  
COM8  
127  
0
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COM80  
COM81  
COM82  
COM83  
COM84  
COM85  
COM86  
COM87  
COM88  
COM89  
COM90  
COM91  
COM92  
COM93  
COM94  
COM95  
COM96  
:
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
COM103  
COM104  
:
127  
0
COM111  
COM112  
:
127  
0
COM125  
COM126  
COM127  
127  
123  
119  
111  
103  
95  
87  
79  
71  
63  
55  
47  
39  
31  
23  
15  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
- 94 -  
NJU6824  
ꢀꢀ ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
Supply Voltage (1)  
Supply Voltage (2)  
Supply Voltage (3)  
Supply Voltage (4)  
Supply Voltage (5)  
Supply Voltage (6)  
Input Voltage  
SYMBOL  
VDD  
VEE  
VOUT  
VREG  
VLCD  
V1, V2, V3, V4  
VI  
CONDITION  
TERMINAL  
VDD  
RATING  
-0.3 to +4.0  
-0.3 to +4.0  
UNIT  
V
V
V
V
V
V
V
°C  
VEE  
VOUT  
VREG  
VLCD  
-0.3 to +20.0  
-0.3 to +20.0  
-0.3 to +20.0  
-0.3 to VLCD + 0.3  
-0.3 to VDD + 0.3  
-45 to +125  
VSS=0V  
Ta = +25°C  
V1, V2, V3, V4  
*1  
Storage Temperature  
Tstg  
Note 1) D0 to D15, CS, RS, RD, WR, OSC1, RES terminals.  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
VDD1  
VDD2  
VEE  
VLCD  
VOUT  
VREG  
VREF  
TERMINAL  
VDD  
MIN  
1.7  
2.4  
2.4  
5
TYP  
MAX  
3.3  
3.3  
3.3  
18.0  
18.0  
UNIT  
V
V
V
V
V
V
V
NOTE  
*1  
*2  
*3  
*4  
Supply Voltage  
VEE  
VLCD  
VOUT  
VREG  
VREF  
Operating Voltage  
V
OUT × 0.9  
3.3  
2.1  
-30  
*5  
Operating  
Temperature  
Topr  
85  
°C  
Note1) Applies to the condition when the reference voltage generator is not used.  
Note2) Applies to the condition when the reference voltage generator is used.  
Note3) Applies to the condition when the voltage booster is used.  
Note4) The following relationship among the supply voltages must be maintained.  
VSS<V4<V3<V2<V1<VLCD<VOUT  
Note5) The relationship: VREF<VEE must be maintained.  
- 95 -  
NJU6824  
ꢀꢀ DC CHARACTERISTICS 1  
VSS = 0V, VDD = +1.7 to +3.3V, Ta = -30 to +85°C  
SYM  
PARAMETER  
BOL  
CONDITION  
MIN  
TYP  
MAX  
UNIT NOTE  
VIH  
VIL  
High level input voltage  
Low level input voltage  
High level output voltage  
Low level output voltage  
High level output voltage  
Low level output voltage  
Input leakage current  
0.8 VDD  
0
VDD - 0.4  
VDD  
0.2VDD  
V
V
V
V
V
V
µA  
µA  
*1  
*1  
*2  
*2  
*3  
*3  
*4  
*5  
VOH1  
VOL1  
VOH2  
VOL2  
ILI  
IOH = -0.4mA  
IOL = 0.4mA  
IOH = -0.1mA  
IOL = 0.1mA  
VI = VSS or VDD  
VI = VSS or VDD  
0.4  
VDD - 0.4  
0.4  
10  
10  
2
-10  
-10  
ILO  
Output leakage current  
VLCD = 10V  
VLCD = 6V  
1
2
RON1  
Driver ON-resistance  
Stand-by current  
*6  
|VON| = 0.5V  
kΩ  
µA  
4
ISTB  
VDD = 3V  
15  
*7  
CS=VDD, Ta=25°C  
fOSC1  
fOSC2  
fOSC3  
fr1  
490  
110  
15.5  
600  
135.5  
19.4  
575  
135  
19.6  
710  
160  
22.9  
*8  
*9  
*10  
VDD = 3V  
Ta = 25°C  
Internal oscillation  
Frequency  
kHz  
Rf=12kΩ  
Rf=62kΩ  
Rf=470kΩ  
N-time booster (N=2 to 6)  
RL = 500k(VOUT - VSS  
VDD = 3V, 6-time booster  
Whole ON pattern  
VDD = 3V, 6-time booster  
Checker pattern  
VDD = 3V, 5-time booster  
Whole ON pattern  
VDD = 3V, 5-time booster  
Checker pattern  
VDD = 3V, 4-time booster  
Whole ON pattern  
VDD = 3V, 4-time booster  
Checker pattern  
External oscillation  
Frequency  
fr2  
kHz  
V
*11  
*12  
fr3  
Voltage converter  
output voltage  
(N x VEE  
x 0.95  
)
VOUT  
IDD1  
IDD2  
IDD3  
IDD4  
IDD5  
IDD6  
VBA  
)
Supply current (1)  
Supply current (2)  
Supply current (3)  
Supply current (4)  
Supply current (5)  
Supply current (6)  
VBA Operating voltage  
760  
930  
1140  
1400  
780  
520  
*13  
µA  
650  
980  
360  
540  
450  
680  
(0.9 VEE  
x 0.98  
)
(0.9 VEE  
x 1.02  
)
VEE = 2.4 to 3.3V  
0.9 VEE  
V
V
*14  
*15  
VEE = 2.4 to 3.3V  
(VREF x N)  
x 0.97  
(VREF x N)  
x 1.03  
VREG  
(VREF x N)  
VREG Operating voltage  
V
REF = 0.9 x VEE  
N-time booster (N=2 to 6)  
V2  
-100  
-100  
-30  
-30  
-30  
0
0
0
0
0
+100  
+100  
+30  
+30  
+30  
V3  
Output Voltage  
VD12  
VD34  
VD24  
mV  
*16  
- 96 -  
NJU6824  
ꢀꢀ CLOCK and FRAME FREQUENCY  
Display duty cycle ratio (1/D) <DSE=0>  
1/73 to 1/41 1/33 to 1/25  
PARAMETER SYMBOL  
NOTE  
1/17  
Display mode  
1/129 to 1/81  
fOSC / (62xD)  
16 Gradation mode  
fOSC / (62xDx2) fOSC / (62xDx4) fOSC / (62xDx8)  
fOSC / (14xDx2) fOSC / (14xDx4) fOSC / (14xDx8)  
Internal  
fOSC  
Simplified  
8 gradation mode  
f
OSC / (14xD)  
OSC / (2xD)  
fCK / (62xD)  
CK / (14xD)  
CK / (2xD)  
clock  
B&W mode  
f
fOSC / (2xDx2)  
fCK / (62xDx2)  
fCK / (14xDx2)  
fCK / (2xDx2)  
fOSC / (2xDx4)  
fCK / (62xDx4)  
fCK / (14xDx4)  
fCK / (2xDx4)  
fOSC / (2xDx8)  
fCK / (62xDx8)  
fCK / (14xDx8)  
fCK / (2xDx8)  
FLM  
16 Gradation mode  
External  
fCK  
Simplified  
8 gradation mode  
f
clock  
B&W mode  
f
- 97 -  
NJU6824  
APPLIED TERMINALS and CONDITIONS  
Note 1) D0-D15, CS, RS, RD, WR, P/S, SEL68, RES  
Note 2) D0-D15  
Note 3) CL, FLM, FR, CLK  
Note 4) CS, RS, SEL68, RD, WR, P/S, RES, OSC1  
Note 5) D0-D15 in the high impedance  
Note 6) - SEGA0-SEGA127, SEGB0-SEGB127, SEGC0-SEGC127, COM0-COM127 and  
SEGSA0-SEGSA1, SEGSB0-SEGSB1, SEGSC0-SEGSC1  
Defines the resistance between each of the SEG and COM terminals and each of the power supply  
terminals (VLCD, V1, V2, V3 and V4) in the 0.5V deference and 1/9 LCD bias ratio.  
Note 7) VDD  
The oscillator is halted, CS=”1” (disabled), No-load onto the segment and common drivers  
Note 8) OSC  
Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the variable gradation mode.  
Note 9) OSC  
Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the fixed gradation mode.  
Note 10) OSC  
Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the Black & White mode.  
Note 11) VDD=3V, Ta=25°C  
Note 12) VOUT  
Applies to the condition when the internal voltage booster (N=2-6), internal oscillator and internal  
power circuits are used. VEE=2.4V to 3.3V, EVR= (1,1,1,1,1,1,1)  
1/5 to 1/12 LCD bias, 1/129 duty cycle, No-load on segment and common drivers  
RL=500Kohm between VOUT and VSS, CA1=CA2=1.0uF, CA3=0.1uF, DCON=”1”, AMPON=”1”  
Note 13) VDD  
Applies to the condition when using the internal oscillator and internal power circuits without any  
access from MPU. EVR= (1,1,1,1,1,1,1), All pixels turned-on or checkerboard display in gradation  
mode.  
No-load onto the segment and common drivers  
VDD=VEE, VREF=0.9VEE, CA1=CA2=1.0uF, CA3=0.1uF, DCON=”1”, AMPON=”1”, NLIN=”0”  
1/129 Duty cycle, Ta=25°C  
Note 14) VBA  
Applies to the condition that VBA=VREF and voltage booster N= 1.  
When DCON=”0”, VOUT=13.5V input.  
Note 15) VREG  
VEE=2.4V to 3.3V, VREF=0.9VEE, VOUT=18V, 1/5 to 1/12 LCD bias ratio, 1/129 duty cycle,  
EVR=(1,1,1,1,1,1,1), Checkerboard display, No-load onto the segment and common drivers,  
voltage booster N=2 to 6, V1A1, V1A2, V4A1, V4A2=”0”.  
CA1=CA2=1.0uF, CA3=0.1uF, DCON=”0”, AMPON=”1”, NLIN=”0”.  
Note 16) VLCD, V1, V2, V3, V4  
VEE=3.0V, VREF=0.9VEE, VOUT=15V, 1/5 to 1/12 LCD Bias, EVR= (1,1,1,1,1,1,1), Display OFF, No-  
load onto the segment and common drivers, voltage booster N=5, V1A1, V1A2, V4A1, V4A2=”0”.  
CA1=CA2=1.0uF, CA3=0.1uF, DCON=”0”, AMPON=”1”  
VLCD  
(1)  
(2)  
VD12: (1)-(2)  
VD34: (3)-(4)  
VD24: (2)-(4)  
V1  
V2  
V3  
V4  
VSS  
(3)  
(4)  
- 98 -  
NJU6824  
ꢀꢀ AC CHARACTERISTICS  
Write operation (80-type MPU)  
tAS8  
tAH8  
CS  
RS  
WR  
tWRLW8  
tWRHW8  
tDS8  
tDH8  
D0 to D15  
tCYC8  
(VDD=2.5 to 3.3V, Ta=-30 to +85  
°
C)  
C)  
C)  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CS  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC8  
tWRLW8  
tWRHW8  
90  
35  
35  
ns  
ns  
ns  
WR  
Data setup time  
Data hold time  
tDS8  
tDH8  
30  
5
ns  
ns  
D0 to D15  
(VDD=2.2 to 2.5V, Ta=-30 to +85  
°
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CS  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC8  
tWRLW8  
tWRHW8  
160  
70  
70  
ns  
ns  
ns  
WR  
Data setup time  
Data hold time  
tDS8  
tDH8  
40  
5
ns  
ns  
D0 to D15  
(VDD=1.7 to 2.2V, Ta=-30 to +85  
°
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CS  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC8  
tWRLW8  
tWRHW8  
180  
80  
80  
ns  
ns  
ns  
WR  
Data setup time  
Data hold time  
tDS8  
tDH8  
70  
10  
ns  
ns  
D0 to D15  
Note) Each timing is specified based on 20% and 80% of VDD  
.
- 99 -  
NJU6824  
Read operation (80-type MPU)  
tAH8  
tAS8  
CS  
RS  
tWRLR8  
RD  
tWRHR8  
tRDH8  
D0 to D15  
tRDD8  
tCYC8  
(VDD=2.5 to 3.3V, Ta=-30 to +85  
°
C)  
C)  
C)  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CS  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC8  
tWRLR8  
tWRHR8  
180  
80  
80  
ns  
ns  
ns  
RD  
Read Data setup time  
Read Data hold time  
TRDD8  
60  
ns  
ns  
CL=15pF  
TRDH8  
D0 to D15  
0
(VDD=2.2 to 2.5V, Ta=-30 to +85  
°
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CS  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC8  
tWRLR8  
tWRHR8  
180  
80  
80  
ns  
ns  
ns  
RD  
Read Data setup time  
Read Data hold time  
TRDD8  
60  
ns  
ns  
CL=15pF  
TRDH8  
D0 to D15  
0
(VDD=1.7 to 2.2V, Ta=-30 to +85  
°
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH8  
tAS8  
0
0
ns  
ns  
CS  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC8  
tWRLR8  
tWRHR8  
250  
120  
120  
ns  
ns  
ns  
RD  
Read Data setup time  
Read Data hold time  
tRDD8  
110  
ns  
ns  
CL=15pF  
tRDH8  
D0 to D15  
0
Note) Each timing is specified based on 20% and 80% of VDD  
.
- 100 -  
NJU6824  
Write operation (68-type MPU)  
tAS6  
tAH6  
CS  
RS  
R/W  
(WR)  
tELW6  
tEHW6  
E
(RD)  
tDS6  
tDH6  
D0 to D15  
tCYC6  
(VDD=2.5 to 3.3V, Ta=-30 to +85  
°C)  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH6  
tAS6  
0
0
ns  
ns  
CS  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC6  
tELW6  
tEHW6  
90  
35  
35  
ns  
ns  
ns  
E
Data setup time  
Data hold time  
tDS6  
tDH6  
40  
5
ns  
ns  
D0 to D15  
(VDD=2.2 to 2.5V, Ta=-30 to +85  
°C)  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH6  
tAS6  
0
0
ns  
ns  
CS  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC6  
tELW6  
tEHW6  
160  
70  
70  
ns  
ns  
ns  
E
Data setup time  
Data hold time  
tDS6  
tDH6  
50  
5
ns  
ns  
D0 to D15  
(VDD=1.7 to 2.2V, Ta=-30 to +85  
°C)  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH6  
tAS6  
0
0
ns  
ns  
CS  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC6  
tELW6  
tEHW6  
180  
80  
80  
ns  
ns  
ns  
E
Data setup time  
Data hold time  
tDS6  
tDH6  
70  
10  
ns  
ns  
D0 to D15  
Note) Each timing is specified based on 20% and 80% of VDD  
.
- 101  
NJU6824  
Read operation (68-type MPU)  
tAS6  
tAH6  
CS  
RS  
R/W  
(WR)  
tELR6  
tEHR6  
E
(RD)  
tRDH6  
D0 to D15  
tRDD6  
tCYC6  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
tAH6  
CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
0
0
ns  
ns  
CS  
RS  
tAS6  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC6  
tELR6  
tEHR6  
180  
80  
80  
ns  
ns  
ns  
E
Read Data setup time  
Read Data hold time  
tRDD6  
tRDH6  
ns  
ns  
70  
CL=15pF  
D0 to D15  
0
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH6  
tAS6  
0
0
ns  
ns  
CS  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC6  
tELR6  
tEHR6  
180  
80  
80  
ns  
ns  
ns  
E
Read Data setup time  
Read Data hold time  
tRDD6  
tRDH6  
ns  
ns  
70  
CL=15pF  
D0 to D15  
0
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
Address setup time  
tAH6  
tAS6  
0
0
ns  
ns  
CS  
RS  
System cycle time  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tCYC6  
tELR6  
tEHR6  
250  
120  
120  
ns  
ns  
ns  
E
Read Data setup time  
Read Data hold time  
tRDD6  
tRDH6  
ns  
ns  
110  
CL=15pF  
D0 to D15  
0
Note) Each timing is specified based on 20% and 80% of VDD  
.
- 102 -  
NJU6824  
Serial interface  
tCSH  
tCSS  
CS  
RS  
tASS  
tAHS  
tSLW  
tSHW  
SCL  
tCYCS  
tDSS  
tDHS  
SDA  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
Serial clock cycle  
SCL ”H” level pulse width  
SCL ”L” level pulse width  
Address setup time  
Address hold time  
Data setup time  
SYMBOL CONDITION  
MIN.  
MAX.  
TERMINAL  
tCYCS  
tSHW  
tSLW  
tASS  
tAHS  
tDSS  
tDHS  
50  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL  
RS  
SDA  
Data hold time  
CS – SCL time  
CS hold time  
tCSS  
tCSH  
20  
20  
ns  
ns  
CS  
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
TERMINAL  
Serial clock cycle  
tCYCS  
tSHW  
tSLW  
tASS  
tAHS  
tDSS  
tDHS  
50  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL ”H” level pulse width  
SCL ”L” level pulse width  
Address setup time  
Address hold time  
Data setup time  
SCL  
RS  
SDA  
Data hold time  
CS – SCL time  
CS hold time  
tCSS  
tCSH  
20  
20  
ns  
ns  
CS  
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
TERMINAL  
Serial clock cycle  
tCYCS  
tSHW  
tSLW  
tASS  
tAHS  
tDSS  
tDHS  
80  
35  
35  
35  
35  
35  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL ”H” level pulse width  
SCL ”L” level pulse width  
Address setup time  
Address hold time  
Data setup time  
SCL  
RS  
SDA  
Data hold time  
CS – SCL time  
CS hold time  
tCSS  
tCSH  
35  
35  
ns  
ns  
CS  
Note) Each timing is specified based on 20% and 80% of VDD  
.
- 103  
NJU6824  
Display control timing  
CLK  
tDCL  
CL  
tDFLM  
tDFLM  
FLM  
tFR  
FR  
Output timing  
(VDD=2.4 to 3.3V, Ta=-30 to +85°C)  
PARAMETER  
FLM delay time  
FR delay time  
SYMBOL CONDITION  
tDFLM CL=15pF  
tFR  
MIN.  
MAX.  
500  
500  
UNIT  
ns  
ns  
TERMINAL  
0
0
0
FLM  
FR  
CL  
CL delay time  
tDCL  
200  
ns  
Output timing  
(VDD=1.7 to 2.4V, Ta=-30 to +85  
°C)  
PARAMETER  
FLM delay time  
FR delay time  
SYMBOL CONDITION  
tDFLM CL=15pF  
tFR  
MIN.  
MAX.  
1000  
1000  
200  
UNIT  
ns  
ns  
TERMINAL  
0
0
0
FLM  
FR  
CL  
CL delay time  
tDCL  
ns  
Note) Each timing is specified based on 20% and 80% of VDD  
.
- 104 -  
NJU6824  
Input clock timing  
tCKLW  
tCKHW  
OSC1  
(VDD=1.7 to 3.3V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
1.02  
1.02  
4.55  
4.55  
31.4  
31.4  
TERMINAL  
OSC1  
1
OSC1 “H” level pulse width (1)  
OSC1 “L” level pulse width (1)  
OSC1 “H” level pulse width (2)  
OSC1 “L” level pulse width (2)  
OSC1 “H” level pulse width (3)  
OSC1 “L” level pulse width (3)  
tCKHW1  
tCKLW1  
tCKHW2  
tCKLW2  
tCKHW3  
tCKLW3  
0.70  
0.70  
3.13  
3.13  
21.8  
21.8  
µs  
µs  
µs  
µs  
µs  
µs  
OSC1  
2
OSC1  
3
Note) Each timing is specified based on 20% and 80% of VDD  
.
Note 1) Applied in the variable gradation mode MON=”0”,PWM=”0”  
Note 2) Applied in the fixed gradation mode MON=”0”,PWM=”1”  
Note 3) Applied in the B&W mode MON=”1”  
- 105  
NJU6824  
Reset input timing  
tRW  
RES  
tR  
Internal circuit  
status  
During reset  
End of reset  
(VDD=2.4 to 3.3V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
Reset time  
SYMBOL CONDITION  
MIN.  
10.0  
MAX.  
Terminal  
tR  
1.0  
µ
s
s
RES  
RES “L” level pulse width  
tRW  
µ
(VDD=1.7 to 2.4V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
Reset time  
SYMBOL CONDITION  
MIN.  
10.0  
MAX.  
Terminal  
tR  
1.5  
µ
s
s
RES  
RES “L” level pulse width  
tRW  
µ
Note) Each timing is specified based on 20% and 80% of VDD  
.
- 106 -  
NJU6824  
Typical characteristic  
PARAMETER  
Basic delay time of gate  
SYMBOL  
MIN  
TYP  
10  
MAX  
UNIT  
ns  
Ta=+25  
°
C, VSS=0V, VDD=3.0V  
Input output terminal type  
(a) Input circuit  
VDD  
Terminals:  
CS, RS, RD, WR, SEL68,  
P/S, RES  
I
Input signal  
VSS(0V)  
(b) Output circuit  
Terminals:  
FLM, CL, FR, CLK  
VDD  
Output control signal  
Output signal  
O
VSS(0V)  
(c) Input/Output circuit  
VDD  
Terminals:  
D0 to D15  
I/O  
Input signal  
VSS(0V)  
VSS(0V)  
Input control signal  
VDD  
Output control signal  
Output signal  
VSS(0V)  
- 107  
NJU6824  
(d) Display output circuit  
VLCD  
VLCD  
VLCD  
V1/V2  
Output control  
signal 1  
Output control signal 2  
Output control signal 4  
O
Output control  
signal 3  
VSS(0V)  
V3/V4  
VSS(0V)  
VSS(0V)  
Terminals:  
SEGA0 to SEGA127  
SEGB0 to SEGB127  
SEGC0 to SEGC127  
COM0 to COM127  
SEGSA0 to SEGSA1  
SEGSB0 to SEGSB1  
SEGSC0 to SEGSC1  
- 108 -  
NJU6824  
ꢀꢀ APPLICATION CIRCUIT EXAMPLES  
(1) MPU Connections  
80-type MPU interface  
1.7V to 3.3V  
VCC  
VDD  
A0  
RS  
CS  
A1 to A7  
Decoder  
8
7
(80-type MPU)  
IORQ  
D0 to D7  
D0 to D7  
RD  
RD  
WR  
WR  
RES  
GND  
RES  
VSS  
RESET  
68-type MPU interface  
1.7V to 3.3V  
VCC  
VDD  
A0  
RS  
CS  
A1 to A15  
Decoder  
8
15  
(68-type MPU) VMA  
D0 to D7  
E
D0 to D7  
RD(E)  
R/W  
WR(R/W)  
RES  
GND  
RES  
VSS  
RESET  
Serial interface  
1.7V to 3.3V  
VCC  
VDD  
RS  
A0  
A1 to A7  
Decoder  
7
CS  
(MPU)  
PORT1  
PORT2  
SDA  
SCL  
RES  
RES  
VSS  
GND  
RESET  
- 109  
NJU6824  
[CAUTION]  
The specifications on this databook are only  
given for information , without any guarantee  
as regards either mistakes or omissions. The  
application circuits in this databook are  
described only to show representative usages  
of the product and not intended for the  
guarantee or permission of any right including  
the industrial rights.  
- 110 -  

相关型号:

NJU6824H

Liquid Crystal Driver, 518-Segment, CMOS, TCP
NJRC

NJU6825

162-common x 128-RGB segment 4096-color STN Bitmap LCD Driver
ETC

NJU6825CJ

Liquid Crystal Driver, 546-Segment, CMOS, DIE-786
NJRC

NJU6825CJ-Z

Liquid Crystal Driver, 546-Segment, CMOS, BUMP, DIE-786
NJRC

NJU6825H

Liquid Crystal Driver, 546-Segment, CMOS, TCP
NJRC

NJU6854

132COMMON x 132RGB LCD DRIVER FOR 65,536 - COLOR STN DISPLAY
NJRC

NJU6854CJ

暂无描述
NJRC

NJU7001

LOW VOLTAGE C-MOS OPERATIONAL AMPLIFIER
NJRC

NJU7001/02/04

Low Voltage C-MOS Operational Amplifier
NJRC

NJU7001D

LOW VOLTAGE C-MOS OPERATIONAL AMPLIFIER
NJRC

NJU7001M

LOW VOLTAGE C-MOS OPERATIONAL AMPLIFIER
NJRC

NJU7001M(T2)

Operational Amplifier, 1 Func, 10000uV Offset-Max, CMOS, PDSO8, DMP-8
NJRC