A2T09VD250NR1 [NXP]

N--Channel Enhancement--Mode Lateral MOSFET;
A2T09VD250NR1
型号: A2T09VD250NR1
厂家: NXP    NXP
描述:

N--Channel Enhancement--Mode Lateral MOSFET

文件: 总19页 (文件大小:631K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: A2T09VD250N  
Rev. 0, 8/2015  
Freescale Semiconductor  
Technical Data  
RF Power LDMOS Transistor  
N--Channel Enhancement--Mode Lateral MOSFET  
This 65 W RF power LDMOS transistor is designed for cellular base station  
applications covering the frequency range of 716 to 960 MHz.  
A2T09VD250NR1  
900 MHz  
Typical Single--Carrier W--CDMA Performance: VDD = 48 Vdc,  
IDQ(A+B) = 1000 mA, Pout = 65 W Avg., Input Signal PAR = 9.9 dB @ 0.01%  
Probability on CCDF.  
716–960 MHz, 65 W AVG., 48 V  
AIRFAST RF POWER LDMOS  
TRANSISTOR  
G
Output PAR  
(dB)  
ACPR  
(dBc)  
IRL  
(dB)  
ps  
D
Frequency  
920 MHz  
940 MHz  
960 MHz  
(dB)  
22.5  
22.7  
22.4  
(%)  
34.8  
35.4  
35.4  
7.5  
7.4  
7.2  
–34.4  
–34.2  
–34.3  
–18  
–19  
–12  
800 MHz  
Typical Single--Carrier W--CDMA Performance: VDD = 48 Vdc,  
DQ(A+B) = 1000 mA, Pout = 65 W Avg., Input Signal PAR = 9.9 dB @ 0.01%  
TO--270WB--6A  
PLASTIC  
I
Probability on CCDF.  
G
Output PAR  
(dB)  
ACPR  
(dBc)  
IRL  
(dB)  
ps  
D
Frequency  
790 MHz  
806 MHz  
821 MHz  
(dB)  
23.0  
23.1  
22.8  
(%)  
37.3  
37.8  
37.0  
RF /V  
1
2
3
6
5
4
RF /V  
outA DSA  
7.4  
7.2  
7.0  
–33.0  
–33.3  
–33.8  
–15  
–19  
–13  
inA GSA  
GND  
RF /V  
GND  
RF /V  
outB DSB  
inB GSB  
Features  
Greater Negative Gate--Source Voltage Range for Improved Class C  
Operation  
(Top View)  
Note: Exposed backside of the package is  
the source terminal for the transistors.  
Designed for Digital Predistortion Error Correction Systems  
Optimized for Doherty Applications  
Figure 1. Pin Connections  
Freescale Semiconductor, Inc., 2015. All rights reserved.  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Vdc  
Vdc  
Vdc  
C  
Drain--Source Voltage  
V
–0.5, +105  
–6.0, +10  
55, +0  
DSS  
Gate--Source Voltage  
V
GS  
DD  
Operating Voltage  
V
Storage Temperature Range  
Case Operating Temperature Range  
Operating Junction Temperature Range  
T
stg  
–65 to +150  
–40 to +150  
–40 to +225  
T
C
C  
(1,2)  
T
J
C  
Table 2. Thermal Characteristics  
(2,3)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
R
0.56  
C/W  
JC  
Case Temperature 82C, 65 W CW, 48 Vdc, I  
= 1000 mA, 940 MHz  
DQ(A+B)  
Table 3. ESD Protection Characteristics  
Test Methodology  
Human Body Model (per JESD22--A114)  
Class  
2
A
Machine Model (per EIA/JESD22--A115)  
Charge Device Model (per JESD22--C101)  
IV  
Table 4. Moisture Sensitivity Level  
Test Methodology  
Rating  
Package Peak Temperature  
Unit  
Per JESD22--A113, IPC/JEDEC J--STD--020  
3
260  
C  
Table 5. Electrical Characteristics (T = 25C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(4)  
Off Characteristics  
Zero Gate Voltage Drain Leakage Current  
I
I
10  
1
Adc  
Adc  
Adc  
DSS  
DSS  
GSS  
(V = 105 Vdc, V = 0 Vdc)  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 55 Vdc, V = 0 Vdc)  
DS  
GS  
Gate--Source Leakage Current  
I
1
(V = 5 Vdc, V = 0 Vdc)  
GS  
DS  
On Characteristics  
(4)  
Gate Threshold Voltage  
(V = 10 Vdc, I = 96 Adc)  
V
V
1.3  
1.8  
2.5  
2.3  
Vdc  
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
GG(Q)  
DS(on)  
DS  
D
(5)  
Gate Quiescent Voltage  
(V = 48 Vdc, I  
= 1000 mAdc)  
DQ(A+B)  
DS  
(5)  
Fixture Gate Quiescent Voltage  
V
4.0  
0.1  
5.0  
6.0  
0.5  
(V = 48 Vdc, I  
DD  
= 1000 mAdc, Measured in Functional Test)  
DQ(A+B)  
(4)  
Drain--Source On--Voltage  
V
0.21  
(V = 10 Vdc, I = 0.96 Adc)  
GS  
D
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.freescale.com/rf/calculators.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955.  
4. Each side of device measured separately.  
5. Side A and Side B are tied together for this measurement.  
A2T09VD250NR1  
RF Device Data  
Freescale Semiconductor, Inc.  
2
Table 5. Electrical Characteristics (T = 25C unless otherwise noted) (continued)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(1)  
Functional Tests (In Freescale Test Fixture, 50 ohm system) V = 48 Vdc, I  
= 1000 mA, P = 65 W Avg., f = 920 MHz,  
DD  
DQ(A+B)  
out  
Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz  
Channel Bandwidth @ 5 MHz Offset.  
Power Gain  
G
21.0  
31.0  
6.8  
22.5  
34.8  
7.5  
24.0  
dB  
%
ps  
D
Drain Efficiency  
Output Peak--to--Average Ratio @ 0.01% Probability on CCDF  
Adjacent Channel Power Ratio  
Input Return Loss  
PAR  
ACPR  
IRL  
dB  
dBc  
dB  
–34.4  
–18  
–31.5  
–10  
Load Mismatch (In Freescale Test Fixture, 50 ohm system) I  
= 1000 mA, f = 940 MHz, 12 sec(on), 10% Duty Cycle  
DQ(A+B)  
VSWR 10:1 at 52 Vdc, 363 W Pulsed CW Output Power  
No Device Degradation  
(3 dB Input Overdrive from 308 W Pulsed CW Rated Power)  
Typical Performance (In Freescale Test Fixture, 50 ohm system) V = 48 Vdc, I  
= 1000 mA, 920–960 MHz Bandwidth  
DQ(A+B)  
DD  
P
P
@ 1 dB Compression Point, CW  
P1dB  
240  
326  
19  
W
W
out  
out  
(2)  
@ 3 dB Compression Point  
P3dB  
AM/PM  
(Maximum value measured at the P3dB compression point across  
the 920–960 MHz frequency range)  
VBW Resonance Point  
VBW  
90  
MHz  
res  
(IMD Third Order Intermodulation Inflection Point)  
Gain Flatness in 40 MHz Bandwidth @ P = 65 W Avg.  
G
0.3  
dB  
out  
F
Gain Variation over Temperature  
G  
0.013  
dB/C  
(–30C to +85C)  
Output Power Variation over Temperature  
P1dB  
0.007  
dB/C  
(–30C to +85C)  
Table 6. Ordering Information  
Device  
Tape and Reel Information  
Package  
A2T09VD250NR1  
R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel  
TO--270WB--6A  
1. Part internally input matched.  
2. P3dB = P  
+ 7.0 dB where P  
is the average output power measured using an unclipped W--CDMA single--carrier input signal where  
avg  
avg  
output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.  
A2T09VD250NR1  
RF Device Data  
Freescale Semiconductor, Inc.  
3
D69443  
A2T09VD250N  
Rev. 0  
V
GG  
R1  
V
C18  
DD  
C16  
R2  
R3  
C5  
C8  
C20  
C7  
C23*  
C3  
C4  
C15  
C13  
C10*  
C11*  
C1  
C14  
C12  
C22*  
C2  
C21  
C9  
C6  
R4  
R6  
C17  
C19  
R5  
*C10, C11, C22 and C23 are mounted vertically.  
Figure 2. A2T09VD250NR1 Test Circuit Component Layout  
Table 7. A2T09VD250NR1 Test Circuit Component Designations and Values  
Part  
Description  
3.3 pF Chip Capacitor  
Part Number  
Manufacturer  
ATC  
C1  
ATC800B3R3BT500XT  
ATC800B2R7BT500XT  
ATC800B4R3BT500XT  
ATC800B470JT500XT  
C3216X7R2A105M160AA  
ATC800B120JT500XT  
ATC800B5R1BT500XT  
ATC800B4R7BT500XT  
ATC800B5R6BT500XT  
C5750X7S2A106M230KB  
EEVFK2A221M  
C2  
2.7 pF Chip Capacitor  
4.3 pF Chip Capacitors  
47 pF Chip Capacitors  
1 F Chip Capacitors  
ATC  
C3, C4  
ATC  
C5, C6, C7, C15, C16, C17  
ATC  
C8, C9  
C10, C11  
C12  
TDK  
12 pF Chip Capacitors  
5.1 pF Chip Capacitor  
4.7 pF Chip Capacitor  
5.6 pF Chip Capacitor  
10 F Chip Capacitors  
220 F, 100 V Electrolytic Capacitors  
1.7 pF Chip Capacitor  
1 k, 1/4 W Chip Resistors  
10 , 1/4 W Chip Resistors  
ATC  
ATC  
C13  
ATC  
C14  
ATC  
C18, C19  
C20, C21  
C22, C23  
R1, R2, R5, R6  
R3, R4  
PCB  
TDK  
Panasonic  
ATC  
ATC800B1R7BT500XT  
WCR1206-1KF  
Welwyn  
Welwyn  
MTL  
WCR1206-10RF  
Rogers RO4350B, 0.020, = 3.66  
D69443  
r
A2T09VD250NR1  
RF Device Data  
Freescale Semiconductor, Inc.  
4
TYPICAL CHARACTERISTICS  
45  
40  
35  
30  
25  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
V
= 48 Vdc, P = 65 W (Avg.), I  
= 1000 mA  
DD  
out  
DQ(A+B)  
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth  
Input Signal PAR = 9.9 dB @ 0.01%  
D
Probability on CCDF  
5
–2  
–33  
–34  
–35  
G
PARC  
ps  
0
–2.2  
–2.4  
–2.6  
–2.8  
–3  
ACPR  
–5  
–10  
–15  
–20  
–36  
–37  
IRL  
–38  
980  
820  
840  
860  
880  
900  
920  
940  
960  
f, FREQUENCY (MHz)  
Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression  
(PARC) Broadband Performance @ Pout = 65 Watts Avg.  
–10  
V
= 48 Vdc, P = 130 W (PEP)  
out  
DD  
I
= 1000 mA, Two--Tone Measurements  
DQ(A+B)  
–20  
(f1 + f2)/2 = Center Frequency of 940 MHz  
IM3--U  
IM3--L  
30  
40  
IM5--U  
IM5--L  
IM7--U  
IM7--L  
–50  
60  
1
10  
TWO--TONE SPACING (MHz)  
100  
200  
Figure 4. Intermodulation Distortion Products  
versus Two--Tone Spacing  
23.5  
23  
1
0
70  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
V
= 48 Vdc, I  
= 1000 mA  
DD  
DQ(A+B)  
f = 940 MHz, Single--Carrier W--CDMA  
60  
50  
40  
30  
20  
10  
ACPR  
–1  
–2  
–3  
–4  
–5  
22.5  
22  
D
–2 dB = 54.5 W  
–1 dB = 38.3 W  
G
ps  
–3 dB = 72.7 W  
21.5  
21  
3.84 MHz Channel Bandwidth  
Input Signal PAR = 9.9 dB  
PARC  
@ 0.01% Probability on CCDF  
20.5  
20  
40  
60  
80  
100  
120  
P
, OUTPUT POWER (WATTS)  
out  
Figure 5. Output Peak--to--Average Ratio  
Compression (PARC) versus Output Power  
A2T09VD250NR1  
RF Device Data  
Freescale Semiconductor, Inc.  
5
TYPICAL CHARACTERISTICS  
60  
50  
40  
30  
20  
10  
0
26  
24  
22  
20  
18  
16  
14  
0
V
= 48 Vdc, I  
= 1000 mA, Single--Carrier W--CDMA  
DD  
DQ(A+B)  
3.84 MHz Channel Bandwidth, Input Signal PAR = 9.9 dB  
@ 0.01% Probability on CCDF  
–10  
–20  
–30  
–40  
–50  
–60  
D
G
ps  
940 MHz  
960 MHz  
920 MHz  
940 MHz  
960 MHz  
920 MHz  
ACPR  
100  
920 MHz  
940 MHz  
960 MHz  
10  
, OUTPUT POWER (WATTS) AVG.  
1
200  
P
out  
Figure 6. Single--Carrier W--CDMA Power Gain, Drain  
Efficiency and ACPR versus Output Power  
26  
24  
22  
20  
18  
16  
14  
5
0
Gain  
–5  
V
P
= 28 Vdc  
= 0 dBm  
DD  
in  
–10  
I
= 1000 mA  
DQ(A+B)  
–15  
–20  
–25  
IRL  
600  
700  
800  
900  
1000 1100 1200 1300 1400  
f, FREQUENCY (MHz)  
Figure 7. Broadband Frequency Response  
A2T09VD250NR1  
RF Device Data  
Freescale Semiconductor, Inc.  
6
Table 8. Single Side Load Pull Performance — Maximum Power Tuning  
V
= 48 Vdc, I = 500 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle  
DD  
DQ  
Max Output Power  
P1dB  
(1)  
Z
AM/PM  
()  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
61.2  
61.8  
60.3  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
920  
2.52 – j4.76  
2.88 – j5.34  
3.53 – j5.36  
2.19 + j4.75  
3.04 + j0.55  
2.93 + j0.37  
2.87 + j0.07  
21.4  
52.5  
178  
–14  
–14  
–12  
940  
960  
2.22 + j5.10  
2.36 + j5.64  
21.4  
21.3  
52.5  
52.4  
178  
174  
Max Output Power  
P3dB  
(2)  
Z
()  
AM/PM  
()  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
62.3  
62.2  
61.5  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
920  
940  
960  
2.52 – j4.76  
2.01 + j5.09  
3.37 + j0.34  
3.24 + j0.13  
3.19 – j0.10  
19.4  
53.2  
208  
–20  
–19  
–18  
2.88 – j5.34  
3.53 – j5.36  
2.06 + j5.48  
2.19 + j6.04  
19.3  
19.2  
53.2  
53.1  
207  
204  
(1) Load impedance for optimum P1dB power.  
(2) Load impedance for optimum P3dB power.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Table 9. Single Side Load Pull Performance — Maximum Drain Efficiency Tuning  
V
= 48 Vdc, I = 500 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle  
DD  
DQ  
Max Drain Efficiency  
P1dB  
(1)  
Z
AM/PM  
()  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
71.4  
71.9  
70.9  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
920  
2.52 – j4.76  
2.88 – j5.34  
3.53 – j5.36  
1.87 + j4.79  
2.65 + j2.94  
2.40 + j2.86  
2.32 + j2.45  
23.8  
50.8  
121  
–20  
–21  
–19  
940  
960  
1.85 + j5.18  
1.99 + j5.66  
24.0  
23.7  
50.4  
50.5  
111  
112  
Max Drain Efficiency  
P3dB  
(2)  
Z
()  
AM/PM  
()  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
72.0  
72.1  
71.4  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
920  
940  
960  
2.52 – j4.76  
1.83 + j5.10  
3.13 + j2.50  
2.80 + j2.46  
2.65 + j2.16  
21.3  
52.1  
162  
–26  
–26  
–25  
2.88 – j5.34  
3.53 – j5.36  
1.83 + j5.50  
1.95 + j6.05  
21.5  
21.4  
51.7  
51.7  
149  
147  
(1) Load impedance for optimum P1dB efficiency.  
(2) Load impedance for optimum P3dB efficiency.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Input Load Pull  
Tuner and Test  
Circuit  
Output Load Pull  
Tuner and Test  
Circuit  
Device  
Under  
Test  
Z
Z
in  
Z
load  
source  
A2T09VD250NR1  
RF Device Data  
Freescale Semiconductor, Inc.  
7
P1dB – TYPICAL LOAD PULL CONTOURS — 940 MHz  
5
4
5
48.5  
49.5  
49  
56  
58  
60  
4
50  
50.5  
3
3
E
E
51  
70  
2
2
51.5  
68  
66  
64  
62  
1
1
52  
60  
56  
58  
P
P
0
0
–1  
–2  
–1  
–2  
50  
1.5  
2
3
3.5  
REAL ()  
4
4.5  
5
5.5  
6
1
2.5  
1.5  
2
3
3.5  
REAL ()  
4
4.5  
5
5.5  
6
1
2.5  
Figure 8. P1dB Load Pull Output Power Contours (dBm)  
Figure 9. P1dB Load Pull Efficiency Contours (%)  
5
4
5
4
–12  
24  
24.5  
–24  
3
2
3
E
E
23.5  
23  
–22  
2
22.5  
22  
–20  
–16  
–18  
–14  
1
1
P
P
21.5  
0
0
21  
–1  
–2  
–1  
–2  
1.5  
2
3
3.5  
REAL ()  
4
4.5  
5
5.5  
6
1.5  
2
3
3.5  
REAL ()  
4
4.5  
5
5.5  
6
1
2.5  
1
2.5  
Figure 10. P1dB Load Pull Gain Contours (dB)  
Figure 11. P1dB Load Pull AM/PM Contours ()  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A2T09VD250NR1  
RF Device Data  
Freescale Semiconductor, Inc.  
8
P3dB – TYPICAL LOAD PULL CONTOURS — 940 MHz  
5
4
5
49  
49.5  
E
50  
50.5  
56  
4
3
51  
51.5  
3
E
52  
70  
2
2
1
52.5  
68  
66  
64  
1
62  
58  
60  
56  
51.5  
53  
P
P
0
0
–1  
–2  
–1  
–2  
51  
1.5  
2
3
3.5  
REAL ()  
4
4.5  
5
5.5  
6
1
2.5  
1.5  
2
3
3.5  
REAL ()  
4
4.5  
5
5.5  
6
1
2.5  
Figure 12. P3dB Load Pull Output Power Contours (dBm)  
Figure 13. P3dB Load Pull Efficiency Contours (%)  
5
5
–32  
–16  
–26  
–28  
21.5  
21  
–24  
–20  
4
3
4
3
22  
22.5  
–30  
20.5  
–18  
–22  
E
E
2
2
20  
1
1
19.5  
P
P
0
0
19  
18.5  
–1  
–2  
–1  
–2  
–16  
1.5  
2
3
3.5  
REAL ()  
4
4.5  
5
5.5  
6
1.5  
2
3
3.5  
REAL ()  
4
4.5  
5
5.5  
6
1
2.5  
1
2.5  
Figure 14. P3dB Load Pull Gain Contours (dB)  
Figure 15. P3dB Load Pull AM/PM Contours ()  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A2T09VD250NR1  
RF Device Data  
Freescale Semiconductor, Inc.  
9
D69443  
A2T09VD250N  
Rev. 0  
V
GG  
R1  
V
DD  
C18  
C16  
R2  
R3  
C5  
C8  
C20  
C7  
C22*  
C3  
C4  
C15  
C13  
C12  
C10*  
C11*  
C1  
C14  
C2  
C23*  
C17  
C21  
C9  
C6  
R4  
R6  
C19  
R5  
*C10, C11, C22 and C23 are mounted vertically.  
Figure 16. A2T09VD250NR1 Test Circuit Component Layout — 790–821 MHz  
Table 10. A2T09VD250NR1 Test Circuit Component Designations and Values — 790–821 MHz  
Part  
Description  
3.3 pF Chip Capacitor  
Part Number  
Manufacturer  
ATC  
C1  
C2  
ATC800B3R3BT500XT  
3.9 pF Chip Capacitor  
ATC800B3R9BT500XT  
ATC800B6R8BT500XT  
ATC800B470JT500XT  
C3216X7R2A105M160AA  
ATC800B180JT500XT  
ATC800B6R2BT500XT  
C5750X7S2A106M230KB  
EEVFK2A221M  
ATC  
C3, C4, C13, C14  
C5, C6, C7, C15, C16, C17  
C8, C9  
6.8 pF Chip Capacitors  
47 pF Chip Capacitors  
1 F Chip Capacitors  
ATC  
ATC  
TDK  
C10, C11  
18 pF Chip Capacitors  
6.2 pF Chip Capacitor  
ATC  
C12  
ATC  
C18, C19  
10 F Chip Capacitors  
220 F, 100 V Electrolytic Capacitors  
0.5 pF Chip Capacitors  
1 k, 1/4 W Chip Resistors  
10 , 1/4 W Chip Resistors  
TDK  
C20, C21  
Panasonic  
ATC  
C22, C23  
ATC800B0R5BT500XT  
WCR1206-1KF  
R1, R2, R5, R6  
R3, R4  
Welwyn  
Welwyn  
MTL  
WCR1206-10RF  
PCB  
Rogers RO4350B, 0.020, = 3.66  
D69443  
r
A2T09VD250NR1  
RF Device Data  
Freescale Semiconductor, Inc.  
10  
TYPICAL CHARACTERISTICS — 790–821 MHz  
45  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
V
= 48 Vdc, P = 65 W (Avg.), I  
= 1000 mA  
DD  
out  
DQ(A+B)  
40  
35  
30  
25  
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth  
D
G
ps  
0
–1.5  
–2  
–32  
–33  
–34  
ACPR  
–4  
–8  
–2.5  
–3  
–12  
–16  
–20  
PARC  
IRL  
–35  
–36  
–3.5  
–4  
Input Signal PAR = 9.9 dB @ 0.01%  
Probability on CCDF  
–37  
760 780 800 820 840 860 880 900 920 940 960  
f, FREQUENCY (MHz)  
Figure 17. Single--Carrier Output Peak--to--Average Ratio  
Compression (PARC) Broadband Performance @ Pout = 65 Watts Avg.  
60  
50  
40  
30  
20  
10  
0
26  
24  
22  
20  
18  
16  
14  
0
V
= 48 Vdc, I  
= 1000 mA, Single--Carrier W--CDMA  
DD  
DQ(A+B)  
3.84 MHz Channel Bandwidth, Input Signal PAR = 9.9 dB  
@ 0.01% Probability on CCDF  
–10  
–20  
–30  
–40  
–50  
–60  
D
G
821 MHz  
ps  
806 MHz  
790 MHz  
806 MHz  
821 MHz  
790 MHz  
ACPR  
100  
790 MHz  
806 MHz  
821 MHz  
1
10  
, OUTPUT POWER (WATTS) AVG.  
200  
P
out  
Figure 18. Single--Carrier W--CDMA Power Gain, Drain  
Efficiency and ACPR versus Output Power  
24  
22  
20  
18  
16  
14  
12  
5
0
V
P
= 48 Vdc  
= 0 dBm  
Gain  
DD  
in  
I
= 1000 mA  
DQ(A+B)  
–5  
–10  
–15  
–20  
–25  
IRL  
500  
600  
700  
800  
900  
1000 1100 1200 1300  
f, FREQUENCY (MHz)  
Figure 19. Broadband Frequency Response  
A2T09VD250NR1  
RF Device Data  
Freescale Semiconductor, Inc.  
11  
Table 11. Single Side Load Pull Performance — Maximum Power Tuning  
V
= 48 Vdc, I = 501 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle  
DD  
DQ  
Max Output Power  
P1dB  
(1)  
Z
AM/PM  
()  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
64.9  
63.4  
63.5  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
790  
3.03 – j2.71  
3.30 – j2.82  
3.27 – j3.34  
2.16 + j2.10  
3.38 + j1.69  
3.29 + j1.70  
3.34 + j1.67  
21.3  
52.8  
193  
–12  
–11  
–12  
806  
821  
2.16 + j2.40  
2.10 + j2.70  
21.3  
21.4  
52.7  
52.7  
187  
185  
Max Output Power  
P3dB  
(2)  
Z
()  
AM/PM  
()  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
65.9  
64.6  
65.7  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
790  
806  
821  
3.03 – j2.71  
1.99 + j2.30  
3.58 + j1.49  
3.66 + j1.41  
3.67 + j1.47  
19.2  
53.4  
221  
–15  
–15  
–16  
3.30 – j2.82  
3.27 – j3.34  
2.00 + j2.62  
1.94 + j2.93  
19.2  
19.3  
53.4  
53.3  
217  
215  
(1) Load impedance for optimum P1dB power.  
(2) Load impedance for optimum P3dB power.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Table 12. Single Side Load Pull Performance — Maximum Drain Efficiency Tuning  
V
= 48 Vdc, I = 501 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle  
DD  
DQ  
Max Drain Efficiency  
P1dB  
(1)  
Z
AM/PM  
()  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
75.8  
74.9  
74.0  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
790  
3.03 – j2.71  
3.30 – j2.82  
3.27 – j3.34  
1.81 + j2.34  
3.66 + j5.16  
3.53 + j4.98  
3.63 + j4.24  
24.0  
50.5  
113  
–17  
–17  
–15  
806  
821  
1.82 + j2.60  
1.86 + j2.84  
24.0  
23.5  
50.6  
51.2  
114  
133  
Max Drain Efficiency  
P3dB  
(2)  
Z
()  
AM/PM  
()  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
75.2  
74.3  
73.8  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
790  
806  
821  
3.03 – j2.71  
1.86 + j2.40  
4.26 + j3.66  
4.19 + j4.15  
4.12 + j3.87  
21.0  
52.5  
177  
–19  
–20  
–20  
3.30 – j2.82  
3.27 – j3.34  
1.84 + j2.75  
1.81 + j3.04  
21.3  
21.2  
52.1  
52.2  
161  
166  
(1) Load impedance for optimum P1dB efficiency.  
(2) Load impedance for optimum P3dB efficiency.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Input Load Pull  
Tuner and Test  
Circuit  
Output Load Pull  
Tuner and Test  
Circuit  
Device  
Under  
Test  
Z
Z
in  
Z
load  
source  
A2T09VD250NR1  
RF Device Data  
Freescale Semiconductor, Inc.  
12  
P1dB – TYPICAL LOAD PULL CONTOURS — 806 MHz  
7
6
7
60  
49.5  
50  
6
49  
48.5  
62  
74  
50.5  
5
5
4
E
E
51  
72  
70  
4
68  
66  
51.5  
3
3
52  
64  
2
2
P
P
52.5  
60  
62  
58  
1
1
0
0
–1  
–1  
2
3
4
6
7
2
3
4
6
7
1
5
1
5
REAL ()  
REAL ()  
Figure 20. P1dB Load Pull Output Power Contours (dBm)  
Figure 21. P1dB Load Pull Efficiency Contours (%)  
7
7
23.5  
25  
24  
24.5  
E
–18  
–24  
–22  
6
5
6
5
–20  
–16  
–14  
E
–12  
23  
22.5  
4
4
3
3
22  
2
2
P
P
–10  
21.5  
21  
1
1
0
0
–1  
–1  
2
3
4
6
7
2
3
4
6
7
1
5
1
5
REAL ()  
REAL ()  
Figure 22. P1dB Load Pull Gain Contours (dB)  
Figure 23. P1dB Load Pull AM/PM Contours ()  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A2T09VD250NR1  
RF Device Data  
Freescale Semiconductor, Inc.  
13  
P3dB – TYPICAL CARRIER LOAD PULL CONTOURS — 806 MHz  
8
7
8
49.5  
50  
7
6
58  
50.5  
6
51  
5
5
51.5  
E
E
4
4
70  
68  
52  
52.5  
72  
3
3
53  
66  
62  
60  
58  
64  
2
2
P
P
1
1
0
0
52  
–1  
–2  
–1  
–2  
51 51.5  
3
4
5
6
7
8
3
4
5
6
7
8
2
2
REAL ()  
REAL ()  
Figure 24. P3dB Load Pull Output Power Contours (dBm)  
Figure 25. P3dB Load Pull Efficiency Contours (%)  
8
7
8
7
6
–18  
–20  
22.5  
21.5  
22  
6
5
–24  
–22  
5
21  
–26  
–16  
–14  
E
E
4
4
20.5  
3
3
20  
–12  
2
2
P
P
19.5  
19  
1
1
0
0
18.5  
–10  
–1  
–2  
–1  
–2  
3
4
5
6
7
8
3
4
5
6
7
8
2
2
REAL ()  
REAL ()  
Figure 26. P3dB Load Pull Gain Contours (dB)  
Figure 27. P3dB Load Pull AM/PM Contours ()  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A2T09VD250NR1  
RF Device Data  
Freescale Semiconductor, Inc.  
14  
PACKAGE DIMENSIONS  
A2T09VD250NR1  
RF Device Data  
Freescale Semiconductor, Inc.  
15  
A2T09VD250NR1  
RF Device Data  
Freescale Semiconductor, Inc.  
16  
A2T09VD250NR1  
RF Device Data  
Freescale Semiconductor, Inc.  
17  
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS  
Refer to the following resources to aid your design process.  
Application Notes  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
Electromigration MTTF Calculator  
RF High Power Model  
s2p File  
Development Tools  
Printed Circuit Boards  
To Download Resources Specific to a Given Part Number:  
1. Go to http://www.freescale.com/rf  
2. Search by part number  
3. Click part number link  
4. Choose the desired resource from the drop down menu  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
Aug. 2015  
Initial Release of Data Sheet  
A2T09VD250NR1  
RF Device Data  
Freescale Semiconductor, Inc.  
18  
Information in this document is provided solely to enable system and software  
implementers to use Freescale products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based on the  
information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products  
herein. Freescale makes no warranty, representation, or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in Freescale data sheets and/or  
specifications can and do vary in different applications, and actual performance may  
vary over time. All operating parameters, including “typicals,” must be validated for  
each customer application by customer’s technical experts. Freescale does not convey  
any license under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found at the following  
address: freescale.com/SalesTermsandConditions.  
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,  
Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All  
other product or service names are the property of their respective owners.  
E 2015 Freescale Semiconductor, Inc.  
Document Number: A2T09VD250N  
Rev. 0, 8/2015  

相关型号:

A2T09VD300N

N--Channel Enhancement--Mode Lateral MOSFET
NXP

A2T09VD300NR1

N--Channel Enhancement--Mode Lateral MOSFET
NXP

A2T14H450-23N

N--Channel Enhancement--Mode Lateral MOSFET
NXP

A2T14H450-23NR6

N--Channel Enhancement--Mode Lateral MOSFET
NXP

A2T18H100-25S

N--Channel Enhancement--Mode Lateral MOSFET
NXP

A2T18H100-25SR3

N--Channel Enhancement--Mode Lateral MOSFET
NXP

A2T18H160-24SR3

RF POWER, FET
NXP

A2T18H410-24SR6

Airfast RF Power LDMOS Transistor 1805-1880 MHz, 71 W Avg., 28 V
NXP

A2T18H450W19S

N--Channel Enhancement--Mode Lateral MOSFET
NXP

A2T18H450W19SR6

N--Channel Enhancement--Mode Lateral MOSFET
NXP

A2T18H455W23N

N--Channel Enhancement--Mode Lateral MOSFET
NXP

A2T18H455W23NR6

N--Channel Enhancement--Mode Lateral MOSFET
NXP