PCA8516T-T [NXP]

IC ON-SCREEN DISPLAY IC, PDSO24, Superimposer IC;
PCA8516T-T
型号: PCA8516T-T
厂家: NXP    NXP
描述:

IC ON-SCREEN DISPLAY IC, PDSO24, Superimposer IC

文件: 总64页 (文件大小:406K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
PCA8516  
Stand-alone OSD  
1995 Mar 30  
Preliminary specification  
File under Integrated Circuits, IC14  
Philips Semiconductors  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
CONTENTS  
14  
DEFAULT VALUES AFTER  
POWER-ON-RESET  
LIMITING VALUES  
DC CHARACTERISTICS  
AC CHARACTERISTICS  
PACKAGE OUTLINES  
SOLDERING  
1
2
3
4
5
FEATURES  
15  
16  
17  
18  
19  
GENERAL DESCRIPTION  
ORDERING INFORMATION  
BLOCK DIAGRAM  
PINNING INFORMATION  
5.1  
5.2  
Pinning  
Pin description  
19.1  
19.2  
19.3  
Introduction  
DIP  
SO  
6
SERIAL I/O  
6.1  
6.2  
I2C-bus serial interface  
High-speed serial interface (HIO)  
20  
21  
22  
DEFINITIONS  
LIFE SUPPORT APPLICATIONS  
PURCHASE OF PHILIPS I2C COMPONENTS  
7
CHARACTER FONTS  
7.1  
7.2  
Character font address map  
Character font ROM  
8
DISPLAY RAM ORGANIZATION  
8.1  
8.2  
8.3  
Description of display RAM codes  
Loading character data into display RAM  
Writing character data to display RAM  
9
COMMANDS  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.8  
Command 0  
Command 1  
Command 2  
Command 3  
Command 4  
Command 5  
Command 6  
Command 7  
Command 8  
Command 9  
Command A  
Commands B, C and D  
Command E  
Command F  
Command G  
9.9  
9.10  
9.11  
9.12  
9.13  
9.14  
9.15  
10  
MISCELLANEOUS  
10.1  
Space and Carriage Return Codes in different  
Background/Shadowing modes  
10.2  
11  
Combination of character font cells  
OSD CLOCK  
12  
OSD CLOCK SELECTION FOR DIFFERENT  
TV STANDARDS  
12.1  
12.2  
12.3  
OSD frequency  
Maximum number of characters per row  
Maximum number of rows per frame  
13  
OUTPUT PORTS  
Mask options  
13.1  
1995 Mar 30  
2
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
Spacing between lines: 4 choices comprising 0, 4, 8 and  
1
FEATURES  
12 horizontal scan lines  
Display RAM: 256 × 13 bits  
Display character RAM address auto-post-increment  
when writing data  
Fast I2C-bus serial interface (400 kbaud) or High-speed  
3-wire serial interface (1 Mbaud) for data/command  
transfer  
Display character fonts: 253 (fixed in ROM, mask  
programmable)  
Starting position of the first character displayed:  
64 vertical and 64 horizontal starting positions can be  
selected by software  
ACM (Active Character Monitor) specifically for use in  
camcorder applications on word basis; can also be used  
as a 5th colour control with R, G, B and I signals  
Character size: 4 different character sizes on a  
line-by-line basis (1 dot = 1H/1V; 2H/2V; 3H/3V and  
4H/4V)  
Programmable active input polarity of HSYNC and  
VSYNC  
Character matrix: 12 × 18 with no spacing between  
characters and no rounding function  
Programmable output polarity of R, G, B, I and FB  
Supply voltage: 5 V ±10%  
Foreground colours: 16 combinations of Red, Green,  
Blue and Intensity on character-by-character basis  
Operating temperature: 20 to +70 °C  
Package: SDIP24 or SO24.  
Background/shadowing modes: 4 modes available, No  
background, Box shadowing, North-West shadowing  
and Frame shadowing (raster blanking) on frame basis  
Background colours: 16 combinations of Red, Green,  
Blue and Intensity on word-by-word basis. Available  
when background mode is in either the Box shadowing,  
North-West shadowing or Frame shadowing mode  
2
GENERAL DESCRIPTION  
The PCA8516 is a member of the PCA85XX CMOS family  
and is an on-screen character display generator controlled  
by a microcontroller via the on-chip fast I2C-bus interface  
or the on-chip High-speed 3-wire serial interface. It is  
suitable for use in high-end TV or camrecorder  
OSD oscillator: on-chip Phase-Locked Loop (PLL)  
Character blinking ratio: 1 : 1, 1 : 3 and 3 : 1  
(programmable frequency of 116, 132, 164 or 1128 of  
applications and has also been designed for use in  
conventional mid-end TV with advanced graphic features.  
fVSYNC) on character basis  
Display format: flexible display format by using the  
Carriage Return Code, maximum number of characters  
per line is also flexible and depends upon the OSD clock  
frequency  
3
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
VERSION  
SOT234-1  
SOT137-1  
PCA8516P  
PCA8516T  
SDIP24  
SO24  
plastic shrink dual in-line package; 24 leads (400 mil)  
plastic small outline package; 24 leads; body width 7.5 mm  
1995 Mar 30  
3
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
4
BLOCK DIAGRAM  
LM3C47  
1995 Mar 30  
4
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
5
PINNING INFORMATION  
Pinning  
5.1  
handbook, halfpage  
AV  
AV  
1
2
3
4
5
6
7
8
9
I (VOW3)  
24  
23  
DD  
P04/ACM (VOB2)  
TEST2  
SS  
22 FB (VOB)  
V
21  
TEST1  
DD  
C
20 B (VOW2)  
19 P01  
VSYNC  
PCA8516  
18  
HSYNC  
G (VOW1)  
SDA/SIN  
17 P00  
SCK/SCLK  
16 R (VOW0)  
2
XTAL1 (IN) 10  
15 HIO/I C  
XTAL2 (OUT)  
11  
12  
14  
E
V
13 RESET  
SS  
MLC927  
Fig.2 Pin configuration for SDIP24.  
1995 Mar 30  
5
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
5.2  
Pin description  
Table 1 SDIP24 and SO24 packages  
SYMBOL  
I (VOW3)  
PIN  
1
I/O  
O
O
I
DESCRIPTION  
Character output signal for intensity control.  
P04/ACM (VOB2)  
TEST2  
2
Port 04 output or Active Character Monitor output (VOB2).  
Test mode selection; for normal operation TEST2 is connected to VSS  
Test mode selection; for normal operation TEST1 is connected to VSS  
Capacitor connection for on-chip OSD PLL oscillator.  
3
.
.
TEST1  
4
I
C
5
I/O  
I
VSYNC  
HSYNC  
SDA/SIN  
6
Vertical synchronization input, active polarity programmable.  
Horizontal synchronization input, active polarity programmable.  
Data line of the I2C-bus interface or the data line for the High-speed  
serial interface.  
7
I
8
I/O  
SCL/SCLK  
9
I/O  
Clock line of the I2C-bus interface or the clock line for the High-speed  
serial interface.  
XTAL1 (IN)  
XTAL2 (OUT)  
VSS  
10  
11  
12  
13  
14  
I
O
I
System clock input.  
System clock output.  
Ground, digital.  
RESET  
E
I
Master Reset input (active LOW).  
I
Chip enable (active HIGH) for the High-speed serial interface. When the  
I2C-bus interface is selected this pin should be connected to VSS  
.
HIO/I2C  
15  
I
Serial interface selection. When this pin is LOW the High-speed serial  
interface is selected; when this pin is HIGH the I2C-bus interface is  
selected.  
R (VOW0)  
P00  
16  
17  
18  
19  
20  
21  
22  
23  
24  
O
I/O  
O
I/O  
O
I
Character output signal: VOW0 for Red.  
General purpose I/O Port 00.  
Character output signal: VOW1 for Green.  
General purpose I/O Port 01.  
Character output signal: VOW2 for Blue.  
Power supply, digital.  
G (VOW1)  
P01  
B (VOW2)  
VDD  
FB (VOB)  
AVSS  
O
I
Fast Blanking output (VOB).  
Ground, analog.  
AVDD  
I
Power supply, analog.  
1995 Mar 30  
6
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
The synchronization process is carried out by on-chip  
hardware and takes place during the HSYNC retrace  
period when VSYNC is inactive. The I2C-bus clock is  
pulled LOW if a complete display RAM data byte is  
received before HSYNC becomes active. The I2C-bus  
clock will be released when HSYNC becomes active and  
then the contents of the shift register will be written into the  
display RAM location.  
6
SERIAL I/O  
The PCA8516 has two means by which it can  
communicate with a microcontroller: a fast I2C-bus serial  
interface and a High-speed serial interface. Selection of  
either interface is achieved via pin 15, HIO/I2C. When  
HIO/I2C is LOW, the HIO serial interface is selected. When  
HIO/I2C is HIGH, the I2C-bus serial interface is selected.  
The PCA8516 is programmed by a series of commands  
sent via one of these interfaces. There are 16 commands;  
each command selecting different functions of the  
PCA8516. The 16 commands are described in detail in  
Chapter 9.  
6.2  
High-speed serial interface (HIO)  
The High-speed serial interface is selected when pin 15  
(HIO/I2C) is pulled LOW. The High-speed serial interface  
has a 3-wire communication protocol; the maximum  
transmission rate being 1 MHz. The interface protocol is  
illustrated in Fig.4 and described below.  
6.1  
I2C-bus serial interface  
The I2C-bus serial interface is selected by driving pin 15  
(HIO/I2C) HIGH. Data transmission conforms to the fast  
I2C-bus protocol; the maximum transmission rate being  
400 kHz. The PCA8516 operates in the slave receiver  
mode and therefore in normal operation is ‘write only’ from  
the master device.  
1. Pin 14 (E) the chip enable pin is driven HIGH. This  
LOW-to-HIGH transition clears the shift register and  
resets the serial input circuit.  
2. On the first HIGH-to-LOW transition of SCLK after the  
interface has been enabled, the first data bit (D0) must  
be present at the SIN pin.  
The format of the data streams sent via the I2C-bus  
interface is shown in Fig.3. The first data byte is the slave  
address 1011 101Xb. The last bit of the slave address is  
always a logic 0, except in the Test mode when it could be  
a logic 1. Subsequent data bytes contain the commands  
for control of the device. Upon the successful reception of  
a complete data byte by the shift register, an Acknowledge  
bit is sent. A STOP condition terminates the data transfer  
operation.  
3. On the following LOW-to-HIGH transition of SCLK, the  
first data bit (D0) will be latched into the shift register.  
4. On the next HIGH-to-LOW transition of SCLK the  
second data bit (D1) must be present at the SIN pin.  
Data bit (D1) will be latched into the shift register on  
the following LOW-to-HIGH transition of SCLK.  
5. The operation specified in step 4 above is repeated  
another 6 times, thus loading the shift register with a  
complete data byte. This data byte is then transferred  
to the command interpreter which takes the  
appropriate action.  
The I2C-bus interface is reset to its initial state (waiting for  
a slave address call) by the following conditions:  
After a master reset  
After a bus error has been detected on the I2C-bus  
interface.  
6. Providing the chip enable signal remains HIGH, a  
2nd data byte can be transferred. The 1st data bit of  
the next data transfer takes place on the falling edge  
of the SCLK signal.  
Under both these conditions the data held in the shift  
register is abandoned.  
The following points should be noted:  
If the chip enable signal is pulled LOW at any time the  
shift operation in progress is stopped and the HIO slave  
receiver is disabled  
6.1.1  
MAXIMUM SPEED OF THE I2C-BUS  
The maximum I2C-bus transmission rate that the  
PCE8515 can receive is 400 kHz. However, if the data  
byte being transmitted is for display RAM then internal  
synchronization of the write operation from the shift  
register to the display RAM location is necessary. This will  
reduce the maximum transmission speed.  
The rising edge of the chip enable signal resets the HIO  
slave receiver.  
1995 Mar 30  
7
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
2
I C-bus  
bit stream  
MSB  
0
LSB  
7
8
0
7
8
0
7
8
0
7
8
W
O
S
Slave address  
Ack 0 1 1 1 1 0 0 BS  
Ack  
Ack  
Ack P  
1st data byte  
2nd data byte  
nth data byte  
Command  
Register data  
MRA818  
bit 0  
bit 7  
Fig.3 I2C-bus write timing diagram - data stream.  
falling edge of SCLK  
D
changes  
SCLK  
OUT  
D5  
D
OUT  
D0  
D1  
D2  
D3  
D4  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
(from HIO master and  
connected to SIN pin of  
HIO slave)  
E
SCLK  
SIN  
T
T
T
s
rising edge of SCLK  
SIN sampled  
s
h
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
MLB395 - 1  
(1)  
Ts 1 µs; Th 1 µs.  
Fig.4 High-speed I/O format.  
1995 Mar 30  
8
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
The file format to submit to Philips for customized  
7
CHARACTER FONTS  
character sets is also shown in Fig.7. The following points  
should be noted:  
256 character fonts may be held in ROM; 253 customer  
selected fonts and three reserved character font codes.  
Customer selected fonts are mask programmable. Each  
character font is stored in a 12 × 19 dot matrix, as shown  
in Fig.5. Elements in Rows 1 to 18 can be selected as  
visible dots on the screen; Row 0 is used only for the  
combination of two characters in a vertical direction, when  
the North-West shadowing mode is selected (see  
Sections 9.9 and 10.2). Extremely high resolution can be  
achieved by having no spacing between characters on the  
same line and by programming the inter-line spacing to  
zero. The 12 × 18 dot matrix is suitable for the display of  
semigraphic patterns, Kanji, Hiragana, Katagana or even  
Chinese characters.  
1. Row 0 of each font is reserved for vertical combination  
of two fonts.  
2. When two font cells are combined in a vertical  
direction Row 0 of the lower font must contain the  
same bit pattern as held in Row 18 of the character  
above it.  
3. Binary 1 denotes visual dots; binary 0 denotes a blank  
space.  
4. ROM1 and ROM2 data files are in INTEL hex format  
on a byte basis. Each byte is structured High nibble  
followed by Low nibble.  
5. The remaining unused 16 bytes (one character font) in  
ROM1/ROM2 must be filled with FFH.  
7.1  
Character font address map  
6. CS denotes Checksum.  
Figure 6 shows the character font address map in ROM  
and RAM. Addresses FFH and FEH hold the reserved  
codes for space and carriage return functions respectively;  
address FDH is reserved for testing purposes and  
addresses (00H to FCH) contain the character font codes.  
A software package (OSDGEM) that assists in the design  
of character fonts on-screen and that also automatically  
generates the bit pattern HEX files, is available on request.  
The package is run under the MS-DOS environment for  
IBM compatible PCs.  
7.2  
Character font ROM  
ROM is divided into two parts: ROM1 and ROM2. The  
organization of the bit patterns stored in ROM1 and ROM2  
is shown in Fig.7.  
0
11 10  
9
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
Mask Programmable Font  
7
8
reserved code  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
252 (FCH)  
253 (FDH)  
254 (FEH)  
255 (FFH)  
Test code  
Carriage return code  
Space code  
MLB344  
MLC350  
Fig.5 Character dot matrix organization.  
Fig.6 ROM address map.  
1995 Mar 30  
9
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
Column  
ROM1  
ROM2  
1110 9 8 7 6 5 4 3 2 1  
0
0
2
3
2
2
3
0
5
0
0
0
2
F
2
2
F
0
5
0
3
0
0
C
0
0
F
1
2
C
0
0 0 0 ROM1  
3 F C ROM2  
2 2 0 ROM1  
2 2 0 ROM2  
3 F C ROM1  
2 2 0 ROM2  
2 2 0 ROM1  
3 F C ROM2  
2 2 0 ROM1  
2 2 0 ROM2  
3 F F ROM1  
0 0 1 ROM2  
0 0 1 ROM1  
5 5 3 ROM2  
5 5 2 ROM1  
0 0 6 ROM2  
0 0 C ROM1  
0 5 8 ROM2  
0 3 0 ROM1  
0
1
2
3
4
5
6
7
3
2
F
2
C
0
2
3
2
0
5
0
0
2
F
2
0
5
0
5
0
C
0
1
3
6
8
Row  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
ROM1  
byte  
0
#
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
__ __ __ __ __ __ __ __ __ __ __ __ __ __ __  
: 1 0 0 0 0 0 0 0  
00 00 22 FC 03 22 20 F2 3F 01 20 55 0C 00 03  
F F C S  
F F C S  
F F C S  
: 1 0 0 0 1 0 0 0  
: 1 0 0 0 2 0 0 0  
< - - -  
< - - -  
DATA FOR FONT 2  
DATA FOR FONT 3  
- - - >  
- - - >  
ROM2  
: 1 0 0 0 0 0 0 0 FC 03 22 20 C2 3F 20 12 00 53 65 00 58  
F
F
0
FF FF C S  
FF FF C S  
: 1 0 0 0 1 0 0 0 < - - -  
: 1 0 0 0 2 0 0 0 < - - -  
DATA FOR FONT 2  
DATA FOR FONT 3  
- - - >  
- - - >  
X
F
X
FF FF C S  
MLB345  
Fig.7 Character font pattern stored in ROM1 and ROM2.  
1995 Mar 30  
10  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
8
DISPLAY RAM ORGANIZATION  
8.1.3  
CARRIAGE RETURN CODE  
The display RAM is organized as 256 × 13 bits. The  
general format of each RAM location is as follows.  
Bits <12-5> hold character data and allow a choice from  
253 customer designed character fonts to be selected or  
one of three reserved codes. Bits <4-0> contain the  
attributes of the character font, for example colour,  
character size etc.  
If bits <12-5> hold FEH, then this is the Carriage Return  
Code. A transparent pattern will be displayed on the  
screen and the next character will be displayed at the  
beginning of the next line. Bits <4-3> select the size of the  
characters to be displayed on the next line. Bits <2-1>  
determine the spacing between lines of displayed  
characters. Bit <0> is the End of Display bit and indicates  
the end of display of the current screen before exhaustion  
of display RAM (i.e. before the 256th RAM location). The  
format of the Carriage Return Code is shown in Table 3.  
8.1  
Description of display RAM codes  
There are four data formats for display RAM code:  
1. Character Font Code  
2. Test Code  
8.1.4  
SPACE CODE  
If bits <12-5> hold FFH, then this is the Space Code.  
A transparent pattern, equal to one character width, will be  
displayed on the screen. A mask programmable option is  
available that allows the space character to be transparent  
or to have a programmable background colour;  
see Section 13.1. Bits <4-1> determine the background  
colour of the characters that follow the Space Code in both  
the Box shadowing and North-West shadowing modes.  
Bit <0> is the Active Character Monitor (ACM)  
enable/disable bit. The ACM signal is specifically for use in  
camrecorder applications where part of the display is to be  
recorded on tape and displayed on the screen, whilst the  
remaining part is for display only. Figure 9 shows a typical  
ACM application. During the back-tracing period R, G, B, I,  
FB and ACM are inactive. The format of the Space Code  
is shown in Table 4.  
3. Carriage Return Code  
4. Space Code.  
The above data formats allow great flexibility in the  
creation of On Screen Displays; see Fig.8.  
8.1.1  
CHARACTER FONT CODE  
If bits <12-5> are in the range (00H to FCH), then this is a  
Character Font Code. 1 of 253 customer designed  
character fonts can be selected. Bits <4-1> determine the  
colour of the character, a choice of 16 colours being  
available. Bit <0> determines whether the character blinks  
or not. The format of the Character Font Code is shown in  
Table 2.  
8.1.2  
TEST CODE  
If bits <12-5> hold FDH, then this is a special code  
reserved for testing purposes only.  
Table 2 Format of Character Font Code  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
T4  
T3  
T2  
T1  
T0  
Character Font Code (00H - FCH)  
Foreground colour  
Blink  
Table 3 Format of Carriage Return Code  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
T4  
T3  
T2  
T1  
T1  
Carriage Return Code (FEH)  
Character size  
Line Spacing  
End  
Table 4 Format of Space Code  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
T4  
T3  
T2  
T1  
T0  
Space Code (FFH)  
Background colour  
ACM  
1995 Mar 30  
11  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
line spacing 1 = 4H  
Vstart  
H
I
!
T
H
S
I
S
I
SP  
SP  
CR  
CR  
line spacing 2 = 8H  
T H E  
F U N C T I O N  
P C A 8 5 1 0  
N E W  
SP  
CR  
line spacing 3 = 0H  
CR  
line spacing 4 = 0H  
line spacing 4 = 4H  
I
N
SP  
CR  
Hstart  
S T A N D A L  
CR  
line spacing 6 = 0H  
W E L C O M E  
SP  
CR  
Volume  
Channel  
MRA832  
Four different background colours (in box shadowing mode):  
BLACK  
RED  
GREEN  
BLUE  
Fig.8 Example of On Screen Display.  
1995 Mar 30  
12  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
Battery Status : OK  
Shutter speed : 500  
Focal Length : 28 mm  
Date : July 15, 1994  
PHILIPS  
Made by MOS IC TAIWAN, PHILIPS  
MRA831  
In this example, all the characters are displayed on the viewfinder.  
As only the data 'Date : July 15, 1994' is to be recorded onto the tape,  
only these characters' ACM attribute bit is set to a logic 1.  
Fig.9 Example of ACM signal for use in camrecorder applications.  
1995 Mar 30  
13  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
8.2  
Loading character data into display RAM  
8.3  
Writing character data to display RAM  
Three registers are used to address and load data into the  
display RAM. These registers are described below.  
The procedure for writing character data to the display  
RAM is as follows:  
1. Select the start address in display RAM. The start  
address can take any value between 0 and 255.  
Command 3 is used to load the High nibble of the start  
address. Command 4 is used to load the Low nibble of  
the start address. The start address is stored in  
DCRAR.  
8.2.1  
DCR ADDRESS REGISTER (DCRAR)  
Table 5 DCR Address Register  
7
6
5
4
3
2
1
0
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
2. Load the character attributes into DCRTR using  
Command 2. The actual attribute selected is  
dependent upon whether the Character Font Code,  
Carriage Return Code or Space Code has been  
selected by Command 1 (see Section 8.1).  
This register holds the address of the location in display  
RAM into which data is to be written. Command 3 loads  
the High nibble of the address into this register;  
Command 4 loads the Low nibble of the address.  
If the attributes of a series of displayed characters are  
the same, the contents of this register need not be  
updated.  
8.2.2  
DCR ATTRIBUTE REGISTER (DCRTR)  
3. Load the Character Font data into DCTCR using  
Command 1 or Command 5. Either of these  
Table 6 DCR Attribute Register  
commands signal that a complete command byte is  
available and the data held in registers DCRTR and  
DCRCR is loaded into the RAM location pointed to by  
the address stored in DCRAR. The address held in  
DCRAR is then incremented by ‘1’ pointing to the next  
RAM location in anticipation of the next operation.  
7
6
5
4
3
2
1
0
T4  
T3  
T2  
T1  
T0  
The Attribute Register is loaded with character font  
attribute data using Command 2. The data will be loaded  
into bits <4-0> of the location in RAM addressed by the  
contents of DCRAR. Bits 7 to 5 are not used and are  
reserved.  
A description of all the Commands is given in Chapter 9.  
8.2.3  
DCR CHARACTER REGISTER (DCRCR)  
Table 7 DCR Character Register  
7
6
5
4
3
2
1
0
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
This register holds the character font data loaded by  
Command 1. The data will be loaded into bits <12-5> of  
the location in RAM addressed by the contents of DCRAR.  
1995 Mar 30  
14  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
9
COMMANDS  
The PCA8516 is programmed by a series of commands sent by a microcontroller via the I2C-bus interface or the  
High-speed serial interface. 17 commands (Commands 0 to G) are available for selecting the various functions of the  
PCA8516. A command overview is shown in Table 8; full descriptions of each command are given in Sections 9.1 to 9.15.  
Table 8 Command overview (note 1)  
COMMAND  
BS1  
X
BS0  
X
0
7
0
1
0
0
0
1
0
0
6
1
5
1
4
1
3
2
1
0
0
1
2
3
4
5
6
7
Command Bank selection  
Character font selection - Bank 1  
Character attributes  
1
0
BS1 BS0  
0
C6  
0
C5  
0
C4  
T4  
0
C3  
T3  
A7  
A3  
C3  
D3  
M1  
C2  
T2  
A6  
A2  
C2  
D2  
M0  
C1  
T1  
A5  
A1  
C1  
D1  
Bp  
C0  
T0  
A4  
A0  
C0  
D0  
EN  
X
0
Display Character Address High  
Display Character Address Low  
Character font selection - Bank 2  
OSD PLL oscillator divisor  
0
0
0
1
0
0
0
1
1
1
0
C6  
0
C5  
D5  
0
C4  
D4  
0
0
1
Scan mode, polarity of FB, ACM, R,  
G, B and I; OSD enable/disable  
0
1
1
8
9
Polarity of HSYNC and VSYNC,  
Display mode  
0
0
1
1
0
0
1
1
0
1
1
0
Hp  
Vp  
S1  
S0  
Blinking frequency, blinking  
frequency active ratio  
BF1 BF0 BR1 BR0  
A
B
C
I/O port selection  
0
0
0
1
1
1
0
1
1
1
0
0
1
0
1
1
1
0
0
A/P  
V4  
0
0
Vertical start position High  
V5  
V1  
V3  
H5  
V2  
H4  
Vertical start position Low/  
Horizontal start position High  
V0  
D
E
F
Horizontal start position Low  
0
0
0
1
1
0
1
1
0
0
1
1
1
X
0
1
P04  
0
H3  
X
H2  
X
H1  
H0  
Write to ports P00, P01 and P04  
P01 P00  
Background colour in Frame  
shadowing mode  
R
G
B
I
G
Enable/disable OSD horizontal  
stabilization circuit (Regen H),  
selection of Half-tone background  
mode and character size of first line  
0
0
0
1
0
1
HM3 HT2 FS1 FS0  
Note  
1. ‘X’ denotes don’t care state.  
1995 Mar 30  
15  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
9.1  
Command 0  
9.3.1  
CHARACTER FONT CODE ATTRIBUTES  
Command 2 when used in conjunction with a Character  
Font Code (80H to FCH) will select 1 of 16 foreground  
colours and enables/disables the Blinking function.  
Table 9 Command 0 format  
7
6
5
4
3
2
1
0
0
1
1
1
1
0
BS1 BS0  
Table 12 Selection of Foreground colour  
Command 0 is used to select the Command Bank. Bits  
BS1 and BS0 are the two flags that indicate the current  
Command Bank being executed. During a master reset  
these two bits are cleared (BS1 = 0, BS0 = 0). Each  
command has its own associated Command Bank, this is  
shown in Table 8.  
T4  
R
T3  
G
T2  
B
T1  
I
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
9.2  
Command 1  
Table 10 Command 1 format  
BS1 BS0  
7
6
5
4
3
2
1
0
0
0
1
C6 C5 C4 C3 C2 C1 C0  
Command 1 is used to load character data into the DCR  
Character Register. The data will specify either a  
Character Font Code, the Test Code, the Carriage Return  
Code or the Space Code. These codes are explained in  
detail in Section 8.1.  
9.3  
Command 2  
Table 11 Command 2 format  
BS1 BS0  
7
6
5
4
3
2
1
0
Table 13 Selection of Blinking function  
X
0
0
0
0
T4 T3 T2 T1 T0  
T0  
BLINKING  
0
1
OFF  
ON  
This command writes character attribute data into the DCR  
Attribute Register. The actual character attribute is  
dependent upon the code selected by Command 1. See  
the data formats shown in Tables 2, 3 and 4.  
1995 Mar 30  
16  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
9.3.2  
CARRIAGE RETURN CODE ATTRIBUTES  
Table 17 Selection of Background colour  
Command 2 when used in conjunction with the Carriage  
Return Code (FEH) determines the size of characters to be  
displayed on the next line, sets the spacing between lines  
of characters and enables/disables the display.  
T4  
R
T3  
G
T2  
B
T1  
I
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
The character size is also a function of the TV scanning  
standard being used and fOSD; this is explained in  
Chapter 12.  
Table 14 Selection of character size  
T4  
T3  
CHARACTER DOT SIZE  
0
0
1
1
0
1
0
1
1H/1V (the default size)  
2H/2V  
3H/3V  
4H/4V  
Table 15 Selection of line spacing  
LINE SPACING  
(BETWEEN TWO ROWS)  
T2  
T1  
0
0
1
1
0
1
0
1
0H line  
4H line  
8H line  
12H line  
Table 18 ACM control  
T0  
ACM PIN  
0
The ACM pin is inactive; this is also the  
default setting.  
Table 16 End of display control  
T0  
DISPLAY CONTROL  
1
The ACM function is active for all  
characters displayed following this  
Space Code.  
0
Continue to display next character. This  
is also the default setting.  
1
End of display.  
9.3.3  
SPACE CODE ATTRIBUTES  
Command 2 when used in conjunction with the Space  
Code (FFH) selects the background colour of characters in  
Box shadowing or North-West shadowing modes and also  
controls the Active Character Monitor pin. The ACM pin will  
remain active until a Space Code is received that resets  
the ACM bit to logic 0. The ACM timing diagram is shown  
in Fig.10.  
1995 Mar 30  
17  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
0
SP code  
SP code  
18  
R
G
B
I
FB  
ACM  
MRA830 - 1  
'S' : Red  
'I' : Green  
'Z' : Green + Blue + Intensity  
'E' : Blue + Intensity  
1st SP code : ACM = on  
2nd SP code: ACM = off  
Fig.10 R, G, B, I - ACM timing.  
1995 Mar 30  
18  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
9.4  
Command 3  
9.8  
Command 7  
Table 19 Command 3 format  
Table 23 Command 7 format  
BS1 BS0  
7
6
5
4
3
2
1
0
BS1 BS0  
7
6
5
4
3
2
1
0
0
0
0
0
1
1
A7 A6 A5 A4  
0
1
0
1
0
0
M1 M0 Bp EN  
Command 3 loads the DCR Address Register with the  
4 MSBs of the RAM address to which data will be written.  
This command loads Control Register 1 with data that  
selects the scanning mode, the output polarity of signals  
FB, ACM, R, G, B and I, and also enables/disables the  
OSD clock.  
9.5  
Command 4  
With reference to the scanning modes: 1V/2V is the  
conventional NTSC or PAL scanning mode; 1V/2H is the  
Line Progress Scan used for the IDTV in NTSC and 2V/2H  
is for the PAL system and is known as 50 Hz to 100 Hz  
scan conversion.  
Table 20 Command 4 format  
BS1 BS0  
7
6
5
4
3
2
1
0
0
0
0
0
1
1
A3 A2 A1 A0  
Command 4 loads the DCR Address Register with the  
4 LSBs of the RAM address to which data will be written.  
Table 24 Selection of Scanning Mode  
M1  
M0  
SCAN MODE  
9.6  
Command 5  
0
0
1V/1H; NTSC 525LPF/60 Hz or  
PAL 625LPF/50 Hz; see Fig.11. This is  
the default setting.  
Table 21 Command 5 format  
BS1 BS0  
7
6
5
4
3
2
1
0
0
1
1
0
reserved  
1
0
1
C6 C5 C4 C3 C2 C1 C0  
1V/2H; NTSC 1050LPF/60 Hz; see  
Fig.11.  
Command 5 is used to load character data into the DCR  
Character Register. The data will specify either a  
Character Font Code, the Test Code, the Carriage Return  
Code or the Space Code. These codes are explained in  
detail in Section 8.1.  
1
1
2V/2H; PAL 1250LPF/100 Hz; see  
Fig.12.  
Table 25 Selection of output polarity (see Fig.13)  
Bp  
OUTPUT POLARITY (FB, ACM, R, G, B, I)  
9.7  
Command 6  
0
1
active LOW  
active HIGH (the default setting)  
Table 22 Command 6 format  
BS1 BS0  
7
6
5
4
3
2
1
0
Table 26 OSD clock control  
0
1
0
0
D5 D4 D3 D2 D1 D0  
EN  
OSD CLOCK  
0
1
disabled (the default setting)  
enabled  
Command 6 loads the programmable 6-bit counter of the  
OSD clock oscillator. The output frequency (fOSD) is a  
function of the decimal value of the 6-bits loaded in by  
Command 6; see Chapter 11.  
1995 Mar 30  
19  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
f
= 60 Hz  
f
= 60 Hz  
VSYNC  
VSYNC  
VSYNC  
f
= 15734 Hz  
HSYNC  
HSYNC  
262.5 lines  
262.5 lines  
(a) Conventional NTSC 1V/1H  
f
= 60 Hz  
f
= 60 Hz  
VSYNC  
VSYNC  
VSYNC  
HSYNC  
f
= 31468 Hz  
HSYNC  
525 lines  
525 lines  
MRA834  
(b) NTSC 1V/2H  
Fig.11 NTSC scan formats.  
f
= 50 Hz  
f
= 50 Hz  
VSYNC  
VSYNC  
VSYNC  
f
= 15625 Hz  
HSYNC  
HSYNC  
312.5 lines  
312.5 lines  
(a) Conventional PAL 1V/1H  
f
= 100 Hz  
f
= 100 Hz  
f
= 100 Hz  
f = 100 Hz  
VSYNC  
VSYNC  
VSYNC  
VSYNC  
VSYNC  
HSYNC  
f
= 31250 Hz  
HSYNC  
312.5 lines  
312.5 lines  
312.5 lines  
312.5 lines  
MRA835  
(b) PAL 2V/2H  
Fig.12 PAL scan formats.  
20  
1995 Mar 30  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
FB (ACM or R, G, B or I )  
Bp = 0 (active LOW)  
active period  
active period  
FB (ACM or R, G, B or I )  
Bp = 1 (active HIGH)  
MRA836  
Fig.13 Active levels of FB, R, G, B, and I signals.  
HSYNC/VSYNC  
Hp/Vp = 0 (active LOW)  
active period  
active period  
HSYNC/VSYNC  
Hp/Vp = 1 (active HIGH)  
MRA837  
Fig.14 Active levels of HSYNC and VSYNC signals.  
21  
1995 Mar 30  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
9.9  
Command 8  
9.10 Command 9  
Table 27 Command 8 format  
Table 30 Command 9 format  
BS1 BS0  
7
6
5
4
3
2
1
0
BS1 BS0  
7
6
5
4
3
2
1
0
0
1
0
1
0
1
Hp Vp S1 S0  
0
1
0
1
1
0
BF1 BF0 BR1 BR0  
Command 8 loads Control Register 2 with data that  
selects the input polarity of HSYNC and VSYNC (see  
Fig.14) and also selects the Display modes.  
This command loads Control Register 3 with data that  
controls both the character blinking frequency and the  
active ratio of the character blinking frequency.  
Figures 25 to 29 show how blinking influences the display  
in different display modes.  
Table 28 Selection of input polarity of HSYNC/VSYNC  
Hp/Vp  
INPUT POLARITY  
active LOW (the default setting)  
active HIGH  
Table 31 Selection of Blinking frequency  
0
1
BF1  
BF0  
BLINKING FREQUENCY (Hz)  
0
0
f
VSYNC ; this is the default setting  
----------------  
16  
Table 29 Selection of Display Mode  
0
1
1
1
0
1
f VSYNC  
S1  
S0  
DISPLAY MODE  
-----------------  
32  
0
0
0
1
Mode 0: this is the No background  
mode. The OSD characters are  
superimposed on the TV video signals  
(see Fig.15).  
f VSYNC  
-----------------  
64  
f VSYNC  
Mode 1: this is the North-West  
-----------------  
128  
shadowing mode; available only with  
character sizes 2V/2H or 4V/4H. The  
shadows are generated as if a light  
source was placed North-West of the  
character (see Figs 16 to 18). The  
shadows generated lie within 18 rows  
in a vertical direction but can be  
extended by one bit to the next  
Table 32 Selection of active ratio of character blinking  
BR1  
BR0  
ACTIVE RATIO  
0
0
1
1
0
1
0
1
3 : 1 (the default setting)  
1 : 1  
1 : 3  
characters first column, in a horizontal  
direction (see Figs 19 and 20).  
reserved  
1
1
0
1
Mode 2: this is the Box shadowing  
mode. A background dot matrix of  
12 × 18 bits surrounds the character  
font; see Figs 21 and 22.  
Mode 3: this is the Frame shadowing  
(raster blanking) mode. A background  
colour fills the whole screen when no  
bit patterns are being displayed (see  
Fig.23). 1 of 16 background colours  
can be selected using Command F;  
the default background colour is Blue.  
1995 Mar 30  
22  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
scan  
line  
M O S  
SP code  
SP code  
SP code  
FB  
R
G
B
I
MLB346  
'M' : Red + Blue + Intensity  
'O' : Blue  
'S' : Red + Green + Intensity  
Bp = 1  
Fig.15 Mode 0: No background mode.  
1995 Mar 30  
23  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
scan line  
: background  
FB  
R
G
B
I
1f  
OSD  
1st character: GREEN  
MRA839  
2nd character: GREEN + BLUE + INTENSITY  
background: RED + BLUE  
Bp = 1 (active HIGH)  
Available only in character sizes 2V/2H or 4V/4H.  
Fig.16 Mode 1: North-West shadowing mode.  
1995 Mar 30  
24  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
0 1 2 3  
4
5 6  
7
8 9 10 11  
0
1
2
3
1V  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
MRA842  
1H  
Fig.17 Example of North-West shadowing mode - size 2V/2H.  
1995 Mar 30  
25  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
0
1
2
3
4
5
6
7
8
9
10 11  
0
1
2V  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
MRA843  
2H  
Fig.18 Example of North-West shadowing mode - size 4V/4H.  
1995 Mar 30  
26  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
10  
11  
12  
13  
14  
15  
16  
17  
Character designed in character ROM  
Character displayed on TV screen  
MRA844  
Fig.19 Example of North-West shadowing mode.  
1995 Mar 30  
27  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
0
1
2
3
4
5
6
7
8
9
10 11  
0 1 2 3 4 5 6 7 8 9 10 11  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
Two characters designed in character ROM separately  
10 11 0 1 2 3 4 5 6 7 8 9 10 11  
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
MRA846  
Two characters displayed on TV screen  
Fig.20 North-West shadowing.  
1995 Mar 30  
28  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
Column 0  
Column 11  
Row 0  
Row 17  
MRA840  
background colour  
Fig.21 Mode 2: Box shadowing mode.  
1995 Mar 30  
29  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
size = 1  
size = 4  
0
1
2
3
4
5
6
7
8
9
10 11  
0
1
2
3
size = 2  
4
size = 3  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
MRA847  
Fig.22 Example of Box shadowing mode.  
1995 Mar 30  
30  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
MRA841  
Background: BLUE  
Fig.23 Mode 3: Frame shadowing mode.  
1995 Mar 30  
31  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
60 Hz  
60 Hz  
VSYNC  
f
14 15 0  
1
2
3
7
8
10 11  
0
1
2
3
7
8
10 11  
14 15  
VSYNC  
16  
Blinking frequency:  
Blinking ratio: 1 : 3  
f
f
VSYNC  
16  
Blinking frequency:  
Blinking ratio: 1 : 1  
VSYNC  
16  
Blinking frequency:  
Blinking ratio: 3 : 1  
f
VSYNC  
32  
Blinking frequency:  
Blinking ratio: 1 : 3  
f
f
VSYNC  
32  
Blinking frequency:  
Blinking ratio: 1 : 1  
VSYNC  
32  
Blinking frequency:  
Blinking ratio: 3 : 1  
MRA848  
Fig.24 Timing diagram of character blinking frequency and blinking ratio.  
SP code  
CR code  
SP code  
CR code  
Character ON  
Character OFF  
MLB397  
Fig.25 Blinking in No background mode.  
32  
1995 Mar 30  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
SP code  
CR code  
SP code  
CR code  
Character ON  
Character OFF  
MLB398  
Fig.26 Blinking in North-West shadowing mode.  
SP code  
CR code  
SP code  
CR code  
Character ON  
Character OFF  
MLB399  
Fig.27 Blinking in Box shadowing mode (Space Code with background).  
33  
1995 Mar 30  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
SP code  
CR code  
SP code  
CR code  
Character ON  
Character OFF  
MLB400  
Fig.28 Blinking in Box shadowing mode (Space Code without background).  
SP code  
CR code  
SP code  
CR code  
Character ON  
Character OFF  
MLB401  
Fig.29 Blinking in Frame shadowing mode.  
34  
1995 Mar 30  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
9.11 Command A  
9.13 Command E  
When output ports P00, P01 and P04 are enabled,  
Command E is used to write data to them.  
Table 33 Command A format  
BS1 BS0  
7
6
5
4
3
2
1
0
0
1
0
1
1
1
0
A/P  
0
0
Table 38 Command E format  
BS1 BS0  
7
6
5
4
3
2
1
0
Command A loads Control Register 4 with data that  
determines the function of pin 2 (P04/ACM(VOB2)).  
0
1
1
1
X
P04  
X
X
P01 P00  
9.14 Command F  
Table 39 Command F format  
Table 34 Selection of P04 or ACM  
A/P  
PIN FUNCTION  
BS1 BS0  
7
6
5
4
3
2
1
0
0
P04 is selected as an output port. Data is  
written to this port using Command E. This is  
also the default setting.  
0
0
0
1
0
0
R
G
B
I
1
ACM function selected; can also be used as the  
5th colour signal.  
This command loads Control Register 5 with data that  
determines the background colour in Frame shadowing  
mode.  
9.12 Commands B, C and D  
9.15 Command G  
Table 35 Command B format  
Table 40 Command G format  
BS1 BS0  
7
6
5
4
3
2
1
0
BS1 BS0  
7
6
5
4
3
2
1
0
0
1
1
0
0
1
V5 V4 V3 V2  
0
0
0
1
0
1
HM3 HT2 FS1 FS0  
Table 36 Command C format  
BS1 BS0  
7
6
5
4
3
2
1
0
Command G is used to enable/disable the OSD horizontal  
stabilization circuit, to select the Half-tone mode and to  
select the character size of the first line.  
0
1
1
0
1
0
V1 V0 H5 H4  
Table 37 Command D format  
In the Half-tone mode, excellent semi-transparent  
half-tone effects can be obtained with OSD frequencies in  
the range 4 to 7 MHz. This mode also enhances the  
background colour with intensity output. For further details  
on the half-tone effect refer to the “The programming guide  
for the PCA8516” report number MICT/AN9402.  
BS1 BS0  
7
6
5
4
3
2
1
0
0
1
1
0
1
1
H3 H2 H1 H0  
These three commands determine the vertical and  
horizontal start positions of the display. 64 vertical and  
64 horizontal start positions can be selected. After a  
master reset, starting positions are not guaranteed and  
therefore must be programmed by the user. The horizontal  
start position (HP) and the vertical start position (VP) may  
be calculated as follows:  
Table 41 Horizontal stabilization circuit control  
HM3  
STATE OF STABILIZATION CIRCUIT  
Stabilization circuit disabled (the default state).  
Horizontal stabilization circuit enabled.  
0
1
HP = [4 × (H5 H0) + 5] × fOSD  
Table 42 Selection of Half-tone mode  
Where (H5 H0) is the decimal value of these 6 bits and  
(H5 H0) 4.  
HT2  
0
HALF-TONE MODE  
Half-tone mode not selected (the default state).  
Half-tone mode available when ACM bit = 1.  
VP = [4 × (V5 V0) ] × number of scan lines  
1
Where (V5 V0) is the decimal value of these 6 bits and  
(V5 V0) 0.  
1995 Mar 30  
35  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
Table 43 Selection of the character size for the first line  
10.2 Combination of character font cells  
Two (or more) character font cells may be combined in a  
horizontal or vertical direction to create a new higher  
resolution pattern.  
FS1  
FS0  
CHARACTER DOT SIZE  
1H/1V (the default size)  
0
0
1
1
0
1
0
1
2H/2V  
3H/3V  
4H/4V  
The combination of two cells in a horizontal direction is  
straight forward and requires no special precautions to be  
taken. When combining character cells in this manner all  
4 Background/Shadowing modes are available. An  
example of combining two character font cells in a  
horizontal direction is shown in Fig.35.  
10 MISCELLANEOUS  
10.1 Space and Carriage Return Codes in different  
Background/Shadowing modes  
However, the combination of two character font cells in a  
vertical direction is more difficult and care must be taken;  
otherwise, the new pattern may be created with gaps in its  
shadowing. An example of a character pattern with gaps is  
shown in Fig.37. Providing the steps listed below are  
followed no problems with shadowing will occur.  
Figures 30 to 34 show the Space Code and Carriage  
Return Code in the 4 different Background/Shadowing  
modes:  
Mode 0: the No background mode. Both the Space  
Code and the Carriage Return Code are displayed as  
transparent (no bit) patterns with the video signal as the  
background. This is shown in Fig.30.  
The line spacing between two rows of characters must  
be programmed to 0H. This procedure is explained in  
Section 9.3.2.  
If the North-West shadowing mode is selected then  
when combining two character cells in a vertical  
direction Row 0 must contain the same bit pattern as  
held in Row 18 of the character directly above it. This is  
shown in Fig.38.  
Mode 1: the North-West shadowing mode. Both codes  
are displayed in the same manner as for Mode 0. This is  
shown in Fig.31.  
Mode 2: the Box shadowing mode. The Space Code is  
displayed as an opaque pattern with a selected  
background colour. This will also be the background  
colour of the character following the Space Code. The  
Carriage Return Code however, is displayed as a  
transparent (no bit) pattern superimposed on the video  
signal. This is shown in Fig.32.  
If North-West shadowing is not required then Row 0  
should contain all zeros.  
The Space Code can also be displayed as a transparent  
pattern on the video signal, and this is shown in Fig.33.  
The choice of whether the Space Code displays an  
opaque pattern or a transparent pattern is mask  
programmable.  
Mode 3: the Frame shadowing mode. The Space Code  
and Carriage Return Code are displayed as transparent  
patterns with background colour. This is shown in  
Fig.34.  
1995 Mar 30  
36  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
0
1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 910 11 0 1 2 3 4 5 6 7 8 910 11 0 1 2 3 4 5 6 7 8 910 11  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
SP code  
CR code  
MRA853  
RED  
BLUE  
Fig.30 Space Code and Carriage Return Code in No Background mode - transparent pattern.  
1995 Mar 30  
37  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
0
1 2 3 4 5 6 7 8 910 11 0 1 2 3 4 5 6 7 8 910 11 0 1 2 3 4 5 6 7 8 910 11 0 1 2 3 4 5 6 7 8 910 11  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
SP code  
CR code  
MRA854  
RED  
BLUE  
BLACK (background)  
GREEN (background)  
Fig.31 Space Code and Carriage Return Code in North-West shadowing mode - transparent pattern.  
1995 Mar 30  
38  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
0
1 2 3 4 5 6 7 8 910 11 0 1 2 3 4 5 6 7 8 910 11 0 1 2 3 4 5 6 7 8 910 11 0 1 2 3 4 5 6 7 8 910 11  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
SP code  
CR code  
MRA855  
RED  
BLUE  
YELLOW(background)  
CYAN (background)  
SP code is an opaque pattern with the background colour of the character it  
intends to change or keep.  
CR code is always a transparent pattern with the video signal as its background.  
SP code can change the background colour of itself and the character/word next to it  
(in this example: from cyan to yellow).  
Fig.32 Space Code and Carriage Return Code in Box shadowing mode.  
1995 Mar 30  
39  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
0
1 2 3 4 5 6 7 8 910 11 0 1 2 3 4 5 6 7 8 910 11 0 1 2 3 4 5 6 7 8 910 11 0 1 2 3 4 5 6 7 8 910 11  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
SP code  
CR code  
MED267  
RED  
BLUE  
YELLOW (background)  
CYAN (background)  
SP code is an transparent pattern with no background colour.  
CR code is always a transparent pattern with the video signal as its background.  
SP code can change the background colour the character/word next to it  
(in this example : from cyan to yellow).  
Fig.33 Space Code and Carriage Return Code in Box shadowing mode.  
1995 Mar 30  
40  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
0
1 2 3 4 5 6 7 8 910 11 0 1 2 3 4 5 6 7 8 910 11 0 1 2 3 4 5 6 7 8 910 11 0 1 2 3 4 5 6 7 8 910 11  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
SP code  
CR code  
MRA856  
RED  
BLUE  
YELLOW (background)  
SP and CR codes are both transparent patterns coloured the same  
as the background colour.  
Fig.34 Space Code and Carriage Return Code in Frame shadowing mode.  
1995 Mar 30  
41  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
0
1
2
3
4
5
6
7
8
9
10 11  
0
1
2
3
4
5
6
7
8
9
10 11  
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
10  
11  
12  
13  
14  
15  
16  
17  
MRA849  
Fig.35 Combination of two character cells in a horizontal direction to create a new font.  
1995 Mar 30  
42  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
0
1
2
3
4
5
6
7
8
9
10 11  
0
1
2
3
4
5
6
7
8
9
10 11  
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
10  
11  
12  
13  
14  
15  
16  
17  
MRA850  
Fig.36 Combination of two character cells in a horizontal direction to create a new font  
North-West shadowing mode.  
1995 Mar 30  
43  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
0
1 2 3 4 5 6 7 8 9 10 11  
0
1 2 3 4 5 6 7 8 9 10 11  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
0
cell boundary  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
If Row 0 of the lower  
character does not contain  
the bit pattern of Row 18  
of the upper character  
in North West shadowing  
mode, a gap in the  
8
9
shadow might occur.  
10  
11  
12  
13  
14  
15  
16  
17  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
0
1 2 3 4 5 6 7 8 9 10 11  
MRA851  
0
1 2 3 4 5 6 7 8 9 10 11  
Character pattern stored in the ROM/RAM  
Character pattern displayed on the screen  
Fig.37 Combination of two characters in a vertical direction - with gap.  
1995 Mar 30  
44  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
0
1 2 3 4 5 6 7 8 9 10 11  
0
1 2 3 4 5 6 7 8 9 10 11  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
0
cell boundary  
1
2
0
1
2
3
4
5
6
7
8
Row 0 of the lower character  
should contain the bit  
pattern of Row 18  
of the upper character in  
North West shadowing  
mode to avoid a 'break'  
in the shadow  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
0
1
2
3
4
5
6
7
8
9
10 11  
MRA852  
0
1 2 3 4 5 6 7 8 9 10 11  
Character pattern stored in the ROM/RAM  
Character pattern displayed on the screen  
Fig.38 Combination of two characters in a vertical direction - with no gap.  
1995 Mar 30  
45  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
The OSD clock is enabled/disabled using Command 7;  
see Section 9.8. When the OSD clock is disabled, the  
oscillator remains active, therefore the transient time from  
the OSD clock start-up to locking into the external HSYNC  
signal is reduced. As the on-chip oscillator is always active  
after power-on, when the OSD clock is enabled no large  
currents flow (as for RC or LC oscillators); therefore  
radiated noise is dramatically reduced.  
11 OSD CLOCK  
The on-chip clock generator comprises Phase-Locked  
Loop circuitry and is shown in Fig.39. The frequency of the  
OSD clock is programmable and is determined by the  
contents of the 6-bit counter, which is loaded using  
Command 6. The OSD clock frequency is calculated as  
shown below; frequencies within the range 4 to 14 MHz  
can be selected.  
Character width is a function of the OSD clock frequency;  
decreasing fOSD increases the width of the characters.  
Therefore, for optimum character display quality the  
choice of the OSD clock frequency is important; this is  
explained in Chapter 12.  
fOSD = fHSYNC × 16 × (PLLCN)  
Where: 16 < (PLLCN) < 40; (PLLCN) is the decimal value  
held in the 6-bit counter.  
The Voltage Controlled Oscillator (VCO) is synchronized  
to the HIGH-to-LOW edge of f1 (see Fig.39) which is  
always on the trailing edge of fHSYNC. The programmable  
active level detector will pass the HSYNC signal if it is  
programmed as active HIGH or invert the HSYNC signal if  
it is programmed as active LOW. The 4-bit prescaler  
increments or decrements the output of the VCO in steps  
of (16 × fHSYNC).  
C
HSYNC  
f
1
R
1
ACTIVE  
LEVEL  
DETECTOR  
PHASE/  
FREQUENCY  
DETECTOR  
CHARGE PUMP  
AND  
LOOP FILTER  
VOLTAGE  
CONTROLLED  
OSCILLATOR  
C
1
divided by N  
PROGRAMMABLE  
6-BIT COUNTER  
4-BIT  
PRESCALER  
f
PLL  
f
OSD  
MLC349  
OSD disable  
Fig.39 Block diagram of OSD oscillator.  
1995 Mar 30  
46  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
12 OSD CLOCK SELECTION FOR DIFFERENT TV  
STANDARDS  
12.2 Maximum number of characters per row  
The number of characters per row is a function of the OSD  
clock frequency and the TV standard used.  
12.1 OSD frequency  
With reference to Fig.40 the active video signal period of a  
horizontal line is 53.5 µs. However, in order to reduce  
jittering at the screen edge, overscan is normally applied  
by the TV manufacturer and this reduces the visible video  
signal period to 48.15 µs. The examples given below show  
how the number of characters per row and the character  
width may be obtained for the NTSC 525LPF/60 Hz  
TV standard using different OSD clock frequencies.  
The PCA8516 supports four different TV scanning  
standards. To obtain the best quality character display,  
each TV standard requires a different OSD frequency. To  
cater for this requirement the PCA8516 provides a  
programmable OSD clock that generates frequencies in  
the range 4 to 14 MHz. The three examples given below  
illustrate the OSD clock requirements for different TV  
scanning standards.  
12.2.1 NTSC 525LPF/60 Hz; fOSD = 6 MHz  
12.1.1 NTSC 525LPF/60 Hz and PAL 625LPF/50 Hz  
As fOSD = 6 MHz: tOSD = 0.1666 µs.  
The OSD clock is applied directly to the OSD circuitry and  
can take any value within the 4 to 14 MHz frequency  
range. The NTSC 525LPF/60 Hz standard when used with  
a 19 inch screen and an OSD clock of 8 MHz, produces a  
character dot width of 13.2 mm.  
The number of visible dots on one horizontal line is 290  
(48.15 µs/0.1666 µs). However, as the starting position  
of the first character dot is approximately 45 dots after  
HSYNC, the actual visible number of dots per line is 245.  
Each character is composed of a 12 × 18 dot matrix;  
therefore the maximum number of characters on one  
line is 20 (245/12).  
12.1.2 NTSC 1050LPF/60 Hz  
With this standard, in order to obtain the same character  
dot width as in the NTSC 525LPF/60 Hz standard that  
uses an OSD clock of 7 MHz; the OSD clock must be  
doubled to 14 MHz because the horizontal frequency is  
doubled.  
If a 19 inch TV screen is used, the width of a horizontal  
line is approximately 370 mm and this gives a character  
width of 18.5 mm.  
12.2.2 NTSC 525LPF/60 Hz; fOSD = 10 MHz  
To keep the same character height as that in the  
NTSC 525LPF/60 Hz standard, HSYNC is also divided by  
two, internally.  
As fOSD = 10 MHz: tOSD = 0.1 µs.  
The number of visible dots on one horizontal line is 481  
(48.15 µs/0.1 µs). Allowing for the initial starting position  
of 45 dots, the actual number of visible dots per line is  
436.  
12.1.3 PAL 1250LPF/100 Hz  
With this standard, in order to obtain the same character  
dot width as in the PAL 625LPF/50 Hz standard; the OSD  
clock must be doubled.  
Each character is composed of a 12 × 18 dot matrix;  
therefore the maximum number of characters on one  
line is 36.  
HSYNC is applied directly to the OSD circuitry without  
being divided by two as both the horizontal frequency  
(1250 Hz) and the vertical frequency (100 Hz) are  
doubled.  
With a 19 inch TV screen, the width of a horizontal line  
is approximately 370 mm and the character width is  
10.3 mm.  
1995 Mar 30  
47  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
12.3 Maximum number of rows per frame  
The number of rows per frame is a function of the number  
of active lines per display field and the number of vertical  
dots in the character matrix (which is 18). The number of  
rows per frame (N) is calculated as shown below.  
number of active lines per field  
N =  
---------------------------------------------------------------------------------  
18  
The four examples shown below illustrate how the  
maximum number of rows per frame is obtained for each  
TV scanning standard.  
12.3.1 NTSC 525LPF/60 HZ  
The number of active lines per field for this standard is  
between 241.5 and 249H (see Fig.41). If the value of 241  
is used then the maximum number of rows per frame is 13.  
12.3.2 PAL 625LPF/50 HZ  
The number of active lines per field for this standard is 280.  
Therefore, the maximum number of rows per frame is 15.  
12.3.3 NTSC 1050LPF/60 HZ  
For this standard the number of active lines per frame is  
double that of the NTSC 525LPF/60 Hz standard.  
However, as HSYNC is divided by two internally, the  
maximum number of rows per frame is also 13.  
12.3.4 PAL 1250LPF/100 HZ  
With this standard it is not necessary to divide HSYNC by  
two as both the horizontal and vertical frequency are  
doubled. The maximum number of rows per frame is 15.  
1995 Mar 30  
48  
blacker than  
black, 100%  
blanking level  
75%  
black,  
67.5 2.5%  
composite  
video  
signal  
white,  
12.5 2.5%  
0
retrace  
begins  
blanking  
begins  
trace  
RIGHT  
horizontal  
deflection  
sawtooth  
0
retrace  
blanking  
ends  
LEFT  
MRA862  
retrace ends  
ahdnbok,uflapegwidt  
Fig.40 Composite video signal for three horizontal lines compared to three horizontal deflection sawteeth (NTSC 525LPF/60 Hz).  
equalizing  
pulse  
interval  
vertical  
sync pulse  
interval  
equalizing  
pulse  
interval  
blacker  
than black  
H
H
H
0.5 H  
3H  
H
0.5 H  
H
100%  
black  
level  
(75 2.5)%  
3H  
3H  
white  
level  
(12.5 2.5)%  
0%  
zero  
carrier  
0.03 V  
0
vertical blanking 0.05 V  
bottom of  
picture  
start of  
next field  
picture  
horizontal  
blanking  
second field, 262.5 H  
16.666 s or 1/60 s  
first field, 262.5 H  
16.666 s or 1/60 s  
µ
µ
RIGHT  
horizontal  
deflection  
sawtooth  
LEFT  
vertical blanking period  
13 to 21 H (825.5 to 1335.5 s)  
active lines  
241.5 to 249.5 H  
active lines  
241.5 to 249.5 H  
vertical blanking period  
13 to 21 H  
µ
MRA863  
second field  
vertical deflection  
sawtooth  
BOTTOM  
trace  
retrace  
vertical  
deflection  
sawtooth  
trace  
blanking  
begins  
retrace  
500 to 750  
µ
s
first field  
vertical deflection  
sawtooth  
blanking  
ends  
TOP  
ahdnbok,uflapegwidt  
Fig.41 Vertical synchronization and blanking pulse intervals for one frame (NTSC 525LPF/60 Hz).  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
13 OUTPUT PORTS  
The three output ports P00, P01 and P04 can be  
configured using one of three mask options. The three  
output mask options are specified below:  
Option 1 Standard output with switched pull-up current  
source. See Figs 42 and 45.  
Option 2 Open-drain output. See Figs 43 and 46.  
Option 3 Push-pull output. See Figs 44 and 47.  
The state of each output port after a Power-on-reset can  
also be selected using the mask options. All the available  
mask options for the PCA8516 are given in Section 13.1.  
Port output register  
V
DD  
write pulse  
TR2  
current  
source  
TR3  
TR4  
data bus  
D
MQ  
D
SQ  
SQ  
100 µA typical  
Pin  
TR1  
V
SS  
MBE128  
read pulse (testing use only)  
Fig.42 Standard output with switched pull-up current source (Option 1 - P00 and P01).  
1995 Mar 30  
51  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
Port output register  
write pulse  
data bus  
V
DD  
D
D
MQ  
SQ  
SQ  
Pin  
TR1  
V
SS  
MBE129  
read pulse (testing use only)  
Fig.43 Open-drain output (Option 2 - P00 and P01).  
Port output register  
write pulse  
V
DD  
TR2  
TR3  
TR4  
current  
source  
data bus  
D
MQ  
D
SQ  
SQ  
100 µA typical  
Pin  
TR1  
V
SS  
MBE130  
read pulse (testing use only)  
Fig.44 Push-pull output (Option 3 - P00 and P01).  
52  
1995 Mar 30  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
ACM output from OSD circuit  
ACM output enable (A/P bit)  
V
DD  
Port output register  
write pulse  
TR2  
current  
source  
TR3  
TR4  
data bus  
100 µA typical  
D
MQ  
D
SQ  
SQ  
Pin  
TR1  
V
SS  
MLB353 - 1  
read pulse (testing use only)  
Fig.45 Standard output with switched pull-up current source (Option 1 - P04).  
ACM output from OSD circuit  
ACM output enable (A/P bit)  
Port output register  
write pulse  
V
DD  
data bus  
D
MQ  
D
SQ  
Pin  
TR1  
V
SS  
MLB354 - 1  
read pulse (testing use only)  
Fig.46 Open-drain output (Option 2 - P04).  
53  
1995 Mar 30  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
ACM output from OSD circuit  
ACM output enable (A/P bit)  
V
DD  
Port output register  
write pulse  
TR2  
current  
source  
TR3  
TR4  
data bus  
100 µA typical  
D
MQ  
D
SQ  
Pin  
TR1  
V
SS  
MLB355 - 1  
read pulse (testing use only)  
Fig.47 Push-pull output (Option 3 - P04).  
1995 Mar 30  
54  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
13.1 Mask options  
Table 47 Customer selected mask options  
Tables 44 to 48 list the available mask options for the  
PCA8516. Table 47 is intended for customer use when  
ordering the device.  
FEATURE  
OPTION  
Output port configurations  
P00  
P01  
P04  
Table 44 Port configuration options  
OPTION  
1, 2 or 3  
1, 2 or 3  
1, 2 or 3  
PORT  
P00  
Port state after Power-on-reset  
P01  
P00  
P01  
P04  
P04  
Table 45 Port state after Power-on-reset  
Oscillator tranconductance  
OPTION  
HIGH  
PORT  
P00  
LOW  
MEDIUM  
HIGH  
HIGH  
P01  
HIGH or LOW  
P04  
Space Code pattern  
Transparent  
Table 46 Space Code options  
Opaque  
OPTION  
SHADOWING MODE  
Transparent  
pattern  
Available in Box shadowing mode  
only; see Fig.33.  
Opaque pattern  
Available in Box shadowing mode  
only; see Fig.32.  
Table 48 System oscillator transconductance options  
TRANSCONDUCTANCE  
(mS)  
fOSC - QUARTZ CRYSTAL  
(MHz)  
fOSC - CERAMIC RESONATOR  
(MHz)  
OPTION  
LOW  
0.7  
1 to 6  
4 to 12  
MEDIUM  
HIGH  
1.6  
4.5  
1 to 6  
3 to 16  
1995 Mar 30  
55  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
14 DEFAULT VALUES AFTER POWER-ON-RESET  
The default values of registers after a Power-on-reset are specified in Table 49. All other settings must be initialized by  
the user after a Power-on-reset.  
Table 49 Default values  
STATE AFTER  
REGISTER  
BIT  
DESCRIPTION  
RESET  
User directly controllable registers  
Control Register 1  
M1  
M0  
Bp  
0
0
1
Scanning mode selection bits. Conventional  
NTSC 525LPF/60 Hz and/or PAL 625LPF/50 Hz selected.  
Polarity control bit; the output polarities of FB, ACM, R, G, B and  
I are active HIGH.  
EN  
Hp  
0
0
0
0
1
0
0
0
0
0
OSD enable/disable control bit; the OSD is disabled.  
Control Register 2  
Control Register 3  
HSYNC input polarity control bit; the input polarity is active LOW.  
VSYNC input polarity control bit; the input polarity is active LOW.  
Vp  
S1  
Display mode selection bits; the North-West shadowing mode is  
selected.  
S0  
BF1  
BF0  
BR1  
BR0  
A/P  
Blinking frequency control bits. The blinking frequency is set to  
fVSYNC/16 Hz.  
Active ratio of blinking frequency control bits. The active ratio is  
set to 3 : 1.  
Control Register 4  
Control Register 5  
Port control bit. Pin 2 (P04/ACM/VOB2) is selected as an output  
port pin.  
R
G
0
0
1
0
0
0
Background colour selection bits in Frame shadowing mode; the  
default colour is Blue.  
B
I
BS1  
BS0  
Command Bank selection bits. Command Bank 00 is selected.  
User indirectly controllable registers  
ACM  
ACM  
B
0
1
0
0
0
0
0
0
The ACM output is LOW unless changed by the Space Code.  
Background colour  
The Background colour selected is Blue unless changed by the  
Space Code.  
R
G
I
Character size  
End of display  
T4  
T3  
T0  
The default character size is 1V/1H. A different value can be  
selected by using the Carriage Return Code.  
Will continue to display next character (if the OSD clock is  
enabled).  
1995 Mar 30  
56  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
15 LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
VDD  
PARAMETER  
MIN.  
0.5  
MAX.  
+7.0  
UNIT  
supply voltage  
V
V
VI  
all input voltages  
0.5  
VDD + 0.5  
5.0  
IOH  
IOL  
maximum source current for all port lines  
maximum sink current for all port lines  
total power dissipation  
mA  
mA  
mW  
°C  
5.0  
Ptot  
Tstg  
Tamb  
500  
storage temperature  
55  
20  
+125  
+70  
operating ambient temperature  
°C  
1995 Mar 30  
57  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
16 DC CHARACTERISTICS  
VDD = 5 V ±10%; VSS = 0 V; Tamb = 20 to +70 °C. All voltages with respect to VSS unless otherwise specified.  
SYMBOL  
PARAMETER  
operating supply voltage  
operating supply current  
CONDITIONS  
MIN.  
4.5  
TYP. MAX. UNIT  
VDD  
IDD  
5.0  
5
5.5  
10  
V
VDD = 5 V; fxtal = 3 MHz;  
mA  
f
OSD = 10 MHz  
DD = 5 V; fxtal = 3 MHz;  
fOSD = Stop  
DD = 5 V; fxtal = 3 MHz;  
fOSD = Stop  
RESET, TEST1, TEST2, HSYNC, VSYNC, E and HIO/ I2C inputs  
V
7
1
14  
2
mA  
mA  
V
VIL  
VIH  
ILI  
LOW level input voltage  
HIGH level input voltage  
input leakage current  
0
0.3VDD  
VDD  
V
0.7VDD  
±0.01  
V
VSS < VI < VDD  
±0.20 ±10  
µA  
Ports P00 to P03 (with combined functions) inputs  
VIL  
VIH  
ILI  
LOW level input voltage  
HIGH level input voltage  
input leakage current  
0
0.3VDD  
V
0.7VDD  
VDD  
V
VSS < VI < VDD  
±10  
µA  
Ports P00 to P03 (with combined functions) outputs  
IOL  
LOW level output sink current  
VDD = 5 V; VO = 0.4 V  
VDD = 5 V; VO = 0.7VDD  
VDD = 5 V; VO = VSS  
5.0  
40  
12.0  
mA  
µA  
IOH1  
HIGH level pull-up output source current  
100  
140 400  
µA  
IOH2  
HIGH level push-pull output source current VDD = 5 V; VO = VDD 0.4 V 3.0  
7.0  
mA  
SDA/SIN and SCK/SCLK inputs  
VIL  
VIH  
LOW level input voltage  
HIGH level input voltage  
0
0.3VDD  
VDD  
V
V
0.7VDD  
SDA/SIN and SCK/SCLK outputs  
IOL  
LOW level open drain sink current  
VDD = 5 V; VO = 0.4 V  
3.0  
mA  
R, G, B, I, FB and P04/ACM outputs  
IOL  
LOW level push-pull output sink current  
HIGH level pull-up output source current  
VDD = 5 V; VO = 0.4 V  
VDD = 5 V; VO = 0.7VDD  
3.2  
40  
5.5  
mA  
µA  
IOH1  
100  
V
DD = 5 V; VO = VSS  
140 400  
2.4  
µA  
IOH2  
HIGH level push-pull output source current VDD = 5 V; VO = VDD 0.4 V 1.6  
mA  
1995 Mar 30  
58  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
17 AC CHARACTERISTICS  
V
DD = 5 V ±10%, VSS= 0 V.  
SYMBOL PARAMETER  
fxtal  
CONDITIONS  
MIN.  
0.5  
TYP.  
3.0  
MAX.  
6.0  
UNIT  
MHz  
crystal oscillator frequency  
OSD oscillator frequency  
note 1  
fOSD  
1V/1H scanning mode  
4.0  
4.0  
7.0  
10.0  
14.0  
MHz  
MHz  
1V/2H and 2V/2H scanning  
modes  
12.0  
COSD  
ROSD  
external capacitance at pin C  
external resistance at pin C  
0.4  
5.0  
4.0  
µF  
kΩ  
15.0  
Note  
1. The minimum frequency should be 3 times greater than the maximum I2C-bus frequency or the HIO frequency used  
in the system.  
1995 Mar 30  
59  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
18 PACKAGE OUTLINES  
SDIP24: plastic shrink dual in-line package; 24 leads (400 mil)  
SOT234-1  
D
M
E
A
2
A
A
L
1
c
(e )  
w M  
e
Z
1
b
1
M
H
b
24  
13  
pin 1 index  
E
1
12  
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
max.  
A
A
2
max.  
1
(1)  
(1)  
Z
w
UNIT  
b
b
c
D
E
e
e
L
M
M
1
1
E
H
min.  
max.  
1.3  
0.8  
0.53  
0.40  
0.32  
0.23  
22.3  
21.4  
9.1  
8.7  
3.2  
2.8  
10.7  
10.2  
12.2  
10.5  
mm  
4.7  
0.51  
3.8  
1.778  
10.16  
0.18  
1.6  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-02-04  
SOT234-1  
1995 Mar 30  
60  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
SO24: plastic small outline package; 24 leads; body width 7.5 mm  
SOT137-1  
D
E
A
X
c
H
v
M
A
E
y
Z
24  
13  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
12  
w
detail X  
e
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.30  
0.10  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
15.6  
15.2  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
mm  
2.65  
0.25  
0.01  
1.27  
0.050  
1.4  
0.25 0.25  
0.01  
0.1  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.61  
0.014 0.009 0.60  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches 0.10  
0.055  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-01-24  
97-05-22  
SOT137-1  
075E05  
MS-013AD  
1995 Mar 30  
61  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
Several techniques exist for reflowing; for example,  
19 SOLDERING  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
19.1 Introduction  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
19.3.2 WAVE SOLDERING  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
Wave soldering techniques can be used for all SO  
packages if the following conditions are observed:  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
19.2 DIP  
19.2.1 SOLDERING BY DIPPING OR BY WAVE  
The longitudinal axis of the package footprint must be  
parallel to the solder flow.  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joint for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
The package footprint must incorporate solder thieves at  
the downstream end.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg max). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
19.2.2 REPAIRING SOLDERED JOINTS  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Apply a low voltage soldering iron (less than 24 V) to the  
lead(s) of the package, below the seating plane or not  
more than 2 mm above it. If the temperature of the  
soldering iron bit is less than 300 °C it may remain in  
contact for up to 10 seconds. If the bit temperature is  
between 300 and 400 °C, contact may be up to 5 seconds.  
19.3.3 REPAIRING SOLDERED JOINTS  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
19.3 SO  
19.3.1 REFLOW SOLDERING  
Reflow soldering techniques are suitable for all SO  
packages.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
1995 Mar 30  
62  
Philips Semiconductors  
Preliminary specification  
Stand-alone OSD  
PCA8516  
20 DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
21 LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
22 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
1995 Mar 30  
63  
Philips Semiconductors – a worldwide company  
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)  
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Pakistan: Philips Electrical Industries of Pakistan Ltd.,  
Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton,  
KARACHI 75600, Tel. (021)587 4641-49,  
Fax. (021)577035/5874546.  
Tel. (02)805 4455, Fax. (02)805 4466  
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474  
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,  
Tel. (01)60 101-1236, Fax. (01)60 101-1211  
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,  
Portugal: PHILIPS PORTUGUESA, S.A.,  
Tel. (31)40 783 749, Fax. (31)40 788 399  
Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores,  
Apartado 300, 2795 LINDA-A-VELHA,  
Tel. (01)4163160/4163333, Fax. (01)4163174/4163366.  
Brazil: Rua do Rocio 220 - 5th floor, Suite 51,  
CEP: 04552-903-SÃO PAULO-SP, Brazil.  
P.O. Box 7383 (01064-970).  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. (65)350 2000, Fax. (65)251 6500  
South Africa: S.A. PHILIPS Pty Ltd.,  
Tel. (011)821-2333, Fax. (011)829-1849  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS:  
Tel. (800) 234-7381, Fax. (708) 296-8556  
Chile: Av. Santa Maria 0760, SANTIAGO,  
195-215 Main Road Martindale, 2092 JOHANNESBURG,  
P.O. Box 7430 Johannesburg 2000,  
Tel. (011)470-5911, Fax. (011)470-5494.  
Tel. (02)773 816, Fax. (02)777 6730  
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17,  
77621 BOGOTA, Tel. (571)249 7624/(571)217 4609,  
Fax. (571)217 4549  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. (032)88 2636, Fax. (031)57 1949  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. (9)0-50261, Fax. (9)0-520971  
France: 4 Rue du Port-aux-Vins, BP317,  
92156 SURESNES Cedex,  
Tel. (01)4099 6161, Fax. (01)4099 6427  
Germany: P.O. Box 10 63 23, 20043 HAMBURG,  
Tel. (040)3296-0, Fax. (040)3296 213.  
Greece: No. 15, 25th March Street, GR 17778 TAVROS,  
Tel. (01)4894 339/4894 911, Fax. (01)4814 240  
Hong Kong: PHILIPS HONG KONG Ltd., 15/F Philips Ind. Bldg.,  
24-28 Kung Yip St., KWAI CHUNG, N.T.,  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. (03)301 6312, Fax. (03)301 42 43  
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,  
Tel. (0)8-632 2000, Fax. (0)8-632 2745  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. (01)488 2211, Fax. (01)481 77 30  
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West  
Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978,  
TAIPEI 100, Tel. (02)388 7666, Fax. (02)382 4382.  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong,  
Bangkok 10260, THAILAND,  
Tel. (662)398-0141, Fax. (662)398-3319.  
Turkey:Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. (0212)279 2770, Fax. (0212)282 6707  
United Kingdom: Philips Semiconductors LTD.,  
276 Bath Road, Hayes, MIDDLESEX UB3 5BX,  
Tel. (0181)730-5000, Fax. (0181)754-8421  
United States:811 East Arques Avenue, SUNNYVALE,  
CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556  
Uruguay: Coronel Mora 433, MONTEVIDEO,  
Tel. (852)424 5121, Fax. (852)480 6960/480 6009  
India: Philips INDIA Ltd, Shivsagar Estate, A Block ,  
Dr. Annie Besant Rd. Worli, Bombay 400 018  
Tel. (022)4938 541, Fax. (022)4938 722  
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,  
P.O. Box 4252, JAKARTA 12950,  
Tel. (02)70-4044, Fax. (02)92 0601  
Tel. (021)5201 122, Fax. (021)5205 189  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Internet: http://www.semiconductors.philips.com/ps/  
Tel. (01)640 000, Fax. (01)640 200  
Italy: PHILIPS SEMICONDUCTORS S.r.l.,  
Piazza IV Novembre 3, 20124 MILANO,  
Tel. (0039)2 6752 2531, Fax. (0039)2 6752 2557  
For all other countries apply to: Philips Semiconductors,  
International Marketing and Sales, Building BE-p,  
P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands,  
Telex 35000 phtcnl, Fax. +31-40-724825  
Japan: Philips Bldg 13-37, Kohnan2-chome, Minato-ku, TOKYO 108,  
Tel. (03)3740 5028, Fax. (03)3740 0580  
Korea: (Republic of) Philips House, 260-199 Itaewon-dong,  
SCD38  
© Philips Electronics N.V. 1995  
All rights are reserved. Reproduction in whole or in part is prohibited without the  
prior written consent of the copyright owner.  
Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,  
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TX 79905,  
Tel. 9-5(800)234-7381, Fax. (708)296-8556  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB  
The information presented in this document does not form part of any quotation  
or contract, is believed to be accurate and reliable and may be changed without  
notice. No liability will be accepted by the publisher for any consequence of its  
use. Publication thereof does not convey nor imply any license under patent- or  
other industrial or intellectual property rights.  
Tel. (040)783749, Fax. (040)788399  
Printed in The Netherlands  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. (09)849-4160, Fax. (09)849-7811  
453061/1500/01/pp64  
Date of release: 1995 Mar 30  
9397 750 00024  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. (022)74 8000, Fax. (022)74 8341  
Document order number:  
Philips Semiconductors  

相关型号:

PCA85176

Universal LCD driver for low multiplex rates
NXP

PCA85176H

LIQUID CRYSTAL DISPLAY DRIVER
NXP

PCA85176H-Q900

Universal LCD driver for low multiplex rates
NXP

PCA85176H/Q900/1

LIQUID CRYSTAL DISPLAY DRIVER, PQFP64, 10 X 10 MM, 1 MM HEIGHT, PLASTIC, MS-026, SOT357-1, TQFP-64
NXP

PCA85176H/Q900/1,5

PCA85176 - 40 x 4 automotive LCD driver for low multiplex rates QFP 64-Pin
NXP

PCA85176T

LIQUID CRYSTAL DISPLAY DRIVER
NXP

PCA85176T-Q900

Universal LCD driver for low multiplex rates
NXP

PCA85176T/Q900

IC LIQUID CRYSTAL DISPLAY DRIVER, PDSO56, 6.10 MM, PLASTIC, MO-153,SOT364-1, TSSOP-56, Display Driver
NXP

PCA85176T/Q900/1

LIQUID CRYSTAL DISPLAY DRIVER, PDSO56, 6.10 MM, PLASTIC, MO-153, SOT364-1, TSSOP-56
NXP

PCA85176T/Q900/1,1

PCA85176 - 40 x 4 automotive LCD driver for low multiplex rates TSSOP 56-Pin
NXP

PCA8521

Infrared remote control transmitter RC5
NXP

PCA8521AT

Remote Control Transmitter IC, CMOS, PDSO16
PHILIPS