PCF8533U [NXP]

Universal LCD driver for low multiplex rates; 低复用率的通用LCD驱动器
PCF8533U
型号: PCF8533U
厂家: NXP    NXP
描述:

Universal LCD driver for low multiplex rates
低复用率的通用LCD驱动器

驱动器 CD
文件: 总36页 (文件大小:162K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
PCF8533  
Universal LCD driver for low  
multiplex rates  
Product specification  
1999 Jul 30  
Supersedes data of 1999 Mar 12  
File under Integrated Circuits, IC12  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
CONTENTS  
7
CHARACTERISTICS OF THE I2C-BUS  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
7.10  
Bit transfer  
1
2
3
4
5
6
FEATURES  
START and STOP conditions  
System configuration  
Acknowledge  
PCF8533 I2C-bus controller  
Input filters  
I2C-bus protocol  
Command decoder  
Display controller  
Cascaded operation  
GENERAL DESCRIPTION  
ORDERING INFORMATION  
BLOCK DIAGRAM  
PINNING  
FUNCTIONAL DESCRIPTION  
6.1  
6.2  
6.3  
6.4  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.5  
6.5.1  
6.5.2  
6.6  
6.7  
6.8  
6.9  
6.10  
6.11  
6.12  
6.13  
6.14  
6.15  
Power-on reset  
LCD bias generator  
LCD voltage selector  
LCD drive mode waveforms  
Static drive mode  
1 : 2 multiplex drive mode  
1 : 3 multiplex drive mode  
1 : 4 multiplex drive mode  
Oscillator  
Internal clock  
External clock  
Timing  
Display register  
8
LIMITING VALUES  
9
HANDLING  
10  
11  
12  
13  
14  
15  
16  
17  
18  
DC CHARACTERISTICS  
AC CHARACTERISTICS  
BONDING PAD LOCATIONS  
DEVICE PROTECTION  
TRAY INFORMATION  
DEFINITIONS  
LIFE SUPPORT APPLICATIONS  
PURCHASE OF PHILIPS I2C COMPONENTS  
BARE DIE DISCLAIMER  
Segment outputs  
Backplane outputs  
Display RAM  
Data pointer  
Subaddress counter  
Output bank selector  
Input bank selector  
Blinker  
1999 Jul 30  
2
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
1
FEATURES  
Single-chip LCD controller/driver  
Selectable backplane drive configuration: static or 2/3/4  
backplane multiplexing  
Selectable display bias configuration: static, 12 or 13  
Internal LCD bias generation with voltage-follower  
buffers  
2
GENERAL DESCRIPTION  
The PCF8533 is a peripheral device which interfaces to  
almost any Liquid Crystal Display (LCD) with low multiplex  
rates. It generates the drive signals for any static or  
multiplexed LCD containing up to four backplanes and up  
to 80 segments and can easily be cascaded for larger LCD  
applications. The PCF8533 is compatible with most  
microprocessors/microcontrollers and communicates via a  
two-line bidirectional I2C-bus. Communication overheads  
are minimized by a display RAM with auto-incremented  
addressing, by hardware subaddressing and by display  
memory switching (static and duplex drive modes).  
80 segment drives: up to forty 8-segment numeric  
characters; up to twentyone 15-segment alphanumeric  
characters; or any graphics of up to 320 elements  
80 × 4-bit RAM for display data storage  
Auto-incremented display data loading across device  
subaddress boundaries  
Display memory bank switching in static and duplex  
drive modes  
Versatile blinking modes  
LCD and logic supplies may be separated  
Wide power supply range: from 1.8 to 5.5 V  
Wide LCD supply range: from 2.5 V for low threshold  
LCDs and up to 6.5 V for guest-host LCDs and high  
threshold (automobile) twisted nematic LCDs  
Low power consumption  
400 kHz I2C-bus interface  
TTL/CMOS compatible  
Compatible with 4-bit, 8-bit or 16-bit  
microprocessors/microcontrollers  
May be cascaded for large LCD applications (up to  
5120 segments possible)  
No external components  
Compatible with Chip-On-Glass (COG) technology  
Manufactured in silicon gate CMOS process.  
3
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
VERSION  
PCF8533U  
chip with bumps in tray  
1999 Jul 30  
3
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
BP0 BP1 BP2 BP3  
S0 to S79  
80  
V
BACKPLANE  
OUTPUTS  
LCD  
DISPLAY SEGMENT OUTPUTS  
DISPLAY REGISTER  
LCD  
VOLTAGE  
SELECTOR  
OUTPUT BANK SELECT  
AND BLINK CONTROL  
DISPLAY  
CONTROL  
LCD BIAS  
GENERATOR  
V
SS  
DISPLAY  
RAM  
PCF8533  
CLK  
BLINKER  
CLOCK SELECT  
TIMEBASE  
AND TIMING  
SYNC  
COMMAND  
DECODE  
DATA POINTER AND  
AUTO INCREMENT  
WRITE DATA  
CONTROL  
POWER-ON  
RESET  
OSC  
OSCILLATOR  
SCL  
SDA  
2
INPUT  
FILTERS  
SUBADDRESS  
COUNTER  
I C-BUS  
CONTROLLER  
MGL743  
A0 A1 A2  
SA0  
SDAACK  
V
DD  
Fig.1 Block diagram.  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
5
PINNING  
SYMBOL  
PAD  
DESCRIPTION  
SDAACK  
1
I2C-bus acknowledge output; note 1  
I2C-bus serial data input; note 1  
I2C-bus serial clock input  
external clock input/output  
supply voltage  
SDA  
SCL  
CLK  
VDD  
2 and 3  
4 and 5  
6
7
SYNC  
OSC  
8
cascade synchronization input/output  
internal oscillator enable input  
subaddress inputs  
9
A0, A1 and A2  
10, 11 and 12  
SA0  
13  
I2C-bus slave address input; bit 0  
VSS  
14  
15  
logic ground  
VLCD  
LCD supply voltage  
BP0, BP1, BP2 and BP3  
S0 to S79  
17, 99, 16 and 98  
18 to 97  
LCD backplane outputs  
LCD segment outputs  
Note  
1. For most applications SDA and SDAACK will be shorted together; see Chapter 7.  
6
FUNCTIONAL DESCRIPTION  
The PCF8533 is a versatile peripheral device designed to interface any microprocessor/microcontroller to a wide variety  
of LCDs. It can directly drive any static or multiplexed LCD containing up to four backplanes and up to 80 segments.  
The display configurations possible with the PCF8533 depend on the number of active backplane outputs required; a  
selection of display configurations is given in Table 1.  
All of the display configurations given in Table 1 can be implemented in the typical system shown in Fig.2.  
The host microprocessor/microcontroller maintains the 2-line I2C-bus communication channel with the PCF8533.  
The internal oscillator is selected by connecting pad OSC to VSS. The appropriate biasing voltages for the multiplexed  
LCD waveforms are generated internally. The only other connections required to complete the system are to the power  
supplies (VDD, VSS and VLCD) and the LCD panel selected for the application.  
Table 1 Selection of display configurations  
14-SEGMENTS  
ALPHANUMERIC  
NUMBER OF  
7-SEGMENTS NUMERIC  
DOT MATRIX  
INDICATOR  
DIGITS  
INDICATOR  
SYMBOLS  
BACKPLANES SEGMENTS  
CHARACTERS  
SYMBOLS  
4
3
2
1
320  
240  
160  
80  
40  
30  
20  
10  
40  
30  
20  
10  
20  
16  
10  
5
40  
16  
20  
10  
320 dots (4 × 80)  
240 dots (3 × 80)  
160 dots (2 × 80)  
80 dots (1 × 80)  
1999 Jul 30  
5
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
V
DD  
t
r
SDAACK  
R
2C  
B
V
V
DD  
LCD  
SDA  
SCL  
HOST  
MICRO-  
PROCESSOR/  
MICRO-  
80 segment drives  
4 backplanes  
LCD PANEL  
PCF8533  
(up to 320  
elements)  
OSC  
CONTROLLER  
MGL744  
A0 A1 A2 SA0  
V
SS  
V
SS  
Fig.2 Typical system configuration.  
1999 Jul 30  
6
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
6.1  
Power-on reset  
The biasing configurations that apply to the preferred  
modes of operation, together with the biasing  
characteristics as functions of VOP and the resulting  
discrimination ratios (D), are given in Table 2.  
At Power-on the PCF8533 resets to a starting condition as  
follows:  
1. All backplane outputs are set to VLCD  
.
A practical value for VOP is determined by equating Voff(rms)  
with a defined LCD threshold voltage (Vth), typically when  
the LCD exhibits approximately 10% contrast. In the static  
drive mode a suitable choice is VOP > 3Vth.  
2. All segment outputs are set to VLCD  
3. The drive mode ‘1 : 4 multiplex with 13bias’ is selected.  
.
4. Blinking is switched off.  
Multiplex drive ratios of 1 : 3 and 1 : 4 with 12bias are  
possible but the discrimination and hence the contrast  
5. Input and output bank selectors are reset (as defined  
in Table 5).  
6. The I2C-bus interface is initialized.  
ratios are smaller ( 3 = 1.732 for 1 : 3 multiplex or  
21  
7. The data pointer and the subaddress counter are  
cleared.  
= 1.528 for 1 : 4 multiplex).  
----------  
3
8. Display disabled.  
The advantage of these modes is a reduction of the LCD  
full-scale voltage VOP as follows:  
Data transfers on the I2C-bus should be avoided for 1 ms  
following Power-on to allow completion of the reset action.  
1 : 3 multiplex (12bias):  
6.2  
LCD bias generator  
V OP  
=
6 × Voff(rms) = 2.449Voff(rms)  
Fractional LCD biasing voltages are obtained from an  
internal voltage divider of the three series resistors  
connected between VLCD and VSS. The centre resistor can  
be switched out of the circuit to provide a 12bias voltage  
level for the 1 : 2 multiplex configuration.  
1 : 4 multiplex (12bias):  
(4 × 3)  
VOP  
=
= 2.309Voff(rms)  
---------------------  
3
These compare with VOP = 3Voff(rms) when 13bias is used.  
Note: VOP = VLCD  
.
6.3  
LCD voltage selector  
The LCD voltage selector co-ordinates the multiplexing of  
the LCD in accordance with the selected LCD drive  
configuration. The operation of the voltage selector is  
controlled by MODE SET commands from the command  
decoder.  
Table 2 Preferred LCD drive modes: summary of characteristics  
NUMBER OF  
LCD BIAS  
Voff(rms)  
V on(rms)  
V on(rms)  
D =  
-------------------  
VOP  
-------------------  
VOP  
-------------------  
Voff(rms)  
LCD DRIVE MODE  
CONFIGURATION  
BACKPLANES LEVELS  
static  
1 : 2  
1 : 2  
1 : 3  
1 : 4  
1
2
2
3
4
2
3
4
4
4
static  
0
1
1
0.354  
0.333  
0.333  
0.333  
0.791  
0.745  
0.638  
0.577  
2.236  
2.236  
1.915  
1.732  
2
1
3
1
3
1
3
1999 Jul 30  
7
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
6.4  
LCD drive mode waveforms  
6.4.1  
STATIC DRIVE MODE  
The static LCD drive mode is used when a single backplane is provided in the LCD. Backplane and segment drive  
waveforms for this mode are shown in Fig.3.  
T
frame  
LCD segments  
V
LCD  
BP0  
V
SS  
state 1  
(on)  
state 2  
(off)  
V
LCD  
S
n
V
SS  
V
LCD  
S
+ 1  
n
V
SS  
(a) Waveforms at driver.  
V
LCD  
0 V  
state 1  
V  
LCD  
V
LCD  
state 2  
0 V  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
MGL745  
Vstate1(t) = Vsn(t) VBP0(t).  
Von(rms) = VLCD  
.
Vstate2(t) = Vsn + 1(t) VBP0(t).  
Voff(rms) = 0 V.  
Fig.3 Static drive mode waveforms.  
8
1999 Jul 30  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
6.4.2  
1 : 2 MULTIPLEX DRIVE MODE  
When two backplanes are provided in the LCD, the 1 : 2 multiplex mode applies. The PCF8533 allows the use of 12bias  
or 13bias in this mode as shown in Figs 4 and 5.  
T
frame  
V
LCD  
/2  
LCD segments  
V
V
BP0  
BP1  
LCD  
SS  
state 1  
V
LCD  
/2  
state 2  
V
V
LCD  
SS  
V
LCD  
S
n
V
SS  
V
LCD  
S
+ 1  
n
V
SS  
(a) Waveforms at driver.  
V
LCD  
V
/2  
LCD  
0 V  
state 1  
V  
/2  
LCD  
V  
LCD  
V
LCD  
/2  
V
LCD  
0 V  
state 2  
V  
/2  
LCD  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
MGL746  
Vstate1(t) = Vsn(t) VBP0(t).  
Von(rms) = 0.791VLCD  
Vstate2(t) = Vsn(t) VBP1(t).  
Voff(rms) = 0.354VLCD  
.
.
Fig.4 Waveforms for the 1 : 2 multiplex drive mode with 12bias.  
1999 Jul 30  
9
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
T
frame  
V
LCD  
LCD segments  
2V  
V
/3  
LCD  
BP0  
BP1  
/3  
LCD  
V
SS  
state 1  
V
LCD  
state 2  
2V  
V
/3  
LCD  
/3  
LCD  
V
SS  
V
LCD  
2V  
V
/3  
LCD  
S
n
/3  
LCD  
V
SS  
V
LCD  
2V  
V
/3  
LCD  
S
+ 1  
n
/3  
LCD  
V
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/3  
/3  
LCD  
/3  
V
LCD  
state 1  
0 V  
V  
LCD  
2V  
/3  
LCD  
V  
LCD  
V
LCD  
2V  
/3  
LCD  
V
/3  
LCD  
0 V  
V  
state 2  
/3  
LCD  
2V  
/3  
LCD  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
MGL747  
Vstate1(t) = Vsn(t) VBP0(t).  
Von(rms) = 0.745VLCD  
Vstate2(t) = Vsn(t) VBP1(t).  
Voff(rms) = 0.333VLCD  
.
.
Fig.5 Waveforms for the 1 : 2 multiplex drive mode with 13bias.  
6.4.3  
1 : 3 MULTIPLEX DRIVE MODE  
When three backplanes are provided in the LCD, the 1 : 3 multiplex drive mode applies, as shown in Fig.6.  
1999 Jul 30  
10  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
T
frame  
V
LCD  
LCD segments  
2V  
V
/3  
LCD  
/3  
BP0  
BP1  
BP2  
LCD  
V
SS  
state 1  
state 2  
V
LCD  
2V  
V
/3  
LCD  
/3  
LCD  
V
SS  
V
LCD  
2V  
V
/3  
LCD  
/3  
LCD  
V
SS  
V
LCD  
2V  
V
/3  
LCD  
S
n
/3  
LCD  
V
SS  
V
LCD  
2V  
V
/3  
LCD  
S
+ 1  
+ 2  
n
n
/3  
LCD  
V
SS  
V
LCD  
2V  
V
/3  
LCD  
S
/3  
LCD  
V
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
V
/3  
/3  
LCD  
/3  
LCD  
state 1  
0 V  
V  
LCD  
2V  
/3  
LCD  
V  
LCD  
V
LCD  
2V  
/3  
LCD  
V
/3  
LCD  
0 V  
V  
state 2  
/3  
LCD  
2V  
V  
/3  
LCD  
LCD  
(b) Resultant waveforms  
at LCD segment.  
MGL748  
Vstate1(t) = Vsn(t) VBP0(t).  
Von(rms) = 0.638VLCD  
Vstate2(t) = Vsn(t) VBP1(t).  
Voff(rms) = 0.333VLCD  
.
.
Fig.6 Waveforms for the 1 : 3 multiplex drive mode.  
6.4.4  
1 : 4 MULTIPLEX DRIVE MODE  
When four backplanes are provided in the LCD, the 1 : 4 multiplex drive mode applies, as shown in Fig.7.  
1999 Jul 30  
11  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
T
frame  
V
LCD segments  
LCD  
2V  
V
/3  
LCD  
BP0  
BP1  
BP2  
BP3  
/3  
LCD  
V
SS  
state 1  
state 2  
V
LCD  
2V  
/3  
LCD  
V
/3  
LCD  
V
SS  
V
LCD  
2V  
V
/3  
LCD  
/3  
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
V
/3  
LCD  
V
SS  
V
LCD  
2V  
V
/3  
LCD  
S
n
/3  
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
S
+ 1  
n
V
/3  
LCD  
V
SS  
V
LCD  
2V  
V
/3  
LCD  
S
S
+ 2  
n
/3  
LCD  
V
SS  
V
LCD  
2V  
V
/3  
LCD  
+ 3  
n
/3  
LCD  
V
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
V
/3  
/3  
LCD  
/3  
LCD  
state 1  
0 V  
V  
LCD  
2V  
/3  
LCD  
V  
LCD  
V
LCD  
2V  
/3  
LCD  
V
/3  
LCD  
0 V  
V  
state 2  
/3  
LCD  
2V  
V  
/3  
LCD  
LCD  
(b) Resultant waveforms  
at LCD segment.  
MGL749  
Vstate1(t) = Vsn(t) VBP0(t): Von(rms) = 0.577VLCD  
.
.
Vstate2(t) = Vsn(t) VBP1(t): Voff(rms) = 0.333VLCD  
Fig.7 Waveforms for the 1 : 4 multiplex drive mode.  
12  
1999 Jul 30  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
6.5  
Oscillator  
6.8  
Segment outputs  
6.5.1  
INTERNAL CLOCK  
The LCD drive section includes 80 segment outputs  
(S0 to S79) which should be connected directly to the  
LCD. The segment output signals are generated in  
accordance with the multiplexed backplane signals and  
with data resident in the display latch. When less than  
80 segment outputs are required the unused segment  
outputs should be left open-circuit.  
The internal logic and the LCD drive signals of the  
PCF8533 are timed either by the built-in oscillator or from  
an external clock. When the internal oscillator is used, pad  
OSC should be connected to VSS. In this event, the output  
from pad CLK provides the clock signal for cascaded  
PCF8533s in the system. After power-up, SDA must be  
HIGH to guarantee that the clock starts.  
6.9  
Backplane outputs  
6.5.2  
EXTERNAL CLOCK  
The LCD drive section includes four backplane outputs  
BP0 to BP3 which should be connected directly to the  
LCD. The backplane output signals are generated in  
accordance with the selected LCD drive mode. If less than  
four backplane outputs are required the unused outputs  
can be left open-circuit. In the 1 : 3 multiplex drive mode  
BP3 carries the same signal as BP1, therefore these two  
adjacent outputs can be tied together to give enhanced  
drive capabilities. In the 1 : 2 multiplex drive mode  
BP0 and BP2, BP1 and BP3 respectively carry the same  
signals and may also be paired to increase the drive  
capabilities. In the static drive mode the same signal is  
carried by all four backplane outputs and they can be  
connected in parallel for very high drive requirements.  
The condition for external clock is made by tying pad OSC  
to VDD; pad CLK then becomes the external clock input.  
The clock frequency (fCLK) determines the LCD frame  
frequency.  
A clock signal must always be supplied to the device;  
removing the clock may freeze the LCD in a DC state.  
6.6  
Timing  
The timing of the PCF8533 organizes the internal data flow  
of the device. This includes the transfer of display data  
from the display RAM to the display segment outputs.  
In cascaded applications, the synchronization signal  
(SYNC) maintains the correct timing relationship between  
the PCF8533s in the system. The timing also generates  
the LCD frame frequency which it derives as an integer  
division of the clock frequency (see Table 3). The frame  
frequency is a fixed division of the internal clock or of the  
frequency applied to pad CLK when an external clock is  
used.  
6.10 Display RAM  
The display RAM is a static 80 × 4-bit RAM which stores  
LCD data. A logic 1 in the RAM bit map indicates the  
on-state of the corresponding LCD segment; similarly, a  
logic 0 indicates the off-state. There is a one-to-one  
correspondence between the RAM addresses and the  
segment outputs, and between the individual bits of a RAM  
word and the backplane outputs. The first RAM column  
corresponds to the 80 segments operated with respect to  
backplane BP0 (see Fig.8). In multiplexed LCD  
6.7  
Display register  
The display latch holds the display data while the  
corresponding multiplex signals are generated. There is a  
one-to-one relationship between the data in the display  
latch, the LCD segment outputs and one column of the  
display RAM.  
applications the segment data of the second, third and  
fourth column of the display RAM are time-multiplexed  
with BP1, BP2 and BP3 respectively.  
1999 Jul 30  
13  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
When display data is transmitted to the PCF8533 the  
display bytes received are stored in the display RAM in  
accordance with the selected LCD drive mode. The data is  
stored as it arrives and does not wait for the acknowledge  
cycle as with the commands. Depending on the current  
mux mode data is stored singularly, in pairs, triplets or  
quadruplets. e.g. in 1 : 2 mux mode the RAM data is stored  
every second bit. To illustrate the filling order, an example  
of a 7-segment numeric display showing all drive modes is  
given in Fig.9; the RAM filling organization depicted  
applies equally to other LCD types. With reference to  
Fig.9, in the static drive mode the eight transmitted data  
bits are placed in bit 0 of eight successive display RAM  
addresses. In the 1 : 2 multiplex drive mode the eight  
transmitted data bits are placed in bits 0 and 1 of four  
successive display RAM addresses.  
In the 1 : 3 multiplex drive mode these bits are placed in  
bits 0, 1 and 2 of three successive addresses, with bit 2 of  
the third address left unchanged. This last bit may, if  
necessary, be controlled by an additional transfer to this  
address but care should be taken to avoid overriding  
adjacent data because full bytes are always transmitted.  
In the 1 : 4 multiplex drive mode the eight transmitted data  
bits are placed in bits 0, 1, 2 and 3 of two successive  
display RAM addresses.  
Table 3 LCD frame frequencies  
NOMINAL FRAME  
FRAME FREQUENCY  
FREQUENCY (Hz)  
64  
fCLK  
----------  
24  
display RAM addresses (rows) / segment outputs (S)  
h
0
1
2
3
4
75 76 77 78 79  
0
1
2
3
display RAM bits  
(columns) /  
backplane outputs  
(BP)  
MGL750  
Fig.8 Display RAM bit map showing direct relationship between display RAM addresses and segment outputs,  
and between bits in a RAM word and backplane outputs.  
1999 Jul 30  
14  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
6.11 Data pointer  
6.13 Output bank selector  
The addressing mechanism for the display RAM is  
realized using the data pointer. This allows the loading of  
an individual display data byte, or a series of display data  
bytes, into any location of the display RAM. The sequence  
commences with the initialization of the data pointer by the  
LOAD DATA POINTER command. Following this, an  
arriving data byte is stored starting at the display RAM  
address indicated by the data pointer thereby observing  
the filling order shown in Fig.9. The data pointer is  
automatically incremented in accordance with the chosen  
LCD configuration. That is, after each byte is stored, the  
contents of the data pointer are incremented by eight  
(static drive mode), by four (1 : 2 multiplex drive mode), by  
three (1 : 3 multiplex drive mode) or by two (1 : 4 multiplex  
drive mode). If an I2C-bus data access is terminated early  
then the state of the data pointer will be unknown. The data  
The output bank selector selects one of the four bits per  
display RAM address for transfer to the display latch.  
The actual bit selected depends on the particular LCD  
drive mode in operation and on the instant in the multiplex  
sequence.  
In 1 : 4 multiplex, all RAM addresses of bit 0 are selected,  
these are followed by the contents of bit 1, bit 2 and then  
bit 3. Similarly in 1 : 3 multiplex, bits 0, 1 and 2 are  
selected sequentially. In 1 : 2 multiplex, bits 0 and 1 are  
selected and, in the static mode, bit 0 is selected.  
The SYNC signal will reset these sequences to the  
following starting points; bit 3 for 1 : 4 multiplex, bit 2 for  
1 : 3 multiplex, bit 1 for 1 : 2 multiplex and bit 0 for static  
mode.  
The PCF8533 includes a RAM bank switching feature in  
pointer should be re-written prior to further RAM accesses. the static and 1 : 2 multiplex drive modes. In the static  
drive mode, the BANK SELECT command may request  
6.12 Subaddress counter  
the contents of bit 2 to be selected for display instead of  
the contents of bit 0. In the 1 : 2 drive mode, the contents  
of bits 2 and 3 may be selected instead of bits 0 and 1.  
This gives the provision for preparing display information  
in an alternative bank and to be able to switch to it once it  
is assembled.  
The storage of display data is conditioned by the contents  
of the subaddress counter. Storage is allowed to take  
place only when the contents of the subaddress counter  
agree with the hardware subaddress applied to  
A0, A1 and A2. The subaddress counter value is defined  
by the DEVICE SELECT command. If the contents of the  
subaddress counter and the hardware subaddress do not  
agree then data storage is inhibited but the data pointer is  
incremented as if data storage had taken place.  
The subaddress counter is also incremented when the  
data pointer overflows.  
6.14 Input bank selector  
The input bank selector loads display data into the display  
RAM in accordance with the selected LCD drive  
configuration. Display data can be loaded in bit 2 in static  
drive mode or in bits 2 and 3 in 1 : 2 drive mode by using  
The storage arrangements described lead to extremely  
efficient data loading in cascaded applications. When a  
series of display bytes are sent to the display RAM,  
automatic wrap-over to the next PCF8533 occurs when  
the last RAM address is exceeded. Subaddressing across  
device boundaries is successful even if the change to the  
next device in the cascade occurs within a transmitted  
character (such as during the 27th display data byte  
transmitted in 1 : 3 multiplex mode).  
The hardware subaddress should not be changed whilst  
the device is being accessed on the I2C-bus interface.  
1999 Jul 30  
15  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
the BANK SELECT command. The input bank selector  
functions independently to the output bank selector.  
An additional feature is for an arbitrary selection of LCD  
segments to be blinked. This applies to the static and  
1 : 2 LCD drive modes and can be implemented without  
any communication overheads. By means of the output  
bank selector, the displayed RAM banks are exchanged  
with alternate RAM banks at the blinking frequency. This  
mode can also be specified by the BLINK command.  
6.15 Blinker  
The display blinking capabilities of the PCF8533 are very  
versatile. The whole display can be blinked at frequencies  
selected by the BLINK command. The blinking frequencies  
are integer multiples of the clock frequency. The ratios  
between the clock and blinking frequencies depend on the  
mode in which the device is operating, see Table 4.  
In the 1 : 3 and 1 : 4 multiplex modes, where no alternate  
RAM bank is available, groups of LCD segments can be  
blinked by selectively changing the display RAM data at  
fixed time intervals.  
If the entire display is to be blinked at a frequency other than the nominal blinking frequency, this can be effectively  
performed by resetting and setting the display enable bit E at the required rate using the MODE SET command.  
Table 4 Blinking frequencies  
NORMAL OPERATING MODE  
BLINKING MODE  
NOMINAL BLINKING FREQUENCY  
RATIO  
Off  
blinking off  
2 Hz  
2 Hz  
fCLK  
----------  
768  
1 Hz  
1 Hz  
f CLK  
------------  
1536  
0.5 Hz  
0.5 Hz  
f CLK  
------------  
3072  
1999 Jul 30  
16  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
drive mode  
LCD segments  
LCD backplanes  
display RAM filling order  
transmitted display byte  
a
S
2
n
n
1
n
2
n
3
n
4
n
5
n
6
n 7  
n
n
b
BP0  
f
S
1
7
S
3
MSB  
LSB  
DP  
n
n
0
1
2
3
c
x
x
x
b
x
x
x
a
x
x
x
f
g
x
x
x
e
x
x
x
d
x
x
x
DP  
bit/  
BP  
g
4
S
S
S
n
n
x
x
x
x
x
x
c
b
a
f
g e d  
static  
e
S
5
6
c
n
d
DP  
S
n
BP0  
S
n
a
n
n
n
n
1
1
1
n
2
n 3  
b
b
b
1 : 2  
f
S
1
n
MSB  
LSB  
DP  
0
1
2
3
a
b
x
x
f
e
c
x
x
d
bit/  
BP  
g
g
x
x
DP  
x
x
a
b
f
g
e c d  
BP1  
S
S
e
2
3
multiplex  
n
n
c
c
c
d
d
d
DP  
BP0  
BP1  
S
1
a
n
n
n 2  
S
S
2
f
1 : 3  
n
n
MSB  
LSB  
e
0
1
2
3
b
DP  
c
a
d
g
x
f
bit/  
BP  
g
e
x
x
BP2  
b DP  
c
a
d
g
f
e
multiplex  
x
DP  
S
n
a
n
BP2  
BP3  
BP0  
BP1  
f
1 : 4  
0
1
2
3
a
c
f
bit/  
BP  
MSB  
LSB  
d
g
e
g
d
b
DP  
e
multiplex  
a
c
b
DP  
f
e
g
S
1
DP  
n
MGL751  
X = data bit unchanged.  
Fig.9 Relationships between LCD layout, drive mode, display RAM filling order and display data transmitted over the I2C-bus.  
ahdnbok,uflapegwidt  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
CHARACTERISTICS OF THE I2C-BUS  
7.4  
Acknowledge  
7
The I2C-bus is for bidirectional, two-line communication  
between different ICs or modules. The two lines are a  
Serial Data line (SDA) and a Serial Clock Line (SCL). Both  
lines must be connected to a positive supply via a pull-up  
resistor when connected to the output stages of a device.  
Data transfer may be initiated only when the bus is not  
busy.  
The number of data bytes transferred between the START  
and STOP conditions from transmitter to receiver is  
unlimited. Each byte of eight bits is followed by an  
acknowledge bit. The acknowledge bit is a HIGH level  
signal put on the bus by the transmitter during which time  
the master generates an extra acknowledge related clock  
pulse. A slave receiver which is addressed must generate  
an acknowledge after the reception of each byte. Also a  
master receiver must generate an acknowledge after the  
reception of each byte that has been clocked out of the  
slave transmitter. The device that acknowledges must  
pull-down the SDA line during the acknowledge clock  
pulse, so that the SDA line is stable LOW during the HIGH  
period of the acknowledge related clock pulse (set-up and  
hold times must be taken into consideration). A master  
receiver must signal an end of data to the transmitter by  
not generating an acknowledge on the last byte that has  
been clocked out of the slave. In this event the transmitter  
must leave the data line HIGH to enable the master to  
generate a STOP condition. Acknowledgement on the  
I2C-bus is illustrated in Fig.13.  
By connecting SDAACK to SDA on the PCF8533, the SDA  
line becomes fully I2C-bus compatible. Having the  
acknowledge output separated from the serial data line is  
advantageous in Chip-On-Glass (COG) applications.  
In COG applications where the track resistance from the  
SDAACK pad to the system SDA line can be significant, a  
potential divider is generated by the bus pull-up resistor  
and the Indium Tin Oxide (ITO) track resistance. It is  
possible that during the acknowledge cycle the PCF8533  
will not be able to create a valid logic 0 level. By splitting  
the SDA input from the output the device could be used in  
a mode that ignores the acknowledge bit. In COG  
applications where the acknowledge cycle is required, it is  
necessary to minimize the track resistance from the  
SDAACK pad to the system SDA line to guarantee a valid  
low level.  
7.5  
PCF8533 I2C-bus controller  
The PCF8533 acts as an I2C-bus slave receiver. It does  
not initiate I2C-bus transfers or transmit data to an I2C-bus  
master receiver. The only data output from the PCF8533  
are the acknowledge signals of the selected devices.  
Device selection depends on the I2C-bus slave address,  
on the transferred command data and on the hardware  
subaddress.  
The following definition assumes SDA and SDAACK are  
connected and refers to the pair as SDA.  
7.1  
Bit transfer  
One data bit is transferred during each clock pulse.  
The data on the SDA line must remain stable during the  
HIGH period of the clock pulse as changes in the data line  
at this time will be interpreted as a control signal. Bit  
transfer is illustrated in Fig.10.  
In single device application, the hardware subaddress  
inputs A0, A1 and A2 are normally tied to VSS which  
defines the hardware subaddress 0. In multiple device  
applications A0, A1 and A2 are tied to VSS or VDD in  
accordance with a binary coding scheme such that no two  
devices with a common I2C-bus slave address have the  
same hardware subaddress.  
7.2  
START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not  
busy. A HIGH-to-LOW transition of the data line, while the  
clock is HIGH is defined as the START condition (S).  
A LOW-to-HIGH transition of the data line while the clock  
is HIGH is defined as the STOP condition (P). The START  
and STOP conditions are illustrated in Fig.11.  
7.6  
Input filters  
To enhance noise immunity in electrically adverse  
environments, RC low-pass filters are provided on the  
SDA and SCL lines.  
7.3  
System configuration  
A device generating a message is a ‘transmitter’, a device  
receiving a message is the ‘receiver’. The device that  
controls the message is the ‘master’ and the devices which  
are controlled by the master are the ‘slaves’. The system  
configuration is illustrated in Fig.12.  
1999 Jul 30  
18  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
I2C-bus protocol  
In this way it is possible to configure the device then fill the  
display RAM with little overhead.  
7.7  
Two I2C-bus slave addresses (01110000 and 01110010)  
are reserved for the PCF8533. The least significant bit of  
the slave address that a PCF8533 will respond to is  
defined by the level tied at its input SA0. The PCF8533 is  
a write only device and will not respond to a read access.  
Therefore, two types of PCF8533 can be distinguished on  
the same I2C-bus which allows:  
The command bytes and control bytes are also  
acknowledged by all addressed PCF8533s connected to  
the bus.  
The display bytes are stored in the display RAM at the  
address specified by the data pointer and the subaddress  
counter. Both data pointer and subaddress counter are  
automatically updated and the data is directed to the  
intended PCF8533 device.  
1. Up to 16 PCF8533s on the same I2C-bus for very large  
LCD applications  
2. The use of two types of LCD multiplex on the same  
I2C-bus.  
The acknowledgement after each byte is made only by the  
(A0, A1 and A2) addressed PCF8533. After the last  
display byte, the I2C-bus master issues a STOP  
condition (P). Alternatively a START may be issued to  
RESTART an I2C-bus access.  
The I2C-bus protocol is shown in Fig.14. The sequence is  
initiated with a START condition (S) from the I2C-bus  
master which is followed by one of the two PCF8533 slave  
addresses available. All PCF8533s with the corresponding  
SA0 level acknowledge in parallel to the slave address, but  
all PCF8533s with the alternative SA0 level ignore the  
whole I2C-bus transfer.  
7.8  
Command decoder  
The command decoder identifies command bytes that  
arrive on the I2C-bus. The five commands available to the  
PCF8533 are defined in Table 5.  
After acknowledgement, a control byte follows which  
defines if the next byte is RAM or command information.  
The control byte also defines if the next following byte is a  
control byte or further RAM/command data.  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
MBA607  
Fig.10 Bit transfer.  
1999 Jul 30  
19  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
SDA  
SDA  
SCL  
SCL  
S
P
STOP condition  
START condition  
MBC622  
Fig.11 Definition of START and STOP conditions.  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
SDA  
SCL  
MGA807  
Fig.12 System configuration.  
DATA OUTPUT  
BY TRANSMITTER  
not acknowledge  
DATA OUTPUT  
BY RECEIVER  
acknowledge  
8
SCL FROM  
MASTER  
1
2
9
S
clock pulse for  
acknowledgement  
START  
condition  
MBC602  
Fig.13 Acknowledgement on the I2C-bus.  
20  
1999 Jul 30  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
R/W = 0  
slave address  
control byte  
A CoRS  
0
RAM/command byte  
S
A
0
M
S
B
L
S
B
S
0
1
1
1
0
0
P
A
EXAMPLES  
a) transmit two bytes of RAM data  
S
A
S
0
1
1
1
0
0
0
0
1
1
0
A
0
A
A
A
RAM DATA  
COMMAND  
COMMAND  
A
A
A
RAM DATA  
A
A
A
P
b) transmit two command bytes  
S
A
S
0
1
1
1
0
0
0
0
0
0
1
A
0
COMMAND  
RAM DATA  
A
A
P
c) transmit one command byte and two RAM bytes  
S
A
1 0  
S
0
1
1
1
0
0
0
A
0
RAM DATA  
A P  
MGL752  
Fig.14 I2C-bus protocol.  
MSB  
Co RS  
LSB  
UNUSED  
MGL753  
Co = 0; last control byte.  
Co = 1; control bytes continue.  
RS = 0; data is a command byte  
RS = 1; data is a display byte  
Fig.15 Format of control byte.  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
Table 5 Definition of PCF8533 commands  
COMMAND  
OPCODE  
OPTIONS  
M1 M0 Table 6  
DESCRIPTION  
defines LCD drive mode  
MODE SET  
1
1
0
0
E
B
Table 7  
Table 8  
defines LCD bias configuration  
defines display status; the possibility to  
disable the display allows implementation of  
blinking under external control  
LOADDATA  
POINTER  
0
1
1
P6 P5 P4 P3 P2 P1 P0 Table 9  
seven bits of immediate data, bits P6 to P0,  
are transferred to the data pointer to define  
one of eighty display RAM addresses  
DEVICE  
SELECT  
1
1
1
1
0
1
0
1
A2 A1 A0 Table 10  
three bits of immediate data, bits A0 to A3,  
are transferred to the subaddress counter to  
define one of eight hardware subaddresses  
BANK  
SELECT  
0
I
O
Table 11  
Table 12  
defines input bank selection (storage of  
arriving display data)  
defines output bank selection (retrieval of  
LCD display data); the BANK SELECT  
command has no effect in 1 : 3 and 1 : 4  
multiplex drive modes  
BLINK  
1
1
1
1
0
A
BF BF Table 13  
defines the blinking frequency  
1
0
Table 14  
selects the blinking mode; normal operation  
with frequency set by BF1, BF0 or blinking by  
alternation of display RAM banks. Alternation  
blinking does not apply in 1 : 3 and 1 : 4  
multiplex drive modes  
Table 6 Mode set option 1  
LCD DRIVE MODE  
BITS  
DRIVE MODE  
BACKPLANE  
M1  
M0  
Static  
1 : 2  
1 : 3  
1 : 4  
1 BP  
0
1
1
0
1
0
1
0
MUX (2 BP)  
MUX (3 BP)  
MUX (4 BP)  
Table 7 Mode set option 2  
LCD BIAS  
BIT B  
13bias  
12bias  
0
1
Table 8 Mode set option 3  
DISPLAY STATUS  
BIT E  
Disabled (blank)  
Enabled  
0
1
1999 Jul 30  
22  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
Table 9 Load data pointer option 1  
7.10 Cascaded operation  
In large display configurations, up to 16 PCF8533s can be  
distinguished on the same I2C-bus by using the 3-bit  
hardware subaddress (A0, A1 and A2) and the  
DESCRIPTION  
BITS  
P6 P5 P4 P3 P2 P1 P0  
7 bit binary value of  
0 to 79  
programmable I2C-bus slave address (SA0). When  
cascaded PCF8533s are synchronized they can share the  
backplane signals from one of the devices in the cascade.  
Such an arrangement is cost-effective in large LCD  
applications since the backplane outputs of only one  
device need to be through-plated to the backplane  
electrodes of the display. The other PCF8533s of the  
cascade contribute additional segment outputs but their  
backplane outputs are left open-circuit (see Fig.16).  
Table 10 Device select option 1  
DESCRIPTION  
BITS  
3 bit binary value of 0 to 7  
A2  
A1  
A0  
Table 11 Bank select option 1 (Input)  
STATIC  
RAM bit 0  
RAM bit 2  
1 : 2 MUX  
BIT I  
The SYNC line is provided to maintain the correct  
synchronization between all cascaded PCF8533s. This  
synchronization is guaranteed after the Power-on reset.  
The only time that SYNC is likely to be needed is if  
synchronization is accidentally lost (e.g. by noise in  
adverse electrical environments, or by the definition of a  
multiplex mode when PCF8533s with different SA0 levels  
are cascaded). SYNC is organized as an input/output pad;  
the output selection being realized as an open-drain driver  
with an internal pull-up resistor. A PCF8533 asserts the  
SYNC line at the onset of its last active backplane signal  
and monitors the SYNC line at all other times. Should  
synchronization in the cascade be lost, it will be restored  
by the first PCF8533 to assert SYNC. The timing  
relationship between the backplane waveforms and the  
SYNC signal for the various drive modes of the PCF8533  
are shown in Fig.17.  
RAM bits 0 and 1  
RAM bits 2 and 3  
0
1
Table 12 Bank select option 2 (Output)  
STATIC  
RAM bit 0  
RAM bit 2  
1 : 2 MUX  
BIT O  
RAM bits 0 and 1  
RAM bits 2 and 3  
0
1
Table 13 Blink option 1  
BLINK FREQUENCY  
BITS  
BF1  
BF0  
Off  
0
0
1
1
0
1
0
1
2 Hz  
1 Hz  
0.5 Hz  
The contact resistance between the SYNC pads of  
cascaded devices must be controlled. If the resistance is  
too high then the device will not be able to synchronize  
properly. This is particularly applicable to COG  
applications. Table 15 shows the limiting values for  
contact resistance.  
Table 14 Blink option 2  
BLINK MODE  
Normal blinking(1)  
BIT A  
0
1
Alternation blinking  
Table 15 SYNC contact resistance  
Note  
MAXIMUM CONTACT  
NUMBER OF DEVICES  
RESISTANCE  
1. Normal blinking is assumed when multiplex rates 1 : 3  
or 1 : 4 are selected.  
2
6000 Ω  
2200 Ω  
1200 Ω  
700 Ω  
3 to 5  
7.9  
Display controller  
6 to 10  
11 to 16  
The display controller executes the commands identified  
by the command decoder. It contains the status registers  
of the PCF8533 and co-ordinates their effects.  
The controller is also responsible for loading display data  
into the display RAM as required by the filling order.  
1999 Jul 30  
23  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
SDAACK  
V
V
LCD  
DD  
SDA  
SCL  
80 segment drives  
LCD PANEL  
SYNC  
CLK  
PCF8533  
(up to 5120  
elements)  
OSC  
BP0 to BP3  
(open-circuit)  
A0 A1 A2 SA0 V  
SS  
V
V
LCD  
t
DD  
SDAACK  
r
R
2C  
V
V
LCD  
DD  
B
SDA  
SCL  
HOST  
MICRO-  
PROCESSOR/  
MICRO-  
CONTROLLER  
80 segment drives  
SYNC  
PCF8533  
4 backplanes  
BP0 to BP3  
CLK  
OSC  
MGL754  
A0 A1 A2 SA0  
V
V
SS  
SS  
Fig.16 Cascaded PCF8533 configuration.  
24  
1999 Jul 30  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
1
T
= f  
frame  
frame  
BP0  
SYNC  
(a) static drive mode.  
BP1  
(1/2 bias)  
BP1  
(1/3 bias)  
SYNC  
(b) 1 : 2 multiplex drive mode.  
BP2  
SYNC  
(c) 1 : 3 multiplex drive mode.  
BP3  
SYNC  
MGL755  
(d) 1 : 4 multiplex drive mode.  
Fig.17 Synchronization of the cascade for the various PCF8533 drive modes.  
25  
1999 Jul 30  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
8
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL PARAMETER  
VDD  
MIN.  
0.5  
50  
MAX.  
UNIT  
supply voltage  
+6.5  
V
IDD  
supply current  
+50  
mA  
V
VLCD  
ILCD  
ISS  
LCD supply voltage  
LCD supply current  
negative supply current  
VSS 0.5  
+7.5  
50  
50  
+50  
mA  
mA  
V
+50  
VI(n)  
input voltage on pads SDA, SCL, CLK, SYNC, SA0, OSC  
and A0 to A2  
V
SS 0.5  
VDD + 0.5  
VO(n)  
II  
output voltage on pads S0 to S79 and BP0 to BP3  
DC input current  
V
SS 0.5  
VLCD + 0.5  
+10  
V
10  
10  
mA  
mA  
mW  
mW  
°C  
IO  
DC output current  
+10  
Ptot  
P/out  
Tstg  
total power dissipation  
400  
power dissipation per output  
storage temperature  
100  
65  
+150  
9
HANDLING  
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is  
desirable to take normal precautions appropriate to handling MOS devices (see “Handling MOS Devices).  
1999 Jul 30  
26  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
10 DC CHARACTERISTICS  
VDD = 1.8 to 5.5 V; VSS = 0 V; VLCD = 2.5 to 6.5 V; Tamb = 40 to +85 °C; unless otherwise specified.  
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VDD  
VLCD  
IDD  
supply voltage  
1.8  
2.5  
8
5.5  
V
V
LCD supply voltage  
supply current  
6.5  
20  
60  
fCLK = 1536 Hz; note 1 −  
fCLK = 1536 Hz; note 1 −  
µA  
µA  
ILCD  
LCD supply current  
24  
Logic  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
VSS  
0.7VDD  
VOL = 0.4 V; VDD = 5 V 1  
0.3VDD  
VDD  
V
VIH  
IOL1  
V
LOW-level output current on pads  
CLK and SYNC  
mA  
IOH1  
HIGH-level output current pad CLK  
VOH = 4.6 V;  
VDD = 5 V  
1  
mA  
IOL2  
IL1  
LOW-level output current pad SDA  
VOL = 0.4 V; VDD = 5 V 3  
mA  
leakage current on pads SA0,  
A0 to A2, CLK, SDA and SCL  
VI = VDD or VSS  
1  
+1  
µA  
IL2  
leakage current pad OSC  
Power-on reset voltage level  
input capacitance  
VI = VDD  
1  
1.0  
+1  
1.6  
7
µA  
V
VPOR  
CI  
1.3  
note 2  
pF  
LCD outputs  
VBP  
DC voltage component on pads  
BP0 to BP3  
CBP = 35 nF  
CS = 5 nF  
100  
100  
+100  
+100  
mV  
mV  
VS  
DC voltage component on pads  
S0 to S79  
RBP  
RS  
output resistance at pads BP0 to BP3 VLCD = 5 V; note 3  
output resistance at pads S0 to S79 VLCD = 5 V; note 3  
1.5  
6.0  
10  
kΩ  
kΩ  
13.5  
Notes  
1. LCD outputs are open-circuit; inputs at VSS or VDD; external clock with 50% duty factor; I2C-bus inactive.  
2. Not tested; given by design.  
3. Outputs measured one at a time.  
1999 Jul 30  
27  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
11 AC CHARACTERISTICS  
VDD = 1.8 to 5.5 V; VSS = 0 V; VLCD = 2.5 to 6.5 V; Tamb = 40 to + 85 °C; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
797  
TYP. MAX. UNIT  
fCLK  
oscillator frequency at pad CLK  
input CLK HIGH time  
VDD = 5 V; note 1  
1536 3046 Hz  
tCLKH  
tCLKL  
130  
130  
µs  
µs  
ns  
µs  
µs  
input CLK LOW time  
td(p)SYNC SYNC propagation delay time  
30  
tSYNCL  
SYNC LOW time  
1
td(PLCD)  
driver delays with test loads  
VLCD = 5 V  
30  
Timing characteristics: I2C-bus; note 2  
fSCL  
SCL clock frequency  
400  
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
pF  
ns  
ns  
µs  
ns  
tBUF  
bus free time between a STOP and START  
START condition hold time  
set-up time for a repeated START condition  
SCL LOW time  
1.3  
0.6  
0.6  
1.3  
0.6  
tHD;STA  
tSU;STA  
tLOW  
tHIGH  
tr  
SCL HIGH time  
SCL and SDA rise time  
SCL and SDA fall time  
0.3  
0.3  
400  
tf  
Cb  
capacitive bus line load  
data set-up time  
tSU;DAT  
tHD;DAT  
tSU;STO  
tSW  
100  
0
data hold time  
set-up time for STOP condition  
tolerable spike width on bus  
0.6  
50  
Notes  
1. Typical output duty cycle of 50%.  
2. All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to  
VIL and VIH with an input voltage swing of VSS to VDD  
.
6.8 Ω  
SYNC  
CLK  
V
DD  
(2%)  
3.3 kΩ  
1.5 kΩ  
SDA,  
SCL  
0.5V  
V
DD  
DD  
(2%)  
(2%)  
1 nF  
BP0 to BP3, and  
S0 to S79  
V
SS  
MGS120  
Fig.18 Test loads.  
28  
1999 Jul 30  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
1/ f  
CLK  
t
t
CLKL  
CLKH  
0.7V  
0.3V  
DD  
CLK  
DD  
0.7V  
0.3V  
DD  
SYNC  
DD  
t
t
d(p)(SYNC)  
d(p)(SYNC)  
t
SYNCL  
0.5 V  
BP0 to BP3,  
and S0 to S79  
(V  
= 5 V)  
DD  
0.5 V  
t
MGL761  
PLCD  
Fig.19 Driver timing waveforms.  
d
SDA  
SCL  
t
t
t
f
BUF  
LOW  
t
t
t
SU;DAT  
t
HD;STA  
r
t
HIGH  
HD;DAT  
SDA  
t
SU;STA  
MGA728  
t
SU;STO  
Fig.20 I2C-bus timing waveforms.  
29  
1999 Jul 30  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
12 BONDING PAD LOCATIONS  
Bonding pad locations (dimensions in µm)  
All x and y coordinates are referenced to centre of chip  
(see Fig.22).  
SYMBOL  
PAD  
x
y
SYMBOL  
PAD  
x
y
SDAACK  
SDA  
SDA  
SCL  
SCL  
CLK  
VDD  
SYNC  
OSC  
A0  
1
1079.20  
839.20  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
S32  
S33  
S34  
S35  
S36  
S37  
S38  
S39  
S40  
S41  
S42  
S43  
S44  
S45  
S46  
S47  
S48  
S49  
S50  
S51  
S52  
S53  
S54  
S55  
S56  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
+1717.60  
+1637.60  
+1557.60  
+1477.60  
+1317.60  
+1237.60  
+1157.60  
+1077.60  
+997.60  
+917.60  
+837.60  
+757.60  
+677.60  
+597.60  
+437.60  
+357.60  
+277.60  
+197.60  
+117.60  
+37.60  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
2
3
759.20  
4
599.20  
5
519.20  
6
414.80  
7
284.80  
8
+4.20  
9
+119.20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
+249.20  
A1  
+379.20  
A2  
+581.20  
SA0  
VSS  
VLCD  
BP2  
BP0  
S0  
+711.20  
+841.20  
+1099.60  
+1277.60  
+1357.60  
+1437.60  
+1517.60  
+1597.60  
+1677.60  
+1757.60  
+1837.60  
+1917.60  
+1997.60  
+2077.60  
+2157.60  
+2237.60  
+2317.60  
+2357.60  
+2277.60  
+2197.60  
+2117.60  
+2037.60  
+1957.60  
+1877.60  
+1797.60  
S1  
S2  
S3  
42.40  
S4  
122.40  
202.40  
282.40  
362.40  
442.40  
602.40  
682.40  
762.40  
842.40  
922.40  
1002.40  
1082.40  
1162.40  
1242.40  
1322.40  
1402.40  
S5  
S6  
S7  
S8  
S9  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
1999 Jul 30  
30  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
SYMBOL  
PAD  
x
y
SYMBOL  
PAD  
x
y
S57  
S58  
S59  
S60  
S61  
S62  
S63  
S64  
S65  
S66  
S67  
S68  
S69  
S70  
S71  
S72  
S73  
S74  
S75  
S76  
S77  
S78  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
1562.40  
1642.40  
1722.40  
1802.40  
1882.40  
1962.40  
2042.40  
2122.40  
2202.40  
2282.40  
2362.40  
2322.40  
2242.40  
2162.40  
2082.40  
2002.40  
1922.40  
1842.40  
1762.40  
1682.40  
1602.40  
1522.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
+594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
594.40  
S79  
BP3  
BP1  
97  
98  
99  
1442.40  
1362.40  
1282.40  
594.40  
594.40  
594.40  
Alignment marks  
C1  
C2  
F
+2300.5  
2320.2  
2208.3  
+55.0  
+107.0  
165.4  
Dummy pads (connected to segments shown; note  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
(S11)  
(S11)  
(S12)  
(S12)  
(S67)  
(S67)  
(S68)  
(S68)  
+2469.70  
+2549.70  
+2517.60  
+2437.60  
2442.30  
2522.30  
2554.40  
2474.40  
594.40  
594.40  
+594.40  
+594.40  
+594.40  
+594.40  
594.40  
594.40  
Chip corners (pre-sawing)  
Bottom left  
Top right  
2695.00  
750.00  
+2695.00  
+750.00  
Note  
1. The dummy pads are not tested.  
handbook, halfpage  
REF  
REF  
C1  
C2  
MGL756  
REF  
F
Fig.21 Alignment markers.  
31  
1999 Jul 30  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
,kfullapgwedhit  
PC8533-2  
y
C
F
C
1
2
x
0,0  
MGL759  
The position of the bonding pads is not to scale.  
Chip dimensions: approximately 5.40 × 1.51 mm.  
Bump dimensions: 90 × 50 × 17.5 µm.  
Wafer thickness: 381 µm.  
Fig.22 Bonding pad locations.  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
13 DEVICE PROTECTION  
V
V
V
DD  
DD  
SA0  
V
SS  
SS  
V
DD  
CLK  
SCL  
V
SS  
V
DD  
V
SS  
OSC  
V
V
SS  
SDA  
DD  
SYNC  
V
V
V
SS  
SS  
DD  
A0, A1 A2  
SDAACK  
V
V
SS  
LCD  
V
BP0, BP1,  
BP2, BP3  
SS  
V
V
SS  
V
LCD  
LCD  
S0 to S79  
V
V
SS  
SS  
MGL760  
Fig.23 Device protection diagram.  
33  
1999 Jul 30  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
14 TRAY INFORMATION  
x
A
C
y
D
B
F
E
MGL757  
The dimensions are given in Table 16.  
Fig.24 Tray details.  
Table 16 Dimensions  
DIM.  
DESCRIPTION  
VALUE  
A
B
C
D
E
F
x
pocket pitch, x direction  
pocket pitch, y direction  
pocket width, x direction  
pocket width, y direction  
tray width, x direction  
7.37 mm  
3.68 mm  
5.50 mm  
1.60 mm  
50.8 mm  
50.8 mm  
6
handbook, halfpage  
tray width, y direction  
no. pockets in x direction  
no. pockets in y direction  
PC8533-2  
y
12  
MGL758  
The orientation of the IC in a pocket is indicated by the position of the  
IC type name on the die surface with respect to the chamfer on the  
upper left corner of the tray. Refer to the bonding pad location  
diagram for the orientating and position of the type name on the die  
surface.  
Fig.25 Tray alignment.  
1999 Jul 30  
34  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8533  
15 DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
16 LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
17 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
18 BARE DIE DISCLAIMER  
All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing for a period of  
ninety (90) days from the date of Philips' delivery. If there are data sheet limits not guaranteed, these will be separately  
indicated in the data sheet. There is no post waffle pack testing performed on individual die. Although the most modern  
processes are utilized for wafer sawing and die pick and place into waffle pack carriers, Philips Semiconductors has no  
control of third party procedures in the handling, packing or assembly of the die. Accordingly, Philips Semiconductors  
assumes no liability for device functionality or performance of the die or systems after handling, packing or assembly of  
the die. It is the responsibility of the customer to test and qualify their application in which the die is used.  
1999 Jul 30  
35  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 62 5344, Fax.+381 11 63 5777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1999  
SCA67  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
465006/02/pp36  
Date of release: 1999 Jul 30  
Document order number: 9397 750 05045  

相关型号:

PCF8533U/2/F2

Universal LCD driver for low multiplex rates
NXP

PCF8533U/2/F2,026

PCF8533 - Universal LCD driver for low multiplex rates DIE 99-Pin
NXP

PCF8533U/2DA/2

Universal LCD driver for low multiplex rates
NXP

PCF8533U/2DA/2,026

PCF8533 - Universal LCD driver for low multiplex rates DIE 99-Pin
NXP

PCF8533U/2E/F2,026

PCF8533 - Universal LCD driver for low multiplex rates DIE 99-Pin
NXP

PCF8534

Universal LCD driver for low multiplex rates
NXP

PCF8534A

Universal LCD driver for low multiplex rates
NXP

PCF8534AH

Universal LCD driver for low multiplex rates
NXP

PCF8534AH/1

Universal LCD driver for low multiplex rates
NXP

PCF8534AH/1,518

IC LIQUID CRYSTAL DISPLAY DRIVER, PDSO80, 12 X 12 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT-315-1, LQFP-80, Display Driver
NXP

PCF8534AH/1-T

IC,LCD DISPLAY DRIVER,60-SEG,4-BP,CMOS,QFP,80PIN,PLASTIC
NXP

PCF8534AHL/1

Universal LCD driver for low multiplex rates
NXP