PCF8534A [NXP]

Universal LCD driver for low multiplex rates; 低复用率的通用LCD驱动器
PCF8534A
型号: PCF8534A
厂家: NXP    NXP
描述:

Universal LCD driver for low multiplex rates
低复用率的通用LCD驱动器

驱动器 CD
文件: 总41页 (文件大小:839K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCF8534A  
Universal LCD driver for low multiplex rates  
Rev. 00.90 — 4 February 2008  
Product data sheet  
1. General description  
The PCF8534A is a peripheral device which interfaces to almost any Liquid Crystal  
Display (LCD) with low multiplex rates. It generates the drive signals for any static or  
multiplexed LCD containing up to four backplanes and up to 60 segments and can easily  
be cascaded for larger LCD applications. The PCF8534A is compatible with most  
microprocessors / microcontrollers and communicates via a two-line bidirectional I2C-bus.  
Communication overheads are minimized using a display RAM with auto-incremented  
addressing, hardware subaddressing and display memory switching (static and duplex  
drive modes).  
2. Features  
„ Single-chip LCD controller / driver  
„ Selectable backplane drive configuration: static or 2 / 3 / 4 backplane multiplexing  
„ 60 segment drives: up to thirty 8-segment numeric characters; up to sixteen  
15-segment alphanumeric characters; or any graphics of up to 240 elements  
„ May be cascaded for larger applications  
„ 60 × 4-bit RAM for display data storage  
„ Wide LCD supply range: from 2.5 V for low threshold LCDs and up to 6.5 V for  
guest-host LCDs and high threshold (automobile) twisted nematic LCDs  
„ Internal LCD bias generation with voltage-follower buffers  
„ Selectable display bias configuration: static, 12 or 13  
„ Wide logic power supply range: from 1.8 to 5.5 V  
„ LCD and logic supplies may be separated  
„ Low power consumption  
„ 400 kHz I2C-bus interface  
„ Compatible with 4-bit, 8-bit or 16-bit microprocessors/microcontrollers  
„ No external components  
„ Display memory bank switching in static and duplex drive modes  
„ Auto-incremented display data loading across device subaddress boundaries  
„ Versatile blinking modes  
„ TTL/CMOS compatible  
„ Manufactured in silicon gate CMOS process  
„ Automotive AEC-Q100 compliant.  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
3. Ordering information  
Table 1.  
Ordering information  
Type  
number  
Topside  
mark  
Package  
Name  
Description  
Version  
PCF8534AH PCF8534AH LQFP80 plastic low profile quad flat package; 80 leads; body 12 × 12 × 1.4 mm SOT315-1  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
2 of 41  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
4. Block diagram  
Fig 1. PCF8534A block diagram  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
5. Pinning information  
5.1 Pinning  
60  
59  
58  
57  
56  
S10  
S9  
S8  
S7  
S6  
1
2
3
4
5
6
7
8
9
S31  
S32  
S33  
S34  
S35  
S36  
S37  
S38  
S39  
55 S5  
54 S4  
53 S3  
52 S2  
51 S1  
S40 10  
S41 11  
S42 12  
S43 13  
S44 14  
S45 15  
S46 16  
PCF8534A  
50 S0  
49 VLCD  
48 VSS  
47 SA0  
46 A2  
45 A1  
44 A0  
17  
18  
19  
20  
S47  
S48  
S49  
S50  
43 OSC  
42 SYNC  
41 VDD  
mdb073_03  
Fig 2. PCF8534A pin configuration  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 2.  
Pin allocation table  
Symbol  
S31  
Pin  
1
Pin  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
Symbol  
VDD  
SYNC  
OSC  
A0  
2
S32  
3
S33  
4
S34  
5
S35  
A1  
6
S36  
A2  
7
S37  
SA0  
VSS  
VLCD  
S0  
8
S38  
9
S39  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
S40  
S41  
S1  
S42  
S2  
S43  
S3  
S44  
S4  
S45  
S5  
S46  
S6  
S47  
S7  
S48  
S8  
S49  
S9  
S50  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S51  
S52  
S53  
S54  
S55  
S56  
S57  
S58  
S59  
BP0  
BP1  
BP2  
BP3  
n.c.  
n.c.  
n.c.  
n.c.  
SDA  
SCL  
CLK  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
5 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
5.2 Pin description  
Table 3.  
Symbol  
SDA  
Pin description  
Pin  
38  
Description  
I2C-bus serial data input / output  
I2C-bus serial clock input  
external clock input / output  
supply voltage  
SCL  
39  
CLK  
40  
VDD  
41  
SYNC  
OSC  
42  
cascade synchronization input / output  
internal oscillator enable input  
subaddress inputs  
43  
A0, A1 and A2  
44 to 46  
47  
SA0  
I2C-bus slave address input: [0]  
VSS  
48  
logic ground  
VLCD  
49  
LCD supply voltage  
BP0, BP1, BP2 and BP3  
S0 to S59  
30 to 33  
LCD backplane outputs  
LCD segment outputs  
50 to 80  
and 1 to 29  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
6 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
6. Device protection diagram  
V
V
DD  
DD  
SA0  
V
V
V
SS  
SS  
DD  
CLK  
OSC  
SCL  
V
V
SS  
DD  
V
SS  
V
V
SS  
SDA  
DD  
SYNC  
V
V
V
SS  
SS  
DD  
A0, A1 A2  
V
V
SS  
LCD  
BP0, BP1,  
BP2, BP3  
V
V
SS  
V
LCD  
LCD  
S0 to S59  
V
V
SS  
SS  
MGL760v02  
Fig 3. Device protection diagram  
7. Functional description  
The PCF8534A is a versatile peripheral device designed to interface any  
microprocessor / microcontroller to a wide variety of LCDs. It can directly drive any static  
or multiplexed LCD containing up to four backplanes and up to 60 segments.  
The display configurations possible with the PCF8534A depend on the number of active  
backplane outputs required; a selection of display configurations is given in Table 4.  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
7 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
All of the display configurations given in Table 4 can be implemented in the typical system  
shown in Figure 4.  
The host microprocessor / microcontroller maintains the 2-line I2C-bus communication  
channel with the PCF8534A. The internal oscillator is selected by connecting pin OSC  
to VSS. The appropriate biasing voltages for the multiplexed LCD waveforms are  
generated internally. The only other connections required to complete the system are the  
power supplies (VDD, VSS and VLCD) and the LCD panel selected for the application.  
Table 4.  
Selection of display configurations  
7 segment numeric  
Number of  
14 segment numeric  
Dot matrix  
Backplanes  
Segments  
Digits  
Indicator  
Characters  
Indicator  
symbols  
symbols  
4
3
2
1
240  
180  
120  
60  
30  
22  
15  
7
30  
26  
15  
11  
16  
12  
8
16  
12  
8
240 (4 × 60)  
180 (3 × 60)  
120 (2 × 60)  
60 (1 × 60)  
4
4
V
DD  
t
r
R
2C  
B
V
V
DD  
LCD  
SDA  
SCL  
HOST  
MICRO-  
PROCESSOR/  
MICRO-  
60 segment drives  
4 backplanes  
LCD PANEL  
PCF8534A  
(up to 240  
elements)  
OSC  
CONTROLLER  
A0 A1 A2 SA0 V  
SS  
MGL744_04  
V
SS  
Fig 4. Typical system configuration  
7.1 Power-on reset  
At power on the PCF8534A resets to a starting condition as follows:  
1. All backplane outputs are set to VLCD  
.
2. All segment outputs are set to VLCD  
.
3. The drive mode ‘1 : 4 multiplex with 13 bias’ is selected.  
4. Blinking is switched off.  
5. Input and output bank selectors are reset.  
6. The I2C-bus interface is initialized.  
7. The data pointer and the subaddress counter are cleared.  
8. Display disabled.  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
8 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Data transfers on the I2C-bus must be avoided for 1 ms following power-on to allow  
completion of the reset action.  
7.2 LCD bias generator  
Fractional LCD biasing voltages are obtained from an internal voltage divider of the three  
series resistors connected between VLCD and VSS. The center resistor can be switched  
out of the circuit to provide a 12 bias voltage level for the 1:2 multiplex configuration.  
7.3 LCD voltage selector  
The LCD voltage selector co-ordinates the multiplexing of the LCD in accordance with the  
selected LCD drive configuration. The operation of the voltage selector is controlled by  
MODE SET commands from the command decoder.  
The biasing configurations that apply to the preferred modes of operation, together with  
the biasing characteristics as functions of VOP and the resulting discrimination ratios (D),  
are shown in Table 5.  
A practical value for VOP is determined by equating VOFF(rms) with a defined LCD threshold  
voltage (VTH), typically when the LCD exhibits approximately 10 % contrast. In the static  
drive mode a suitable choice is VOP > 3 VTH  
.
Multiplex drive ratios of 1:3 and 1:4 with 12 bias are possible but the discrimination and  
hence the contrast ratios are smaller e.g.:  
21  
3
3 = 1.732 for 1:3 multiplex or  
= 1.528 for 1:4 multiplex  
---------  
The advantage of these modes is a reduction of the LCD full-scale voltage VOP as follows:  
1:3 multiplex (12 bias): VOP  
=
6 × VOFF(rms) = 2.449VOFF(rms)  
(4 × 3)  
1:4 multiplex (12 bias): VOP  
=
= 2.309VOFF(rms)  
--------------------  
3
These compare with VOP = 3 × VOFF(rms) when 13 bias is used. Note: VOP = VLCD  
.
Table 5.  
Preferred LCD drive modes: summary of characteristics  
LCD drive  
mode  
Number of:  
LCD bias  
configuration  
VON(ms)  
-------------------  
VOP  
VOFF(ms)  
----------------------  
VOP  
VON(ms)  
----------------------  
VOFF(ms)  
D =  
Backplanes  
Levels  
static  
1:2  
1
2
2
3
4
2
3
4
4
4
static  
0
1
1
2
0.354  
0.333  
0.333  
0.333  
0.791  
0.745  
0.638  
0.577  
2.236  
2.236  
1.915  
1.732  
1
1:2  
3
1
1:3  
3
1
1:4  
3
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
9 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4 LCD drive mode waveforms  
7.4.1 Static drive mode  
The static LCD drive mode is used when a single backplane is provided in the LCD.  
Backplane and segment drive waveforms for this mode are shown in Figure 5.  
T
frame  
LCD segments  
V
LCD  
BP0  
V
SS  
state 1  
(on)  
state 2  
(off)  
V
LCD  
S
n
V
SS  
V
LCD  
S
n+1  
V
SS  
(a) Waveforms at driver.  
V
LCD  
state 1  
0 V  
V  
LCD  
V
LCD  
state 2  
0 V  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl745  
Vstate1(t) = Vsn(t) VBP0(t).  
VON(rms) = VLCD  
.
Vstate2(t) = V(sn + 1)(t) VBP0(t).  
VOFF(rms) = 0 V.  
Fig 5. Static drive mode waveforms  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
10 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4.2 1:2 Multiplex drive mode  
When two backplanes are provided in the LCD, the 1:2 multiplex mode applies. The  
PCF8534A allows the use of 12 bias or 13 bias in this mode as shown in Figure 6 and  
Figure 7.  
T
frame  
V
LCD  
LCD segments  
V
/2  
BP0  
BP1  
LCD  
V
V
SS  
state 1  
V
LCD  
state 2  
/2  
LCD  
SS  
V
V
LCD  
S
n
V
SS  
V
LCD  
S
n+1  
V
V
SS  
(a) Waveforms at driver.  
V
LCD  
/2  
LCD  
0 V  
state 1  
V /2  
LCD  
V  
LCD  
V
LCD  
V
/2  
LCD  
0 V  
state 2  
V  
V  
/2  
LCD  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl746  
Vstate1(t) = Vsn(t) VBP0(t).  
VON(rms) = 0.791 VLCD  
Vstate2(t) = V(sn)(t) VBP1(t).  
VOFF(rms) = 0.354 VLCD  
.
.
Fig 6. Waveforms for the 1:2 multiplex drive mode with 12 bias  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
11 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
T
frame  
V
LCD  
2V  
LCD segments  
/3  
LCD  
BP0  
BP1  
V
/3  
LCD  
V
SS  
state 1  
V
LCD  
2V  
state 2  
/3  
LCD  
V
/3  
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
S
n
V
/3  
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
S
n+1  
V
/3  
LCD  
V
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/3  
LCD  
V
/3  
LCD  
state 1  
0 V  
V  
/3  
LCD  
2V  
V  
/3  
LCD  
LCD  
V
LCD  
2V  
/3  
LCD  
V
/3  
LCD  
0 V  
V  
state 2  
/3  
LCD  
2V  
V  
/3  
LCD  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl747  
Vstate1(t) = Vsn(t) VBP0(t).  
VON(rms) = 0.745 VLCD  
Vstate2(t) = V(sn)(t) VBP1(t).  
VOFF(rms) = 0.333 VLCD  
.
.
Fig 7. Waveforms for the 1:2 multiplex drive mode with 13 bias  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
12 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4.3 1:3 Multiplex drive mode  
When three backplanes are provided in the LCD, the 1:3 multiplex drive mode applies, as  
shown in Figure 8.  
T
frame  
V
LCD  
2V  
LCD segments  
/3  
LCD  
BP0  
BP1  
BP2  
V
/3  
LCD  
V
SS  
state 1  
state 2  
V
LCD  
2V  
/3  
LCD  
V
/3  
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
V
/3  
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
S
n
V
/3  
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
S
S
n+1  
n+2  
V
/3  
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
V
/3  
LCD  
V
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/3  
LCD  
V /3  
LCD  
state 1  
0 V  
V  
/3  
LCD  
2V  
V  
/3  
LCD  
LCD  
V
LCD  
2V  
/3  
LCD  
V /3  
LCD  
state 2  
0 V  
V  
/3  
LCD  
2V  
V  
/3  
LCD  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl748  
Vstate1(t) = Vsn(t) VBP0(t).  
VON(rms) = 0.638 VLCD  
Vstate2(t) = V(sn)(t) VBP1(t).  
VOFF(rms) = 0.333 VLCD  
.
.
Fig 8. Waveforms for the 1:3 multiplex drive mode  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
13 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4.4 1:4 Multiplex drive mode  
When four backplanes are provided in the LCD, the 1:4 multiplex drive mode applies, as  
shown in Figure 9.  
T
frame  
V
LCD segments  
LCD  
2V  
/3  
LCD  
BP0  
BP1  
BP2  
BP3  
V
/3  
LCD  
V
SS  
state 1  
state 2  
V
LCD  
2V  
/3  
LCD  
V
LCD  
/3  
V
SS  
V
LCD  
2V  
/3  
LCD  
/3  
V
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
V
LCD  
/3  
V
SS  
V
LCD  
2V  
/3  
LCD  
/3  
S
n
V
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
S
n+1  
V
LCD  
/3  
V
SS  
V
LCD  
2V  
/3  
LCD  
S
S
n+2  
n+3  
V /3  
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
V /3  
LCD  
V
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/3  
LCD  
V /3  
LCD  
state 1  
0 V  
V  
/3  
LCD  
2V  
V  
/3  
LCD  
LCD  
V
LCD  
2V  
/3  
LCD  
V
/3  
LCD  
0 V  
V  
state 2  
/3  
LCD  
2V  
V  
/3  
LCD  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl749  
Vstate1(t) = Vsn(t) VBP0(t).  
VON(rms) = 0.577 VLCD  
Vstate2(t) = V(sn)(t) VBP1(t).  
VOFF(rms) = 0.333 VLCD  
.
.
Fig 9. Waveforms for the 1:4 multiplex drive mode  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
14 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.5 Oscillator  
7.5.1 Internal clock  
The internal logic and the LCD drive signals of the PCF8534A are timed either by the  
built-in oscillator or from an external clock. When the internal oscillator is used, you must  
connect pin OSC to VSS. In this event, the output from pin CLK provides the clock signal  
for cascaded PCF8534As in the system. After power-up, SDA must be HIGH to guarantee  
that the clock starts.  
7.5.2 External clock  
The condition for external clock is made by tying pin OSC to VDD; pin CLK then becomes  
the external clock input.  
The clock frequency (fCLK) determines the LCD frame frequency.  
A clock signal must always be supplied to the device; removing the clock may freeze the  
LCD in a DC state.  
7.6 Timing  
The timing of the PCF8534A organizes the internal data flow of the device. This includes  
the transfer of display data from the display RAM to the display segment outputs. In  
cascaded applications the synchronization signal (SYNC) maintains the correct timing  
relationship between the PCF8534As in the system. The timing also generates the LCD  
frame frequency which it derives as an integer division of the clock frequency  
(see Table 6). The frame frequency is a fixed division of the internal clock or of the  
frequency applied to pin CLK when an external clock is used.  
7.7 Display register  
The display latch holds the display data while the corresponding multiplex signals are  
generated. There is a one-to-one relationship between the data in the display latch, the  
LCD segment outputs and one column of the display RAM.  
7.8 Segment outputs  
The LCD drive section includes 60 segment outputs (S0 to S59) which must be connected  
directly to the LCD. The segment output signals are generated in accordance with the  
multiplexed backplane signals and with data resident in the display latch. When less than  
60 segment outputs are required the unused segment outputs must be left open-circuit.  
7.9 Backplane outputs  
The LCD drive section includes four backplane outputs: BP0 to BP3. The backplane  
output signals are generated in accordance with the selected LCD drive mode.  
In the 1:4 multiplex drive mode BP0 to BP3 must be connected directly to the LCD.  
If less than four backplane outputs are required the unused outputs can be left  
open-circuit.  
In the 1:3 multiplex drive mode BP3 carries the same signal as BP1, therefore these  
two adjacent outputs can be tied together to give enhanced drive capabilities.  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
15 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
In the 1:2 multiplex drive mode BP0 and BP2, BP1 and BP3 respectively carry the  
same signals and may also be paired to increase the drive capabilities.  
In the static drive mode the same signal is carried by all four backplane outputs and  
they can be connected in parallel for very high drive requirements.  
7.10 Display RAM  
The display RAM is a static 60 × 4-bit RAM which stores LCD data. A logic 1 in the RAM  
bit map indicates the on-state of the corresponding LCD segment; similarly, a logic 0  
indicates the off-state. There is a one-to-one correspondence between the RAM  
addresses and the segment outputs, and between the individual bits of a RAM word and  
the backplane outputs. The first RAM column corresponds to the 60 segments operated  
with respect to backplane BP0 (see Figure 10). In multiplexed LCD applications the  
segment data of the second, third and fourth column of the display RAM are  
time-multiplexed with BP1, BP2 and BP3 respectively.  
When display data is transmitted to the PCF8534A the display bytes received are stored  
in the display RAM in accordance with the selected LCD drive mode. The data is stored as  
it arrives and does not wait for the acknowledge cycle as with the commands. Depending  
on the current MUX mode data is stored singularly, in pairs, triplets or quadruplets. e.g. in  
1:2 MUX mode the RAM data is stored every second bit. To illustrate the filling order, an  
example of a 7-segment numeric display showing all drive modes is given in Figure 11;  
the RAM filling organization depicted applies equally to other LCD types. With reference  
to Figure 11, in the static drive mode the eight transmitted data bits are placed in bit 0 of  
eight successive display RAM addresses. In the 1:2 multiplex drive mode the eight  
transmitted data bits are placed in bits 0 and 1 of four successive display RAM addresses.  
In the 1:3 multiplex drive mode these bits are placed in bits 0, 1 and 2 of three successive  
addresses, with bit 2 of the third address left unchanged. This last bit may, if necessary,  
be controlled by an additional transfer to this address but care should be taken to avoid  
overriding adjacent data because full bytes are always transmitted. In the 1:4 multiplex  
drive mode the eight transmitted data bits are placed in bits 0, 1, 2 and 3 of two  
successive display RAM addresses.  
Table 6.  
LCD frame frequencies  
Frame frequency  
Nominal frame frequency (Hz)  
fCLK  
----------  
24  
64  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
16 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
DISPLAY 2!- ADDRESSES ꢊROWSꢋ ꢌ SEGMENT OUTPUTS ꢊ3ꢋ  
ꢅꢅ ꢅꢆ ꢅꢇ ꢅꢈ ꢅꢉ  
DISPLAY 2!- BITS  
ꢊCOLUMNSꢋ ꢌ  
BACKPLANE OUTPUTS  
ꢊ"0ꢋ  
-',ꢁꢂꢃVꢃꢄ  
Fig 10. Display RAM bit map showing direct relationship between backplane outputs, display RAM addresses and  
segment outputs, and between bits in a RAM word and backplane outputs  
7.11 Data pointer  
The addressing mechanism for the display RAM is realized using the data pointer. This  
allows the loading of an individual display data byte, or a series of display data bytes, into  
any location of the display RAM. The sequence commences with the initialization of the  
data pointer by the LOAD DATA POINTER command. Following this, an arriving data byte  
is stored starting at the display RAM address indicated by the data pointer thereby  
observing the filling order shown in Figure 11. The data pointer is automatically  
incremented in accordance with the chosen LCD configuration. That is, after each byte is  
stored, the contents of the data pointer are incremented  
by eight (static drive mode),  
by four (1:2 multiplex drive mode),  
by three (1:3 multiplex drive mode) or  
by two (1:4 multiplex drive mode).  
If an I2C-bus data access is terminated early then the state of the data pointer is unknown.  
The data pointer must be re-written prior to further RAM accesses.  
7.12 Subaddress counter  
The storage of display data is conditioned by the contents of the subaddress counter.  
Storage is allowed to take place only when the contents of the subaddress counter agree  
with the hardware subaddress applied to A0, A1 and A2. The subaddress counter value is  
defined by the DEVICE SELECT command. If the contents of the subaddress counter and  
the hardware subaddress do not agree then data storage is inhibited but the data pointer  
is incremented as if data storage had taken place.  
The subaddress counter is also incremented when the data pointer overflows.  
The storage arrangements described lead to extremely efficient data loading in cascaded  
applications. When a series of display bytes are sent to the display RAM, automatic  
wrap-over to the next PCF8534A occurs when the last RAM address is exceeded.  
Subaddressing across device boundaries is successful even if the change to the next  
device in the cascade occurs within a transmitted character (such as during the 27th  
display data byte transmitted in 1:3 multiplex mode).  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
17 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
The hardware subaddress should not be changed whilst the device is being accessed on  
the I2C-bus interface.  
7.13 Output bank selector  
The output bank selector selects one of the four bits per display RAM address for transfer  
to the display latch. The actual bit selected depends on the particular LCD drive mode in  
operation and on the instant in the multiplex sequence.  
In 1:4 multiplex, all RAM addresses of bit 0 are selected, these are followed by the  
contents of bit 1, bit 2 and then bit 3.  
In 1:3 multiplex, bits 0, 1 and 2 are selected sequentially.  
In 1:2 multiplex, bits 0 and 1 are selected and,  
in the static mode, bit 0 is selected.  
The SYNC signal will reset these sequences to the following starting points; bit 3 for 1:4  
multiplex, bit 2 for 1:3 multiplex, bit 1 for 1:2 multiplex and bit 0 for static mode.  
The PCF8534A includes a RAM bank switching feature in the static and 1:2 multiplex  
drive modes. In the static drive mode, the BANK SELECT command may request the  
contents of bit 2 to be selected for display instead of the contents of bit 0. In the 1:2 drive  
mode, the contents of bits 2 and 3 may be selected instead of bits 0 and 1. This gives the  
provision for preparing display information in an alternative bank and to be able to switch  
to it once it is assembled.  
7.14 Input bank selector  
The input bank selector loads display data into the display RAM in accordance with the  
selected LCD drive configuration. Display data can be loaded in bit 2 in static drive mode  
or in bits 2 and 3 in 1:2 drive mode by using the BANK SELECT command. The input  
bank selector functions independently to the output bank selector.  
7.15 Blinker  
The display blinking capabilities of the PCF8534A are very versatile. The whole display  
can be blinked at frequencies selected by the BLINK command. The blinking frequencies  
are fractions of the clock frequency. The ratios between the clock and blinking frequencies  
depend on the mode in which the device is operating, see Table 7.  
An additional feature is for an arbitrary selection of LCD segments to be blinked. This  
applies to the static and 1:2 LCD drive modes and is implemented without any  
communication overheads. By means of the output bank selector, the displayed RAM  
banks are exchanged with alternate RAM banks at the blinking frequency. This mode can  
also be specified by the BLINK command.  
In the 1:3 and 1:4 multiplex modes, where no alternate RAM bank is available, groups of  
LCD segments can be blinked by selectively changing the display RAM data at fixed time  
intervals.  
If the entire display is to be blinked at a frequency other than the nominal blinking  
frequency, this can be effectively performed by resetting and setting the display enable  
bit E at the required rate using the MODE SET command.  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
18 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 7.  
Blinking frequencies  
Assuming that fCLK= 1536 Hz.  
Blinking mode  
Normal operating mode  
Normal blinking frequency  
ratio  
“Off”  
-
Blinking off  
2 Hz  
fCLK  
“2 Hz”  
----------  
768  
fCLK  
-----------  
1536  
“1 Hz”  
1 Hz  
fCLK  
-----------  
3072  
“0.5 Hz”  
0.5 Hz  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
19 of 41  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
drive mode  
LCD segments  
LCD backplanes  
display RAM filling order  
transmitted display byte  
a
S
n+2  
n
n
1
n
2
n
3
n
4
n
5
n
6
n 7  
b
BP0  
f
S
S
n+1  
n+3  
MSB  
LSB  
DP  
0
1
2
3
c
x
x
x
b
x
x
x
a
x
x
x
f
g
x
x
x
e
x
x
x
d
x
x
x
DP  
bit/  
BP  
g
S
n+4  
S
n
x
x
x
x
x
x
c
b
a
f
g e d  
static  
e
S
S
S
n+7  
n+5  
n+6  
c
d
DP  
BP0  
S
n
a
n
n
n
n
1
1
1
n
2
n 3  
b
b
b
1 : 2  
f
S
n+1  
MSB  
LSB  
DP  
0
1
2
3
a
b
x
x
f
e
c
x
x
d
bit/  
BP  
g
g
x
x
DP  
x
x
a
b
f
g
e c d  
BP1  
S
S
e
multiplex  
n+2  
n+3  
c
c
c
d
d
d
DP  
BP0  
BP1  
S
n+1  
a
n
n 2  
S
S
n
f
1 : 3  
n+2  
MSB  
LSB  
e
0
1
2
3
b
DP  
c
a
d
g
x
f
bit/  
BP  
g
e
x
x
BP2  
b
DP  
c
a
d
g
f
e
multiplex  
x
DP  
S
n
a
n
BP2  
BP3  
BP0  
BP1  
f
1 : 4  
0
1
2
3
a
c
f
bit/  
BP  
MSB  
LSB  
d
g
e
g
d
b
DP  
e
multiplex  
a
c
b
DP  
f
e
g
S
n+1  
DP  
mgl751  
X = data bit unchanged  
Fig 11. Relationship between LCD layout, drive mode, display RAM filling order and display data transmitted over the I2C-bus  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
8. Basic architecture  
8.1 Characteristics of the I2C-bus  
The I2C-bus is for bidirectional, two-line communication between different ICs or modules.  
The two lines are a Serial Data line (SDA) and a Serial Clock Line (SCL). Both lines must  
be connected to a positive supply via a pull-up resistor when connected to the output  
stages of a device. Data transfer is initiated only when the bus is not busy.  
8.1.1 Bit transfer  
One data bit is transferred during each clock pulse.  
The data on the SDA line must remain stable during the HIGH period of the clock pulse as  
changes in the data line at this time will be interpreted as a control signal. Bit transfer is  
illustrated in Figure 12.  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mba607  
Fig 12. Bit transfer  
8.1.1.1 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW change  
of the data line, while the clock is HIGH, is defined as the START condition (S).  
A LOW-to-HIGH change of the data line, while the clock is HIGH, is defined as the STOP  
condition (P). The START and STOP conditions are illustrated in Figure 13.  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
mbc622  
Fig 13. Definition of START and STOP conditions  
8.1.2 System configuration  
A device generating a message is a ‘transmitter’, a device receiving a message is the  
‘receiver’. The device that controls the message is the ‘master’ and the devices which are  
controlled by the master are the ‘slaves’. The system configuration is illustrated in  
Figure 14.  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
21 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
MASTER  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
SDA  
SCL  
mga807  
Fig 14. System configuration  
8.1.3 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge  
bit. The acknowledge bit is a HIGH level signal put on the bus by the transmitter during  
which time the master generates an extra acknowledge related clock pulse.  
A slave receiver which is addressed must generate an acknowledge after the  
reception of each byte.  
Also a master receiver must generate an acknowledge after the reception of each  
byte that has been clocked out of the slave transmitter.  
The device that acknowledges must pull-down the SDA line during the acknowledge  
clock pulse, so that the SDA line is stable LOW during the HIGH period of the  
acknowledge related clock pulse (set-up and hold times must be taken into  
consideration).  
A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event the  
transmitter must leave the data line HIGH to enable the master to generate a STOP  
condition.  
Acknowledgement on the I2C-bus is illustrated in Figure 15.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from  
master  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
condition  
mbc602  
Fig 15. Acknowledgement of the I2C-bus  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
22 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
8.1.4 PCF8534A I2C-bus controller  
The PCF8534A acts as an I2C-bus slave receiver. It does not initiate I2C-bus transfers or  
transmit data to an I2C-bus master receiver. The only data output from the PCF8534A are  
the acknowledge signals of the selected devices. Device selection depends on the  
I2C-bus slave address, on the transferred command data and on the hardware  
subaddress.  
In single device application, the hardware subaddress inputs A0, A1 and A2 are normally  
tied to VSS which defines the hardware subaddress 0. In multiple device applications  
A0, A1 and A2 are tied to VSS or VDD in accordance with a binary coding scheme such  
that no two devices with a common I2C-bus slave address have the same hardware  
subaddress.  
8.1.5 Input filters  
To enhance noise immunity in electrically adverse environments, RC low-pass filters are  
provided on the SDA and SCL lines.  
8.1.6 I2C-bus protocol  
Two I2C-bus slave addresses (01110000 and 01110010) are reserved for the PCF8534A.  
The least significant bit of the slave address that a PCF8534A will respond to is defined by  
the level tied at its input SA0. The PCF8534A is a write only device and will not respond to  
a read access. Two types of PCF8534A can be distinguished on the same I2C-bus which  
allows:  
Up to 16 PCF8534As on the same I2C-bus for very large LCD applications  
The use of two types of LCD multiplex on the same I2C-bus.  
The I2C-bus protocol is shown in Figure 16. The sequence is initiated with a START  
condition (S) from the I2C-bus master which is followed by one of the two PCF8534A  
slave addresses available. All PCF8534As with the corresponding SA0 level acknowledge  
in parallel to the slave address, but all PCF8534As with the alternative SA0 level ignore  
the whole I2C-bus transfer.  
After acknowledgement, a control byte follows which defines if the next byte is RAM or  
command information. The control byte also defines if the next following byte is a control  
byte or further RAM/command data.  
In this way it is possible to configure the device then fill the display RAM with little  
overhead.  
The command bytes and control bytes are also acknowledged by all addressed  
PCF8534As connected to the bus.  
The display bytes are stored in the display RAM at the address specified by the data  
pointer and the subaddress counter. Both data pointer and subaddress counter are  
automatically updated and the data is directed to the intended PCF8534A device.  
The acknowledgement after each byte is made only by the (A0, A1 and A2) addressed  
PCF8534A. After the last display byte, the I2C-bus master issues a STOP condition (P).  
Alternatively a START may be issued to RESTART an I2C-bus access.  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
23 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
R/W = 0  
S
slave address  
control byte  
CoRS  
RAM/command byte  
M
S
B
L
S
B
S
0
1
1
1
0
0
A
0
0
A
P
A
EXAMPLES  
a) transmit two bytes of RAM data  
S
S
0
1
1
1
0
0
A
0
0
A
0
1
1
0
RAM DATA  
COMMAND  
COMMAND  
A
A
A
RAM DATA  
A
A
A
P
A
A
A
b) transmit two command bytes  
S
S
0
1
1
1
0
0
A
0
0
A
0
0
0
1
COMMAND  
RAM DATA  
A
A
P
c) transmit one command byte and two RAM date bytes  
S
S
0
1
1
1
0
0
A
0
0
A
1
0
RAM DATA  
A P  
mgl752  
Fig 16. I2C-bus protocol  
MSB  
Co RS  
LSB  
UNUSED  
mgl753  
(1) Co = 0; last control byte  
(2) Co = 1; control bytes continue  
(3) RS = 0; data is a command byte  
(4) RS = 1; data is a display byte  
Fig 17. Control byte format  
8.2 Command decoder  
The command decoder identifies command bytes that arrive on the I2C-bus. The five  
commands available to the PCF8534A are defined in Table 8.  
Table 8.  
Definition of PCF8534A commands  
Command  
Mode set  
OPCODE  
Options  
Table 9  
Description  
1 1 0 0 E B M1 M0  
defines LCD drive mode  
defines LCD bias configuration  
Table 10  
Table 11  
defines display status; the possibility to disable the display  
allows implementation of blinking under external control  
Load data pointer 0 P6 P5 P4 P3 P2 P1 P0 Table 12  
7 bits of immediate data, bits P6 to P0, are transferred to the  
data pointer to define one of 8 hardware subaddresses  
Device select  
1 1 1 0 0 A2 A1 A0  
Table 13  
3 bits of immediate data, bits A0 to A3, are transferred to the  
subaddress counter to define one of 8 hardware  
subaddresses  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
24 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 8.  
Definition of PCF8534A commands  
Command  
Bank select  
OPCODE  
Options  
Description  
1 1 1 1 1 0 I 0  
Table 14  
defines input bank selection (storage of arriving display  
data)  
Table 15  
defines output bank selection (retrieval of LCD display  
data); the BANK SELECT command has no effect in 1:3 or  
1:4 multiplex drive modes  
Blink  
1 1 1 1 0 A BF BF  
Table 16  
Table 17  
defines the blinking frequency  
1
0
selects the blinking mode; normal operation with frequency  
set by BF1, BF0 or blinking by alteration of display RAM  
banks. Alteration blinking does not apply in 1:3 or 1:4  
multiplex drive modes.  
Table 9.  
Mode set option 1  
LCD drive mode  
Drive mode  
static  
Bits  
Backplane  
M1  
0
M0  
1
1
2
3
4
1:2 MUX  
1
0
1:3 MUX  
1
1
1:4 MUX  
0
0
Table 10. Mode set option 2  
LCD bias  
13 bias  
12 bias  
Bit B  
0
1
Table 11. Mode set option 3  
Display status  
Bit E  
disabled (blank)  
0
1
enabled  
Table 12. Load data pointer option  
Description  
Bits  
7 bit ordinary value of 0 to 59  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
Table 13. Device select option  
Description  
Bits  
A2  
3 bit binary value of 0 to 7  
A1  
A0  
Table 14. Blank select option 1 (input)  
Static  
1:2 MUX  
Bit I  
RAM bit 0  
RAM bit 2  
RAM bits 0 and 1  
RAM bits 2 and 3  
0
1
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
25 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 15. Blank select option 2 (output)  
Static  
1:2 MUX  
Bit 0  
RAM bit 0  
RAM bit 2  
RAM bits 0 and 1  
RAM bits 2 and 3  
0
1
Table 16. Blink option 1  
Blink frequency  
Bits  
BF1  
0
BF0  
0
off  
2 Hz  
1 Hz  
0.5 Hz  
0
1
1
0
1
1
Table 17. Blink option 2  
Blink mode  
Bit A  
[1]  
normal blinking  
0
1
alteration blinking  
[1] Normal blinking is assumed when the multiplex rates 1:3 or 1:4 are selected.  
8.3 Display controller  
The display controller executes the commands identified by the command decoder. It  
contains the status registers of the PCF8534A and co-ordinates their effects.  
The controller is also responsible for loading display data into the display RAM as required  
by the filling order.  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
26 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
9. Limiting values  
Table 18. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD  
Parameter  
Conditions Min  
Max  
6.5  
7.5  
6.5  
Unit  
V
supply voltage  
LCD supply voltage  
0.5  
VLCD  
VI  
VSS 0.5  
V
input voltage on pins SDA,  
SCL, CLK, SYNC, SA0, OSC  
and A0 to A2  
0.5  
V
VO  
output voltage on pins SDA,  
SCL, CLK, SYNC, SA0, OSC  
and A0 to A2  
0.5  
7.5  
V
IDD  
supply current  
50  
50  
50  
10  
10  
-
+50  
+50  
+50  
+10  
+10  
400  
100  
+150  
2000  
200  
2000  
100  
mA  
mA  
mA  
mA  
mA  
mW  
mW  
°C  
ILCD  
ISS  
LCD supply current  
ground supply current  
input current  
II  
IO  
output current  
PTOT  
POUT  
TSTG  
VESD  
total power dissipation  
power dissipation per output  
storage temperature  
electrostatic discharge voltage HBM  
MM  
-
65  
V
V
CDM  
V
ILU  
latch-up current  
mA  
10. Static characteristics  
Table 19. Static characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 6.5 V; TAMB = 40 °C to +85 °C; unless otherwise specified  
Symbol  
Supplies  
VDD  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
supply voltage  
1.8  
2.5  
-
-
5.5  
6.5  
20  
V
VLCD  
IDD  
LCD supply voltage  
supply current  
-
V
[1]  
[1]  
fCLK = 1536 Hz  
fCLK = 1536 Hz  
8
24  
μA  
μA  
ILCD  
LCD supply current  
-
60  
Logic  
VI  
Input voltage  
VSS 0.5  
VDD + 0.5  
0.3 VDD  
V
V
VIL  
LOW-level input voltage on  
pins CLK, SYNC, OSC, A0 to  
A2 and SA0  
VSS  
-
VIH  
HIGH-level input voltage on  
pins CLK, SYNC, OSC, A0 to  
A2 and SA0  
0.7 VDD  
1.0  
-
VDD  
1.6  
V
V
VPOR  
power-on reset voltage  
1.3  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
27 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 19. Static characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 6.5 V; TAMB = 40 °C to +85 °C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IOL1  
IOH1  
IL1  
LOW-level output current on VOL = 0.4 V; VDD = 5 V  
pins CLK and SYNC  
1
-
-
mA  
HIGH-level output current on VOH = 4.6 V; VDD = 5 V  
pin CLK  
1  
1  
-
-
-
mA  
leakage current on pins SA0, VI = VDD or VSS  
A0 to A2, CLK  
+1  
μA  
IL2  
CI  
leakage current on pin OSC VI = VDD  
1  
-
-
+1  
7
μA  
[2]  
input capacitance  
-
pF  
I2C-bus; pins SDA and SCL  
VI  
Input voltage  
VSS 0.5  
VSS  
-
-
-
-
-
5.5  
V
VIL(SCL)  
VIL(SDA)  
VIH  
LOW-level input voltage  
LOW-level input voltage  
HIGH-level input voltage  
0.3 VDD  
0.2 VDD  
5.5  
V
VSS  
V
0.7 VDD  
3
V
IOL2  
LOW-level output current on VOL = 0.4 V; VDD = 5 V  
pin SDA  
-
mA  
IL3  
leakage current  
VI = VDD or VSS  
1  
-
-
+1  
7
μA  
[2]  
CI  
input capacitance  
-
pF  
LCD outputs  
[4]  
[5]  
[3]  
[3]  
VBP  
DC voltage component on  
pins BP0 to BP3  
CBP = 35 nF  
CS = 5 nF  
100  
-
+100  
+100  
10  
mV  
mV  
kΩ  
kΩ  
VS  
DC voltage component on  
pins S0 to S59  
100  
-
RBP  
RS  
output resistance at pins BP0 VLCD = 5 V  
to BP3  
-
-
1.5  
6.0  
output resistance at pins S0 VLCD = 5 V  
to S59  
13.5  
[1] LCD outputs are open circuit; inputs at VSS or VDD; external clock with 50 % duty factor; I2C-bus inactive.  
[2] Not tested, design spec only.  
[3] Outputs measured individually and sequentially.  
[4] CBP = backplane capacitance.  
[5] CS = segment capacitance.  
11. Dynamic characteristics  
Table 20. Dynamic characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 6.5 V; TAMB = 40 °C to +85 °C; unless otherwise specified  
Symbol  
fCLK(int)  
fCLK(ext)  
tCLKH  
tCLKL  
tr  
Parameter  
Conditions  
Min  
960  
797  
130  
130  
-
Typ  
Max  
Unit  
[1]  
oscillator frequency on pin CLK (internal clock)  
VDD = 5 V  
1536  
3046  
Hz  
Hz  
μs  
μs  
ns  
ns  
oscillator frequency on pin CLK (external clock) VDD = 5 V  
1536  
3046  
input CLK HIGH time  
input CLK LOW time  
CLK rise time  
-
-
-
-
-
-
-
-
tf  
CLK fall time  
-
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
28 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 20. Dynamic characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 6.5 V; TAMB = 40 °C to +85 °C; unless otherwise specified  
Symbol  
td(p)SYNC  
tSYNCL  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ns  
SYNC propagation delay time  
SYNC LOW time  
-
30  
-
-
1
-
-
μs  
td(PLCD)  
driver propagation delay  
VLCD = 5 V  
-
30  
μs  
[2]  
Timing characteristic: I2C-bus  
fSCL  
SCL clock frequency  
-
-
-
-
-
-
-
-
400  
kHz  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
pF  
ns  
ns  
μs  
ns  
tBUF  
bus free time between a STOP and START  
hold time (repeated) START condition  
set-up time for a repeated START condition  
LOW period of the SCL clock  
HIGH period of the SCL clock  
SCL and SDA rise time  
1.3  
0.6  
0.6  
1.3  
0.6  
-
-
tHD;STA  
tSU;STA  
tLOW  
tHIGH  
tr  
-
-
-
-
0.3  
0.3  
400  
tf  
SCL and SDA fall time  
-
Cb  
capacitive bus line load  
-
-
tSU;DAT  
tHD;DAT  
tSU;STO  
tSW  
data set-up time  
100  
0
data hold time  
-
-
-
-
set-up time for STOP condition  
tolerable spike pulse width on bus  
0.6  
-
-
50  
[1] Typical output duty cycle of 50 %.  
[2] All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to VIL and VIH with an  
input voltage swing of VSS to VDD.  
1/ f  
CLK  
t
t
CLKL  
CLKH  
0.7V  
0.3V  
DD  
CLK  
DD  
t
t
r
f
0.7V  
0.3V  
DD  
SYNC  
DD  
t
t
d(p)(SYNC)  
d(p)(SYNC)  
t
SYNCL  
0.5 V  
(V  
BP0 to BP3,  
and S0 to S59  
= 5 V)  
DD  
0.5 V  
t
MGL761v03  
PLCD  
Fig 18. Driver timing waveforms  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
29 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
SDA  
t
t
t
f
BUF  
LOW  
SCL  
SDA  
t
HD;STA  
t
t
t
SU;DAT  
r
HD;DAT  
t
HIGH  
t
SU;STA  
t
SU;STO  
mga728  
Fig 19. I2C-bus timing waveforms  
12. Application information  
12.1 Cascaded operation  
In large display configurations, up to 16 PCF8534As can be distinguished on the same  
I2C-bus by using the 3-bit hardware subaddress (A0, A1 and A2) and the programmable  
I2C-bus slave address (SA0). When cascaded PCF8534As are synchronized they can  
share the backplane signals from one of the devices in the cascade. Such an  
arrangement is cost-effective in large LCD applications since the backplane outputs of  
only one device need to be through-plated to the backplane electrodes of the display. The  
other PCF8534As of the cascade contribute additional segment outputs but their  
backplane outputs are left open-circuit (see Figure 20).  
The SYNC line is provided to maintain the correct synchronization between all cascaded  
PCF8534As. This synchronization is guaranteed after the power-on reset. The only time  
that SYNC is likely to be needed is if synchronization is accidentally lost (e.g. by noise in  
adverse electrical environments, or by the definition of a multiplex mode when  
PCF8534As with different SA0 levels are cascaded). SYNC is organized as an input /  
output pin; the output selection being realized as an open-drain driver with an internal  
pull-up resistor. A PCF8534A asserts the SYNC line at the onset of its last active  
backplane signal and monitors the SYNC line at all other times. If synchronization in the  
cascade is lost, it is restored by the first PCF8534A to assert SYNC. The timing  
relationship between the backplane waveforms and the SYNC signal for the various drive  
modes of the PCF8534A are shown in Figure 21.  
The contact resistance between the SYNC pins of cascaded devices must be controlled. If  
the resistance is too high then the device will not be able to synchronize properly.  
Table 21 shows the limiting values for contact resistance.  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
30 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 21. SYNC contact resistance  
Number of devices  
Maximum contact resistance  
2
6000 Ω  
2200 Ω  
1200 Ω  
700 Ω  
3 to 5  
6 to 10  
11 to 16  
V
V
LCD  
DD  
SDA  
SCL  
60 segment drives  
LCD PANEL  
SYNC  
CLK  
PCF8534A  
OSC  
BP0 to BP3  
(open-circuit)  
A0 A1 A2 SA0 V  
SS  
V
LCD  
V
t
DD  
r
R
2C  
B
V
V
LCD  
DD  
SDA  
SCL  
HOST  
MICRO-  
PROCESSOR/  
MICRO-  
60 segment drives  
SYNC  
PCF8534A  
CONTROLLER  
4 backplanes  
BP0 to BP3  
CLK  
OSC  
A0 A1 A2 SA0  
V
V
SS  
SS  
mgl754_03  
Fig 20. Cascaded PCF8534A configuration  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
31 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Fig 21. Synchronization of the cascade for various PCF8534A drive modes  
13. Test information  
6.8 Ω  
d
SYNC  
CLK  
V
DD  
(2%)  
3.3 kΩ  
1.5 kΩ  
SDA,  
SCL  
0.5V  
V
DD  
DD  
(2%)  
(2%)  
1 nF  
BP0 to BP3, and  
S0 to S59  
V
SS  
MGS120v02  
Fig 22. Test loads  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
32 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
14. Package outline  
LQFP80: plastic low profile quad flat package; 80 leads; body 12 x 12 x 1.4 mm  
SOT315-1  
y
X
A
60  
41  
Z
61  
40  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w
p
M
θ
b
L
p
L
pin 1 index  
80  
21  
detail X  
1
20  
Z
D
v
M
A
e
w
M
b
p
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
p
v
w
y
Z
Z
θ
1
2
3
p
E
D
E
max.  
7o  
0o  
0.16 1.5  
0.04 1.3  
0.27 0.18 12.1 12.1  
0.13 0.12 11.9 11.9  
14.15 14.15  
13.85 13.85  
0.75  
0.30  
1.45 1.45  
1.05 1.05  
mm  
1.6  
0.25  
0.5  
1
0.2 0.15 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT315-1  
136E15  
MS-026  
Fig 23. Package outline LQFP80  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
33 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
15. Handling information  
Inputs and outputs are protected against electrostatic discharge in normal handling.  
However, to be completely safe you must take normal precautions appropriate to handling  
MOS devices; see JESD625-A and/or IEC61340-5.  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
34 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
16. Soldering  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
16.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
16.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus PbSn soldering  
16.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
35 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
16.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 24) than a PbSn process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 22 and 23  
Table 22. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 23. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 24.  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
36 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 24. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
37 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
17. Revision history  
Table 24. Revision history  
Document ID  
Release date  
20080204  
Data sheet status  
Change notice  
Supersedes  
PCF8534A_00.90  
Product data sheet  
-
-
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
38 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
18. Legal information  
19. Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
to result in personal injury, death or severe property or environmental  
19.1 Definitions  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
19.2 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
19.3 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
I2C-bus — logo is a trademark of NXP B.V.  
20. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
PCF8534A_0  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 00.90 — 4 February 2008  
39 of 41  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Notes  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2008.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 4 February 2008  
Document identifier: PCF8534A_0  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
21. Contents  
1
2
3
4
General description . . . . . . . . . . . . . . . . . . . . . . 1  
13  
14  
15  
Test information . . . . . . . . . . . . . . . . . . . . . . . 32  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 33  
Handling information . . . . . . . . . . . . . . . . . . . 34  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
16  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Introduction to soldering. . . . . . . . . . . . . . . . . 35  
Wave and reflow soldering. . . . . . . . . . . . . . . 35  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . 35  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . 36  
16.1  
16.2  
16.3  
16.4  
5
5.1  
5.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
6
Device protection diagram . . . . . . . . . . . . . . . . 7  
17  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 38  
7
7.1  
7.2  
7.3  
Functional description . . . . . . . . . . . . . . . . . . . 7  
Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . 8  
LCD bias generator . . . . . . . . . . . . . . . . . . . . . 9  
LCD voltage selector . . . . . . . . . . . . . . . . . . . . 9  
LCD drive mode waveforms . . . . . . . . . . . . . . 10  
Static drive mode . . . . . . . . . . . . . . . . . . . . . . 10  
1:2 Multiplex drive mode. . . . . . . . . . . . . . . . . 11  
1:3 Multiplex drive mode. . . . . . . . . . . . . . . . . 13  
1:4 Multiplex drive mode. . . . . . . . . . . . . . . . . 14  
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Internal clock . . . . . . . . . . . . . . . . . . . . . . . . . 15  
External clock . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Display register. . . . . . . . . . . . . . . . . . . . . . . . 15  
Segment outputs. . . . . . . . . . . . . . . . . . . . . . . 15  
Backplane outputs . . . . . . . . . . . . . . . . . . . . . 15  
Display RAM. . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Data pointer . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Subaddress counter . . . . . . . . . . . . . . . . . . . . 17  
Output bank selector . . . . . . . . . . . . . . . . . . . 18  
Input bank selector . . . . . . . . . . . . . . . . . . . . . 18  
Blinker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
18  
19  
19.1  
19.2  
19.3  
Legal information . . . . . . . . . . . . . . . . . . . . . . 39  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . 39  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7.4  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.5  
7.5.1  
7.5.2  
7.6  
7.7  
7.8  
7.9  
7.10  
7.11  
7.12  
7.13  
7.14  
7.15  
20  
21  
Contact information . . . . . . . . . . . . . . . . . . . . 39  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
8
8.1  
Basic architecture . . . . . . . . . . . . . . . . . . . . . . 21  
Characteristics of the I2C-bus. . . . . . . . . . . . . 21  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
START and STOP conditions . . . . . . . . . . . . . 21  
System configuration . . . . . . . . . . . . . . . . . . . 21  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 22  
PCF8534A I2C-bus controller. . . . . . . . . . . . . 23  
Input filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 23  
Command decoder. . . . . . . . . . . . . . . . . . . . . 24  
Display controller . . . . . . . . . . . . . . . . . . . . . . 26  
8.1.1  
8.1.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
8.1.6  
8.2  
8.3  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 27  
Static characteristics. . . . . . . . . . . . . . . . . . . . 27  
Dynamic characteristics . . . . . . . . . . . . . . . . . 28  
Application information. . . . . . . . . . . . . . . . . . 30  
Cascaded operation . . . . . . . . . . . . . . . . . . . . 30  
10  
11  
12  
12.1  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2008.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 4 February 2008  
Document identifier: PCF8534A_0  

相关型号:

PCF8534AH

Universal LCD driver for low multiplex rates
NXP

PCF8534AH/1

Universal LCD driver for low multiplex rates
NXP

PCF8534AH/1,518

IC LIQUID CRYSTAL DISPLAY DRIVER, PDSO80, 12 X 12 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT-315-1, LQFP-80, Display Driver
NXP

PCF8534AH/1-T

IC,LCD DISPLAY DRIVER,60-SEG,4-BP,CMOS,QFP,80PIN,PLASTIC
NXP

PCF8534AHL/1

Universal LCD driver for low multiplex rates
NXP

PCF8534AU/DA/1

Universal LCD driver for low multiplex rates
NXP

PCF8534A_08

Universal LCD driver for low multiplex rates
NXP

PCF8534A_09

Universal LCD driver for low multiplex rates
NXP

PCF8534H

Universal LCD driver for low multiplex rates
NXP

PCF8535

65 x 133 pixel matrix driver
NXP

PCF8535U

65 x 133 pixel matrix driver
NXP

PCF8535U/2

IC LIQUID CRYSTAL DISPLAY DRIVER, UUC273, DIE-273, Display Driver
NXP