TDA8542TS [NXP]

2 x 0.7 W BTL audio amplifier; 2 ×0.7 W¯¯ BTL音频放大器
TDA8542TS
型号: TDA8542TS
厂家: NXP    NXP
描述:

2 x 0.7 W BTL audio amplifier
2 ×0.7 W¯¯ BTL音频放大器

消费电路 商用集成电路 音频放大器 视频放大器 光电二极管
文件: 总20页 (文件大小:209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA8542TS  
2 × 0.7 W BTL audio amplifier  
1998 Mar 25  
Product specification  
Supersedes data of 1997 Nov 17  
File under Integrated Circuits, IC01  
Philips Semiconductors  
Product specification  
2 × 0.7 W BTL audio amplifier  
TDA8542TS  
FEATURES  
GENERAL DESCRIPTION  
Flexibility in use  
The TDA8542TS is a two channel audio power amplifier  
for an output power of 2 × 0.7 W with a 16 load at a 5 V  
supply. At a low supply voltage of 3.3 V an output power of  
0.6 W with an 8 load can be obtained. The circuit  
contains two Bridge-Tied Load (BTL) amplifiers with a  
complementary PNP-NPN output stage and standby/mute  
logic. The TDA8542TS is available in a SSOP20 package.  
Few external components  
Low saturation voltage of output stage  
Gain can be fixed with external resistors  
Standby mode controlled by CMOS compatible levels  
Low standby current  
No switch-on/switch-off plops  
APPLICATIONS  
High supply voltage ripple rejection  
Protected against electrostatic discharge  
Portable consumer products  
Personal computers  
Outputs short-circuit safe to ground, VCC and across the  
Motor-driver (servo).  
load  
Thermally protected.  
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
2.2  
TYP.  
MAX.  
18  
UNIT  
VCC  
Iq  
5
V
quiescent current  
standby current  
output power  
VCC = 5 V  
15  
22  
10  
mA  
µA  
W
Istb  
Po  
THD = 10%; RL = 8 ; VCC = 3.3 V 0.45  
THD = 10%; RL = 16 ; VCC = 5 V 0.6  
0.55  
0.7  
0.15  
W
THD  
total harmonic distortion  
Po = 0.4 W  
%
SVRR  
supply voltage ripple rejection  
50  
dB  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TDA8542TS  
SSOP20 plastic shrink small outline package; 20 leads; body width 4.4 mm  
SOT266-1  
1998 Mar 25  
2
Philips Semiconductors  
Product specification  
2 × 0.7 W BTL audio amplifier  
TDA8542TS  
BLOCK DIAGRAM  
V
V
CCL CCR  
20  
11  
18  
17  
OUTL  
INL−  
+
16  
INL+  
R
V
CCL  
R
2
n.c.  
n.c.  
n.c.  
n.c.  
n.c.  
7
9
+
12  
19  
3
20 kΩ  
OUTL+  
20 kΩ  
STANDBY/MUTE LOGIC  
TDA8542TS  
13  
14  
15  
INR−  
INR+  
OUTR−  
+
R
V
CCR  
R
8
20 kΩ  
+
OUTR+  
5
SVR  
20 kΩ  
4
6
MODE  
STANDBY/MUTE LOGIC  
BTL/SE  
1
10  
MBK445  
LGND RGND  
Fig.1 Block diagram.  
3
1998 Mar 25  
Philips Semiconductors  
Product specification  
2 × 0.7 W BTL audio amplifier  
TDA8542TS  
PINNING  
SYMBOL  
LGND  
PIN  
DESCRIPTION  
ground, left channel  
1
2
3
n.c.  
not connected  
OUTL+  
positive loudspeaker terminal,  
left channel  
MODE  
SVR  
4
5
6
operating mode select (standby,  
mute, operating)  
handbook, halfpage  
LGND  
n.c.  
1
2
20  
V
CCL  
half supply voltage, decoupling  
ripple rejection  
19 n.c.  
BTL/SE  
BTL loudspeaker or SE  
headphone operation  
OUTL+  
MODE  
SVR  
3
18 OUTL−  
17 INL−  
16 INL+  
15 INR+  
14 INR−  
4
n.c.  
7
8
not connected  
5
OUTR+  
positive loudspeaker terminal,  
right channel  
TDA8542TS  
BTL/SE  
n.c.  
6
n.c.  
9
not connected  
7
RGND  
VCCR  
n.c.  
10 ground, right channel  
11 supply voltage, right channel  
12 not connected  
OUTR+  
n.c.  
OUTR−  
8
13  
12  
11  
n.c.  
9
RGND  
V
10  
CCR  
OUTR−  
13 negative loudspeaker terminal,  
right channel  
MBK453  
INR−  
INR+  
INL+  
14 negative input, right channel  
15 positive input, right channel  
16 positive input, left channel  
17 negative input, left channel  
INL−  
OUTL−  
18 negative loudspeaker terminal,  
left channel  
n.c.  
19 not connected  
Fig.2 Pin configuration.  
VCCL  
20 supply voltage, left channel  
negative side the saturation voltage of a NPN power  
transistor. The total voltage loss is <1 V and with a 5 V  
supply voltage and with a 16 loudspeaker an output  
power of 0.7 W can be delivered.  
FUNCTIONAL DESCRIPTION  
The TDA8542TS is a 2 × 0.7 W BTL audio power amplifier  
capable of delivering 2 × 0.7 W output power to a 16 Ω  
load at THD = 10% using a 5 V power supply. Using the  
MODE pin the device can be switched to standby and  
mute condition. The device is protected by an internal  
thermal shutdown protection mechanism. The gain can be  
set within a range from 6 to 30 dB by external feedback  
resistors.  
Mode select pin  
The device is in the standby mode (with a very low current  
consumption) if the voltage at the MODE pin is  
>(VCC 0.5 V), or if this pin is floating. At a MODE voltage  
level of less than 0.5 V the amplifier is fully operational.  
In the range between 1.5 V and VCC 1.5 V the amplifier  
is in mute condition. The mute condition is useful to  
suppress plop noise at the output caused by charging of  
the input capacitor.  
Power amplifier  
The power amplifier is a Bridge-Tied Load (BTL) amplifier  
with a complementary PNP-NPN output stage.  
The voltage loss on the positive supply line is the  
saturation voltage of a PNP power transistor, on the  
1998 Mar 25  
4
Philips Semiconductors  
Product specification  
2 × 0.7 W BTL audio amplifier  
TDA8542TS  
not to ground, but to a voltage level of 12VCC. See Fig.4 for  
the application diagram. In this case the BTL/SE pin must  
be either at a logic LOW level or connected to ground.  
If the BTL/SE pin is at a LOW level, the power amplifier for  
the positive loudspeaker terminal is always in mute  
condition.  
Headphone connection  
A headphone can be connected to the amplifier using two  
coupling capacitors for each channel. The common  
GND pin of the headphone is connected to the ground of  
the amplifier (see Fig.13). In this case the BTL/SE pin must  
be either at a logic HIGH level or not connected at all.  
The two coupling capacitors can be omitted if it is allowed  
to connect the common GND pin of the headphone jack  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
PARAMETER  
CONDITIONS  
operating  
MIN.  
0.3  
MAX.  
+18  
UNIT  
VCC  
VI  
supply voltage  
input voltage  
V
0.3  
VCC + 0.3  
1
V
IORM  
Tstg  
Tamb  
Vsc  
repetitive peak output current  
storage temperature  
A
non-operating  
55  
40  
+150  
+85  
°C  
°C  
V
operating ambient temperature  
AC and DC short-circuit safe voltage  
total power dissipation  
10  
Ptot  
1.12  
W
QUALITY SPECIFICATION  
In accordance with “SNW-FQ-611-E”.  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
thermal resistance from junction to ambient  
CONDITIONS  
VALUE  
UNIT  
Rth(j-a)  
in free air  
110(1)  
K/W  
Note  
1. See Section “Thermal design considerations”.  
Table 1 Maximum ambient temperature at different conditions  
CONTINUOUS SINE WAVE DRIVEN  
VCC  
(V)  
RL  
()  
Po  
(W)  
Pmax  
(W)  
Tamb(max)  
(°C)  
3.3  
3.3  
5
4
8
2 × 0.65  
2 × 0.55  
2 × 1.2  
1.12  
0.60  
1.33  
0.80  
27(1)  
84  
(1)  
8
5
16  
2 × 0.70  
62  
Note  
1. See Section “Thermal design considerations”.  
1998 Mar 25  
5
Philips Semiconductors  
Product specification  
2 × 0.7 W BTL audio amplifier  
TDA8542TS  
DC CHARACTERISTICS  
VCC = 5 V; Tamb = 25 °C; RL = 8 ; VMODE = 0 V; measured in test circuit Fig.3; unless otherwise specified.  
SYMBOL  
VCC  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
2.2  
TYP.  
MAX.  
18  
UNIT  
operating  
5
V
Iq  
quiescent current  
standby current  
DC output voltage  
RL = ; note 1  
VMODE = VCC  
note 2  
15  
22  
10  
mA  
µA  
V
Istb  
VO  
2.2  
V
OUT+ VOUTdifferential output voltage offset  
50  
500  
0.5  
mV  
nA  
V
IIN+, IIN−  
input bias current  
VMODE  
input voltage mode select  
operating  
mute  
0
1.5  
VCC 1.5 V  
standby  
V
0
2
CC 0.5 −  
VCC  
20  
V
IMODE  
input current mode select  
input voltage BTL/SE pin  
0 < VMODE < VCC  
single-ended  
BTL  
µA  
V
VBTL/SE  
0.6  
VCC  
100  
V
IBTL/SE  
input current BTL/SE pin  
VBTL/SE = 0  
µA  
Notes  
1. With a load connected at the outputs the quiescent current will increase, the maximum of this increase being equal  
to the DC output offset voltage divided by RL.  
2. The DC output voltage with respect to ground is approximately 12VCC  
.
1998 Mar 25  
6
Philips Semiconductors  
Product specification  
2 × 0.7 W BTL audio amplifier  
TDA8542TS  
AC CHARACTERISTICS  
V
CC = 5 V; Tamb = 25 °C; RL = 8 ; f = 1 kHz; VMODE = 0 V; measured in test circuit Fig.3; unless otherwise specified.  
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT  
Po output power at VCC = 5 V  
THD = 10%; RL = 8 Ω  
THD = 10%; RL = 16 Ω  
THD = 0.5%; RL = 8 Ω  
THD = 0.5%; RL = 16 Ω  
at VCC = 3.3 V  
1.2  
W
0.70  
0.9  
W
W
W
0.5  
THD = 10%; RL = 4 Ω  
THD = 10%; RL = 8 Ω  
THD = 0.5%; RL = 4 Ω  
THD = 0.5%; RL = 8 Ω  
Po = 0.4 W  
6
0.65  
0.55  
0.45  
0.38  
0.15  
W
W
W
W
THD  
Gv(cl)  
Zi(dif)  
Vn(o)  
total harmonic distortion  
closed-loop voltage gain  
differential input impedance  
noise output voltage  
0.3  
30  
%
note 1  
dB  
kΩ  
µV  
dB  
dB  
µV  
dB  
100  
note 2  
note 3  
note 4  
note 5  
100  
SVRR  
supply voltage ripple rejection  
50  
40  
Vo(mute)  
output voltage in mute condition  
channel separation  
200  
αcs  
40  
Notes  
R2  
R1  
1. Gain of the amplifier is 2 ×  
in test circuit of Fig.3.  
-------  
2. The noise output voltage is measured at the output in a frequency range from 20 Hz to 20 kHz (unweighted), with a  
source impedance of RS = 0 at the input.  
3. Supply voltage ripple rejection is measured at the output, with a source impedance of RS = 0 at the input.  
The ripple voltage is a sine wave with a frequency of 1 kHz and an amplitude of 100 mV (RMS), which is applied to  
the positive supply rail.  
4. Supply voltage ripple rejection is measured at the output, with a source impedance of RS = 0 at the input.  
The ripple voltage is a sine wave with a frequency between 100 Hz and 20 kHz and an amplitude of 100 mV (RMS),  
which is applied to the positive supply rail.  
5. Output voltage in mute position is measured with a 1 V (RMS) input voltage in a bandwidth of 20 kHz, so including  
noise.  
1998 Mar 25  
7
Philips Semiconductors  
Product specification  
2 × 0.7 W BTL audio amplifier  
TDA8542TS  
function of frequency was measured with a low-pass filter  
of 80 kHz. The value of capacitor C3 influences the  
behaviour of the SVRR at low frequencies, increasing the  
value of C3 increases the performance of the SVRR.  
The figure of the mode select voltage (Vms) as a function  
of the supply voltage shows three areas; operating, mute  
and standby. It shows, that the DC-switching levels of the  
mute and standby respectively depends on the supply  
voltage level.  
TEST AND APPLICATION INFORMATION  
Test conditions  
Because the application can be either Bridge-Tied Load  
(BTL) or Single-Ended (SE), the curves of each application  
are shown separately.  
The thermal resistance = 110 K/W for the SSOP20; the  
maximum sine wave power dissipation for Tamb = 25 °C is:  
150 25  
110  
= 1.14 W  
----------------------  
SE application  
For Tamb = 60 °C the maximum total power dissipation is:  
150 60  
T
amb = 25°C if not specially mentioned, VCC = 7.5 V,  
f = 1 kHz, RL = 4 , Gv = 20 dB, audio band-pass  
22 Hz to 22 kHz.  
= 0.82 W  
----------------------  
110  
The SE application diagram is illustrated in Fig.14.  
Thermal design considerations  
If the BTL/SE pin (pin 6) is connected to ground, the  
positive outputs (pins 3 and 8) will be in mute condition  
with a DC level of 12VCC. When a headphone is used  
(RL 25 ) the SE headphone application can be used  
without output coupling capacitors; load between negative  
output and one of the positive outputs (e.g. pin 3) as  
common pin. The channel separation will be less in  
comparison with the application using a coupling capacitor  
connected to ground.  
The ‘measured’ thermal resistance of the IC package is  
highly dependent on the configuration and size of the  
application board. Data may not be comparable between  
different semiconductor manufacturers because the  
application boards and test methods are not (yet)  
standardized. Also, the thermal performance of packages  
for a specific application may be different than presented  
here, because the configuration of the application boards  
(copper area) may be different. Philips Semiconductors  
uses FR-4 type application boards with 1 oz copper traces  
with solder coating.  
Increasing the value of electrolytic capacitor C3 will result  
in a better channel separation. Because the positive output  
is not designed for high output current (2 × Io) at low load  
impedance (16 ), the SE application with output  
capacitors connected to ground is advised. The capacitor  
value of C4/C5 in combination with the load impedance  
determines the low frequency behaviour. The THD as a  
function of frequency was measured using a low-pass filter  
of 80 kHz. The value of capacitor C3 influences the  
behaviour of the SVRR at low frequencies, increasing the  
value of C3 increases the performance of the SVRR.  
The SSOP package has improved thermal conductivity  
which reduces the thermal resistance. Using a practical  
PCB layout (see Fig.22) with wider copper tracks to the  
corner pins and just under the IC, the thermal resistance  
from junction to ambient can be reduced to approximately  
80 K/W. For Tamb = 60 °C the maximum total power  
150 60  
dissipation for this PCB layout is:  
= 1.12 W  
----------------------  
80  
General remark  
BTL application  
The frequency characteristic can be adapted by  
connecting a small capacitor across the feedback resistor.  
To improve the immunity of HF radiation in radio circuit  
applications, a small capacitor can be connected in  
parallel with the feedback resistor (56 k); this creates a  
low-pass filter.  
Tamb = 25°C if not specially mentioned, VCC = 5 V,  
f = 1 kHz, RL = 8 , Gv = 20 dB, audio band-pass  
22 Hz to 22 kHz.  
The BTL application diagram is illustrated in Fig.3.  
The quiescent current has been measured without any  
load impedance. The total harmonic distortion as a  
1998 Mar 25  
8
Philips Semiconductors  
Product specification  
2 × 0.7 W BTL audio amplifier  
TDA8542TS  
BTL APPLICATION  
V
CC  
R2  
R1  
50 kΩ  
100 nF  
100 µF  
1 µF  
20  
11  
+
INL  
17  
16  
+
OUTL  
18  
3
10 kΩ  
INL  
V
iL  
C3  
47 µF  
R
L
OUTL  
OUTR  
50 kΩ  
R4  
R3  
TDA8542TS  
1 µF  
+
INR  
14  
15  
10 kΩ  
+
OUTR  
INR  
13  
8
V
iR  
SVR  
R
L
5
4
6
MODE  
OUTR  
R2  
Gain left = 2 × -------  
R1  
BTL/SE  
1
10  
R4  
Gain right = 2 × -------  
R3  
GND  
MBK443  
Pins 2, 7, 9, 12 and 19 are not connected.  
Fig.3 BTL application.  
MGD890  
MBK446  
30  
10  
handbook, halfpage  
handbook, halfpage  
I
q
THD  
(%)  
(mA)  
1
20  
1  
10  
10  
2  
10  
0
2  
1  
10  
10  
1
10  
0
4
8
12  
16  
V
20  
(V)  
P
(W)  
o
CC  
RL = .  
f = 1 kHz; Gv = 20 dB; VCC = 5 V; RL = 8 .  
Fig.4 Iq as a function of VCC  
.
Fig.5 THD as a function of Po.  
1998 Mar 25  
9
Philips Semiconductors  
Product specification  
2 × 0.7 W BTL audio amplifier  
TDA8542TS  
MBK447  
MGD893  
10  
60  
handbook, halfpage  
handbook, halfpage  
α
(dB)  
cs  
THD  
(%)  
(1)  
(2)  
70  
1
80  
90  
(3)  
1  
10  
2  
10  
100  
2
3
5
4
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
VCC = 5 V, Vo = 2 V, RL = 8 .  
(1) Gv = 30 dB.  
(2) Gv = 20 dB.  
(3) Gv = 6 dB.  
Po = 0.5 W; Gv = 20 dB; VCC = 5 V; RL = 8 .  
Fig.7 Channel separation as a function of  
frequency.  
Fig.6 THD as a function of frequency.  
MBK448  
MGD894  
2.5  
20  
handbook, halfpage  
handbook, halfpage  
P
o
SVRR  
(dB)  
(W)  
2
40  
60  
1.5  
1
(1)  
(2)  
(3)  
(1)  
(2)  
0.5  
80  
0
0
2
3
4
5
10  
10  
10  
10  
10  
4
8
12  
f (Hz)  
V
(V)  
CC  
VCC = 5 V, Rs = 0 , Vr = 100 mV.  
(1) Gv = 30 dB.  
THD = 10%.  
(2) Gv = 20 dB.  
(1) RL = 8 .  
(2) RL = 16 .  
(3) Gv = 6 dB.  
Fig.8 SVRR as a function of frequency.  
Fig.9 Po as a function of VCC.  
1998 Mar 25  
10  
Philips Semiconductors  
Product specification  
2 × 0.7 W BTL audio amplifier  
TDA8542TS  
MBK450  
MBK449  
3
3
handbook, halfpage  
handbook, halfpage  
P
(W)  
P
(W)  
2
1
2
(2)  
(1)  
1
0
0
0
0.5  
1
1.5  
2
2.5  
0
4
8
12  
V
(V)  
P
(W)  
CC  
o
(1) RL = 8 .  
(2) RL = 16 .  
Sine wave of 1 kHz; VCC = 5 V; RL = 8 .  
Fig.10 Worst case power dissipation as a function  
of VCC  
.
Fig.11 P as a function of Po.  
MGL210  
MGD898  
10  
o
(V)  
1
16  
handbook, halfpage  
handbook, halfpage  
V
V
MODE  
(V)  
12  
1  
standby  
10  
2  
10  
8
4
(1)  
(2) (3)  
3  
10  
mute  
4  
10  
5  
10  
operating  
12 16  
6  
10  
0
0
1  
2
10  
1
10  
10  
4
8
V
(V)  
ms  
V
(V)  
P
Band-pass = 22 Hz to 22 kHz.  
(1) VCC = 3 V.  
(2) VCC = 5 V.  
(3) VCC = 12 V.  
Fig.12 Vo as a function of Vms  
.
Fig.13 VMODE as a function of VP.  
1998 Mar 25  
11  
Philips Semiconductors  
Product specification  
2 × 0.7 W BTL audio amplifier  
TDA8542TS  
SE APPLICATION  
V
CC  
100 µF  
R2  
R1  
100 kΩ  
100 nF  
1 µF  
20  
11  
+
INL  
17  
16  
C4  
10 kΩ  
OUTL  
INL  
18  
3
V
iL  
C3  
47 µF  
470 µF  
R
L
= 8 Ω  
OUTR  
+
OUTL  
100 kΩ  
R4  
R3  
TDA8542TS  
1 µF  
+
INR  
14  
15  
5
10 kΩ  
INR  
C5  
V
iR  
OUTR  
13  
8
SVR  
470 µF  
R
L
= 8 Ω  
+
MODE  
OUTR  
4
BTL/SE  
6
1
10  
R2  
-------  
R1  
Gain left =  
R4  
-------  
R3  
GND  
MBK444  
Gain right =  
Pins 2, 7, 9, 12 and 19 are not connected.  
Fig.14 Single-ended application.  
MGD900  
MGD899  
10  
10  
handbook, halfpage  
handbook, halfpage  
THD  
(%)  
THD  
(%)  
1
1
(1)  
(2)  
1  
1  
(3)  
10  
10  
(1)  
(2)  
(3)  
2  
2  
10  
10  
2
3
4
5
2  
1  
10  
10  
10  
10  
10  
10  
10  
1
10  
f (Hz)  
P
(W)  
o
f = 1 kHz, Gv = 20 dB.  
Po = 0.5 W, Gv = 20 dB.  
(1) VCC = 7.5 V, RL = 4 .  
(2) VCC = 9 V, RL = 8 .  
(3) VCC = 12 V, RL = 16 .  
(1) VCC = 7.5 V, RL = 4 .  
(2) VCC = 9 V, RL = 8 .  
(3) VCC = 12 V, RL = 16 .  
Fig.15 THD as a function of Po.  
Fig.16 THD as a function of frequency.  
1998 Mar 25  
12  
Philips Semiconductors  
Product specification  
2 × 0.7 W BTL audio amplifier  
TDA8542TS  
MGD901  
20  
handbook, halfpage  
MGD902  
α
(dB)  
cs  
20  
handbook, halfpage  
40  
SVRR  
(dB)  
(1)  
40  
60  
60  
(2)  
(1)  
(2)  
(3)  
(4)  
(5)  
80  
(3)  
100  
2
3
4
5
10  
10  
10  
10  
10  
f (Hz)  
80  
2
3
4
5
10  
10  
10  
10  
10  
Vo = 1 V, Gv = 20 dB.  
(1) CC = 5 V, RL = 32 , to buffer.  
f (Hz)  
V
(2) VCC = 7.5 V, RL = 4 .  
(3) VCC = 9 V, RL = 8 .  
(4) VCC = 12 V, RL = 16 .  
(5) VCC = 5 V, RL = 32 .  
RS = 0 , Vripple = 100 mV.  
(1) Gv = 24 dB.  
(2) Gv = 20 dB.  
(3) Gv = 0 dB.  
Fig.17 Channel separation as a function of  
frequency.  
Fig.18 SVRR as a function of frequency.  
MBK451  
MBK452  
2
3
handbook, halfpage  
handbook, halfpage  
P
o
(W)  
1.6  
P
(W)  
(1)  
2
1
(2)  
(3)  
(2)  
(1)  
1.2  
0.8  
(3)  
0.4  
0
0
0
0
4
8
12  
16  
4
8
12  
16  
V
(V)  
V
(V)  
CC  
CC  
THD = 10%.  
(1) RL = 4 .  
(2) RL = 8 .  
(3) RL = 16 .  
THD = 10%.  
(1) RL = 4 .  
(2) RL = 8 .  
(3) RL = 16 .  
Fig.20 Worst case power dissipation as a function  
of VCC  
Fig.19 Po as a function of VCC  
.
.
1998 Mar 25  
13  
Philips Semiconductors  
Product specification  
2 × 0.7 W BTL audio amplifier  
TDA8542TS  
MGD905  
2.4  
handbook, halfpage  
P
(W)  
(1)  
1.6  
(2)  
(3)  
0.8  
0
0
0.4  
0.8  
1.2  
1.6  
P
(W)  
o
f = 1 kHz.  
(1)  
VCC = 12 V, RL = 16 .  
(2) VCC = 7.5 V, RL = 4 .  
(3) VCC = 9 V, RL = 8 .  
Fig.21 P as a function of Po.  
1998 Mar 25  
14  
Philips Semiconductors  
Product specification  
2 × 0.7 W BTL audio amplifier  
TDA8542TS  
a. Top view copper layout.  
+V  
GND  
CC  
TDA  
8542TS  
8547TS  
OUT1  
+OUT1  
100 µF  
10 kΩ  
100 nF  
56 kΩ  
10 kΩ  
IN1  
1 µF  
MODE  
20  
1
11 kΩ  
11 kΩ  
47 µF  
11  
10  
TDA  
8542/47TS  
SELECT  
IN2  
56 kΩ  
CIC  
Nijmegen  
1 µF  
OUT2  
+OUT2  
MGK997  
b. Top view components layout.  
Fig.22 Printed-circuit board layout (BTL).  
15  
1998 Mar 25  
Philips Semiconductors  
Product specification  
2 × 0.7 W BTL audio amplifier  
TDA8542TS  
PACKAGE OUTLINE  
SSOP20: plastic shrink small outline package; 20 leads; body width 4.4 mm  
SOT266-1  
D
E
A
X
c
y
H
v
M
A
E
Z
11  
20  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
10  
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
10o  
0o  
0.15  
0
1.4  
1.2  
0.32  
0.20  
0.20  
0.13  
6.6  
6.4  
4.5  
4.3  
6.6  
6.2  
0.75  
0.45  
0.65  
0.45  
0.48  
0.18  
mm  
1.5  
0.25  
0.65  
1.0  
0.2  
0.13  
0.1  
Note  
1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
90-04-05  
95-02-25  
SOT266-1  
1998 Mar 25  
16  
Philips Semiconductors  
Product specification  
2 × 0.7 W BTL audio amplifier  
TDA8542TS  
If wave soldering cannot be avoided, the following  
conditions must be observed:  
SOLDERING  
Introduction  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave)  
soldering technique should be used.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
The longitudinal axis of the package footprint must  
be parallel to the solder flow and must incorporate  
solder thieves at the downstream end.  
Even with these conditions, only consider wave  
soldering SSOP packages that have a body width of  
4.4 mm, that is SSOP16 (SOT369-1) or  
SSOP20 (SOT266-1).  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Reflow soldering  
Reflow soldering techniques are suitable for all SSOP  
packages.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Repairing soldered joints  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
Wave soldering  
Wave soldering is not recommended for SSOP packages.  
This is because of the likelihood of solder bridging due to  
closely-spaced leads and the possibility of incomplete  
solder penetration in multi-lead devices.  
1998 Mar 25  
17  
Philips Semiconductors  
Product specification  
2 × 0.7 W BTL audio amplifier  
TDA8542TS  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.8  
1998 Mar 25  
18  
Philips Semiconductors  
Product specification  
2 × 0.7 W BTL audio amplifier  
TDA8542TS  
NOTES  
1998 Mar 25  
19  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,  
Fax. +43 160 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Belgium: see The Netherlands  
Brazil: see South America  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. +65 350 2538, Fax. +65 251 6500  
Colombia: see South America  
Czech Republic: see Austria  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 0044  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580920  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 3 301 6312, Fax. +34 3 301 4107  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 632 2000, Fax. +46 8 632 2745  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2686, Fax. +41 1 481 7730  
Hungary: see Austria  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Indonesia: see Singapore  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,  
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Uruguay: see South America  
Vietnam: see Singapore  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p,  
P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1997  
SCA56  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
545102/25/02/pp20  
Date of release: 1998 Mar 25  
Document order number: 9397 750 03351  

相关型号:

TDA8542TS/N1,118

TDA8542TS - 2 × 0.7 W BTL audio amplifier SSOP2 20-Pin
NXP

TDA8542TS/N1/N,118

TDA8542TS - 2 × 0.7 W BTL audio amplifier SSOP2 20-Pin
NXP

TDA8543

2 W BTL audio amplifier
NXP

TDA8543T

2 W BTL audio amplifier
NXP

TDA8543T/N1,118

TDA8543 - 2 W BTL audio amplifier SOP 16-Pin
NXP

TDA8543T/N1,518

TDA8543 - 2 W BTL audio amplifier SOP 16-Pin
NXP

TDA8543T/N1/N,118

TDA8543 - 2 W BTL audio amplifier SOP 16-Pin
NXP

TDA8547

2 x 1 W BTL audio amplifier with output channel switching
NXP

TDA8547T

2 x 1 W BTL audio amplifier with output channel switching
NXP

TDA8547T-T

IC 1.2 W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO16, Audio/Video Amplifier
NXP

TDA8547TS

2 x 0.7 W BTL audio amplifier with output channel switching
NXP

TDA8547TS-T

IC 1.2 W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO20, 4.40 MM, PLASTIC, MO-152, SOT266-1, SSOP-20, Audio/Video Amplifier
NXP