TDA9852H [NXP]

I2C-bus controlled BTSC stereo/SAP decoder and audio processor; I2C总线控制BTSC立体声/ SAP解码器和音频处理器
TDA9852H
型号: TDA9852H
厂家: NXP    NXP
描述:

I2C-bus controlled BTSC stereo/SAP decoder and audio processor
I2C总线控制BTSC立体声/ SAP解码器和音频处理器

解码器
文件: 总40页 (文件大小:259K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA9852  
I2C-bus controlled BTSC  
stereo/SAP decoder and audio  
processor  
1997 Mar 11  
Preliminary specification  
Supersedes data of 1996 Feb 28  
File under Integrated Circuits, IC02  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
FEATURES  
Quasi alignment-free application due to automatic  
adjustment of channel separation via I2C-bus  
High integration level with automatically tuned  
integrated filters  
Input level adjustment I2C-bus controlled  
Alignment-free SAP processing  
dbx noise reduction circuit  
Power supply  
GENERAL DESCRIPTION  
The TDA9852 is a bipolar-integrated BTSC stereo  
decoder with hi-fi audio processor (I2C-bus controlled) for  
application in TV sets, VCRs and multimedia.  
I2C-bus transceiver.  
Stereo decoder  
Stereo pilot PLL circuit with ceramic resonator,  
automatic adjustment procedure for stereo channel  
separation, two pilot thresholds selectable via I2C-bus.  
Audio processor  
Selector for internal and external signals (line in)  
Automatic volume level control  
(control range +6 to 15 dB)  
Interface for external noise reduction circuits  
Volume control (control range +16 to 71 dB)  
Special loudness characteristic automatically controlled  
in combination with volume setting (control range 28 dB)  
Audio signal zero crossing detection between any  
volume step switching  
Mute control at audio signal zero crossing  
Mute control via I2C-bus.  
ORDERING INFORMATION  
PACKAGE  
TYPE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TDA9852  
SDIP42 plastic shrink dual in-line package; 42 leads (600 mil)  
SOT270-1  
SOT307-2  
TDA9852H QFP44  
plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 × 10 × 1.75 mm  
1997 Mar 11  
2
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
LICENSE INFORMATION  
A license is required for the use of this product. For further information, please contact  
COMPANY  
THAT Corporation  
BRANCH  
Licensing Operations  
ADDRESS  
734 Forest St.  
Marlborough, MA 01752  
USA  
Tel.: (508) 229-2500  
Fax: (508) 229-2590  
Tokyo Office  
405 Palm House, 1-20-2 Honmachi  
Shibuya-ku, Tokyo 151  
Japan  
Tel.: (03) 3378-0915  
Fax: (03) 3374-5191  
QUICK REFERENCE DATA  
SYMBOL  
VCC  
PARAMETER  
CONDITIONS  
MIN.  
8.0  
TYP. MAX. UNIT  
supply voltage  
supply current  
8.5  
75  
250  
500  
9.0  
95  
V
ICC  
mA  
mV  
mV  
dB  
dB  
%
Vcomp(rms) input signal voltage (RMS value) 100% modulation L + R; fi = 300 Hz −  
VoR,L(rms) output signal voltage (RMS value) 100% modulation L + R; fi = 300 Hz −  
GLA  
input level adjustment control  
stereo channel separation  
total harmonic distortion L + R  
signal handling (RMS value)  
control range  
3.5  
25  
+4.0  
αcs  
fL = 300 Hz; fR = 3 kHz  
fi = 1 kHz  
35  
0.2  
THDL,R  
VI, O(rms)  
AVL  
GC  
THD < 0.5%  
2
V
15  
71  
+6  
+16  
dB  
dB  
dB  
volume control range  
LB  
maximum loudness boost  
signal-to-noise ratio  
fi = 40 Hz  
17  
S/N  
line out (mono); Vo = 0.5 V (RMS)  
CCIR noise weighting filter  
(peak value)  
60  
73  
dB  
DIN noise weighting filter  
(RMS value)  
dBA  
S/N  
signal-to-noise ratio  
audio section; Vo = 2 V (RMS);  
gain = 0 dB  
CCIR noise weighting filter  
(peak value)  
94  
dB  
DIN noise weighting filter  
(RMS value)  
107  
dBA  
1997 Mar 11  
3
External Input Right  
(EIR)  
R3  
C11  
C10  
Q1  
C3  
R1  
R2  
C4  
C5  
C7  
C20  
C16  
C28  
C8  
C9  
CERAMIC  
RESONATOR  
MURATA  
C2  
26  
C6  
34  
C12  
CSB503F58  
LOR LIR  
33 36  
(28) (29) (32) (30) (31)  
VIR  
40  
27  
28  
(24)  
29 30  
(25) (26)  
31  
(27)  
32  
35  
5
(44)  
37  
(33)  
38 39  
(34) (35) (36)  
41  
(37)  
(22) (23)  
(38)  
42  
VOLUME  
RIGHT  
LOUDNESS  
CONTROL  
OUTR  
OUT  
RIGHT  
STEREO DECODER  
TDA9852  
COMP  
C1  
(20)  
24  
DEMATRIX  
STEREO/  
SAP  
SWITCH  
AUTOMATIC  
VOLUME AND  
LEVEL CONTROL  
INPUT  
LEVEL  
ADJUST  
INPUT  
SELECT  
ZERO  
CROSSING  
+
EFFECTS  
LINEOUT  
SELECT  
VOLUME  
LEFT  
LOUDNESS  
CONTROL  
(40)  
1
STEREO  
ADJUST  
LOGIC  
I2C  
OUTL  
SAP  
DEMODULATOR  
OUT  
LEFT  
DBX  
SUPPLY  
TRANSCEIVER  
(14)  
19  
(13) (12)  
18 17  
(10)  
15  
(11) (9) (8) (7) (6) (5) (2)  
(4)  
9
(3) (19) (21) (1)  
(17)  
21  
(18)  
22  
(43) (42)  
(41)  
2
16 14  
13 12 11 10  
7
8
23 25  
6
20 (15)  
(16)  
4
3
(39)  
R6  
R7  
C21  
LIL  
VIL  
MHA309  
LOL  
C14  
n.c.  
C26  
C29  
C30  
C27  
SDA  
SCL  
C17  
C18  
C19  
C22 C23 C24 C25  
C15  
C34  
R4  
R5  
C47 C49  
V
CC  
External Input Left  
(EIL)  
AGND  
DGND  
The numbers given in parenthesis refer to the TDA9852H version.  
ahdnbok,uflapegwidt  
Fig.1 Block diagram.  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
Component list  
Electrolytic capacitors ±20%; foil or ceramic capacitors ±10%; resistors ±5%; unless otherwise specified; see Fig.1.  
COMPONENTS  
VALUE  
TYPE  
REMARK  
C1  
C2  
10 µF  
470 nF  
4.7 µF  
220 nF  
10 µF  
2.2 µF  
2.2 µF  
15 nF  
electrolytic  
foil  
63 V  
C3  
electrolytic  
foil  
63 V  
C4  
C5  
electrolytic  
electrolytic  
electrolytic  
foil  
63 V; Ileak < 1.5 µA  
C6  
16 V  
C7  
63 V  
C8  
±5%  
C9  
15 nF  
foil  
±5%  
C10  
C11  
C12  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C34  
C47  
C49  
R1  
2.2 µF  
8.2 nF  
150 nF  
150 nF  
100 µF  
4.7 µF  
4.7 µF  
100 nF  
10 µF  
4.7 µF  
47 nF  
electrolytic  
foil or ceramic  
foil  
16 V  
±5% SMD 2220/1206  
±5%  
±5%  
16 V  
63 V  
63 V  
foil  
electrolytic  
electrolytic  
electrolytic  
foil  
electrolytic  
electrolytic  
foil  
63 V  
63 V  
±5%  
1 µF  
electrolytic  
electrolytic  
electrolytic  
electrolytic  
electrolytic  
electrolytic  
electrolytic  
electrolytic  
foil or ceramic  
electrolytic  
electrolytic  
foil or ceramic  
63 V  
1 µF  
63 V  
10 µF  
10 µF  
2.2 µF  
2.2 µF  
4.7 µF  
2.2 µF  
8.2 nF  
100 µF  
220 µF  
100 nF  
2.2 kΩ  
20 kΩ  
2.2 kΩ  
20 kΩ  
2.2 kΩ  
8.2 kΩ  
63 V ±10%  
63 V ±10%  
16 V  
63 V  
63 V ±10%  
16 V  
±5% SMD 2220/1206  
16 V  
25 V  
SMD 1206  
R2  
R3  
R4  
R5  
R6  
±2%  
1997 Mar 11  
5
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
COMPONENTS  
VALUE  
TYPE  
REMARK  
±2%  
R7  
Q1  
160 Ω  
CSB503F58  
CSB503JF958  
radial leads  
alternative as SMD  
PINNING  
SYMBOL  
OUTL  
PINS  
DESCRIPTION  
SDIP42  
QFP44  
1
40  
41  
42  
43  
44  
1
output, left channel  
LDL  
VIL  
2
input loudness, left channel  
input volume, left channel  
output effects, left channel  
automatic volume control capacitor  
reference voltage 0.5VCC  
3
EOL  
CAV  
4
5
Vref  
6
LIL  
7
2
input line control, left channel  
AVL  
SOL  
LOL  
CTW  
CTS  
8
3
input automatic volume control, left channel  
output selector, left channel  
output line control, left channel  
capacitor timing wideband for dbx  
capacitor timing spectral for dbx  
capacitor wideband for dbx  
capacitor spectral for dbx  
variable emphasis output for dbx  
variable emphasis input for dbx  
capacitor noise reduction for dbx  
capacitor mute for SAP  
9
4
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
5
6
7
CW  
8
CS  
9
VEO  
VEI  
10  
11  
12  
13  
14  
CNR  
CM  
CDEC  
GND  
AGND  
DGND  
SDA  
SCL  
VCC  
COMP  
VCAP  
CP1  
capacitor DC-decoupling for SAP  
ground  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
analog ground  
digital ground  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
serial data input/output (I2C-bus)  
serial clock input (I2C-bus)  
supply voltage  
composite input signal  
capacitor for electronic filtering of supply  
capacitor for pilot detector  
capacitor for pilot detector  
capacitor for phase detector  
capacitor for filter adjustment  
ceramic resonator  
CP2  
CPH  
CADJ  
CER  
CMO  
capacitor DC-decoupling mono  
1997 Mar 11  
6
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
PINS  
SYMBOL  
DESCRIPTION  
SDIP42  
QFP44  
CSS  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
capacitor DC-decoupling stereo/SAP  
output line control, right channel  
output selector, right channel  
input automatic volume control, right channel  
input line control, right channel  
capacitor 2 pseudo function  
capacitor 1 pseudo function  
output effects, right channel  
input volume, right channel  
input loudness, right channel  
output, right channel  
LOR  
SOR  
AVR  
LIR  
CPS2  
CPS1  
EOR  
VIR  
LDR  
OUTR  
n.c.  
not connected  
V
1
2
33  
32  
31  
C
PS2  
ref  
LIL  
AVL  
SOL  
LOL  
LIR  
3
AVR  
4
30 SOR  
5
29  
28  
27  
LOR  
TDA9852H  
C
6
C
TW  
SS  
C
7
C
TS  
MO  
C
8
26 CER  
W
C
9
25  
24  
23  
C
C
C
S
VEO  
VEI  
ADJ  
PH  
P2  
10  
11  
MHA696  
Fig.2 Pin configuration (QFP-version).  
7
1997 Mar 11  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
FUNCTIONAL DESCRIPTION  
Stereo decoder  
INPUT LEVEL ADJUSTMENT  
The composite input signal is fed to the input level  
adjustment stage. The control range is from  
3.5 to +4.0 dB in steps of 0.5 dB. The subaddress  
control 3 of Tables 5 and 6 and the level adjust setting of  
Table 21 allows an optimum signal adjustment during the  
set alignment. The maximum input signal voltage is  
2 V (RMS).  
handbook, halfpage  
OUTL  
LDL  
VIL  
1
2
3
4
5
6
7
8
9
42 OUTR  
41 LDR  
40 VIR  
EOL  
39 EOR  
STEREO DECODER  
C
38  
37  
C
C
AV  
PS1  
V
The output signal of the level adjustment stage is coupled  
to a low-pass filter which suppresses the baseband noise  
above 125 kHz. The composite signal is then fed into a  
pilot detector/pilot cancellation circuit and into the MPX  
demodulator. The main L + R signal passes a 75 µs fixed  
de-emphasis filter and is fed into the dematrix circuit.  
The decoded sub-signal L R is sent to the stereo/SAP  
switch. To generate the pilot signal the stereo demodulator  
uses a PLL circuit including a ceramic resonator.  
The stereo channel separation is adjusted by an automatic  
procedure to be performed during set production. For a  
detailed description see Section “Adjustment procedure”.  
The stereo identification can be read by the I2C-bus  
(see Table 2). Two different pilot thresholds  
ref  
PS2  
LIL  
AVL  
SOL  
36 LIR  
35 AVR  
34 SOR  
33 LOR  
LOL 10  
C
11  
12  
13  
14  
32  
31  
C
TDA9852  
TW  
SS  
C
C
TS  
MO  
C
30 CER  
W
C
29  
28  
27  
26  
25  
C
C
C
C
V
S
ADJ  
PH  
P2  
VEO 15  
VEI 16  
(data STS = 1; STS = 0) can be selected via the I2C-bus  
(see Table 19).  
C
17  
18  
19  
NR  
P1  
SAP DEMODULATOR  
C
M
CAP  
The composite signal is fed from the output of the input  
level adjustment stage to the SAP demodulator circuit  
through a 5fH (fH = horizontal frequency) band-pass filter.  
The demodulator level is automatically controlled.  
The SAP demodulator includes internal noise and field  
strength detectors that mute the SAP output in the event of  
insufficient signal conditions. The SAP identification signal  
can be read by the I2C-bus (see Table 2).  
C
24 COMP  
DEC  
GND 20  
SDA 21  
23  
V
CC  
22 SCL  
MHA310  
SWITCH  
The stereo/SAP switch feeds either the L R signal or the  
SAP demodulator output signal via the internal dbx noise  
reduction circuit to the dematrix/switching circuit. Table 12  
shows the different switch modes provided at the output  
pins LOR and LOL.  
Fig.3 Pin configuration (SDIP-version).  
1997 Mar 11  
8
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
dbx DECODER  
EFFECTS  
The circuit includes all blocks required for the noise  
reduction system in accordance with the BTSC system  
specification. The output signal is fed through a 73 µs fixed  
de-emphasis circuit to the dematrix block.  
The audio processor section offers the following mode  
selections: linear stereo, pseudo stereo, spatial stereo and  
forced mono.The spatial mode provides an antiphase  
crosstalk of 30% or 52% (switchable via I2C-bus;  
see Table 10).  
INTEGRATED FILTERS  
VOLUME/LOUDNESS  
The filter functions necessary for stereo and SAP  
demodulation and part of the dbx filter circuits are provided  
on-chip using transconductor circuits. The required filter  
accuracy is attained by an automatic filter alignment  
circuit.  
The volume control range is from +16 dB to 71 dB in  
steps of 1 dB and ends with a mute step (see Table 8).  
Balance control is achieved by the independent volume  
control of each channel. The volume control blocks  
operate in combination with the loudness control. The filter  
is linear when maximum gain for volume control is  
selected. The filter characteristic changes automatically  
over a range of 28 dB down to a setting of 12 dB.  
At 12 dB volume control the maximum loudness boost is  
obtained. The filter characteristic is determined by external  
components. The proposed application provides a  
maximum boost of 17 dB for bass and 4.5 dB for treble.  
The loudness may be switched on or off via I2C-bus  
control (see Table 9). The left and right volume control  
stages include two independent zero crossing detectors.  
A change in volume is automatically activated but not  
executed. The execution is enabled at the next zero  
crossing of the signal. If a new volume step is activated  
before the previous one has been processed, the previous  
value will be executed first, and then the new value will be  
activated. If no zero crossing occurs the next volume  
transmission will enforce the last activated volume setting.  
Audio processor  
SELECTOR  
The selector allows selecting either the internal line out  
signals LOR or LOL (dematrix output) or the external line  
in signals LIR and LIL and combines the left and right  
signals in several modes (see Tables 5 and 6 for  
subaddress and Table 11 for data). The input signal  
capability of the line inputs (LIR/LIL) is 2 V (RMS).  
The output of the selector is AC-coupled to the automatic  
volume level control circuit via pins SOR/SOL and  
AVR/AVL to avoid offset voltages.  
AUTOMATIC VOLUME LEVEL CONTROL  
The automatic volume level stage controls its output  
voltage to a constant level of typically 200 mV (RMS) from  
an input voltage range of 0.1 to 1.1 V (RMS). The circuit  
adjusts variations in modulation during broadcasting and  
due to changes in the programme material. The function  
can be switched off. To avoid audible ‘plops’ during the  
permanent operation of the AVL circuit a soft blending  
scheme has been applied between the different gain  
stages. A capacitor (4.7 µF) at pin CAV determines the  
attack and decay time constants. In addition the ratio of  
attack and decay time can be changed via I2C-bus  
(see Table 15). At power on, the discharged 4.7 µF  
capacitor at CAV must be loaded by the internal decay  
current. If AVL is chosen, this would result in an attenuated  
AVL gain for about 10 seconds after power on. This can be  
speeded up by choosing via I2C-bus an increased charge  
current (about 10 times higher) for about the first  
2 seconds after power on (see Table 6, CCD bit in  
control 1 and Table 18).  
The zero crossing is realized between adjoining steps and  
between any steps, but not from any step to mute. In this  
case the GMU bit is needed to use. In case only one  
channel has to be muted, two steps are necessary.  
The first step is a transmission of any step to 71 dB and  
the second step is the 71 dB step to mute mode. The step  
of 71 dB to mute mode has no zero crossing but this is  
not relevant.  
1997 Mar 11  
9
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
Effects, AVL, loudness off.  
MUTE  
Line out setting bits: STEREO = 1, SAP = 0  
(see Table 12)  
The mute function can be activated independently with last  
step of volume control at the left or right output. By setting  
the general mute bit GMU via the I2C-bus all outputs are  
muted. All channels include an independent zero cross  
detector. The zero crossing mute feature can be selected  
via bit TZCM:  
Selector setting SC0, SC1, SC2 = 0, 0, 0 (see Table 11)  
Start adjustment by transmission ADJ = 1 in register  
ALI3; the decoder will align itself  
After 1 second minimum stop alignment by transmitting  
ADJ = 0 in register ALI3 read the alignment data by an  
I2C-bus read operation from ALR1 and ALR2  
TZCM = 0: forced mute with direct execution  
TZCM = 1: execution in time with signal zero crossing.  
(see Chapter “I2C-bus protocol”) and store it in a  
non-volatile memory; the alignment procedure  
overwrites the previous data stored in ALI1 and ALI2  
In the zero cross mode a change in the GMU polarity is  
activated but not executed. The execution is enabled at  
the next zero crossing of the signal. To avoid a large delay  
of mute switching, when very low frequencies are  
processed, or the output signal amplitude is lower than the  
DC offset voltage, the following I2C-bus transmissions are  
needed:  
Disconnect the capacitors of external inputs from  
ground.  
MANUAL ADJUSTMENT  
a first transmission for mute execution  
Manual adjustment is necessary when no dual tone  
generator is available (e.g. for service).  
a second transmission about 100 ms later, which must  
switch the zero crossing mode to forced mute  
(TZCM = 0)  
Spectral and wideband data have to be set to 10000  
(middle position for adjustment range)  
a third transmission to reactivate the zero crossing  
mode (TZCM = 1). This transmission can take place  
immediately, but must follow before the next mute  
execution.  
Composite input L = 300 Hz; 14% modulation  
Adjust channel separation by varying wideband data  
Composite input L = 3 kHz; 14% modulation  
Adjust channel separation by varying spectral data  
Adjustment procedure  
Iterative spectral/wideband operation for optimum  
adjustment  
COMPOSITE INPUT LEVEL ADJUSTMENT  
Store data in non-volatile memory.  
Feed in from FM demodulator the composite signal with  
100% modulation (25 kHz deviation) L + R; fi = 300 Hz.  
Set input level control via I2C-bus monitoring line out  
(500 mV ±20 mV). Store the setting in a non-volatile  
memory.  
TIMING CURRENT FOR RELEASE RATE  
Due to possible internal and external spreading, the timing  
current can be adjusted via I2C-bus, see Table 20, as  
recommended by dbx.  
AUTOMATIC ADJUSTMENT PROCEDURE  
Capacitors of external inputs LIL and LIR must be  
grounded at EIL and EIR  
Composite input signal L = 300 Hz, R = 3.1 kHz,  
14% modulation for each channel; volume gain +16 dB  
via I2C-bus  
1997 Mar 11  
10  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
Requirements for the composite input signal to ensure correct system performance  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
162  
TYP.  
250  
MAX. UNIT  
COMPL+R(rms) composite input level for 100% measured at COMP  
363  
mV  
modulation L + R; 25 kHz  
deviation; fi = 300 Hz;  
RMS value  
COMP  
composite input level  
spreading under operating  
conditions  
T
amb = 20 to +70 °C; aging;  
0.5  
+0.5  
dB  
power supply influence  
Zo  
output impedance  
note 1  
low-ohmic 5  
kΩ  
Hz  
kHz  
%
flf  
low frequency roll-off  
high frequency roll-off  
25 kHz deviation L + R; 2 dB  
5
fhf  
25 kHz deviation L + R; 2 dB 100  
THDL,R  
total harmonic distortion L + R fi = 1 kHz; 25 kHz deviation  
0.5  
1.5  
fi = 1 kHz; 125 kHz deviation;  
note 2  
%
S/N  
signal-to-noise ratio  
L + R/noise  
CCIR 468-2 weighted quasi  
peak; L + R; 25 kHz deviation;  
fi = 1 kHz; 75 µs de-emphasis  
critical picture modulation;  
note 3  
44  
54  
dB  
with sync only  
dB  
dB  
αSB  
side band suppression mono  
mono signal: 25 kHz deviation, 46  
into unmodulated SAP carrier; fi = 1 kHz; side band: SAP  
SAP carrier/side band  
carrier frequency ±1 kHz  
αSP  
spectral spurious attenuation  
L + R/spurious  
50 Hz to 100 kHz;  
mainly n × fH; no de-emphasis;  
L + R; 25 kHz deviation,  
f = 1 kHz as reference  
n = 1, 5  
n = 4, 6  
n = 2, 3  
35  
40  
26  
dB  
dB  
dB  
Notes  
1. Low-ohmic preferred, otherwise the signal loss and spreading at COMP, caused by Zo and the composite input  
impedance (see Chapter “Characteristics”, Section “Input level adjustment control”) must be taken into account.  
2. In order to prevent clipping at over-modulation  
(maximum deviation in the BTSC system for 100% modulation is 73 kHz).  
3. For example colour bar or flat field white; 100% video modulation.  
1997 Mar 11  
11  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
VCC  
PARAMETER  
MIN.  
MAX.  
UNIT  
supply voltage  
0
9.5  
V
Vn  
voltage of all other pins to pin VCC  
operating ambient temperature  
storage temperature  
0
VCC  
+70  
+150  
V
Tamb  
Tstg  
Ves  
20  
65  
°C  
°C  
electrostatic handling; note 1  
Note  
1. Human body model: C = 100 pF; R = 1.5 k; V = 2 kV; Charge device model: C = 200 pF; R = 0 ; V = 300 V.  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth j-a  
PARAMETER  
VALUE  
UNIT  
thermal resistance from junction to ambient in free air  
SOT270-1  
SOT307-2  
43  
60  
K/W  
K/W  
1997 Mar 11  
12  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
CHARACTERISTICS  
All voltages are measured relative to GND; VCC = 8.5 V; Rs = 600 ; RL = 10 k; CL = 2.5 nF; AC-coupled; fi = 1 kHz;  
Tamb = 25 °C; gain control Gv = 0 dB; balance in mid position; loudness off; see Fig.1; unless otherwise specified.  
SYMBOL  
General  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
VCC  
ICC  
supply voltage  
8.0  
8.5  
75  
9.0  
V
supply current  
95  
mA  
V
Vref  
internal reference voltage at  
pin Vref  
4.25  
Input level adjustment control  
GLA  
input level adjustment control  
3.5  
+4.0  
dB  
dB  
V
Gstep  
Vi(rms)  
step resolution  
0.5  
maximum input voltage level  
(RMS value)  
2
Zi  
input impedance  
29.5  
35  
40.5  
kΩ  
Stereo decoder  
MPXL+R(rms) input voltage level for 100%  
modulation L + R; 25 kHz  
input level adjusted via I2C-bus  
(L + R; fi = 300 Hz);  
250  
mV  
deviation (RMS value)  
monitoring LINE OUT  
MPXLR  
input voltage level for 100%  
modulation L R; 50 kHz  
deviation (peak value)  
707  
mV  
MPX(max)  
maximum headroom for L + R, fmod < 15 kHz; THD < 15%  
L, R  
9
dB  
MPXpilot(rms) nominal stereo pilot voltage  
level (RMS value)  
50  
mV  
STon(rms)  
pilot threshold voltage stereo  
on (RMS value)  
data STS = 1  
data STS = 0  
data STS = 1  
data STS = 0  
35  
30  
mV  
mV  
mV  
mV  
dB  
SToff(rms)  
pilot threshold voltage stereo  
off (RMS value)  
15  
10  
Hys  
hysteresis  
2.5  
500  
OUTL+R  
output voltage level for 100% input level adjusted via I2C-bus 480  
modulation L + R at LINE OUT (L + R; fi = 300 Hz);  
monitoring LINE OUT  
520  
mV  
αcs  
stereo channel separation L/R aligned with dual tone 14%  
at LINE OUT  
modulation for each channel;  
see Section “Adjustment  
procedure” in Chapter  
“Functional description”  
fL = 300 Hz; fR = 3 kHz  
fL = 300 Hz; fR = 8 kHz  
fL = 300 Hz; fR = 10 kHz  
25  
20  
15  
35  
30  
25  
dB  
dB  
dB  
1997 Mar 11  
13  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
SYMBOL  
fL, R  
PARAMETER  
CONDITIONS  
14% modulation;  
MIN.  
TYP.  
MAX. UNIT  
L, R frequency response  
fref = 300 Hz L or R  
fi = 50 Hz to 10 kHz  
fi = 12 kHz  
3  
dB  
dB  
3  
0.2  
THDL,R  
S/N  
total harmonic distortion L, R  
at LINE OUT  
modulation L or R  
1.0  
%
1% to 100%; fi = 1 kHz  
signal-to-noise ratio  
mono mode; CCIR 468-2  
weighted; quasi peak;  
500 mV output signal  
50  
60  
dB  
Stereo decoder, oscillator (VCXO); note 1  
fo  
nominal VCXO output  
frequency (32fH)  
with nominal ceramic  
resonator  
503.5  
kHz  
kHz  
Hz  
fof  
spread of free-running  
frequency  
with nominal ceramic  
resonator  
500.0  
±190  
507.0  
fH  
capture range frequency  
(nominal pilot)  
±265  
SAP demodulator; note 2  
SAPi(rms)  
nominal SAP carrier input  
voltage level (RMS value)  
15 kHz frequency deviation of  
intercarrier  
150  
mV  
mV  
mV  
SAPon(rms)  
SAPoff(rms)  
threshold voltage SAP on  
(RMS value)  
85  
threshold voltage SAP off  
35  
(RMS value)  
SAPhys  
SAPLEV  
hysteresis  
2
dB  
SAP output voltage level at  
LINE OUT  
mode selector in position  
SAP/SAP; fmod = 300 Hz;  
100% modulation  
500  
mV  
fres  
frequency response  
14% modulation;  
50 Hz to 8 kHz; fref = 300 Hz  
3  
dB  
%
THD  
total harmonic distortion  
fi = 1 kHz  
0.5  
2.0  
1997 Mar 11  
14  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
LINE OUT at pins LOL and LOR  
Vo(rms)  
nominal output voltage  
(RMS value)  
100% modulation  
500  
mV  
dB  
HEADo  
Zo  
output headroom  
9
output impedance  
80  
120  
VO  
DC output voltage  
0.45VCC 0.5VCC  
0.55VCC  
V
RL  
output load resistance  
output load capacitance  
crosstalk L, R into SAP  
5
kΩ  
nF  
dB  
CL  
2.5  
αct  
100% modulation; fi = 1 kHz;  
L or R; mode selector switched  
to SAP/SAP  
50  
75  
crosstalk SAP into L, R  
100% modulation; fi = 1 kHz;  
SAP; mode selector switched  
to stereo  
50  
70  
dB  
dB  
VST-SAP  
output voltage difference if  
switched from L, R to SAP  
250 Hz to 6.3 kHz  
3
dbx noise reduction circuit  
tadj stereo adjustment time  
see Section “Adjustment  
procedure” in Chapter  
“Functional description”  
1
s
Is  
nominal timing current for  
nominal release rate of  
spectral RMS detector  
Is can be measured at pin CTS  
via current meter connected to  
12VCC + 1 V  
24  
µA  
Is  
spread of timing current  
timing current range  
15  
+15  
%
Is range  
It  
7 steps via I2C-bus  
±30  
13Is  
%
timing current for release rate  
of wideband RMS detector  
µA  
Relrate  
nominal RMS detector  
release rate  
nominal timing current and  
external capacitor values  
wideband  
spectral  
125  
381  
dB/s  
dB/s  
1997 Mar 11  
15  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
Circuit section from pins LIL and LIR to pins OUTL and OUTR; note 3  
B
roll-off frequencies  
C6, C7, C10, C26, C27 and  
C29 = 2.2 µF; Zi = Zi(min)  
low frequency (3 dB)  
20  
Hz  
kHz  
%
high frequency (0.5 dB)  
20  
THD  
total harmonic distortion  
Vi = 1000 mV; Gv = 0 dB;  
0.2  
0.5  
AVL on  
Vi = 2000 mV; Gv = 0 dB;  
AVL on  
0.2  
0.5  
%
%
%
Vi = 1000 mV; Gv = 0 dB;  
AVL off  
0.02  
0.02  
Vi = 2000 mV; Gv = 0 dB;  
AVL off  
RR  
ripple rejection  
Vr(rms) < 200 mV; fi = 100 Hz  
notes 4 and 5  
47  
50  
dB  
dB  
αct  
crosstalk between bus inputs  
and signal outputs  
110  
Vno  
noise output voltage  
CCIR 468-2 weighted; quasi  
peak; AVL off; loudness off;  
Gv = 0 dB  
40  
8
80  
µV  
µV  
measured in dBA; AVL off;  
loudness off; Gv = 0 dB  
αcs  
channel separation  
Vi = 1 V; fi = 1 kHz  
75  
75  
dB  
dB  
Vi = 1 V; fi = 12.5 kHz  
Effect controls  
αspat1  
αspat2  
ϕ
anti-phase crosstalk by spatial  
effect  
52  
30  
%
%
phase shift by pseudo-stereo  
see Fig.4  
1997 Mar 11  
16  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
Automatic volume level control (AVL)  
Zi  
input impedance  
8.8  
11.0  
tbf  
13.2  
kΩ  
Vi(rms)  
maximum input voltage  
(RMS value)  
THD < 0.2%  
2
V
Gv  
gain, maximum boost  
maximum attenuation  
5
6
7
dB  
dB  
dB  
14  
15  
1.5  
16  
Gstep  
equivalent step width between  
the input stages  
(soft switching system)  
Viop(rms)  
input level at maximum boost  
(RMS value)  
0.1  
V
input level at maximum  
attenuation (RMS value)  
1.125  
200  
V
Vo(rms)  
output level in AVL operation  
(RMS value)  
see Fig.5  
160  
250  
6
mV  
mV  
VDC OFF  
DC offset between different  
gain steps  
voltage at pin CAV  
6.50 to 6.33 V or  
6.33 to 6.11 V or  
6.11 to 5.33 V or  
5.33 to 2.60 V; note 6  
Ratt  
discharge resistors for attack  
time constant  
AT1 = 0; AT2 = 0; note 7  
AT1 = 1; AT2 = 0; note 7  
AT1 = 0; AT2 = 1; note 7  
AT1 = 1; AT2 = 1; note 7  
340  
590  
0.96  
1.7  
420  
730  
1.2  
2.1  
2.0  
tbf  
520  
910  
1.5  
2.6  
2.4  
kΩ  
kΩ  
µA  
µA  
Idec  
charge current for decay time normal mode; CCD = 0; note 8 1.6  
power-on speed-up; CCD = 1;  
note 8  
Selector from pins LOL, LOR, LIL and LIR to pins SOL and SOR  
Zi  
input impedance  
16  
86  
80  
2
20  
96  
96  
2.3  
24  
kΩ  
dB  
dB  
V
αs  
input isolation of one selected Vi = 1 V; fi = 1 kHz  
source to the other input  
Vi = 1 V; fi = 12.5 kHz  
Vi(rms)  
maximum input voltage  
(RMS value)  
THD < 0.5%  
VDC OFF  
DC offset voltage at selector  
output by selection of any  
inputs  
25  
mV  
Zo  
RL  
CL  
Gv  
output impedance  
5
0
80  
120  
output load resistance  
output load capacitance  
voltage gain, selector  
kΩ  
nF  
dB  
2.5  
0
1997 Mar 11  
17  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
Audio control part; input pins VIL and VIR to pins OUTX and OUTS  
Zi  
volume input impedance  
output impedance  
8.0  
10.0  
80  
12.0  
kΩ  
Zo  
120  
RL  
output load resistance  
output load capacitance  
5
kΩ  
nF  
V
CL  
0
2.5  
Vi(rms)  
maximum input voltage  
(RMS value)  
THD < 0.5%  
2.0  
2.15  
Vno  
noise output voltage  
CCIR 468-2 weighted;  
quasi peak  
Gv = 16 dB  
Gv = 0 dB  
110  
33  
10  
16  
71  
1
220  
50  
µV  
µV  
µV  
dB  
dB  
dB  
dB  
mute position  
Gc  
total continuous control range maximum boost  
maximum attenuation  
Gstep  
step resolution  
step error between adjoining  
step  
0.5  
Ga  
attenuator set error  
Gv = +16 to 50 dB  
Gv = 51 to 71 dB  
Gv = +16 to 50 dB  
2
dB  
3
dB  
GL  
gain tracking error  
mute attenuation  
2
dB  
αm  
80  
dB  
VDC OFF  
DC step offset between any  
adjacent step  
Gv = +16 to 0 dB  
Gv = 0 to 71 dB  
Gv = +16 to +1 dB  
Gv = 0 to 71 dB  
0.2  
10.0  
5
mV  
mV  
mV  
mV  
DC step offset between any  
step to mute  
2
15  
10  
1
Loudness control part  
LB maximum loudness boost  
loudness on; referred to  
loudness off; boost is  
determined by external  
components; see Fig.6  
fi = 40 Hz  
17  
4.5  
dB  
dB  
fi = 10 kHz  
LG  
Muting at power supply drop for OUTR and OUTS  
VCC-DROP supply drop for mute active  
loudness control range  
12  
+16  
V
CAP 0.7 −  
V
Power-on reset; note 9  
VRESET(STA) start of reset voltage  
increasing supply voltage  
decreasing supply voltage  
increasing supply voltage  
5
6
2.5  
5.8  
6.8  
V
V
V
4.2  
5.2  
VRESET(END) end of reset voltage  
1997 Mar 11  
18  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
Digital part (I2C-bus pins); note 10  
VIH  
VIL  
IIH  
HIGH level input voltage  
LOW level input voltage  
HIGH level input current  
LOW level input current  
LOW level output voltage  
3
VCC  
V
0.3  
10  
10  
+1.5  
+10  
+10  
+0.4  
V
µA  
µA  
V
IIL  
VOL  
IIL = 3 mA  
Notes to the characteristics  
1. The oscillator is designed to operate together with MURATA resonator CSB503F58. Change of the resonator supplier  
is possible, but the resonator specification must be close to CSB503F58.  
2. The internal SAP carrier level is determined by the composite input level and the level adjustment gain.  
3. Frequency range 20 Hz to 20 kHz; select in to input line control; effects: linear stereo.  
Vbus(p-p)  
4. Crosstalk: 20 log  
--------------------  
Vo(rms)  
5. The transmission contains:  
a) Total initialization with MAD and SAD for volume and 11 DATA words, see also definition of characteristics  
b) Clock frequency = 50 kHz  
c) Repetition burst rate = 400 Hz  
d) Maximum bus signal amplitude = 5 V (p-p).  
6. The listed pin voltage corresponds with typical gain steps of +6 dB, +3 dB, 0 dB, 6 dB and 15 dB.  
7. Attack time constant = CAV × Ratt.  
G1  
G2  
----------  
----------  
C
AV × 0.76 V 10 20 10 20  
8. Decay time =  
-------------------------------------------------------------------------------  
Idec  
Example: CAV = 4.7 µF; Idec = 2 µA; G1 = 9 dB; G2 = +6 dB decay time results in 4.14 s.  
9. When reset is active the GMU-bit (general mute) and the LMU-bit (LINE OUT mute) is set and the I2C-bus receiver  
is in the reset position.  
10. The AC characteristics are in accordance with the I2C-bus specification. The maximum clock frequency is 100 kHz.  
Information about the I2C-bus can be found in the brochure “The I2C-bus and how to use it”  
(order number 9398 393 40011).  
1997 Mar 11  
19  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
I2C-BUS PROTOCOL  
I2C-bus format to read (slave transmits data)  
S
SLAVE ADDRESS  
R/W  
A
DATA  
MA  
DATA  
P
Table 1 Explanation of I2C-bus format to read (slave transmits data)  
NAME  
DESCRIPTION  
S
START condition; generated by the master  
101 101 1  
Standard SLAVE ADDRESS (MAD)  
R/W  
A
1 (read); generated by the master  
acknowledge; generated by the slave  
slave transmits an 8-bit data word  
acknowledge; generated by the master  
STOP condition; generated by the master  
DATA  
MA  
P
Table 2 Definition of the transmitted bytes after read condition  
MSB  
LSB  
D0  
FUNCTION  
BYTE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Alignment read 1  
Alignment read 2  
ALR1  
ALR2  
Y
Y
SAPP  
SAPP  
STP  
STP  
A14  
A24  
A13  
A23  
A12  
A22  
A11  
A21  
A10  
A20  
Table 3 Function of the bits in Table 2  
BITS  
FUNCTION  
STP  
stereo pilot identification (stereo received = 1)  
SAP pilot identification (SAP received = 1)  
stereo alignment read data  
for wideband expander  
SAPP  
A1X to A2X  
A1X  
A2X  
for spectral expander  
Y
indefinite  
The master generates an acknowledge when it has received the first data word ALR1, then the slave transmits the next  
data word ALR2. Afterwards the master generates an acknowledge, then the slave begins transmitting the first data word  
ALR1 etc. until the master generates no acknowledge and transmits a STOP condition.  
1997 Mar 11  
20  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
I2C-bus format to write (slave receives data)  
S
SLAVE ADDRESS  
R/W  
A
SUBADDRESS  
A
DATA  
A
P
Table 4 Explanation of I2C-bus format to write (slave receives data)  
NAME  
DESCRIPTION  
S
START condition  
101 101 1  
Standard SLAVE ADDRESS (MAD)  
R/W  
0 (write)  
A
acknowledge; generated by the slave  
see Table 5  
SUBADDRESS (SAD)  
DATA  
P
see Table 6  
STOP condition  
If more than 1 byte of DATA is transmitted, then auto-increment is performed, starting from the transmitted subaddress  
and auto-increment of subaddress in accordance with the order of Table 5 is performed.  
Table 5 Subaddress second byte after MAD  
MSB  
D7  
LSB  
D0  
FUNCTION  
Volume right  
REGISTER  
D6  
D5  
D4  
D3  
D2  
D1  
VR  
VL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
1
0
0
0
0
0
0
1
1
0
0
1
0
1
1
0
1
0
1
0
Volume left  
Control 1 (note 1)  
Control 2  
CON1  
CON2  
CON3  
ALI1  
ALI2  
ALI3  
Control 3  
Alignment 1  
Alignment 2  
Alignment 3  
Note  
1. In auto-increment mode it is necessary to insert 3 dummy data words between volume left and control 1.  
Table 6 Definition of third byte, third byte after MAD and SAD  
MSB  
LSB  
D0  
FUNCTION  
Volume right  
REGISTER  
D7  
0
D6  
VR6  
D5  
VR5  
VL5  
D4  
D3  
D2  
D1  
VR  
VL  
VR4  
VL4  
CCD  
1
VR3  
VL3  
0
VR2  
VL2  
SC2  
EF2  
L2  
VR1  
VL1  
SC1  
EF1  
L1  
VR0  
VL0  
SC0  
EF0  
L0  
Volume left  
Control 1  
0
VL6  
CON1  
CON2  
CON3  
ALI1  
ALI2  
ALI3  
GMU  
AVLON  
LOFF  
Control 2  
SAP STEREO TZCM  
LMU  
L3  
Control 3  
0
0
0
0
0
0
Alignment 1  
Alignment 2  
Alignment 3  
0
A14  
A24  
0
A13  
A23  
1
A12  
A22  
TC2  
A11  
A21  
TC1  
A10  
A20  
TC0  
STS  
ADJ  
0
0
AT1  
AT2  
1997 Mar 11  
21  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
Table 7 Function of the bits in Table 6  
BITS  
FUNCTION  
VR0 to VR6  
VL0 to VL6  
GMU  
volume control right  
volume control left  
mute control for all outputs (generate mute)  
AVL on/off  
AVLON  
CCD  
increased AVL decay current on/off  
switch loudness on/off  
LOFF  
SC0 to SC2  
STEREO, SAP  
TZCM  
selection between line in and line out  
mode selection for line out  
zero cross mode in mute operation (right and left output stage)  
mute control for line out  
LMU  
EF0 to EF2  
L0 to L3  
ADJ  
selection between mono, stereo linear, spatial stereo and pseudo mode  
input level adjustment  
stereo adjustment on/off  
A1X to A2X  
A1X  
stereo alignment data  
for wideband expander  
A2X  
for spectral expander  
AT1 and AT2  
TC0 to TC2  
STS  
attack time at AVL  
timing current alignment data  
stereo level switch  
Table 8 Volume setting  
DATA  
FUNCTION  
Gv (dB)  
V6  
V5  
V4  
V3  
V2  
V1  
V0  
16  
15  
14  
13  
12  
11  
10  
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
8
7
6
5
4
3
2
1
1997 Mar 11  
22  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
DATA  
V3  
FUNCTION  
Gv (dB)  
V6  
V5  
V4  
V2  
V1  
V0  
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
1997 Mar 11  
23  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
DATA  
V3  
FUNCTION  
Gv (dB)  
V6  
V5  
V4  
V2  
V1  
V0  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
Mute  
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1997 Mar 11  
24  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
Table 9 Loudness setting  
Table 11 Selector setting  
CHARACTERISTIC  
DATA LOFF  
DATA  
FUNCTION(1)  
With loudness  
Linear  
0
1
SC2  
SC1  
SC0  
Inputs LOR and LOL  
Inputs LOR and LOR  
Inputs LOL and LOL  
Inputs LOL and LOR  
Inputs LIR and LIL  
Inputs LIR and LIR  
Inputs LIL and LIL  
Inputs LIL and LIR  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Table 10 Effects setting  
DATA  
EF1  
FUNCTION  
EF2  
EF0  
Stereo linear on  
Pseudo on  
0
0
0
0
0
1
0
1
0
Spatial stereo;  
30% anti-phase crosstalk  
Note  
Spatial stereo;  
50% anti-phase crosstalk  
0
1
1
1
1
1
1. Input connected to outputs SOR and SOL.  
Forced mono  
Table 12 Switch setting at line out  
LINE OUT SIGNALS AT  
DATA  
SETTING BITS  
STEREO SAP  
TRANSMISSION STATUS  
INTERNAL SWITCH, READABLE BITS: STP, SAPP  
LOL  
SAP  
LOR  
SAP  
SAP received  
1
1
Mute  
Left  
mute  
right  
no SAP received  
STEREO received  
no STEREO received  
SAP received  
1
1
1
0
0
0
1
0
0
1
1
0
Mono  
Mono  
Mono  
Mono  
mono  
SAP  
mute  
mono  
no SAP received  
independent  
Table 13 Zero cross detection setting  
FUNCTION  
DATA TZCM  
Direct mute control  
0
1
Mute control delayed until the next zero crossing  
Table 14 Mute setting  
DATA  
GMU  
DATA  
LMU  
FUNCTION  
FUNCTION  
Forced mute at OUTR, OUTL and OUTS  
Audio processor controlled outputs  
1
0
forced mute at LOR and LOL  
1
0
stereo processor controlled outputs  
1997 Mar 11  
25  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
Table 15 AVL attack time  
Table 21 Level adjust setting  
DATA  
DATA  
GL  
(dB)  
FUNCTION  
AT1  
AT2  
L3  
L2  
L1  
L0  
Ratt = 420 Ω  
Ratt = 730 Ω  
0
1
0
1
0
0
1
1
+4.0  
+3.5  
+3.0  
+2.5  
+2.0  
+1.5  
+1.0  
+0.5  
0.0  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
R
att = 1200 Ω  
att = 2100 Ω  
R
Table 16 ADJ bit setting  
FUNCTION  
Stereo decoder operation mode  
DATA  
0
1
Auto adjustment of channel separation  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Table 17 AVLON bit setting  
FUNCTION  
DATA  
Automatic volume control off  
Automatic volume control on  
0
1
Table 18 CCD bit setting  
FUNCTION  
DATA  
Load current for normal AVL decay time  
Increased load current  
0
1
Table 19 STS bit setting (pilot threshold stereo on)  
FUNCTION DATA  
STon 35 mV  
STon 30 mV  
1
0
Table 20 Timing current setting  
DATA  
TC1  
FUNCTION  
IS RANGE  
TC2  
TC0  
+30%  
+20%  
+10%  
Nominal  
10%  
20%  
30%  
1
1
1
0
0
0
0
0
0
1
1
1
0
0
0
1
0
1
0
1
0
1997 Mar 11  
26  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
Table 22 Alignment data for expander in read register ALR1 and ALR2 and in write register ALI1 and ALI2  
DATA  
FUNCTION  
D4  
D3  
D2  
D1  
D0  
AX4  
AX3  
AX2  
AX1  
AX0  
Gain increase  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Nominal gain  
Gain decrease  
1997 Mar 11  
27  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
MHA311  
0
(1)  
phase  
(degree)  
(2)  
100  
(3)  
200  
300  
400  
2
3
4
5
10  
10  
10  
10  
10  
f (Hz)  
(1) see Table 23.  
(2) see Table 23.  
(3) see Table 23.  
Fig.4 Pseudo (phase in degrees) as a function of frequency (left output).  
Table 23 Explanation of curves in Fig.4  
CAPACITANCE AT PIN CPS1  
CAPACITANCE AT PIN CPS2  
(nF)  
CURVE  
EFFECT  
(nF)  
1
2
3
15  
5.6  
5.6  
15  
47  
68  
normal  
intensified  
more intensified  
1997 Mar 11  
28  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
MHA312  
300  
7
V
V
CAV  
(V)  
o(rms)  
(mV)  
(1)  
(2)  
6
250  
200  
5
4
3
2
1
(3)  
160  
100  
10  
2  
1  
10  
1
10  
V
(V)  
I(rms)  
(1) VCAV  
AVL measured at pin EOL/EOR.  
Y1 axis output level in AVL operation with typically 200 mV.  
(2) Vo max(rms)  
(3) Vo min(rms)  
Y2 axis VCAV DC voltage at pin CAV corresponds with typical gain steps in range of +6 to 15 dB.  
Fig.5 Automatic level control diagram.  
MHA313  
25  
16  
14  
15  
5
9
4
1  
6  
5  
11  
16  
21  
26  
31  
15  
25  
36  
35  
2
3
4
10  
10  
10  
10  
f (Hz)  
Fig.6 Volume control with loudness (including low roll-off frequency).  
29  
1997 Mar 11  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
INTERNAL PIN CONFIGURATIONS  
1
4.25 V  
+
2
4.25 V  
+
1.33 kΩ  
80 Ω  
MHA315  
MHA314  
Fig.7 Pins OUTL, SOL, SOR and OUTR.  
Fig.8 Pins LDL and LDR.  
3
4.25 V  
4
4.25 V  
+
+
10.58 kΩ  
4.8 kΩ  
15  
kkΩ  
6.8  
MHA317  
MHA316  
Fig.9 Pins VIL and VIR.  
Fig.10 Pins EOL and EOR.  
6
+
5
+
3.4  
kΩ  
3.4  
kΩ  
MHA318  
MHA319  
Fig.11 Pin CAV  
.
Fig.12 Pin Vref.  
1997 Mar 11  
30  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
8
4.25 V  
1
2
+
7
4.25 V  
+
3
1.75 kΩ  
20 kΩ  
20 kΩ  
MHA320  
8
MHA321  
Fig.13 Pins LIL and LIR.  
Fig.14 Pins AVL and AVR.  
10  
4.25 V  
+
11  
+
5 kΩ  
MHA323  
MHA322  
Fig.15 Pins LOL and LOR.  
Fig.16 Pins CTW and CTS  
.
13 4.25 V  
15  
+
+
6
kΩ  
MHA325  
MHA324  
Fig.17 Pins CW and CS.  
Fig.18 Pin VEO.  
1997 Mar 11  
31  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
16  
17 4.25 V  
+
+
600 Ω  
10  
MHA327  
kΩ  
MHA326  
Fig.19 Pin VEI.  
Fig.20 Pin CNR.  
18  
+
19 4.25 V  
+
MHA329  
20 kΩ  
20 kΩ  
MHA328  
Fig.21 Pin CM.  
Fig.22 Pin CDEC.  
21 5 V  
22 5 V  
1.8 kΩ  
1.8 kΩ  
MHA331  
MHA330  
Fig.23 Pin SDA.  
Fig.24 Pin SCL.  
1997 Mar 11  
32  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
24 4.25 V  
+
23  
apply +8.5 V to this pin  
+
MHA332  
30  
kΩ  
MHA333  
Fig.25 Pin VCC  
.
Fig.26 Pin COMP.  
25  
26 4.25 V  
+
+
4.7  
kΩ  
300 Ω  
3.5  
kΩ  
5 kΩ  
MHA335  
MHA334  
Fig.27 Pin VCAP  
.
Fig.28 Pin CP1.  
27 4.25 V  
28 4.25 V  
+
+
8.5 12  
MHA336  
kΩ  
kΩ  
MHA337  
10 kΩ  
10 kΩ  
Fig.29 Pin CP2.  
Fig.30 Pin CPH.  
1997 Mar 11  
33  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
30  
29  
+
+
3
kΩ  
MHA339  
MHA338  
Fig.31 Pin CADJ  
.
Fig.32 Pin CER.  
38  
31 4.25 V  
+
+
15  
kΩ  
10 kΩ  
10 kΩ  
MHA341  
MHA340  
Fig.33 Pins CMO and CSS  
.
Fig.34 Pins CPS1 and CPS2.  
1997 Mar 11  
34  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
PACKAGE OUTLINES  
SDIP42: plastic shrink dual in-line package; 42 leads (600 mil)  
SOT270-1  
D
M
E
A
2
A
L
A
1
c
e
(e )  
1
w M  
Z
b
1
M
H
b
42  
22  
pin 1 index  
E
1
21  
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
max.  
A
A
2
max.  
(1)  
(1)  
Z
1
w
UNIT  
b
b
c
D
E
e
e
L
M
M
H
1
1
E
min.  
max.  
1.3  
0.8  
0.53  
0.40  
0.32  
0.23  
38.9  
38.4  
14.0  
13.7  
3.2  
2.9  
15.80  
15.24  
17.15  
15.90  
mm  
5.08  
0.51  
4.0  
1.778  
15.24  
0.18  
1.73  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
90-02-13  
95-02-04  
SOT270-1  
1997 Mar 11  
35  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm  
SOT307-2  
y
X
A
33  
23  
34  
22  
Z
E
e
H
E
E
A
2
A
(A )  
3
A
1
w M  
θ
b
p
L
p
pin 1 index  
L
12  
44  
detail X  
1
11  
w M  
Z
v
M
A
D
b
p
e
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
θ
1
2
3
p
E
p
D
E
max.  
10o  
0o  
0.25 1.85  
0.05 1.65  
0.40 0.25 10.1 10.1  
0.20 0.14 9.9 9.9  
12.9 12.9  
12.3 12.3  
0.95  
0.55  
1.2  
0.8  
1.2  
0.8  
mm  
2.10  
0.25  
0.8  
1.3  
0.15 0.15 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-02-04  
97-08-01  
SOT307-2  
1997 Mar 11  
36  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
SOLDERING  
Introduction  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt. Dwell times vary from  
50 to 300 seconds depending on heating method. Typical  
reflow temperatures range from 215 to 250 °C.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheat for 45 minutes at 45 °C.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
WAVE SOLDERING  
Wave soldering is not recommended for QFP packages.  
This is because of the likelihood of solder bridging due to  
closely-spaced leads and the possibility of incomplete  
solder penetration in multi-lead devices.  
SDIP  
SOLDERING BY DIPPING OR BY WAVE  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joint for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
If wave soldering cannot be avoided, the following  
conditions must be observed:  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave)  
soldering technique should be used.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg max). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
The footprint must be at an angle of 45° to the board  
direction and must incorporate solder thieves  
downstream and at the side corners.  
Even with these conditions, do not consider wave  
soldering the following packages: QFP52 (SOT379-1),  
QFP100 (SOT317-1), QFP100 (SOT317-2),  
QFP100 (SOT382-1) or QFP160 (SOT322-1).  
REPAIRING SOLDERED JOINTS  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured. Maximum permissible solder  
temperature is 260 °C, and maximum duration of package  
immersion in solder is 10 seconds, if cooled to less than  
150 °C within 6 seconds. Typical dwell time is 4 seconds  
at 250 °C.  
Apply a low voltage soldering iron (less than 24 V) to the  
lead(s) of the package, below the seating plane or not  
more than 2 mm above it. If the temperature of the  
soldering iron bit is less than 300 °C it may remain in  
contact for up to 10 seconds. If the bit temperature is  
between 300 and 400 °C, contact may be up to 5 seconds.  
QFP  
REFLOW SOLDERING  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Reflow soldering techniques are suitable for all QFP  
packages.  
REPAIRING SOLDERED JOINTS  
The choice of heating method may be influenced by larger  
plastic QFP packages (44 leads, or more). If infrared or  
vapour phase heating is used and the large packages are  
not absolutely dry (less than 0.1% moisture content by  
weight), vaporization of the small amount of moisture in  
them can cause cracking of the plastic body. For more  
information, refer to the Drypack chapter in our “Quality  
Reference Handbook” (order code 9398 510 63011).  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
1997 Mar 11  
37  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
1997 Mar 11  
38  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled BTSC stereo/SAP  
decoder and audio processor  
TDA9852  
NOTES  
1997 Mar 11  
39  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Belgium: see The Netherlands  
Brazil: see South America  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. +65 350 2538, Fax. +65 251 6500  
Colombia: see South America  
Czech Republic: see Austria  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 1949  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580/xxx  
South America: Rua do Rocio 220, 5th floor, Suite 51,  
04552-903 São Paulo, SÃO PAULO - SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 829 1849  
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 3 301 6312, Fax. +34 3 301 4107  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 632 2000, Fax. +46 8 632 2745  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2686, Fax. +41 1 481 7730  
Hungary: see Austria  
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.  
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2870, Fax. +886 2 2134 2874  
Indonesia: see Singapore  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,  
Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,  
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,  
Internet: http://www.semiconductors.philips.com  
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1997  
SCA53  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
547047/1200/02/pp40  
Date of release: 1997 Mar 11  
Document order number: 9397 750 01766  

相关型号:

TDA9853

I2C-bus controlled economic BTSC stereo decoder and audio processor
NXP

TDA9853H

I2C-bus controlled economic BTSC stereo decoder and audio processor
NXP

TDA9854

IC SPECIALTY CONSUMER CIRCUIT, PDIP52, Consumer IC:Other
NXP

TDA9855

I2C-bus controlled BTSC stereo/SAP decoder and audio processor
NXP

TDA9855N

IC SPECIALTY CONSUMER CIRCUIT, PDIP52, Consumer IC:Other
NXP

TDA9855WP

I2C-bus controlled BTSC stereo/SAP decoder and audio processor
NXP

TDA9855WP-T

IC SPECIALTY CONSUMER CIRCUIT, PQCC68, Consumer IC:Other
NXP

TDA9859

Universal hi-fi audio processor for TV
NXP

TDA9859H

Universal hi-fi audio processor for TV
NXP

TDA9860

Universal HiFi audio processor for TV
NXP