TZA1031HL [NXP]

IC SPECIALTY CONSUMER CIRCUIT, PQFP64, 10 X 10 MM, 1.40 MM, PLASTIC, MS-026, SOT-314-2, LQFP-64, Consumer IC:Other;
TZA1031HL
型号: TZA1031HL
厂家: NXP    NXP
描述:

IC SPECIALTY CONSUMER CIRCUIT, PQFP64, 10 X 10 MM, 1.40 MM, PLASTIC, MS-026, SOT-314-2, LQFP-64, Consumer IC:Other

商用集成电路
文件: 总52页 (文件大小:207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TZA1031  
Signal processing IC for DVD  
rewriteable  
Product specification  
2002 Jun 06  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
CONTENTS  
8
LIMITING VALUES  
9
CHARACTERISTICS  
1
2
3
4
5
6
7
FEATURES  
10  
11  
12  
12.1  
APPLICATION INFORMATION  
PACKAGE OUTLINE  
SOLDERING  
GENERAL DESCRIPTION  
ORDERING INFORMATION  
QUICK REFERENCE DATA  
BLOCK DIAGRAM  
Introduction to soldering surface mount  
packages  
Reflow soldering  
Wave soldering  
Manual soldering  
PINNING  
12.2  
12.3  
12.4  
12.5  
FUNCTIONAL DESCRIPTION  
7.1  
7.1.1  
EFMTIM  
Suitability of surface mount IC packages for  
wave and reflow soldering methods  
Data signal synchronization and read-write  
detection  
13  
14  
15  
DATA SHEET STATUS  
DEFINITIONS  
7.1.2  
7.1.3  
7.1.4  
7.1.5  
7.2  
EFMTIM input interface  
EFMTIM test output  
EFMTIM reset  
EFMTIM control  
NORM  
DISCLAIMERS  
7.2.1  
7.2.2  
AUX block  
DOC block: normalization and drop-out  
concealment  
7.2.3  
7.2.4  
7.2.5  
7.2.6  
FOC block: focus servo signal normalization  
RAD block: radial servo signal normalization  
TL block: track loss servo signal  
CANORM block: CA signal normalization  
circuit  
7.2.7  
7.2.8  
7.2.9  
7.3  
TILT block: tilt sensor normalization circuit  
Output current polarities  
Control signal overview  
RF-AMP  
7.3.1  
7.4  
Data path amplifier and filtering  
PP-AMP  
7.4.1  
7.5  
Push-pull channel amplifier and filtering  
ALFA  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.6  
ALFA measurement circuit for running OPC  
Dye media  
Phase change media  
ALFA circuit general  
BETA  
7.6.1  
BETA measurement circuit for write power  
calibration  
7.7  
BCA  
7.7.1  
7.8  
Burst cutting area signal processing circuit  
MON  
7.8.1  
7.9  
Monitor circuit for various internal servo signals  
Serial bus: interface to system controller  
Timing relations for serial bus control  
Operation  
Control register of the device  
General control format  
Register definitions  
7.9.1  
7.9.2  
7.10  
7.10.1  
7.10.2  
2002 Jun 06  
2
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
1
FEATURES  
Programmable DC offset cancellation in RF path to  
allow DC coupling to decoder ICs (HDR65 or IGUANA)  
Operates with DVD-ROM, DVD+RW, DVD-RW,  
CD-ROM and CD-RW media  
Push-pull signal channel to read address information on  
recordable and rewriteable media  
Specifically intended for writing applications  
Programmable running OPC processing for both dye  
and phase change media  
Operates up to 64 × CD-ROM read, 16 × DVD-ROM  
read, 16 × CDR/RW write and 4 × DVDR/RW write  
On-chip processing circuit for write power calibration  
Optimized interface to the optical pick-up unit  
preprocessor IC (TZA1030) and Philips decoder ICs  
HDR65 or IGUANA  
Burst cutting area read-out amplifier circuit with digital  
output  
Monitor function to read out internal signals for test and  
adjustment purposes  
On-chip EFM signal decoder for write synchronization  
Programmable normalization for servo signals  
3-wire high-speed serial interface for programming of  
the device by a decoder IC or microcontroller.  
Servo outputs programmable for direct unprocessed  
currents or error signals  
RF data amplifier with wide (programmable) bandwidth  
equivalent to 64 × CD or 16 × DVD when using  
equaliser function  
2
GENERAL DESCRIPTION  
The TZA1031 is an analog preprocessor IC for recording  
CD and DVD systems such as DVDRW, combo and  
double writer applications. It is optimized to work with the  
optical pick-up unit preprocessor IC TZA1030 and Philips  
decoder ICs HDR65 and IGUANA. The TZA1031 takes  
care of the specific recording functions in the servo,  
RF and push-pull channels. It also provides read-out of  
BCA code.  
Programmable noise filter in RF amplifier for improved  
signal quality  
Programmable RF gain for DVD-ROM, DVD-RW,  
CD-RW or CD-ROM applications; AGC possible with  
decoder ICs (HDR65 or IGUANA)  
Dual differential RF signal input, differential RF signal  
output  
3
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TZA1031HL  
LQFP64  
plastic low profile quad flat package; 64 leads; body 10 × 10 × 1.4 mm  
SOT314-2  
2002 Jun 06  
3
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
4
QUICK REFERENCE DATA  
SYMBOL PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supplies  
VDD  
positive supply voltage  
4.5  
5
5.5  
V
V
VSS  
negative supply voltage  
total positive supply current  
total negative supply current  
5.5  
5  
40  
40  
4.5  
IDD(tot)  
ISS(tot)  
Iq(DD)  
Iq(SS)  
Tamb  
circuit active  
circuit active  
mA  
mA  
mA  
mA  
°C  
quiescent current positive supply STBY = 1  
quiescent current negative supply STBY = 1  
4
8
ambient temperature  
operating  
0
55  
Write synchronization circuit (EFMTIM)  
Ii(EFM)  
input current on pins EFMDP,  
EFMDN, EFMCP and EFMCN  
0
1200  
µA  
µA  
µA  
µA  
mV  
Ii(dif)(H)  
Ii(dif)(L)  
Ii(dif)(th)  
Vi(EFM)  
Ri(EFM)  
differential input current for HIGH  
level  
I
I
EFMDPIEFMDN  
EFMCPIEFMCN  
EFMDPIEFMDN  
EFMCPIEFMCN  
EFMDPIEFMDN  
EFMCPIEFMCN  
;
;
;
330  
330  
0
differential input current for LOW  
level  
I
I
differential input current threshold  
level  
I
I
input voltage on pins EFMDP,  
EFMDN, EFMCP and EFMCN  
120  
input resistance on pins EFMDP,  
EFMDN, EFMCP and EFMCN  
120  
Normalizer and servo path (NORM)  
Vi(Q)  
Q1 to Q6 input voltage  
Q/NE = 1;  
i(Q) = 10 µA  
Q/NE = 0;  
i(Q) = 10 µA  
1.3  
1.5  
V
V
I
I
Ii(Q)  
servo input (Q1 to Q6) current  
range  
Q/NE = 0  
Q/NE = 1  
0
110  
µA  
µA  
V
8  
0.5  
+12  
Vo(S), Vo(D)  
Ii(TS)  
servo output (S1 to S2 and  
D1 to D4) voltage range  
0.5VDD  
tilt sensor input (TS1 and TS2)  
current range  
0
40  
µA  
Vi(TS)  
tilt sensor input voltage  
VSS + 2.6 −  
V
RF amplifier (RF-AMP)  
ARF  
gain range RF path  
programmable by  
parameters GRF  
and HA  
4  
+20  
dB  
BWRF  
f0(RF)  
3 dB bandwidth of RFP and RFN ENEQ = 0;  
180  
16  
MHz  
MHz  
ENNF = 0  
noise filter and equalizer corner  
frequency  
controlled by  
parameter BWRF  
143  
2002 Jun 06  
4
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
SYMBOL  
td(F)  
PARAMETER  
flatness delay RF  
CONDITIONS  
MIN.  
TYP.  
MAX.  
0.10  
UNIT  
ns  
f0 = 143 MHz;  
ENEQ = 1;  
F = 0 to 100 MHz  
Vi(RF)  
input voltage range (RFP-RFN)  
differential  
0
1
V
common mode  
2.5  
V
Ri(RF)  
RF input impedance  
100  
1
kΩ  
V
Vo(RFREF)  
Vo(dif)(RF)  
RF output voltage reference  
2.5  
+1  
+2  
40  
RF differential output voltage  
range (RFP-RFN)  
GRF = 0 dB; HA = 0 1  
V
GRF = 0 dB; HA = 1 2  
V
Ro(RF)  
RFP and RFN output impedance  
PP amplifier (PP-AMP)  
Ii(PPN)(p-p)  
AC input current range  
200  
µA  
(peak-to-peak value)  
Vi(PPN)  
input voltage level  
2.4  
0
V
V
Vo(PPNO)  
Ro(PPNO)  
output voltage DC level  
output impedance  
Ii(PPN) = 0  
130  
Running OPC (ALFA)  
Io(ALFA) ALFA output current range  
Ii(LASP)  
Vo(ALFA) = 0 V  
0
5
0
100  
100  
15  
µA  
µA  
µA  
V
LASP control current input range r/w = 0  
r/w = 1  
Vi(LASP)  
Ri(LASP)  
LASP input voltage  
Ii(LASP) = 100 µA  
1.7  
1
LASP input impedance  
kΩ  
Write power calibration (BETA)  
Vo(ref)(beta) beta output (A1, A2 and CALF)  
0
1.25  
3
V
V
reference voltage  
Vo(beta)  
A1, A2 and CALF output voltage  
range  
Ro(beta)  
A1, A2 and CALF output  
impedance  
250  
BCA amplifier (BCA)  
VOH(BCA) HIGH-level output voltage on  
BCAEN = 1;  
VDD = 5 V;  
Iload = 0.5 mA  
3.0  
0
3.3  
0.6  
V
V
pin BCA  
VOL(BCA)  
LOW-level output voltage on  
pin BCA  
BCAEN = 1;  
Iload = 0.5 mA  
Monitor outputs (MON)  
Vo(MON) monitor output voltage range  
Ro(MON)  
IMON < 1.3 mA  
1.3  
+1.3  
V
output resistance on pins MON1  
and MON2  
120  
2002 Jun 06  
5
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Serial bus interface  
Vi(logic)  
logic input voltage compatibility  
2.7  
3.3  
5.5  
V
V
VOH(SROUT)  
HIGH-level output voltage on  
pin SROUT  
TEST = 1;  
ISROUT < 1 mA  
0.8VDD  
VDD  
VOL(SROUT)  
LOW-level output voltage on  
pin SROUT  
TEST = 1;  
ISROUT < 1 mA  
0
0.2VDD  
V
2002 Jun 06  
6
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
5
BLOCK DIAGRAM  
V
V
V
V
V
DD1  
63  
DD2  
39  
GND1  
61  
SSD  
54  
GNDD  
55  
SS1  
59  
SS2  
43  
GND2  
40  
46  
33  
PP-AMP  
PPNO  
RFP  
PPN  
41  
42  
44  
25  
26  
28  
29  
RFP1  
RFN1  
RFP2  
RFN2  
RFN  
RF-AMP  
RFREF  
36  
BCA  
BCA  
10  
CALF  
A1, A2  
12, 11  
BETA  
TZA1031  
58  
CCALF  
CA1, CA2  
56, 57  
16  
14  
8
LASP  
ALFA  
ALFA  
XDN  
23 to 18  
62  
Q1 to Q6  
CMPP  
TS1  
7 to 4  
3, 2  
D1 to D4  
S1, S2  
NORM  
32  
31  
64  
1
TS2  
MON1  
MON2  
MON  
control  
51  
50  
49  
48  
47  
switches  
EFMDP  
EFMDN  
EFMCP  
EFMCN  
TIMOUT  
current  
controls  
13  
53  
SROUT  
TEST  
REGISTERS  
AND  
LOGIC  
EFMTIM  
to  
ALFA  
circuit  
37  
38  
35  
SIDA  
SICL  
SILD  
DACs  
SERIAL  
BUS  
INTERFACE  
BANDGAP  
REFERENCE  
60  
RREF  
MGW477  
Fig.1 Block diagram.  
7
2002 Jun 06  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
6
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
MON2  
1
monitor output voltage 2  
servo output current  
S2  
2
S1  
3
servo output current  
D4  
4
servo output current  
D3  
5
servo output current  
D2  
6
servo output current  
D1  
7
servo output current  
XDN  
n.c.  
8
x-position output voltage  
not connected; note 1  
RF average level output signal  
RF bottom level output signal  
RF top level output signal  
9
CALF  
A2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
A1  
SROUT  
ALFA  
n.c.  
shift register output for register test mode  
alfa output current  
not connected; note 1  
laser power setpoint signal  
not connected; note 1  
servo input current  
LASP  
n.c.  
Q6  
Q5  
servo input current  
Q4  
servo input current  
Q3  
servo input current  
Q2  
servo input current  
Q1  
servo input current  
n.c.  
not connected; note 1  
positive RF input voltage 1  
negative RF input voltage 1  
not connected; note 1  
RF input voltage 2; positive  
RF input voltage 2; negative  
not connected; note 1  
tilt sensor input current  
tilt sensor input current  
input PP current  
RFP1  
RFN1  
n.c.  
RFP2  
RFN2  
n.c.  
TS2  
TS1  
PPN  
n.c.  
not connected; note 1  
strobe line of serial bus interface  
binary BCA output voltage  
data line of serial bus interface  
clock line of serial bus interface  
positive supply voltage 2  
supply ground 2  
SILD  
BCA  
SIDA  
SICL  
VDD2  
GND2  
2002 Jun 06  
8
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
SYMBOL  
RFP  
PIN  
DESCRIPTION  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
positive RF output voltage  
negative RF output voltage  
negative supply voltage 2  
RFN  
VSS2  
RFREF  
n.c.  
reference voltage for differential RF output common mode level  
not connected; note 1  
PPNO  
TIMOUT  
EFMCN  
EFMCP  
EFMDN  
EFMDP  
n.c.  
output PP voltage  
test output signal of EFMTIM  
negative EFM clock input  
positive EFM clock input  
negative EFM data input  
positive EFM data input  
not connected; note 1  
TEST  
VSSD  
enable test mode (tie to GND for normal operation)  
negative digital supply voltage  
digital supply ground  
GNDD  
CA1  
beta circuit external capacitor  
beta circuit external capacitor  
beta circuit external capacitor  
negative supply voltage 1  
reference resistor to VSS  
CA2  
CCALF  
VSS1  
RREF  
GND1  
CMPP  
VDD1  
supply ground 1  
CMPP external capacitor  
positive supply voltage 1  
MON1  
monitor output voltage 1  
Note  
1. For good signal integrity all n.c. pins should be connected to the application board’s ground plane.  
2002 Jun 06  
9
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
MON2  
S2  
1
2
3
4
5
6
7
8
9
48 EFMCN  
TIMOUT  
47  
S1  
46 PPNO  
45 n.c.  
D4  
D3  
RFREF  
44  
43  
V
D2  
SS2  
D1  
42 RFN  
RFP  
XDN  
n.c.  
41  
40 GND2  
TZA1031HL  
V
39  
CALF 10  
A2 11  
DD2  
38 SICL  
37 SIDA  
36 BCA  
A1 12  
SROUT 13  
ALFA 14  
n.c. 15  
SILD  
35  
34 n.c.  
LASP 16  
33 PPN  
MGW478  
Fig.2 Pin configuration.  
10  
2002 Jun 06  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
7
FUNCTIONAL DESCRIPTION  
To explain the interaction between the blocks of the device, a detailed block diagram including internal signal names is  
shown in Fig.3. The separate blocks and their functions will be explained in Sections 7.1 to 7.8.  
G
BWPP  
PP  
PPN  
PP-AMP  
PPNO  
BWRF, ENNF,  
KEQ, ENEQ,  
RF1/2, HA, ZCAL  
DC , O  
RF RF  
RF  
,
G
RFP1, RFN1  
RFP2, RFN2  
RFP, RFN  
RFREF  
RF-AMP  
rf-alfa  
BCA BCAEN  
T
rf-norm  
rf-cal  
bca-rfp  
bca-rfn  
TIM0 to TIM6, RST,  
ENRW, ENRS, ENALF  
BCA  
I
BCA  
BS  
BCTL  
rf-beta1  
rf-beta2  
AINTON  
EFMDP  
EFMDN  
CCALF  
CA1,CA2  
ASTROBE  
RS  
BETA  
EFMTIM  
CALF, A1, A2  
EFMCP  
EFMCN  
r/w  
ALF1/2, IAT, IAN, NDYE,  
PC/DYE, AN, ENALF,  
SQRT  
TIMOUT  
I
A2  
ALFA  
LASP  
AINTON  
r/w  
ALFA  
INA, CAN, SLASP  
RS, r/w  
ASTROBE  
AINT  
CMPP  
Q1 to Q6  
TS1  
alfa-mon  
D1 to D4  
S1, S2  
XDN  
NORM  
I
I
, I , I , I ,  
N1 N2 N3 N4  
MIR TW TR  
, I , I  
,
TS2  
OF , OF  
R
W
MSEL  
MON1  
MON2  
S4/8, CA/PP, REN4/2, PREN,  
FEN4/2, RFCAL, DPD,  
Q/NE, PFEN, PXDN, PTLN,  
CLMP, VARP, MIR1/2, RTLN,  
ALF1/2  
REN, FEN, TLN, MIRN,  
TILTN, CAN, PW  
MON  
MGW479  
Fig.3 Detailed block diagram.  
11  
2002 Jun 06  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
7.1  
EFMTIM  
7.1.1  
DATA SIGNAL SYNCHRONIZATION AND READ-WRITE DETECTION  
EFMTIM derives from the incoming EFM clock and data signals a signal for switching between read and write, and  
several timing signals used by the ALFA block.  
The EFMTIM block derives the read/write signal r/w from EFMCP and EFMDP as shown in Fig.4.  
READ  
WRITE  
T
EFMCP, EFMCN  
EFMDP', EFMDN'  
15T  
r/w  
(18 + D )T  
1
WRITE  
READ  
EFMCP, EFMCN  
EFMDP', EFMDN'  
(18 + D )T  
1
r/w  
MGW480  
Fig.4 The r/w signal.  
The signals EFMDP’ and EFMDN’ are synchronous versions of the input signals EFMDP and EFMDN, clocked at the  
rising edge, current LOW-to-HIGH, of EFMCP, i.e. they are the data signals after the first D flip-flop. The read/write  
detection is either active or inactive, defined by bit ENRW. When it is inactive (ENRW = 0), r/w = 1 (forced read mode).  
When ENRW = 1 a transition from read to write is signalled by the occurrence of two edges in EFMDP and EFMDN within  
an interval of 15T or less. Then r/w becomes LOW after (18 + D1)T after the first edge in EFMDP, where D1 is a  
programmable parameter.  
2002 Jun 06  
12  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
A transition from write to read occurs when during an interval of 15T no edges are detected in EFMDP and EFMDN. Then  
r/w becomes HIGH after (18 + D1)T after the final edge in EFMDP and EFMDN. It should be noted that the state itself of  
EFMDP and EFMDN (i.e. HIGH or LOW) is irrelevant for the read/write detection, only the occurrence of transitions  
matters.  
In general both EFMCP and EFMCN as well as EFMDP and EFMDN will become stationary LOW or HIGH during read,  
although this is not guaranteed.  
T
T/2  
EFMCP  
EFMCN  
pit  
land  
pit  
land  
pit  
EFMDP'  
EFMDN'  
(10 + D )T  
2
pit  
land  
pit  
land  
LIGHT  
RS  
m T/2  
(n 2)T/2  
1
1
T
pit  
land  
pit  
land  
LIGHTA  
AINTON  
m T/2  
2
T
ASTROBE  
(n + 1)T/2  
T/2  
MGW481  
2
Fig.5 Signals RS, AINTON and ASTROBE.  
2002 Jun 06  
13  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
The actual laser power signal produced by the laser driver  
has a delay (10 + D2)T with respect to EFMDP and  
EFMDN (see Fig.5). In the device this actual power signal  
is represented by LIGHT, which therefore is delayed  
(10 + D2)T of EFMCP and EFMCN with respect to EFMDP  
and EFMDN. The signal RS, used for sampling the  
RF signal to obtain the disc’s ‘reflection’, is synchronously  
derived from LIGHT. It is either active or inactive, defined  
by bit ENRS and the state of r/w. When it is inactive  
(ENRS = 0 or r/w = 1) RS is always HIGH. When it is  
active (ENRS = 1 and r/w = 0) RS goes HIGH after m1  
periods T/2 after the trailing edge of LIGHT (i.e. in the  
‘land’ region) and LOW after (n1 2) periods T/2 after the  
rising edge of LIGHT with m1 = 0 to 7 and n1 = 0 to 7. The  
duty cycle of EFMCP and EFMCN can be assumed to be  
50%.  
7.1.3  
EFMTIM TEST OUTPUT  
An output test signal TIMOUT is defined for the EFMTIM  
block. It can be used to check the timing relation between  
the ingoing EFM signal and one of the output signals  
AINTON, ASTROBE, RS and r/w. The selection of the  
output signal is done by the 3-bit register TIM6, where the  
MSB is used to enable or disable TIMOUT.  
Remark: the voltage swing on TIMOUT is from 0 V to VDD  
so direct interfacing to digital circuitry on a 3.3 V supply is  
not generally possible.  
,
7.1.4  
EFMTIM RESET  
The EFMTIM block has a local reset input which is  
software-controlled by bit RST of the serial input register.  
By sending the sequence 0 1 0 to bit RST the  
asynchronous reset circuit in EFMTIM is loaded and the  
actual reset is established after a number of edges (<16)  
on EFMCP and EFMCN.  
The signals AINTON and ASTROBE are derived from  
LIGHTA (‘advanced light’) which is delayed (9 + D2) EFM  
clocks T with respect to EFMCP and EFMCN. AINTON  
and ASTROBE are either (together) active or inactive,  
defined by bit ENALF. When they are inactive  
(ENALF = 0) both AINTON and ASTROBE are LOW.  
When they are active (ENALF = 1) AINTON goes HIGH  
after m2 periods T/2 after the rising edge of LIGHTA (i.e. in  
the ‘pit’ region) and ASTROBE goes HIGH after (n2 + 1)  
periods T/2 after the rising edge of LIGHTA. The pulse  
duration of ASTROBE is always T, and a period T/2 later  
AINTON also goes LOW. This implies that the pulse  
duration of AINTON equals (n2 m2 + 4) periods T/2.  
7.1.2  
EFMTIM INPUT INTERFACE  
To minimize crosstalk by the high frequency signals  
EFM clock and EFM data, the inputs for these signals are  
made balanced current mode inputs. The inputs  
EFMDP, EFMDN, EFMCP and EFMCN show a resistance  
of about 100 to GND. A logic HIGH-level is received if  
IEFMDP > IEFMDN or IEFMCP > IEFMCN. If IEFMDP < IEFMDN or  
IEFMCP < IEFMCN a logic LOW-level is received. The  
interface is intended to be driven from standard  
complementary CMOS outputs with a resistor in series.  
For instance EFMDP is connected to EFMdata and  
EFMDN is connected to EFMdata, both with a series  
resistor. To achieve sufficient speed, the current  
corresponding to a HIGH-level should be large enough,  
and therefore the resistors should not be too large. For  
applications up to 16 × CD or 4 × DVD write a high level  
current of 330 µA is sufficient, corresponding to a 10 kΩ  
series resistance for 3.3 V supply.  
2002 Jun 06  
14  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
7.1.5  
EFMTIM CONTROL  
Table 1 EFMTIM control parameters  
PARAMETER  
NAME  
PURPOSE  
r/w signal delay parameter for EFMTIM  
TIM0[4:0]  
TIM1[5:0]  
TIM2[2:0]  
TIM3[2:0]  
TIM4[2:0]  
TIM5[2:0]  
TIM6[2:0]  
D1  
D2  
LIGHT signal delay parameter for EFMTIM  
m1  
n1  
RS signal rising edge delay parameter for EFMTIM  
RS signal falling edge delay parameter for EFMTIM  
AINTON signal rising edge delay parameter for EFMTIM  
ASTROBE signal rising edge delay parameter for EFMTIM  
EFMTIM test mode control parameter; see Table 2  
m2  
n2  
TIM6  
Table 2 TIMOUT selection  
TIM6[2]  
TIM6[1]  
TIM6[0]  
TIMOUT  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
AINTON  
ASTROBE  
RS  
r/w  
0
Table 3 EFMTIM control bits  
BIT NAME  
LOGIC 1  
LOGIC 0  
ENRS  
ENRW  
ENALF  
enable sampling of RF signal  
disable sampling of RF signal; RS = 0  
enable automatic read/write detection  
enable ALFA measurement  
disable automatic read/write detection; r/w = 0  
disable ALFA measurement; AINTON = 0;  
ASTROBE = 0  
7.2  
NORM  
The NORM block produces various normalized signals for servo purposes and for the ALFA block. The signals TILTN,  
FEN, REN, TLN, MIRN and PW are multiplexed with detector signals Q1 to Q6. The top level of the NORM block with  
it’s sub blocks is shown in Fig.6. The individual blocks of NORM will be explained in Sections 7.2.1 to 7.2.9.  
2002 Jun 06  
15  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
V(Q1) to V(Q6)  
mir  
to MON  
TILTN  
Q1 to Q6  
AUX  
TS1  
TS2  
satsum  
TILT  
NORM  
Q
S
FEN4/2  
PFEN  
I
OF , OF  
R W  
r/w  
DOC1  
V(Q1) to V(Q4)  
FEN  
to MON  
FOC  
(1) TILTN  
(2) TLN  
(3) REN  
(4) FEN  
(5) MIRN  
(6) PW  
I
I
DOC2  
DOC3  
REN4/2, PREN, DPD, PXDN,  
RFCAL, S4/8, CA/PP  
rf-cal  
Q/NE  
V(Q1) to V(Q6)  
Q5, Q6  
XDN  
D1 to D4,  
S1, S2  
RAD  
REN  
(1) Q1  
(2) Q3  
(3) Q2  
(4) Q4  
(5) Q5  
(6) Q6  
to MON  
CMPP  
RTLN, PTLN,  
CLMP, CA/PP  
I
DOC4  
V(Q1) to V(Q6)  
satsum  
TL  
TLN  
Q
S
to MON  
VARP, ALF1/2,  
MIR1/2  
I
I
I
, I  
to I  
,
RS  
r/w  
MIR  
TW TR  
N1  
r/w  
N4  
to MON  
MIRN, CAN  
rf-norm  
I
to I  
DOC4  
DOC  
DOC1  
LASP  
mir  
to MON  
CANORM  
PW  
satsum  
to MON  
to ALFA  
SLASP  
INA  
MGW482  
Fig.6 Top level of the NORM block.  
16  
2002 Jun 06  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
7.2.1  
AUX BLOCK  
7.2.2  
DOC BLOCK: NORMALIZATION AND DROP-OUT  
CONCEALMENT  
The blocks FOC, RAD and TL contain normalizer circuits.  
A normalizer circuit N with input currents I1 and I2  
produces the following dropout-concealed output  
current IO:  
handbook, halfpage  
V(Q1) to V(Q6)  
mir  
I1 I2  
Q1 to Q6  
AUX  
IO  
=
× I  
(1)  
--------------  
DOC  
satsum  
I1 + I2  
Q
S
where IDOC is a dropout-concealed scaling current that is  
chosen according to the modulation depth of the signal to  
be normalized, produced by the DOC circuit. The NORM  
block has one dropout-concealment circuit that delivers  
various currents, IDOC1 through IDOC4, for the normalizer  
circuits. The dropout-concealed scale currents IDOCi  
(i = 1 to 4) are defined as IDOCi = GDOC × INi, where INi are  
programmable reference currents and GDOC is defined by:  
MGW483  
Fig.7 AUX block.  
The input currents Qi (i = 1 to 6) are converted into  
voltages V(Qi) = VTln(Qi/IS) for use in the normalizer  
circuits ((see Fig.7). Furthermore, AUX produces the  
signals Qs, satsum and mir, defined as:  
GDOC = 1 if CAN > IT  
GDOC = CAN/IT if CAN IT  
where IT is the threshold level for dropout-concealment  
with which the normalized sum current CAN is compared.  
If CAN drops below IT the scale factor GDOC will decrease  
linearly with CAN in order to prevent ‘dividing-by-zero’.  
There is a threshold ITW for write and a threshold ITR for  
read: IT = ITW if r/w = 0, IT = ITR if r/w = 1. The currents INi,  
ITW and ITR are programmable via the serial bus.  
QS = Q1 + Q2 + Q3 + Q4  
Satsum = Q5 + Q6  
The mir signal is defined in Table 4.  
Table 4 The mir signal definition  
BIT S4/8  
BIT CA/PP  
mir  
0
0
1
1
0
1
0
1
Qs  
Qs  
Q5 + Q6 + QS  
Q5 + Q6 + QS  
2002 Jun 06  
17  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
7.2.3  
FOC BLOCK: FOCUS SERVO SIGNAL NORMALIZATION  
A schematic representation of the FOC circuit is shown in Fig.8.  
I
I
DOC1  
N
FEN4/2  
PFEN  
V(Q1)  
V(Q3)  
V
V
I
I
FEN  
+/−  
0.5  
r/w  
DOC1  
N
OF  
W
V(Q4)  
V(Q2)  
OF  
R
MGW484  
Fig.8 FOC block.  
The normalized focus error signal FEN is based on either 2 or 4 input currents, defined by FEN4/2. If FEN4/2 = 1, then  
4 input currents are used. The normalization blocks (N) perform the function described in equation (1) in Section 7.2.2.  
An offset can be applied which depends on the state of r/w (to compensate for chromatic aberration in the optics). If  
r/w = 1 (read mode) OFR is used. Finally the polarity of FEN can be reversed by setting PFEN = 1. FEN is available on  
output D2 if Q/NE = 0. FEN can also be observed via the MON block.  
7.2.4  
RAD BLOCK: RADIAL SERVO SIGNAL NORMALIZATION  
I
S4/8, CA/PP  
DOC2  
N
REN4/2  
DPD  
PREN  
V(Q1) to V(Q6)  
V
I
LPF  
+/−  
REN  
CMPP  
Q5  
Q6  
+
I
S4/8, CA/PP  
DOC3  
N
V
CAL  
PXDN  
RFCAL  
R
XDN  
+
+
V(Q1) to V(Q6)  
V
I
I/V  
+/−  
XDN  
rf-cal  
MGW485  
Fig.9 RAD block.  
18  
2002 Jun 06  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
The normalized radial error signal REN is based on either  
2 or 4 input currents, defined by REN4/2 and DPD (see  
Fig.9). If DPD = 0 and REN4/2 = 0 the associated tracking  
method is either 1-spot PP (4 segments), 3-spot CA or  
3-spot PP. If DPD = 0 and REN4/2 = 1 the associated  
tracking method is 1-spot PP (8 segments). In that case  
the offset correction signal obtained from the lower branch  
is low-pass filtered before it is added to the main  
Additionally, the signal XDN (normalized spot position) is  
generated. XDN is either based on 3-spot PP, 1-spot PP  
(4 segments) or on 1-spot PP (8 segments). For  
RFCAL = 1 the XDN output is used to output an amplified,  
low-pass filtered version of the signal rf (see Section 7.3).  
This can be used to eliminate the offset in the RF path. It  
should be noted that the output of rf-call is unipolar, so  
only positive outputs are possible.  
normalized PP. An external capacitor named CCMPP  
,
connected to pin CMPP, defines the 3 dB frequency of the  
filter. If DPD = 1 the tracking method is DPD and REN is  
obtained from the difference of Q5 and Q6. Finally the  
polarity of REN is reversed if PREN is set to logic 1.  
7.2.5  
TL BLOCK: TRACK LOSS SERVO SIGNAL  
CA/PP  
I
DOC4  
Q
S
X
RTLN  
satsum  
CLMP  
PTLN  
Q
1/3  
S
CLAMP  
TLN  
+/−  
V(Q1) to V(Q6)  
V
I
N
MGW486  
Fig.10 TL block.  
If RTLN = 1 the normalized trackless signal TLN is only valid for the tracking methods 3-spot CA and 3-spot PP. For  
RTLN = 0 TLN is the low-pass filtered central sum signal QS, scaled with a factor 1/3.  
The output of TLN (both positive and negative) can be clamped to a maximum value ICL in order to deal with media that  
have a high and low modulation depth of TLN on one disc (e.g. written and blank regions). The clamp can be  
enabled/disabled with bit CLMP. The polarity of TLN is reversed by setting PTLN = 1. TLN is sent as D4 to the output if  
Q/NE = 0, a copy is sent to the MON block.  
2002 Jun 06  
19  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
7.2.6  
CANORM BLOCK: CA SIGNAL NORMALIZATION CIRCUIT  
RS  
MIR1/2  
srf  
rf-norm  
LPF2  
ALF1/2  
I
0
mir  
I
MIR  
INA  
CAN  
satsum  
MIRN  
r/w  
MIR1/2  
4.0  
VARP  
RS  
I
01  
I
PR  
18.0  
LPF2  
LASP  
SLASP  
PW  
1/7  
MGW487  
Fig.11 CANORM block.  
When RS is active, rf = rf-norm is sampled and filtered  
and then normalized on the laser power (see Fig.11).  
The mirror signal mir must be normalized on the laser  
power. When Q1 to Q6 are sampled and filtered (in the  
TZA1030), mir is sampled and filtered too and hence LASP  
must be sampled and filtered also, in order to obtain a  
quotient MIRN which is a normalized reflection signal free  
of EFM. In some situations the laser power does not vary  
during sampling, while LASP does. In those situations a  
reference current IPR is used as a read power reference. If  
the signals Q1 to Q6 are not sampled during write in the  
TZA1030, the mirror signal MIRN must be based on rf,  
which is selected by setting MIR1/2 to 0. MIRN is sent as  
S1 to the output if Q/NE = 0, a copy is sent to the MON  
block. The output current PW is derived from the input  
current LASP and is used for power calibration purposes.  
When rf is sampled and filtered, LASP must be sampled  
and filtered too, in order to obtain a quotient which is a  
normalized reflection signal free of EFM. The signals srf  
and SLASP are the sampled and filtered versions of rf and  
LASP, respectively, which are used in the ALFA block. For  
dye media the laser power does not vary during sampling,  
while LASP does. In those situations a reference current  
IPR is used as a read power reference. A copy of CAN is  
sent to the MON block. The signal AIN is used for reflection  
measurement in the ALFA block. It is either based on  
central spot detection (ALF1/2 = 0) or on satellite spot  
detection (ALF1/2 = 1). In the former case sampling during  
the erase period of rf-norm takes place using RS, in the  
latter case sampling is done in the TZA1030.  
2002 Jun 06  
20  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
7.2.7  
TILT BLOCK: TILT SENSOR NORMALIZATION CIRCUIT  
7.2.8  
OUTPUT CURRENT POLARITIES  
The currents TILTN, FEN, REN and TLN are bipolar  
currents and are sent to D1 to D4 if Q/NE = 0. The  
currents MIRN and PW are unipolar and are sent to  
S1 and S2 if Q/NE = 0. They are negative according to the  
definition used in this document, i.e. sourced by the  
device. If Q/NE = 1 the input currents Q1 to Q6 are  
transferred directly to D1 to D4, S1 and S2. They are, in  
general, bipolar currents.  
handbook, halfpage  
TS1  
TS2  
N
TILTN  
MGW488  
Fig.12 TILT block.  
In normal mode (ADTST = 0) the normalization block  
produces a normalized tilt error signal TILTN according to:  
TS1 TS2  
TS1 + TS2  
TILTN =  
× A DOC × IS0  
(2)  
-----------------------------  
where ADOC is a drop-out concealed reference current  
with:  
ADOC = 1 if (TS1 + TS2) > ITT  
ADOC = (TS1 + TS2)/ITT if (TS1+TS2) < ITT  
The signal TILTN is sent as D1 to the output if Q/NE = 0.  
A copy is sent to the MON block (see Fig.12).  
2002 Jun 06  
21  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
7.2.9  
CONTROL SIGNAL OVERVIEW  
Table 5 Single bit controls  
BIT NAME  
LOGIC 1  
LOGIC 0  
S4/8  
4 segment central detector mode  
central aperture mode  
8 segment central detector mode  
push-pull mode  
CA/PP  
FEN4/2  
PFEN  
REN4/2  
PREN  
PXDN  
RFCAL  
DPD  
normalized focus error signal from 4 inputs  
inverted focus error polarity  
normalized focus error signal from 2 inputs  
normal focus error polarity  
normalized radial error signal from 4 inputs  
inverted radial error polarity  
normalized radial error signal from 2 inputs  
normal radial error polarity  
inverted spot position polarity  
normal spot position polarity  
normal mode of XDN output  
connect rf-call signal to XDN output  
DPD tracking method on  
DPD tracking method off  
PTLN  
RTLN  
CLMP  
Q/NE  
inverted track loss signal polarity  
TLN signal for 3 spot CA and PP methods  
activate TLN signal clamp  
normal track loss signal polarity  
TLN signal derived from central sum signal  
disable TLN signal clamp  
detector signals on servo outputs  
use LASP input signal as read power reference  
MIRN signal based on Q1 to Q6 signals  
error signals on servo outputs  
use internal read power reference Ipr  
MIRN signal based on rf signal  
VARP  
MIR1/2  
Table 6 Analog control parameters  
PARAMETER  
NAME  
IMIR  
PURPOSE  
MIN.  
1.5  
LSB  
1.5  
MAX.  
24  
UNIT  
µA  
IMIR[3:0]  
OFR[3:0]  
OFW[3:0]  
IN1[3:0]  
IN2[3:0]  
IN3[3:0]  
IN4[3:0]  
ITW[3:0]  
current level setting for MIRN signal  
focus error offset for read mode  
focus error offset for write mode  
OFR  
OFW  
IN1  
4  
4  
+0.5  
+0.5  
2
+3.5  
+3.5  
34  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
normalizer reference current for FEN signal 4  
normalizer reference current for REN signal 10  
normalizer reference current for XDN signal 16  
normalizer reference current for TLN signal 20  
IN2  
10  
160  
256  
470  
6.4  
IN3  
16  
IN4  
30  
ITW  
drop-out concealment threshold value for  
write mode  
0.4  
0.4  
ITR[3:0]  
ITR  
drop-out concealment threshold value for  
read mode  
0.4  
0.4  
6.4  
µA  
2002 Jun 06  
22  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
7.3  
RF-AMP  
7.3.1  
DATA PATH AMPLIFIER AND FILTERING  
RFP2  
ENEQ  
DC  
RF  
KEQ BWRF  
ENNF BWRF  
G
RF  
HA  
RFP1  
+
a
RFP  
RFN  
+
rf  
rf  
VGA  
NF  
RF1/2  
EQ  
b
DC-CONTROL  
RFN2  
RFN1  
RFREF  
bca-rfp  
bca-rfn  
O
RF  
rf-beta1  
R
rf  
rf-beta2  
rf-norm  
OFFSET  
CONTROL  
V/I  
rf-alfa  
ZCAL  
R
cal  
V
ref  
I/V  
rf-cal  
0
MGW489  
Fig.13 RF-AMP circuit.  
The source signal for the RF-AMP is either the differential  
voltage pair (RFP1 and RFN1) or (RFP2 and RFN2). The  
selection is done via the serial bus with bit RF1/2 (see  
Fig.13). A DC-control function is included to allow the  
output signal to be DC-coupled to a channel decoder. The  
relation between input and output of the DC-control block  
is given by rfb = rfa DCRF. The RF-AMP has a Variable  
Gain Amplifier (VGA) that is controlled via the serial bus.  
The output of the VGA is sent to a filter section that  
consists of an Equalizer (EQ) and a Noise Filter (NF),  
which are controlled by KEQ, ENEQ, BWRF and ENNF.  
The equalizer has a transfer function H1(s) which is  
modelled after a target transfer function He(s):  
The corner frequency ω0(RF) = 2π × f0(RF) is programmable  
via control parameter BWRF. The equalizer is switched on  
with bit ENEQ.  
The noise filter has a transfer function H2(s) which is  
modelled after a 3rd-order Butterworth low-pass filter with  
target transfer function Hn(s):  
1
1
H n (s ) =  
×
(4)  
-------------------------------------------------- -------------------------  
s2  
s
s
1 +  
---------------  
1 +  
+
----------------- ---------------  
ω 0(RF)  
2
ω 0(RF)  
ω0(RF)  
The corner frequency ω0(RF) is equal to that of the  
equalizer filter.  
s2  
Finally the low-ohmic differential output voltage is  
1 k ×  
------------------  
2
produced by a driver stage, where input voltage RFREF  
defines the common mode voltage of RFP and RFN.  
Bit HA selects between a low output level (HA = 0) and a  
high output level (HA = 1).  
ω0(RF)  
1
He(s) =  
×
(3)  
------------------------------------------------------------- ----------------------------------  
s 2  
s
s
1 + τ ×  
---------------  
1 +  
+ α ×  
---------------  
------------------  
2
ω 0(RF)  
ω 0(RF)  
ω 0(RF)  
This represents a 3rd-degree equi-ripple phase filter with a  
good delay response. The boost factor k is programmable  
via the serial interface with control bit KEQ.  
2002 Jun 06  
23  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
The RF-AMP produces four derivative rf-signals for use in  
other circuits. They are sent as rf-beta1, rf-beta2, rf-norm  
and rf-alfa to the BETA, NORM and ALFA blocks. The  
outgoing signals are offset-compensated rf-currents  
handbook, halfpage  
rf-cal  
(V)  
defined by:  
rfa + ORF  
rf =  
-----------------------  
Rrf  
V
ref  
The offset voltage ORF is set via the serial bus to obtain  
rf = 0 if the laser is off. This offset is calibrated by  
measuring voltage rf-cal via the XDN output. The  
rf calibration signal is biased at a reference voltage Vref,  
which can be measured separately by setting ZCAL = 1.  
During offset calibration it must be kept in mind that the  
rf-cal output can only be positive. Negative offsets can be  
present in the system but will not be visible on the rf-cal  
output, which will not go below Vref. The behaviour of rf-cal  
is illustrated in Fig.14.  
rf  
(V)  
a
MGW490  
Fig.14 Output of rf-cal.  
The balanced voltages bca-rfp and bca-rfn are derived as  
well as input for the BCA circuit.  
7.4  
PP-AMP  
7.4.1  
PUSH-PULL CHANNEL AMPLIFIER AND FILTERING  
BWPP  
LPF  
G
PP  
PPN  
I/V  
PPNO  
MGW491  
Fig.15 PP-AMP circuit.  
The input current PPN is converted into a voltage and then the gain is set by GPP, which is controlled via the serial bus  
(see Fig.15). The bandwidth of the output signal is determined by a 1st-order Low-Pass Filter (LPF) which is controlled  
by parameter BWPP.  
2002 Jun 06  
24  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
7.5  
ALFA  
7.5.1  
ALFA MEASUREMENT CIRCUIT FOR RUNNING OPC  
ENALF  
A
ALF1/2  
AINTON  
N
ASTROBE  
S&H  
+
PEAK  
DETECTOR  
rf-alfa  
C
A
NDYE  
I
I
I
LASP  
AN  
AT  
A2  
ALF1/2  
CAN  
G
+
d
CAN  
NDYE  
I
ref1  
DOC  
alfa-dye  
I
ref2  
r/w  
r/w  
SQRT  
INA  
PC/DYE  
I
alfa-mon  
LASP  
AN  
1/7  
ALF1/2  
0
0
ALFA  
alfa-pc  
4.0  
9.0  
SLASP  
MGW492  
I
ref2  
Fig.16 ALFA circuit.  
The task of the ALFA block is to measure the parameter ALFA for use as an error signal in the running-OPC control loop  
of a dye or phase change writer. The two media types require different alfa measurement methods. For dye media the  
decrease in pulse area of the returning signal during a write pulse is taken (‘absorption measurement’), for phase change  
media the laser power incident on the recording layer is used, which is also derived from the returning signal (‘reflection  
measurement’). For both media types two methods for alfa measurement are implemented, which are defined in  
Sections 7.5.2 and 7.5.3. Selection of the 4 possible ALFA methods is done by bits PC/DYE (phase change or dye  
media) and ALF1/2 (first or second method), see Fig.16.  
2002 Jun 06  
25  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
7.5.2  
DYE MEDIA  
For dye media the first method (ALF1/2 = 1) uses a circuit where the absorption area is measured by integrating the  
difference between the peak level of the returning signal rf and rf itself during a period determined by the HIGH level of  
AINTON. A part of that area is used for ALFA by sampling it at the trailing edge of ASTROBE, which occurs before the  
trailing edge of AINTON. This results in an effective integration period T. The resulting signal is optionally normalized on  
the disc reflection signal CAN. Method 1 produces an energy quantity alfa-dye, expressed in [J]/sample. The transfer  
functions defining alfa-dye for the first method are shown below. The parameter NDYE controls the normalization of the  
signal.  
For NDYE = 0:  
IAN  
1
alfa-dye = G ×  
×
(rfPEAK rf) × dt ×  
(5)  
(6)  
------  
CA  
-------  
IAT  
d
Tα  
For NDYE = 1:  
IAR  
1
alfa-dye = G ×  
×
(rfPEAK rf) × dt ×  
------  
------------  
CAN  
d
CA  
Tα  
I
AT and IAN are parameters set via a 3-wire interface register.  
IAR is a drop-out concealed version of IAN  
.
IAR = IAN if CAN > IAT; IAR = IAN × CAN/IAT if CAN IAT  
.
It should be noted that if NDYE = 0 the drop-out concealment acts as a programmable gain. The integrator capacitor  
CA = ANC0, with AN = 2AN and C0 a fixed reference value of 50 pF, can be programmed to match the integration time Tα  
associated with the applied writing speed.  
The second method (ALF1/2 = 0) for dye media measures the absorption area by directly integrating and sampling the  
returning write pulse, then normalizing it on the actual laser peak write power LASP, and after an optional normalization  
on the disc reflection signal CAN, subtracting the result from a reference current IA2. Method 2 produces a dimension  
less relative alfa-dye, expressed as a ratio of the non-writing pulse area. The corresponding relations for alfa-dye are  
shown in equations (7) and (8).  
For NDYE = 0:  
Iref1  
I AN  
1
alfa-dye = IA2 G ×  
×
rfdt ×  
×
(7)  
(8)  
------  
CA  
-------------- -------  
d
LASP IAT  
Tα  
For NDYE = 1:  
Iref1  
I ref2  
I AR  
1
alfa-dye = IA2 G ×  
×
rfdt ×  
×
×
------  
-------------- ------------  
---------  
Iref2  
d
CA  
LASP CAN  
Tα  
Here IA2 serves as a reference current that represents the peak level of rf normalized on the write power LASP and the  
reflection signal CAN. Because IA2 is not accurately known in advance, it must be calibrated (outside the device) to yield  
alfa-dye = 0 if pit formation is absent.  
7.5.3  
PHASE CHANGE MEDIA  
For phase change media the produced alfa is either proportional to ‘P × R’ or to ‘PR’, where P is the optical power and  
R is the reflection. These quantities are measures of the laser power incident on the recording layer. There are two  
methods defined. The first method (ALF1/2 = 1) uses the satellite spots to measure the disc reflection. The reflection  
signal is the satellite-sum signal satsum, normalized on the sampled power signal SLASP. If SQRT = 1 a square-root  
operation is applied and the result is multiplied by LASP to give alfa-pc. The relations for alfa-pc are shown in  
equations (9) and (10).  
2002 Jun 06  
26  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
For SQRT = 0:  
IAN  
satsum  
--------- ----------------------------  
Iref2 9 × SLASP  
alfa-pc =  
×
× LASP  
(9)  
For SQRT = 1:  
IAN  
satsum  
---------------------------- × LASP  
9 × SLASP  
alfa-pc =  
×
(10)  
---------  
Iref2  
The second method for phase change media (ALF1/2 = 0) uses the signal from the central spot rather than from  
satellite spots to measure the disc reflection. The reflection signal is the sampled rf-signal srf, normalized on the sampled  
power signal SLASP.  
For SQRT = 0:  
IAN  
srf  
--------- ----------------------------  
Iref2 4 × SLASP  
alfa-pc =  
alfa-pc =  
×
× LASP  
(11)  
(12)  
For SQRT = 1:  
IAN  
srf  
---------------------------- × LASP  
4 × SLASP  
×
---------  
Iref2  
7.5.4  
ALFA CIRCUIT GENERAL  
The ALFA circuit is enabled by setting bit ENALF = 1. For ENALF = 0 the ALFA output current remains zero. A copy of  
the ALFA output current is sent to the MON block. The polarity of the ALFA output current is negative, i.e. the current is  
sourced by the device.  
7.6  
BETA  
7.6.1  
BETA MEASUREMENT CIRCUIT FOR WRITE POWER CALIBRATION  
I
BS  
BCTL  
+
PEAK  
DETECTOR  
V
V
V
beta  
beta  
beta  
A1  
BCTL  
LPF  
rf-beta1  
rf-beta2  
CA1  
CALF  
A2  
BCTL  
CCALF  
+
PEAK  
DETECTOR  
MGW493  
CA2  
Fig.17 BETA circuit.  
2002 Jun 06  
27  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
The BETA block measures of the input signal rf the average level CALF and the top and bottom peak levels A1 and A2.  
Using rf-beta1 = rf-beta2 = rf, the signal relations for the BETA block are given in equations (13), (14) and (15).  
LPF(rf)  
IBS  
CALF =  
× V  
(13)  
(14)  
(15)  
------------------  
beta  
(rf LPF(rf))  
A1 =  
A2 =  
peak × V  
------------------------------------------  
IBS  
beta  
beta  
(LPF(rf) rf)  
peak × V  
------------------------------------------  
IBS  
The DC gain from (RFPRFN) to A1, A2 and CALF is given by:  
Vbeta  
Gbeta  
=
and can be controlled via the parameter IBS. The typical value of Vbeta is 1.25 V.  
--------------------  
I
BS × Rrf  
7.7  
BCA  
7.7.1  
BURST CUTTING AREA SIGNAL PROCESSING CIRCUIT  
BCAEN  
comp  
BCA  
T
bca-rfp  
bca-rfn  
BCA  
LPF  
D/S  
MGW494  
Fig.18 BCA circuit.  
The BCA block filters the incoming signal rf-bca after which a comparator compares it with a programmable threshold  
level BCATH. The low-pass filter is modelled after a target filter Ht(s) which is given in equation (16).  
1
1
Ht(s) =  
×
(16)  
---------------------------------------------------------------------- ----------------------------------------------------------------------  
s2  
s
s 2  
s
1 +  
+
1 +  
+
--------------------- --------------------------------  
--------------------- --------------------------------  
2
2
Q 1 × ω 0(BCA)  
Q 2 × ω 0(BCA)  
ω0(BCA)  
ω 0(BCA)  
Where ω0(BCA) = 2 × π × f0(BCA) is a fixed frequency of 300 kHz. Control bit BCAEN allows the BCA circuit to be enabled  
(BCAEN = 1) or disabled (BCAEN = 0). If BCAEN = 0 the output signal remains LOW, irrespective of the input signals.  
2002 Jun 06  
28  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
7.8  
MON  
7.8.1  
MONITOR CIRCUIT FOR VARIOUS INTERNAL SERVO SIGNALS  
The monitor circuit converts two input currents into bipolar voltages. The two input currents are selected via the serial  
bus from a number of possible currents. The currents REN, TLN, FEN, MIRN, CAN, TILTN and PW come from the  
NORM block and the current ALFA from the ALFA block (see Fig.3). The signals REN, TLN, FEN and TILTN are bipolar;  
MIRN, ALFA, CAN and PW are unipolar. The output voltages for the unipolar signals are positive.  
The 6-bit parameter MSEL defines the selection of the two input currents that will be I/V converted and will appear as  
MON1 and MON2 at the output.  
Table 7 MON block selection bits  
MONITOR 1  
MONITOR 2  
MSEL[2]  
MSEL[1]  
MSEL[0]  
MON[1]  
REN  
MSEL[5]  
MSEL[4]  
MSEL[3]  
MON[2]  
REN  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
TLN  
TLN  
FEN  
FEN  
MIRN  
ALFA  
PW  
MIRN  
ALFA  
PW  
CAN  
CAN  
TILTN  
TILTN  
The selection tables for MON1 and MON2 are identical, although a particular signal is only defined to appear at either  
MON1or MON2, that is, if e.g. MSEL[5:0] = 000000, the outputs MON1 and MON2 are not defined (although the setting  
for MSEL is not illegal). In the application different signals must be selected for MON1 and MON2.  
For Q/NE = 1 the monitor outputs are distorted due to excess currents in the denominators of the various parameters.  
2002 Jun 06  
29  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
7.9  
Serial bus: interface to system controller  
7.9.1  
TIMING RELATIONS FOR SERIAL BUS CONTROL  
SICL  
t
t
clk(L)  
clk(H)  
t
su(strt)  
t
T
clk  
h(D)  
t
su(D)  
SIDA  
SILD  
D0  
A3  
t
su(load)  
MGW495  
Fig.19 Single-word transmission.  
SICL  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 A0 A1 A2 A3  
D0 D1 D2 D3 D4  
A1 A2 A3  
SIDA  
SILD  
t
load(H)  
MGW496  
Fig.20 Example of a two-word transmission.  
2002 Jun 06  
30  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
7.9.2  
OPERATION  
During a transmission the serial data is first stored into an  
input shift register. At the rising edge of SILD the contents  
of the input register is copied into the addressed register.  
This is also the moment the programmed information  
becomes effective.  
Programming of the control registers of the device is done  
by means of the serial bus. The circuitry is formed by a  
serial input shift register and a number of registers to store  
the data. There is no Power-on reset. Control register  
settings will be random at power-on, so to ensure proper  
operation all registers must be programmed at least once.  
The input pins have CMOS compatible threshold levels for  
both 3.3 and 5 V supplies.  
If required the bus lines can be connected in parallel with  
a 3-wire interface. The protocol needs no switching of the  
data line during SICL = HIGH. This means that other  
3-wire interface devices will not recognise any start or stop  
command. Control words addressed to the device should  
uniquely go with the SILD signal. When SILD = HIGH, the  
TZA1031 will not respond to any signal on SIDA or SICL.  
7.10 Control register of the device  
7.10.1 GENERAL CONTROL FORMAT  
The device is controlled by means of a serial bit register. To keep programming fast and efficient, the control bits are sent  
in 16-bit units. Four of these bits are meant as address. Each address contains 12 data bits.  
Table 8 General register programming format  
ADDRESS  
A2 A1  
DATA  
D6 D5  
A3  
A0  
D11 D10  
D9  
D8  
D7  
D4  
D3  
D2  
D1  
D0  
MSB  
LSB  
LSB is sent out first.  
A detailed description of the programmable parameters can be found in Tables 10, 11 and 12.  
Important: There is no Power-on reset function present. In order to prevent unpredictable states at power on, it is  
necessary to program all registers before starting normal operation.  
2002 Jun 06  
31  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
7.10.2 REGISTER DEFINITIONS  
Table 9 Register layout  
A[3:0]  
D11  
S4/8  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
DPD  
D2  
D1  
D0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
CA/PP  
IMIR[2]  
IN3[2]  
FEN4/2  
IMIR[1]  
IN3[1]  
PFEN  
IMIR[0]  
IN3[0]  
REN4/2  
OFR[3]  
IN2[3]  
PREN  
OFR[2]  
IN2[2]  
PXDN  
OFR[1]  
IN2[1]  
RFCAL  
OFR[0]  
IN2[0]  
PTLN  
RTLN  
CLMP  
IMIR[3]  
IN3[3]  
OFW[3]  
IN1[3]  
OFW[2]  
IN1[2]  
OFW[1] OFW[0]  
IN1[1] IN1[0]  
GRF[3]  
GRF[2]  
GRF[1]  
GRF[0]  
DCRF[5] DCRF[4] DCRF[3] DCRF[2] DCRF[1] DCRF[0]  
ITW[3]  
ITW[2]  
ENRS  
ITW[1]  
ENRW  
TIM1[4]  
TIM5[0]  
ITW[0]  
ITR[3]  
ITR[2]  
ITR[1]  
ITR[0]  
IN4[3]  
IN4[2]  
IN4[1]  
IN4[0]  
ENALF  
TIM6[2]  
TIM1[3]  
TIM4[2]  
TIM6[1]  
TIM1[2]  
TIM4[1]  
TIM6[0]  
TIM1[1]  
TIM4[0]  
Q/NE  
VARP  
MIR1/2  
TIM0[0]  
TIM2[0]  
RST  
TIM1[5]  
TIM5[1]  
TIM1[0]  
TIM3[2]  
TIM0[4]  
TIM3[1]  
TIM0[3]  
TIM3[0]  
TIM0[2]  
TIM2[2]  
TIM0[1]  
TIM2[1]  
TIM5[2]  
KEQ  
BWRF[6] BWRF[5] BWRF[4] BWRF[3] BWRF[2] BWRF[1] BWRF[0]  
RF1/2  
ORF[5]  
ADTST  
ORF[4]  
DACC  
ORF[3]  
ENEQ  
GPP[3]  
AN[0]  
ORF[2]  
ENNF  
GPP[2]  
ALF1/2  
IAT[0]  
ORF[1]  
ZCAL  
ORF[0]  
HA  
BWPP[2] BWPP[1] BWPP[0]  
GPP[1]  
NDYE  
IAN[1]  
GPP[0]  
PC/DYE  
IAN[0]  
IA2[5]  
BCTL[2] BCTL[1] BCTL[0]  
STBY SQRT  
IA2[4]  
IA2[3]  
IA2[2]  
IBS[4]  
IA2[1]  
IBS[3]  
IA2[0]  
IBS[2]  
AN[2]  
IBS[1]  
AN[1]  
IBS[0]  
IAT[1]  
MSEL[5] MSEL[4] MSEL[3]  
MSEL[2] MSEL[1] MSEL[0] BCAT[2] BCAT[1] BCAT[0] BCAEN  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
Table 10 Control bit descriptions  
ADDR. BIT NAME  
LOGIC 1  
LOGIC 0  
BLOCK  
0H  
S4/8  
4 segment central detector mode  
central aperture mode  
8 segment central detector mode  
push-pull mode  
NORM  
NORM  
CA/PP  
FEN4/2  
normalized focus error signal from  
4 inputs  
normalized focus error signal from  
2 inputs  
NORM  
PFEN  
inverted focus error polarity  
normal focus error polarity  
NORM  
NORM  
REN4/2  
normalized radial error signal from  
4 inputs  
normalized radial error signal from  
2 inputs  
PREN  
PXDN  
RFCAL  
DPD  
inverted radial error polarity  
inverted spot position polarity  
connect rf-cal signal to XDN output  
DPD tracking method on  
normal radial error polarity  
normal spot position polarity  
normal mode of XDN output  
DPD tracking method off  
NORM  
NORM  
NORM  
NORM  
NORM  
NORM  
PTLN  
RTLN  
inverted track loss signal polarity  
normal track loss signal polarity  
TLN signal for 3 spot CA and  
PP methods  
TLN signal derived from central sum  
signal  
CLMP  
ENALF  
ENRS  
ENRW  
Q/NE  
activate TLN signal clamp  
disable TLN signal clamp  
NORM  
ALFA  
6H  
enable ALFA measurement  
disable ALFA measurement  
enable sampling of RF signal  
enable automatic read/write detection  
detector signals on servo outputs  
disable sampling of RF signal  
disable automatic read/write detection  
error signals on servo outputs  
use internal read power reference Ipr  
EFMTIM  
EFMTIM  
NORM  
NORM  
VARP  
use LASP input signal as read power  
reference  
MIR1/2  
RST  
MIRN signal based on Q1 to Q6 signals MIRN signal based on rf-signal  
NORM  
7H  
9H  
AH  
BH  
enable EFMTIM reset mode  
K parameter of RF equalizer set to 6  
select RF input #1  
EFMTIM reset off  
EFMTIM  
RF-AMP  
RF-AMP  
KEQ  
K parameter of RF equalizer set to 4  
select RF input #2  
RF1/2  
ADTST(1) internal test mode  
normal operating mode  
normal operating mode  
disable RF equalizer  
DACC(1)  
ENEQ  
ENNF  
ZCAL  
internal test mode  
enable RF equalizer  
enable RF noise filter  
RF-AMP  
RF-AMP  
RF-AMP  
disable RF noise filter  
force zero input for RF calibration  
measurement  
RF calibration measurement enabled  
HA  
select high gain/high voltage swing for  
RF output  
select low gain/low voltage swing for  
RF output  
RF-AMP  
DH  
ALF1/2  
NDYE  
ALFA measurement, first method  
ALFA-DYE normalization on  
ALFA measurement, second method  
ALFA-DYE normalization off  
ALFA  
ALFA  
ALFA  
PC/DYE  
ALFA measurement for phase change  
media  
ALFA measurement for dye media  
2002 Jun 06  
33  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
ADDR. BIT NAME  
LOGIC 1  
set to standby mode  
LOGIC 0  
set to active mode  
BLOCK  
FH  
STBY  
SQRT  
take square root in ALFA-PC  
measurement  
no square root in ALFA-PC  
measurement  
ALFA  
MSEL[5:0] monitor block control signal  
BCAEN BCA circuit enabled  
MON  
BCA  
BCA circuit disabled  
Note  
1. These bits must be reset to zero at power-on by the user.  
Table 11 Analog control parameters  
ADDR.  
PARAM. NAME  
PURPOSE  
REF.  
MIN.  
1.5  
LSB MAX. UNIT  
1H  
IMIR[3:0]  
OFR[3:0]  
OFW[3:0]  
IN3[3:0]  
IMIR  
OFR  
OFw  
IN3  
current level setting for MIRN signal  
focus error offset for read mode  
focus error offset for write mode  
NORM  
NORM  
NORM  
NORM  
1.5  
24  
µA  
µA  
µA  
µA  
4  
4  
16  
+0.5  
+0.5  
16  
+3.5  
+3.5  
256  
2H  
normalizer reference current for XDN  
signal  
IN2[3:0]  
IN1[3:0]  
GRF[3:0]  
IN2  
normalizer reference current for REN  
signal  
NORM  
NORM  
10  
4
10  
2
160  
34  
µA  
µA  
IN1  
normalizer reference current for FEN  
signal  
3H  
4H  
5H  
GRF  
RF path VGA gain  
RF-AMP 4  
+0.8  
10  
+8  
dB  
mV  
µA  
DCRF[5:0] DCRF RF path DC offset  
RF-AMP  
NORM  
0
630  
6.4  
ITW[3:0]  
ITR[3:0]  
IN4[3:0]  
ITW  
ITR  
IN4  
drop-out concealment threshold value  
for write mode  
0.4  
0.4  
drop-out concealment threshold value  
for read mode  
NORM  
NORM  
0.4  
20  
0.4  
30  
6.4  
µA  
µA  
normalizer reference current for TLN  
signal  
470  
9H  
AH  
BH  
CH  
DH  
BWRF[6:0] f0RF  
ORF[5:0] ORF  
RF path filter corner frequency  
RF path offset correction  
RF-AMP 16  
1
143  
+94  
>20  
+9  
MHz  
mV  
MHz  
dB  
RF-AMP 95  
+3  
BWPP[2:0] BWPP push-pull amplifier filter 3 dB frequency PP-AMP  
2
GPP[3:0]  
IA2[5:0]  
Gpp  
IA2  
push-pull amplifier gain  
PP-AMP 3  
+0.8  
1.5  
ALFA measurement reference current  
for dye media method 2  
ALFA  
0
94.5  
µA  
AN[2:0]  
AN  
ALFA-dye measurement integrator  
capacitor multiplication factor:  
AN = 2AN; see also Chapter 9  
ALFA  
0.03125  
1
EH  
BCTL[2:0] fLPF  
BETA circuit 3 dB frequency for CALF BETA  
low-pass filter: fLPF = 0.5 × 2BCTL  
0.5  
32  
kHz  
τpeak  
BETA circuit peak detector time  
constant: τpeak = 500 × 2BCTL; see also  
Chapter 9  
BETA  
7.81  
500  
µs  
IBS[4:0]  
IBS  
scaling current for BETA circuit  
outputs A1, A2 and CALF  
BETA  
5
5
160  
µA  
2002 Jun 06  
34  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
ADDR.  
PARAM. NAME  
PURPOSE  
REF.  
MIN.  
2.5  
LSB MAX. UNIT  
EH  
IAT[1:0]  
IAT  
drop-out concealment threshold current ALFA  
for ALFA signal; dye media  
2.5  
10  
70  
10  
µA  
µA  
mV  
IAN[1:0]  
BCAT[2:0]  
IAN  
drop-out concealment reference current ALFA  
for ALFA signal; dye media  
10  
40  
FH  
BCAT threshold level for BCA slicer circuit  
BCA  
100  
590  
Table 12 EFMTIM control parameters  
ADDR.  
PARAM. NAME  
PURPOSE  
BLOCK  
7H  
TIM0[4:0]  
TIM1[5:0]  
TIM2[2:0]  
TIM3[2:0]  
TIM4[2:0]  
TIM5[2:0]  
TIM6[2:0]  
D1  
D2  
m1  
n1  
r/w signal delay parameter for EFMTIM  
EFMTIM  
EFMTIM  
EFMTIM  
EFMTIM  
EFMTIM  
EFMTIM  
EFMTIM  
LIGHT signal delay parameter for EFMTIM  
8H  
RS signal rising edge delay parameter for EFMTIM  
RS signal falling edge delay parameter for EFMTIM  
m2  
n2  
AINTON signal rising edge delay parameter for EFMTIM  
ASTROBE signal rising edge delay parameter for EFMTIM  
6H  
TIM6 EFMTIM test mode control parameter  
8
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
0.5  
MAX.  
+5.5  
UNIT  
VDD  
positive supply voltage on pins VDD1  
and VDD2  
V
V
VSS  
Vn  
negative supply voltage on pins VSS1, VSS2  
and VSSD  
5.5  
+0.5  
voltage on  
pins MON1, MON2 and PPN  
note 1  
V
SS 0.5 VDD + 0.5  
SS 0.5 0.5  
V
V
pins TS1, TS2, CA1, CA2, CCALF  
and RREF  
note 1  
V
all other pins  
note 1  
0.5  
V
DD + 0.5  
V
V
Vesd  
electrostatic discharge voltage on all pins  
human body model;  
notes 2 and 3  
1500  
+1500  
machine model; notes 2 100  
+100  
V
and 4  
Tamb  
Tstg  
ambient temperature  
storage temperature  
0
55  
°C  
°C  
55  
+125  
Notes  
1. The maximum value VDD + 0.5 V must not exceed +5.5 V; the minimum value VSS 0.5 V must not exceed 5.5 V.  
2. The ESD requirements as specified in the general quality specification are not met.  
3. Equivalent to discharging a 100 pF capacitor via a 1.5 kseries resistor and with a rise time of 15 ns.  
4. Equivalent to discharging a 200 pF capacitor via a 2.5 µH series inductor.  
2002 Jun 06  
35  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
9
CHARACTERISTICS  
VDD1 = 5 V; VDD2 = 5 V; VSS1 = 5 V; VSS2 = 5 V; VSSD = 5 V; Tamb = 25 °C; CCMPP = 100 nF; CCCALF = 27 nF;  
CA1 = 10 nF; CCA2 = 10 nF; CCALF = 10 nF; CA1 = 10 nF; CA2 = 10 nF; RRREF = 47 k; output load on pins RFP  
and RFN is 5 pF and 10 kto GND2; for location of external components see Chapter 10; unless otherwise stated.  
C
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Write synchronization circuit (EFMTIM)  
Ii(EFM)  
input current on  
0
1200  
µA  
pins EFMDP, EFMDN,  
EFMCP and EFMCN  
Ii(dif)(H)  
Ii(dif)(L)  
Ii(dif)(th)  
Vi(EFM)  
differential input current  
for HIGH level  
I
I
EFMDP IEFMDN  
EFMCP IEFMCN  
EFMDP IEFMDN  
EFMCP IEFMCN  
EFMDP IEFMDN  
EFMCP IEFMCN  
;
;
;
330  
330  
0
µA  
µA  
µA  
mV  
differential input current  
for LOW level  
I
I
differential input current  
threshold level  
I
I
input voltage on  
120  
pins EFMDP, EFMDN,  
EFMCP and EFMCN  
Ri(EFM)  
input resistance on  
pins EFMDP, EFMDN,  
EFMCP and EFMCN  
100  
Ci(EFM)  
input capacitance on  
pins EFMDP, EFMDN,  
EFMCP and EFMCN  
6
pF  
tsu(EFM)  
th(EFM)  
td1(EFM)  
td2(EFM)  
set-up time  
rising edge  
rising edge  
ENRW = 1  
3
3
ns  
ns  
ns  
ns  
hold time  
delay EFMD to r/w  
20  
4
delay EFMD to RS,  
AINTON and ASTROBE  
ENRS = 1; r/w = 0;  
ENALF = 1;  
Ci(EFM) = 6 pF  
fEFM  
EFM clock frequency  
105  
MHz  
Normalizer and servo path  
Vi(Q)  
servo input voltage on  
pins Q1 to Q6  
Q/NE = 1;  
Ii(Q) = 10 µA  
1.3  
1.5  
V
V
Q/NE = 0;  
I
i(Q) = 10 µA  
Ii(Q)  
servo input current range Q/NE = 0  
0
110  
µA  
µA  
V
on pins Q1 to Q6  
Q/NE = 1  
8  
+12  
Vo(S), Vo(D)  
servo output voltage  
range on pins S1 to S2  
and D1 to D4  
0.5  
0.5VDD  
Ii(TS)  
tilt sensor input (TS1 and  
TS2) current range  
0
40  
µA  
Vi(TS)  
tilt sensor input voltage  
VSS + 2.6  
V
2002 Jun 06  
36  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
SYMBOL  
fLPF1  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
1.0  
MAX.  
UNIT  
3 dB frequency of LPF1  
in RAD  
0.8  
48  
1.2  
72  
kHz  
fLPF2  
3 dB frequency of LPF2  
60  
kHz  
in CANORM  
fTILT  
3 dB frequency of TILTN  
40  
64  
50  
80  
60  
96  
kHz  
RXDN  
conversion resistance in  
RAD on pin XDN  
kΩ  
RXDN/RXDN  
RXDN variation with die  
temperature  
Tdie = 20 to 120 °C  
5
%
VCAL  
I0  
XDN reference voltage  
CAN reference current  
1.2  
9
1.3  
10  
1.4  
11  
V
µA  
µA  
I01  
MIRN and CAN reference  
current  
180  
200  
220  
IS0  
TILTN reference current  
40  
45  
50  
µA  
µA  
IPR  
read power reference  
current  
3.15  
3.50  
3.85  
ITT  
DOC threshold current for  
TILTN  
4.5  
5
5.5  
µA  
µA  
ICL  
TLN clamp current  
9
10  
11  
TS/(TS1 + TS2) normalizing error for  
TS1 = TS2  
0.05  
TILTN  
I/(I1 + I2)  
normalizing error for FEN, I1 = I2  
REN and TLN  
0.03  
4
τd  
RS switch delay  
ns  
Normalizer control currents  
IN1  
FEN normalization control IN1[3:0] = 0000  
3.6  
4
4.4  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
current  
IN1[3:0] = 1111  
30.6  
1.8  
34  
37.4  
2.2  
IN1  
IN1 current step  
IN1 = 1  
2.0  
10  
IN2  
REN normalization control IN2[3:0] = 0000  
9
11  
current  
IN2[3:0] = 1111  
144  
9.0  
160  
10.0  
16  
176  
11.0  
17.6  
282  
17.6  
22  
IN2  
IN2 current step  
IN2 = 1  
IN3  
XDN normalization control IN3[3:0] = 0000  
14.4  
230  
14.4  
18  
current  
IN3[3:0] = 1111  
256  
16.0  
20  
IN3  
IN3 current step  
IN3 = 1  
IN4  
TLN normalization control IN4[3:0] = 0000  
current  
IN4[3:0] = 1111  
423  
27  
470  
30  
517  
33  
IN4  
IN4 current step  
IN4 = 1  
ITW  
drop-out concealment  
threshold current for write  
ITW[3:0] = 0000  
ITW[3:0] = 1111  
ITW = 1  
0.36  
5.76  
0.36  
0.36  
5.76  
0.4  
6.4  
0.40  
0.4  
6.4  
0.44  
7.04  
0.44  
0.44  
7.04  
ITW  
ITW current step  
ITR  
drop-out concealment  
threshold current for read  
ITR[3:0] = 0000  
ITR[3:0] = 1111  
2002 Jun 06  
37  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
SYMBOL  
ITR  
PARAMETER  
ITR current step  
CONDITIONS  
ITR = 1  
MIN.  
0.36  
TYP.  
0.40  
MAX.  
0.44  
UNIT  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
OFR  
FEN offset current for  
read  
OFR[3:0] = 0000  
OFR[3:0] = 1111  
OFR = 1  
4.4  
3.15  
1.35  
4.4  
3.15  
1.35  
4  
3.6  
3.85  
1.65  
3.6  
3.85  
1.65  
3.5  
1.5  
4  
OFR  
OFR current step  
OFW  
FEN offset current for  
write  
OFW[3:0] = 0000  
OFW[3:0] = 1111  
OFW = 1  
3.5  
1.5  
OFW  
OFW current step  
RF amplifier (RF-AMP)  
Vi(RF)  
input voltage range  
(RFP-RFN)  
differential  
0
1
V
V
common mode  
0.5VDD  
V
V
DD 0.25  
DD + 0.25  
----------  
2
----------  
2
Ii(RF)  
Rrf  
RF input current  
10  
0
µA  
kΩ  
RF V-to-I conversion  
resistance  
2.12  
2.5  
2.88  
Vref  
Rcal  
reference voltage for rf-cal  
1.2  
28  
1.3  
33  
1.45  
38  
V
I-to-V conversion  
resistance for offset  
calibration  
kΩ  
Vcal  
ORF  
rf-cal output voltage range pin XDN; ZCAL = 0;  
RFCAL = 1  
Vref  
V
DD 1  
V
RF offset control voltage  
ORF[5:0] = 000000  
ORF[5:0] = 111111  
ORF = 1  
176  
144  
4.5  
160  
160  
5.0  
144  
176  
5.5  
mV  
mV  
mV  
ORF  
RF offset control voltage  
step  
BWrf-cal  
BWbca-rf  
BWRF  
3 dB bandwidth of rf-cal filters off  
3 dB bandwidth of bca-rf  
1
5
100  
kHz  
MHz  
MHz  
3 dB bandwidth of RFP  
ENEQ = 0; ENNF = 0 180  
and RFN  
α
τ
α-equalizer parameter  
τ-equalizer parameter  
k-equalizer parameter  
ENEQ = 1  
1.125  
1.25  
1.31  
4.0  
1.375  
1.44  
4.8  
ENEQ = 1  
1.18  
3.2  
k
ENEQ = 1; KEQ = 0  
ENEQ = 1; KEQ = 1  
4.8  
6.0  
7.2  
f0(RF)  
noise filter and equalizer  
corner frequency;  
f0 = (16 + BWRF) MHz  
BWRF[6:0] = 0000000 13.6  
BWRF[6:0] = 1111111 128.7  
16  
18.4  
157.3  
MHz  
MHz  
143  
f0(RF)  
noise filter and equalizer  
corner frequency step  
size  
BWRF = 1  
0.85  
1
1.15  
MHz  
2002 Jun 06  
38  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
td(F)  
flatness delay RF for  
equalizer off  
ENEQ = 0; ENNF = 0  
1.6  
ns  
flatness delay RF for  
100 kHz < F < 0.7f0 for  
equalizer on (ENEQ = 1  
and ENNF = 0)  
f0 = 45 MHz  
f0 = 72 MHz  
f0 = 102 MHz  
f0 = 143 MHz  
0
0.31  
0.21  
0.14  
0.1  
1.5  
1.5  
ns  
ns  
ns  
ns  
H1 - He  
H1 - Hn  
equalizer amplitude error 100 kHz < F < f0  
noise filter amplitude error 100 kHz < F < f0  
dB  
dB  
mV  
mV  
mV  
DCRF  
RF DC-control voltage  
DCRF[5:0] = 000000  
DCRF[5:0] = 111111 560  
630  
10  
700  
11  
DCRF  
RF DC-control voltage  
step  
DCRF = 1  
9
Vo(RFREF)  
RF output voltage  
1
2.5  
V
reference on pin RFREF  
Ri(RFREF)  
RFREF input impedance  
100  
kΩ  
VCM  
offset of (VRFP + VRFN)/2  
compared to VRFREF  
V
RFP VRFN = 0;  
HA = 0  
RFP VRFN = 0;  
17  
mV  
V
70  
mV  
mV  
HA = 1  
Voffset(RF)  
RF output voltage offset  
DCRF = 0;GRF = 0 dB;  
HA = 0; zero input  
signal  
100  
V
RFP VRFN  
Ro(RF)  
RFP and RFN output  
impedance  
40  
Vo(dif)(RF)  
RF differential output  
voltage range (RFP-RFN)  
GRF = 0 dB; HA = 0  
1  
+1  
+2  
2  
V
G
RF = 0 dB; HA = 1(1) 2  
V
GRF  
RF path VGA gain  
HA = 0;  
6  
4  
dB  
GRF[3:0] = 0000  
HA = 0;  
6
8
10  
dB  
GRF[3:0] = 1111  
GRF  
RF path VGA gain step  
RF output driver gain  
GRF = 1  
1
dB  
GDRV  
HA = 0  
1  
0
+1  
13  
dB  
HA = 1  
11  
12  
dB  
SRRF  
differential slew rate for  
rf-output at maximum  
bandwidth  
HA = 0; CL < 15 pF  
HA = 1; CL < 15 pF  
100  
300  
V/µs  
V/µs  
(BWRF[6:0] = 1111111)  
PP amplifier (PP-AMP)  
Ii(PPN)(p-p)  
AC input current range  
200  
µA  
(peak-to-peak value)  
Ii(PPN)  
DC input current  
40  
µA  
V
Vi(PPN)  
Vo(PPNO)  
input voltage level  
output voltage DC level  
2.4  
0
Ii(PPN) = 0  
V
2002 Jun 06  
39  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
SYMBOL  
Ro(PPNO)  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
130  
MAX.  
UNIT  
PPNO output impedance  
RPP  
I-to-V conversion  
resistance  
11.2  
100  
14  
16.8  
kΩ  
SRPP  
slew rate at PPNO output BWPP[2] = 1;  
CL = 5 pF  
V/µs  
Voffset(PPNO)  
GPP  
offset voltage at PPNO  
output  
IPPN = 0; Gpp = 0 dB  
0.2  
V
voltage gain  
GPP[3:0] = 0000  
GPP[3:0] = 1111  
GPP = 1  
4  
8
3  
9
2  
10  
0.88  
2.4  
4.8  
9.6  
dB  
dB  
GPP  
voltage gain step size  
bandwidth; note 2  
0.72  
1.6  
3.2  
6.4  
0.8  
2
dB  
BWPP  
BWPP[2:0] = 000  
BWPP[2:0] = 001  
BWPP[2:0] = 010  
BWPP[2:0] = 011  
BWPP[2:0] = 1XX  
MHz  
MHz  
MHz  
MHz  
MHz  
4
8
12  
12  
ALFA (running OPC processing)  
Gd  
V-to-I conversion for  
alfa-dye  
ASTROBE = 1  
AN[2:0] = 000  
AN[2:0] = 001  
40  
50  
60  
µA/V  
Tpd  
peak detector time  
constant  
4620  
ns  
Tpd = 20T  
2310  
1155  
578  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
T = T0 × 2AN, T0 = 231 ns AN[2:0] = 010  
period of input signal  
is 10T  
AN[2:0] = 011  
AN[2:0] = 100  
AN[2:0] = 101  
AN[2:0] = 110  
AN[2:0] = 111  
289  
144  
undefined  
undefined  
50  
C0  
AN  
alfa-dye integrator  
reference capacitor  
40  
60  
alfa-dye integrator  
AN[2:0] = 000  
AN[2:0] = 001  
AN[2:0] = 010  
AN[2:0] = 011  
AN[2:0] = 100  
AN[2:0] = 101  
AN[2:0] = 110  
AN[2:0] = 111  
0.9  
1
1.1  
capacitor multiplication  
0.45  
0.225  
0.113  
0.056  
0.028  
0.5  
0.55  
0.275  
0.138  
0.069  
0.034  
factor (AN = 2AN  
)
0.25  
0.125  
0.063  
0.031  
undefined  
undefined  
70  
Iref1  
Iref2  
reference current for CAN  
normalization in alfa-dye  
63  
77  
µA  
µA  
reference current for  
9
10  
11  
normalization in alfa-pc  
2002 Jun 06  
40  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
IAN  
IAT  
IA2  
alfa normalization current IAN[1:0] = 00  
IAN[1:0] = 01  
9
10  
20  
30  
40  
11  
22  
33  
44  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
18  
27  
36  
IAN[1:0] = 10  
IAN[1:0] = 11  
alfa drop-out concealment IAT[1:0] = 00  
2.25  
4.5  
6.75  
9
2.5  
5
2.75  
5.5  
8.25  
11  
threshold current  
IAT[1:0] = 01  
IAT[1:0] = 10  
IAT[1:0] = 11  
7.5  
10  
0
alfa-dye reference current IA2[5:0] = 000000  
IA2[5:0] = 111111  
85  
94.5  
1.5  
104  
1.65  
IA2  
α/α  
alfa-dye reference current IA2 = 1  
step size  
1.35  
variation of ALFA with die T = 40 °C  
3
%
temperature  
Io(ALFA)  
Ii(LASP)  
ALFA output current range Vo(ALFA) = 0 V  
LASP control current input r/w = 0  
0
5
0
100  
100  
15  
µA  
µA  
µA  
V
range  
r/w = 1  
Vi(LASP)  
Ri(LASP)  
LASP input voltage  
Ii(LASP) = 100 µA  
1.7  
1
LASP input impedance  
kΩ  
BETA (write power calibration)  
Vo(beta)  
A1, A2 and CALF output  
VDD = 5 V  
0
3
V
voltage range  
Ro(beta)  
A1, A2 and CALF output  
impedance  
300  
1.15  
1.2  
5
VA1/VA2  
VA1/VCALF  
matching of A1 and A2  
input conditions set for 0.85  
A1 = A2(3)  
1.0  
1.0  
matching of A1 and CALF input conditions set for 0.8  
A1 = A2 = CALF(3)  
Vo(beta)/Vo(beta) variation of A1, A2 and  
Tdie = 20 to 120 °C;  
T = 10 °C;  
%
CALF with temperature  
VDD = 5 %  
(VA1)0/VCALF  
(VA2)0/VCALF  
A1/CALF for DC input  
A2/CALF for DC input  
V
RFP VRFN = 0.5 V;  
DC; ORF[5:0] = 32H  
RFP VRFN = 0.5 V;  
DC; ORF[5:0] = 32H  
2
2
%
%
V
2002 Jun 06  
41  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
0.43  
TYP.  
0.5  
MAX.  
0.58  
UNIT  
fLPF  
3 dB frequency of CALF BCTL[2:0] = 000  
low-pass filter  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
µs  
BCTL[2:0] = 001  
0.85  
1.7  
1
1.15  
2.3  
BCTL[2:0] = 010  
BCTL[2:0] = 011  
BCTL[2:0] = 100  
BCTL[2:0] = 101  
BCTL[2:0] = 110  
BCTL[2:0] = 111  
2
3.4  
4
4.6  
6.8  
8
9.2  
13.6  
27.7  
16  
18.4  
36.8  
32  
undefined  
500  
250  
125  
62.5  
31.3  
15.6  
7.81  
undefined  
5
τpeak  
time constant of  
A1 and A2 peak detectors  
BCTL[2:0] = 000  
BCTL[2:0] = 001  
BCTL[2:0] = 010  
BCTL[2:0] = 011  
BCTL[2:0] = 100  
BCTL[2:0] = 101  
BCTL[2:0] = 110  
BCTL[2:0] = 111  
IBS[4:0] = 00000  
IBS[4:0] = 11111  
IBS = 1  
425  
213  
106  
53.1  
26.6  
13.3  
6.64  
575  
288  
144  
71.9  
35.9  
18.0  
8.98  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Io(BS)  
A1, A2 and CALF output  
scaling current  
4.5  
5.5  
µA  
144  
4.5  
160  
5
176  
5.5  
µA  
Io(BS)  
A1, A2 and CALF output  
scaling current step size  
µA  
Gbeta  
gain from (RFP-RFN) to  
CALF, A1 and A2  
(Gbeta = 100/(1 + IBS))  
IBS[4:0] = 00000  
IBS[4:0] = 11111  
85  
100  
115  
3.6  
2.7  
3.125  
BCA (burst cutting area read-out)  
VOH(BCA)  
HIGH-level output voltage BCAEN = 1;  
3.0  
3.3  
V
on pin BCA  
VDD = 5 V;  
Iload = 0.5 mA  
VOL(BCA)  
Vhys(BCA)  
f0(BCA)  
LOW-level output voltage BCAEN = 1;  
0
0.6  
V
on pin BCA  
Iload = 0.5 mA  
BCA comparator  
hysteresis  
50  
300  
mV  
kHz  
corner frequency of BCA  
filter  
Q1  
BCA filter parameter  
BCA filter parameter  
0.54  
1.31  
Q2  
H - Ht  
BCA filter amplitude error 50 kHz < f < 500 kHz  
1.5  
dB  
2002 Jun 06  
42  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
SYMBOL  
BCAT  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
100  
MAX.  
110  
UNIT  
BCA comparator  
threshold  
BCAT[2:0] = 000  
BCAT[2:0] = 001  
BCAT[2:0] = 010  
BCAT[2:0] = 011  
BCAT[2:0] = 100  
BCAT[2:0] = 101  
BCAT[2:0] = 110  
BCAT[2:0] = 111  
90  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
153  
216  
279  
342  
405  
468  
531  
170  
240  
310  
380  
450  
520  
590  
187  
264  
341  
418  
495  
572  
649  
MON (servo signal monitoring)  
Vo(MON)  
monitor output voltage  
range  
IMON < 1.3 mA  
20 °C < Tdie < 120 °C  
input current = 0  
1.3  
64  
+1.3  
96  
10  
V
Ro(MON)(conv)  
RMON/ RMON  
BWMON  
monitor output conversion  
resistance  
80  
kΩ  
%
conversion resistance  
variation with temperature  
monitor circuit 3 dB  
bandwidth  
100  
kHz  
VOFF(MON)  
Ro(MON)  
monitor voltage offset  
100  
mV  
output resistance on  
120  
pins MON1 and MON2  
2002 Jun 06  
43  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Serial bus interface, registers and logic (see Fig 19)  
Vi(logic)  
logic input voltage  
compatibility  
2.7  
3.3  
5.5  
V
V
V
VOH(SROUT)  
VOL(SROUT)  
HIGH-level output voltage TEST = 1;  
on pin SROUT  
0.8VDD  
0
VDD  
ISROUT < 1 mA  
LOW-level output voltage TEST = 1;  
0.2VDD  
on pin SROUT  
ISROUT < 1 mA  
VIH  
HIGH-level input voltage  
LOW-level input voltage  
2.1  
V
VIL  
1.0  
150  
V
IIH(TEST)  
HIGH-level input current  
on pin TEST  
internal pull-down  
resistor of 50 kΩ  
µA  
Ii(n)  
input current on  
100  
nA  
pins SIDA, SICL and SILD  
tsu(strt)  
tsu(D)  
th(D)  
set-up time start  
set-up time data  
hold time data  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
20  
20  
20  
60  
45  
20  
tclk(H)  
tclk(L)  
Tclk  
clock HIGH time  
clock LOW time  
clock period  
tsu(load)  
tload(H)  
set-up time load pulse  
load pulse HIGH time  
see Fig.20  
Notes  
1. For low values of VRFREF the output range may be limited. The minimum value for VRFP and VRFN is 0.3 V.  
2. For input capacitance at pin PPN: 5 pF < Ci < 15 pF.  
3. Conditions for A1, A2 and CALF matching: A1 = A2 = Vbeta. Input signal is ‘clipped sinusoidal’ with period (10T)2 N  
flat top/bottom part is (T/2)2 N with N = 0 to 5, T = 231 ns.  
,
2002 Jun 06  
44  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
10 APPLICATION INFORMATION  
+
5 V  
100 nF  
V
100 nF  
V
DD1  
DD2  
to wobble ADC  
PPNO  
PPN  
RFP, RFN  
RFREF  
to/from HDR65  
RFP1, RFN1  
Q1 to Q6  
from DROPPI  
XDN  
CALF  
A2  
C
CALF 10 nF  
C
A2 10 nF  
from tilt sensor  
from/to LADIC  
TS1, TS2  
C
A1 10 nF  
LASP  
ALFA  
A1  
to  
MACE3  
SPIDRE  
TZA1031  
D1 to D4, S1, S2  
MON1, MON2  
TIMOUT  
monitoring  
from HDR65  
EFMCP, EFMCN  
EFMDP, EMFDN  
SIDA, SICL, SILD  
C
C
CA2 10 nF (5%)  
CA2  
CA1  
from AWESOME  
CA1 10 nF (5%)  
C
CCALF 27 nF (5%)  
CCALF  
GND1  
GND2  
GNDD  
47 k(1%)  
RREF  
TEST  
R
RREF  
5 V  
V
V
V
SSD  
SS1  
SS2  
100 nF  
100 nF  
100 nF  
5 V  
MGW497  
Fig.21 Application diagram.  
45  
2002 Jun 06  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
11 PACKAGE OUTLINE  
LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm  
SOT314-2  
y
X
A
48  
33  
Z
49  
32  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
64  
17  
detail X  
1
16  
Z
v
M
A
D
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 10.1 10.1  
0.17 0.12 9.9 9.9  
12.15 12.15  
11.85 11.85  
0.75  
0.45  
1.45 1.45  
1.05 1.05  
1.60  
mm  
0.25  
0.5  
1.0  
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
99-12-27  
00-01-19  
SOT314-2  
136E10  
MS-026  
2002 Jun 06  
46  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
12 SOLDERING  
If wave soldering is used the following conditions must be  
observed for optimal results:  
12.1 Introduction to soldering surface mount  
packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering can still be used for  
certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is  
recommended.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The footprint must incorporate solder thieves at the  
downstream end.  
12.2 Reflow soldering  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending  
on heating method.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 220 °C for  
thick/large packages, and below 235 °C for small/thin  
packages.  
12.4 Manual soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
12.3 Wave soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
2002 Jun 06  
47  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
12.5 Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE(1)  
WAVE  
not suitable  
REFLOW(2)  
BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA  
suitable  
HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, not suitable(3)  
HVSON, SMS  
suitable  
PLCC(4), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
suitable  
not recommended(4)(5) suitable  
not recommended(6)  
suitable  
Notes  
1. For more detailed information on the BGA packages refer to the “(LF)BGA Application Note” (AN01026); order a copy  
from your Philips Semiconductors sales office.  
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
3. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder  
cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side,  
the solder might be deposited on the heatsink surface.  
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
5. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not  
suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
6. Wave soldering is suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2002 Jun 06  
48  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
13 DATA SHEET STATUS  
PRODUCT  
DATA SHEET STATUS(1)  
STATUS(2)  
DEFINITIONS  
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Changes will be  
communicated according to the Customer Product/Process Change  
Notification (CPCN) procedure SNW-SQ-650A.  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
14 DEFINITIONS  
15 DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes, without notice, in the  
products, including circuits, standard cells, and/or  
software, described or contained herein in order to  
improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for  
the use of any of these products, conveys no licence or title  
under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that  
these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified.  
Application information  
Applications that are  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2002 Jun 06  
49  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
NOTES  
2002 Jun 06  
50  
Philips Semiconductors  
Product specification  
Signal processing IC for DVD rewriteable  
TZA1031  
NOTES  
2002 Jun 06  
51  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2002  
SCA74  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
753503/01/pp52  
Date of release: 2002 Jun 06  
Document order number: 9397 750 08641  

相关型号:

TZA1032

Laser driver and controller circuit
NXP

TZA1032UK

Laser driver and controller circuit
NXP

TZA1035HL

High speed advanced analog DVD signal processor and laser supply
NXP

TZA1038HW

High speed advanced analog DVD signal processor and laser supply
NXP

TZA1038HW,118

TZA1038HW
NXP
NXP

TZA1045

Photodiode and amplifier IC for CD and DVD applications
NXP

TZA1045TM

IC SPECIALTY CONSUMER CIRCUIT, PDSO16, 6.60 X 5.20 MM, 1.10 MM HEIGHT, PLASTIC, SOT-814-1, HTSSON-16, Consumer IC:Other
NXP

TZA1045TS

Photodiode and amplifier IC for CD and DVD applications
NXP

TZA1046

Photodiode and amplifier IC for CD and DVD applications
NXP

TZA1046TM

Photodiode and amplifier IC for CD and DVD applications
NXP

TZA1047HL/M1A

IC SPECIALTY CONSUMER CIRCUIT, PQFP64, 10 X 10 MM, 1.4 MM HEIGHT, PLASTIC, MS-026, SOT314-2, LQFP-64, Consumer IC:Other
NXP