UAA3201TD [NXP]

暂无描述;
UAA3201TD
型号: UAA3201TD
厂家: NXP    NXP
描述:

暂无描述

远程控制集成电路 消费电路 商用集成电路 遥控
文件: 总20页 (文件大小:166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
UAA3201T  
UHF/VHF remote control receiver  
Product specification  
2000 Apr 18  
Supersedes data of 1995 May 18  
File under Integrated Circuits, IC18  
Philips Semiconductors  
Product specification  
UHF/VHF remote control receiver  
UAA3201T  
FEATURES  
APPLICATIONS  
Oscillator with external Surface Acoustic Wave  
Resonator (SAWR)  
Car alarm systems  
Remote control systems  
Security systems  
Gadgets and toys  
Telemetry.  
Wide frequency range from 150 to 450 MHz  
High sensitivity  
Low power consumption  
Automotive temperature range  
Superheterodyne architecture  
GENERAL DESCRIPTION  
Applicable to fulfil FTZ 17 TR 2100 (Germany)  
High integration level, few external components  
Inexpensive external components  
IF filter bandwidth determined by application.  
The UAA3201T is a fully integrated single-chip receiver,  
primarily intended for use in VHF and UHF systems  
employing direct AM Return-to-Zero (RZ) Amplitude Shift  
Keying (ASK) modulation.  
QUICK REFERENCE DATA  
SYMBOL  
VCC  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
3.5  
TYP. MAX. UNIT  
6.0  
V
ICC  
supply current  
3.4  
4.8  
mA  
dBm  
Pref  
input reference sensitivity  
fi(RF) = 433.92 MHz;  
data rate = 250 bits/s;  
BER 3 × 102  
105  
Tamb  
ambient temperature  
40  
+85  
°C  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
UAA3201T  
SO16  
plastic small outline package; 16 leads; body width 3.9 mm  
SOT109-1  
2000 Apr 18  
2
Philips Semiconductors  
Product specification  
UHF/VHF remote control receiver  
UAA3201T  
BLOCK DIAGRAM  
V
CC  
IF FILTER  
RF_IN  
C12  
C17  
R1  
C19  
LIN  
13  
V
EM  
15  
MIXIN  
14  
FA  
16  
LFB CPC  
CPO  
10  
12  
11  
IF AMPLIFIER  
×
BUFFER  
MIXER  
DATA  
data  
9
LIMITER  
COMPARATOR  
BUFFER  
BAND GAP  
REFERENCE  
UAA3201T  
V
V
ref  
3
CC  
OSCILLATOR  
4
5
1
2
6
7
8
MHB679  
OSC OSE  
MON  
MOP  
V
V
CPB  
CPA  
CC  
EE  
C13  
C14  
C7  
Fig.1 Block diagram.  
PINNING  
SYMBOL PIN  
DESCRIPTION  
negative mixer output  
MON  
MOP  
VCC  
1
2
3
4
5
6
7
8
9
positive mixer output  
positive supply voltage  
oscillator collector  
oscillator emitter  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
MON  
MOP  
FA  
V
OSC  
OSE  
VEE  
EM  
V
MIXIN  
LIN  
CC  
negative supply voltage  
comparator input B  
comparator input A  
data output  
OSC  
OSE  
CPB  
CPA  
DATA  
CPO  
CPC  
LFB  
LIN  
UAA3201T  
LFB  
V
CPC  
CPO  
DATA  
EE  
CPB  
CPA  
10 comparator offset adjustment  
11 comparator input C  
12 limiter feedback  
13 limiter input  
MED897  
MIXIN  
VEM  
14 mixer input  
15 negative supply voltage for mixer  
16 IF amplifier output  
Fig.2 Pin configuration.  
FA  
2000 Apr 18  
3
Philips Semiconductors  
Product specification  
UHF/VHF remote control receiver  
UAA3201T  
FUNCTIONAL DESCRIPTION  
Limiter  
The RF signal is fed directly into the mixer stage where it  
is mixed down to nominal 500 kHz IF by the integrated  
oscillator controlled by an external SAWR (see Fig.1). The  
IF signal is then passed to the IF amplifier which increases  
the level. A 5th-order elliptic low-pass filter acts as main  
IF filtering. The output voltage of that filter is demodulated  
by a limiter that rectifies the incoming IF signal. The  
demodulated signal passes two RC filter stages and is  
then limited by a data comparator which makes it available  
at the data output.  
The limiting amplifier consists of three DC coupled  
amplifier stages with a total gain of 60 dB. A Received  
Signal Strength Indicator (RSSI) signal is generated by  
rectifying the IF signal. The limiter has a lower frequency  
limit of 100 kHz which can be controlled by capacitors C12  
and C19. The upper frequency limit is 3 MHz.  
Comparator  
The 2 × IF component in the RSSI signal is removed by the  
first order low-pass capacitor C17. After passing a buffer  
stage the signal is split into two paths, leading via  
RC filters to the inputs of a voltage comparator. The time  
constant of one path (C14) is compared to the bit duration.  
Consequently the potential at the negative comparator  
input represents the average magnitude of the RSSI  
signal. The second path with a short time constant (C13)  
allows the signal at the positive comparator input to follow  
the RSSI signal instantaneously. This results in a variable  
comparator threshold, depending on the strength of the  
incoming signal. Hence the comparator output is switched  
on, when the RSSI signal exceeds its average value, i.e.  
when an ASK ‘on’ signal is received.  
Mixer  
The mixer is a single balanced emitter coupled pair with  
internally set bias current. The optimum impedance is  
320 at 430 MHz. Capacitor C5 (see Fig.9) is used to  
transform a 50 generator impedance to the optimum  
value.  
Oscillator  
The oscillator consists of a transistor in common base  
configuration and a tank circuit including the SAWR.  
Resistor R2 (see Fig.9) is used to control the bias current  
through the transistor. Resistor R3 is required to reduce  
unwanted responses of the tank circuit.  
The low-pass filter capacitor C13 rejects the unwanted  
2 × IF component and reduces the noise bandwidth of the  
data filter.  
IF amplifier  
The resistor R1 is used to set the current of an internal  
source. This current is drawn from the positive comparator  
input, thereby applying an offset and driving the output into  
the ‘off’ state during the absence of an input signal. This  
offset can be increased by lowering the value of R1  
yielding a higher noise immunity at the expense of reduced  
sensitivity.  
The IF amplifier is a differential input, single-ended output  
emitter coupled pair. It is used to decouple the first and the  
second IF filter and to provide some additional gain in  
order to reduce the influence of the noise of the limiter on  
the total noise figure.  
IF filters  
Band gap reference  
The first IF filter is an RC filter formed by internal resistors  
and an external capacitor C7 (see Fig.1).  
The band gap reference controls the biasing of the whole  
circuit. In this block currents are generated that are  
constant over the temperature range and currents that are  
proportional to the absolute temperature.  
The second IF filter is an external elliptic filter. The source  
impedance is 1.4 kand the load is high-impedance. The  
bandwidth of the IF filter in the application and test circuit  
(see Fig.9) is 800 kHz due to the centre frequency spread  
of the SAWR. It may be reduced when SAWRs with less  
tolerances are used or temperature range requirements  
are lower. A smaller bandwidth of the filter will yield a  
higher sensitivity of the receiver. As the RF signal is mixed  
down to a low IF signal there is no image rejection  
possible.  
The current consumption of the receiver rises with  
increasing temperature, because the blocks with the  
highest current consumption are biased by currents that  
are proportional to the absolute temperature.  
2000 Apr 18  
4
Philips Semiconductors  
Product specification  
UHF/VHF remote control receiver  
UAA3201T  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
VCC  
PARAMETER  
CONDITIONS  
MIN.  
0.3  
MAX.  
+8.0  
UNIT  
supply voltage  
V
Tamb  
Tstg  
Ves  
ambient temperature  
storage temperature  
electrostatic handling voltage  
pins OSC and OSE  
pins LFB and MIXIN  
all other pins  
40  
55  
+85  
°C  
°C  
+125  
note 1  
2000  
1500  
2000  
+1500  
+2000  
+2000  
V
V
V
Note  
1. Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
VALUE  
UNIT  
Rth(j-a)  
thermal resistance from junction to ambient in free air  
105  
K/W  
DC CHARACTERISTICS  
VCC = 3.5 V; all voltages referenced to VEE; Tamb = 40 to +85 °C; typical value for Tamb = 25 °C; for test circuit  
see Fig.9; SAWR disconnected; unless otherwise specified.  
SYMBOL  
VCC  
PARAMETER  
supply voltage  
supply current  
CONDITIONS  
MIN.  
3.5  
TYP.  
MAX.  
6.0  
UNIT  
V
ICC  
R2 = 680 Ω  
3.4  
4.8  
mA  
V
VOH(DATA)  
HIGH-level output voltage at IDATA = 10 µA; note 1  
V
CC  
0.5  
VCC  
pin DATA  
VOL(DATA)  
LOW-level output voltage at IDATA = +200 µA; note 1  
0
0.6  
V
pin DATA  
Note  
1. I  
is defined to be positive when the current flows into pin DATA.  
DATA  
2000 Apr 18  
5
Philips Semiconductors  
Product specification  
UHF/VHF remote control receiver  
UAA3201T  
AC CHARACTERISTICS  
VCC = 3.5 V; Tamb = 25 °C; for test circuit see Fig.9; R1 disconnected; for AC test conditions see Section “AC test  
conditions”; unless otherwise specified.  
SYMBOL  
PARAMETER  
input reference sensitivity  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
Pref  
BER 3 × 102; note 1  
BER 3 × 102  
note 2  
105  
30  
60  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
ms  
P
i(max)  
maximum input power  
P
spur  
spurious radiation  
IP3  
IP3  
interception point (mixer)  
interception point (mixer plus IF amplifier)  
1 dB compression point (mixer)  
receiver turn-on time  
20  
38  
38  
17  
35  
35  
mix  
IF  
P
1dB  
t
note 3  
10  
on(RX)  
Notes  
1. Pref is the maximum available power at the input of the test board. The Bit Error Rate (BER) is measured using the  
test facility shown in Fig.8.  
2. Valid only for the reference PCB (see Figs 10 and 11). Spurious radiation is strongly dependent on the PCB layout.  
3. The supply voltage VCC is pulsed as explained in Fig.3.  
INTERNAL PIN CONFIGURATION  
PIN  
SYMBOL  
EQUIVALENT CIRCUIT  
1
2
MON  
MOP  
V
P
1.5  
kΩ  
1.5  
kΩ  
1
from  
oscillator  
buffer  
MHB680  
2
3
VCC  
3
V
CC  
MHB681  
4
5
OSC  
OSE  
V
P
4
5
6 kΩ  
1.2 V  
MHB682  
2000 Apr 18  
6
Philips Semiconductors  
Product specification  
UHF/VHF remote control receiver  
UAA3201T  
PIN  
SYMBOL  
EQUIVALENT CIRCUIT  
6
VEE  
6
MHB683  
7
8
CPB  
CPA  
V
P
150 kΩ  
7
8
150 kΩ  
MHB684  
9
DATA  
V
P
1 kΩ  
9
MHB686  
10  
CPO  
V
P
10  
MHB685  
11  
CPC  
V
P
30 kΩ  
11  
MHB704  
2000 Apr 18  
7
Philips Semiconductors  
Product specification  
UHF/VHF remote control receiver  
UAA3201T  
PIN  
SYMBOL  
EQUIVALENT CIRCUIT  
12  
13  
LFB  
LIN  
V
P
50  
kΩ  
12  
13  
MHB687  
14  
15  
MXIN  
VEM  
14  
15  
MHB688  
16  
FA  
V
P
1.4 kΩ  
16  
MHB689  
TEST INFORMATION  
Tuning procedure for AC tests  
1. Turn on the signal generator: fi(RF) = 433.92 MHz, no modulation and RF input level = 1 mV.  
2. Tune capacitor C6 (RF stage input) to obtain a maximum voltage on pin LIN.  
3. Check that data is appearing on pin DATA and proceed with the AC tests.  
AC test conditions  
The reference signal level Pref for the following tests is defined as the minimum input level in dBm to give a  
BER 3 × 102 (e.g. 7.5 bit errors per second for 250 bits/s).  
2000 Apr 18  
8
Philips Semiconductors  
Product specification  
UHF/VHF remote control receiver  
UAA3201T  
Table 1 Test signals  
TEST  
SIGNAL  
FREQUENCY  
(MHz)  
MODULATION  
INDEX  
DATA SIGNAL  
MODULATION  
1
433.92  
250 bits/s  
(square wave)  
RZ signal with duty cycle of 66% for logic 1;  
RZ signal with duty cycle of 33% for logic 0  
100%  
2
3
434.02  
433.92  
no modulation  
no modulation  
Test results  
P1 is the maximum available power from signal generator 1 at the input of the test board; P2 is the maximum available  
power from signal generator 2 at the input of the test board.  
Table 2 Test results  
GENERATOR  
TEST  
RESULT  
1
2
Maximum input power;  
see Fig.4  
test signal 1;  
P1 = 30 dBm  
(minimum Pmax  
BER 3 × 102  
(e.g. 7.5 bit errors per second for 250 bits/s)  
)
Receiver turn-on time;  
see Fig.4 and note 1  
test signal 1;  
P1 = Pref + 10 dB  
check that the first 10 bits are correct; error counting is  
started 10 ms after VCC is switched on  
Interception point (mixer);  
see Fig.5 and note 2  
test signal 3;  
P1 = 50 dBm  
test  
IP3 = P1 + 12 × IM3 (dB);  
signal 2; minimum value: IP3mix ≥ −20 dBm  
P2 = P1  
Interception point (mixer plus test signal 3;  
test  
IP3 = P1 + 12 × IM3 (dB);  
IF amplifier); see Fig.5 and  
note 3  
P1 = 50 dBm  
signal 2; minimum value: IP3IF ≥ −38 dBm  
P2 = P1  
Spurious radiation; see Fig.6  
and note 4  
no spurious radiation (25 MHz to 1 GHz) with level  
higher than 60 dBm (maximum Pspur  
)
1 dB compression point  
(mixer);  
see Fig.7 and note 5  
test signal 3;  
P
P12 = 38 dBm  
(Po1 + 70 dB) [Po2 + 38 dB (minimum P1dB)] 1 dB,  
where Po1 is the output power for test signal with P11  
and Po2 is the output power for test signal with P12  
11 = 70 dBm;  
(minimum P1dB  
)
Notes  
1. The supply voltage VCC of the test circuit alternates between ‘on’ (100 ms) and ‘off’ (100 ms); see Fig.3.  
2. Differential probe of spectrum analyser connected to pins MOP and MON.  
3. Probe of spectrum analyser connected to pin LIN.  
4. Spectrum analyser connected to the input of the test board.  
5. Probe of spectrum analyser connected to either pin MOP or pin MON.  
2000 Apr 18  
9
Philips Semiconductors  
Product specification  
UHF/VHF remote control receiver  
UAA3201T  
MED899 - 1  
V
CC  
(V)  
3.5  
0
0
100  
200  
300  
t (ms)  
Fig.3 Timing diagram for pulsed supply voltage.  
GENERATOR 1  
50 Ω  
BER TEST  
FACILITY  
(1)  
TEST CIRCUIT  
(2)  
MED900  
(1) For test circuit see Fig.9.  
(2) For BER test facility see Fig.8.  
Fig.4 Test configuration (single generator).  
GENERATOR 1  
50 Ω  
SPECTRUM  
ANALYZER  
WITH  
50 Ω  
2-SIGNAL  
POWER  
(1)  
TEST CIRCUIT  
PROBE  
COMBINER  
GENERATOR 2  
50 Ω  
IM3  
f  
f  
f = 100 kHz  
f  
MED901  
(1) For test circuit see Fig.9.  
Fig.5 Test configuration (interception point).  
10  
2000 Apr 18  
Philips Semiconductors  
Product specification  
UHF/VHF remote control receiver  
UAA3201T  
SPECTRUM  
ANALYZER  
INPUT IMPEDANCE  
50 Ω  
(1)  
TEST CIRCUIT  
MED902  
(1) For test circuit see Fig.9.  
Fig.6 Test configuration (spurious radiation).  
GENERATOR 1  
50 Ω  
SPECTRUM  
ANALYZER  
WITH  
(1)  
TEST CIRCUIT  
PROBE  
MED903  
(1) For test circuit see Fig.9.  
Fig.7 Test configuration (1 dB compression point).  
TX data  
SIGNAL  
GENERATOR  
MASTER  
CLOCK  
BIT PATTERN  
GENERATOR  
PRESET  
DELAY  
delayed  
TX data  
DEVICE  
UNDER TEST  
INTEGRATE  
AND DUMP  
DATA  
COMPARATOR  
to error counter  
RX data  
BER TEST BOARD  
MED904  
Fig.8 BER test facility.  
2000 Apr 18  
11  
Philips Semiconductors  
Product specification  
UHF/VHF remote control receiver  
UAA3201T  
APPLICATION INFORMATION  
RF_IN  
+3.5 V  
C8  
C9  
C11  
C10  
C5  
C4  
C20  
L2  
L1  
C6  
data  
C15  
C12  
C17  
R1  
C19  
L3  
V
FA  
16  
MIXIN  
14  
LIN  
13  
LFB  
12  
CPC  
11  
CPO  
10  
DATA  
9
EM  
15  
LIMITER  
BUFFER  
COMPARATOR  
MIXER  
IF  
AMP  
BUFFER  
V
UAA3201T  
CC  
BAND GAP  
REFERENCE  
OSCILLATOR  
V
ref  
1
2
MOP  
3
4
5
6
7
8
MED896  
V
V
MON  
OSC  
OSE  
CPB  
C14  
CPA  
EE  
CC  
C18  
C16  
C7  
L4  
R2  
C13  
C21  
(1)  
3.5 V  
C1  
C2  
C3  
R3  
SAWR  
(1) Stray inductance.  
Fig.9 Application and test circuit.  
12  
2000 Apr 18  
Philips Semiconductors  
Product specification  
UHF/VHF remote control receiver  
UAA3201T  
Components and layout of printed circuit board of test circuit for fi(RF) = 433.92 MHz  
Table 3 Components list for Fig.9  
COMPONENT  
VALUE  
27 kΩ  
TOLERANCE  
DESCRIPTION  
R1  
±2%  
TC = +50 ppm/K  
TC = +50 ppm/K  
TC = +50 ppm/K  
R2  
680 Ω  
220 Ω  
4.7 µF  
150 pF  
1 nF  
±2%  
R3  
±2%  
C1  
±20%  
±10%  
±10%  
±10%  
±10%  
C2  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
TC = 0 ±150 ppm/K; tan δ ≤ 30 × 104; f = 1 MHz  
TC = 0 ±300 ppm/K; tan δ ≤ 20 × 104; f = 1 MHz  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
TC = 0 ±30 ppm/K; tan δ ≤ 20 × 104; f = 1 MHz  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
tan δ ≤ 25 × 103; f = 1 kHz  
C3  
C4  
820 pF  
3.3 pF  
2.5 to 6 pF  
56 pF  
C5  
C6  
C7  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
±5%  
C8  
150 pF  
220 pF  
27 pF  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
L1  
150 pF  
100 nF  
2.2 nF  
33 nF  
tan δ ≤ 25 × 103; f = 1 kHz  
tan δ ≤ 25 × 103; f = 1 kHz  
150 pF  
3.9 pF  
10 nF  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
TC = 0 ±150 ppm/K; tan δ ≤ 30 × 104; f = 1 MHz  
tan δ ≤ 25 × 103; f = 1 kHz  
TC = 0 ±150 ppm/K; tan δ ≤ 30 × 104; f = 1 MHz  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
TC = 0 ±150 ppm/K; tan δ ≤ 30 × 104; f = 1 MHz  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
3.3 pF  
68 pF  
6.8 pF  
47 pF  
10 nH  
330 µH  
330 µH  
33 nH  
±10%  
±10%  
±10%  
±10%  
Q
min = 50 to 450 MHz; TC = 25 to 125 ppm/K  
Qmin = 45 to 800 kHz; Cstray 1 pF  
Qmin = 45 to 800 kHz; Cstray 1 pF  
L2  
L3  
L4  
Qmin = 45 to 450 MHz; TC = 25 to 125 ppm/K  
see Table 4  
SAWR  
Table 4 SAWR data  
DESCRIPTION  
SPECIFICATION  
Type  
one-port (e.g. RFM R02112)  
433.42 MHz ±75 kHz  
1.5 dB  
Centre frequency  
Maximum insertion loss  
Typical loaded Q  
Temperature drift  
Turnover temperature  
1600 (50 load)  
0.032 ppm/K2  
43 °C  
2000 Apr 18  
13  
Philips Semiconductors  
Product specification  
UHF/VHF remote control receiver  
UAA3201T  
MBE589  
RF_IN  
data  
n.c.  
UAA3201T  
H4ACS15  
Fig.10 Layout top side.  
MBE591  
PCALH/H4ACS15  
H 4 A C S 1 5  
Fig.11 Layout bottom side.  
14  
2000 Apr 18  
Philips Semiconductors  
Product specification  
UHF/VHF remote control receiver  
UAA3201T  
MBE590  
RF_IN  
C5  
C4  
L3  
C15  
L1  
DATA  
R1  
C19  
C6  
data  
C12 C17  
IC1  
L2  
C13  
C14  
n.c.  
SAWR  
supply  
UAA3201T  
H4ACS15  
Fig.12 Top side with components.  
MBE592  
C11  
C10  
C9  
C8  
C21  
C20  
C2  
R2  
C7  
C16  
C1  
C3  
C18  
L4  
R3  
PCALH/H4ACS15  
H 4 A C S 1 5  
Fig.13 Bottom side with components.  
15  
2000 Apr 18  
Philips Semiconductors  
Product specification  
UHF/VHF remote control receiver  
UAA3201T  
PACKAGE OUTLINE  
SO16: plastic small outline package; 16 leads; body width 3.9 mm  
SOT109-1  
D
E
A
X
c
y
H
v
M
A
E
Z
16  
9
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
8
e
w
M
detail X  
b
p
0
2.5  
scale  
5 mm  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
10.0  
9.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.27  
0.050  
1.05  
0.041  
1.75  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.39  
0.014 0.0075 0.38  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.020  
0.028  
0.012  
inches  
0.069  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
97-05-22  
99-12-27  
SOT109-1  
076E07  
MS-012  
2000 Apr 18  
16  
Philips Semiconductors  
Product specification  
UHF/VHF remote control receiver  
UAA3201T  
SOLDERING  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
Manual soldering  
Wave soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
2000 Apr 18  
17  
Philips Semiconductors  
Product specification  
UHF/VHF remote control receiver  
UAA3201T  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
BGA, LFBGA, SQFP, TFBGA  
WAVE  
not suitable  
REFLOW(1)  
suitable  
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS  
PLCC(3), SO, SOJ  
not suitable(2)  
suitable  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended(3)(4) suitable  
not recommended(5)  
suitable  
SSOP, TSSOP, VSO  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2000 Apr 18  
18  
Philips Semiconductors  
Product specification  
UHF/VHF remote control receiver  
UAA3201T  
DATA SHEET STATUS  
PRODUCT  
DATA SHEET STATUS  
STATUS  
DEFINITIONS (1)  
Objective specification  
Development This data sheet contains the design target or goal specifications for  
product development. Specification may change in any manner without  
notice.  
Preliminary specification Qualification  
This data sheet contains preliminary data, and supplementary data will be  
published at a later date. Philips Semiconductors reserves the right to  
make changes at any time without notice in order to improve design and  
supply the best possible product.  
Product specification  
Production  
This data sheet contains final specifications. Philips Semiconductors  
reserves the right to make changes at any time without notice in order to  
improve design and supply the best possible product.  
Note  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes, without notice, in the  
products, including circuits, standard cells, and/or  
software, described or contained herein in order to  
improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for  
the use of any of these products, conveys no licence or title  
under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that  
these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified.  
Application information  
Applications that are  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2000 Apr 18  
19  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
69  
SCA  
© Philips Electronics N.V. 2000  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
03/pp20  
Date of release: 2000 Apr 18  
Document order number: 9397 750 06929  

相关型号:

UAA3201TD-T

Remote-Control Receiver/Decoder
ETC

UAA3202

Frequency Shift Keying FSK receiver
NXP

UAA3202M

Frequency Shift Keying FSK receiver
NXP

UAA3202M-T

IC SPECIALTY TELECOM CIRCUIT, PDSO20, PLASTIC, SOT-339, SSOP-20, Telecom IC:Other
NXP

UAA3202M/V1/S5

IC SPECIALTY TELECOM CIRCUIT, PDSO20, PLASTIC, SOT-339, SSOP-20, Telecom IC:Other
NXP

UAA3220

Frequency Shift Keying FSK/Amplitude Shift Keying ASK receiver
NXP

UAA3220TS

Frequency Shift Keying FSK/Amplitude Shift Keying ASK receiver
NXP

UAA3220TS/V1,118

UAA3220TS - Frequency Shift Keying (FSK)/Amplitude Shift Keying (ASK) receiver SSOP2 24-Pin
NXP

UAA3500

Pager receiver
NXP

UAA3500HL

Pager receiver
NXP

UAA3515A

900 MHz analog cordless telephone IC
NXP

UAA3515AHL

900 MHz analog cordless telephone IC
NXP