UAA3202M-T [NXP]

IC SPECIALTY TELECOM CIRCUIT, PDSO20, PLASTIC, SOT-339, SSOP-20, Telecom IC:Other;
UAA3202M-T
型号: UAA3202M-T
厂家: NXP    NXP
描述:

IC SPECIALTY TELECOM CIRCUIT, PDSO20, PLASTIC, SOT-339, SSOP-20, Telecom IC:Other

文件: 总24页 (文件大小:125K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
UAA3202M  
Frequency Shift Keying (FSK)  
receiver  
1997 Aug 12  
Preliminary specification  
File under Integrated Circuits, IC01  
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
FEATURES  
GENERAL DESCRIPTION  
Low cost single-chip FSK receiver  
Superheterodyne architecture with high integration level  
Few external low cost components  
Wide supply voltage range  
The UAA3202M is a fully integrated single-chip receiver,  
primarily intended for use in VHF and UHF systems  
employing direct Frequency Shift Keying (FSK)  
modulation. The UAA3202M incorporates a SAW  
stabilized local oscillator, balanced mixer, IF amplifier,  
limiter, Received Signal Strength Indicator (RSSI), RSSI  
comparator, FSK demodulator, data filter and data slicer.  
The device features a power-down mode in order to  
minimize the average receiver supply current.  
Low power consumption  
Wide frequency range, 150 to 450 MHz  
High sensitivity  
IF band determined by application  
High selectivity  
Very low spurious radiation, 60 dBm  
(meets FTZ 17TR2100)  
Automotive temperature range  
Power-down mode  
SSOP20 package.  
Applications  
Keyless entry systems  
Car alarm systems  
Remote control systems  
Security systems  
Telemetry systems  
Wireless data transmission  
Domestic appliances.  
QUICK REFERENCE DATA  
SYMBOL  
VCC  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
3.5  
TYP.  
MAX.  
UNIT  
6
V
ICC  
supply current for  
operating mode on  
operating mode off  
sensitivity  
V
PWD = 0 V; R2 = 560 Ω  
2.0  
3.4  
3
4.7  
30  
mA  
µA  
VPWD = VCC  
Psens  
fi = 433.92 MHz;  
94  
dBm  
fmod = 250 Hz square wave;  
f = ±25 kHz; BER 3%  
Tamb  
operating ambient temperature  
40  
+85  
°C  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
UAA3202M  
SSOP20  
SOT339-1  
plastic shrink small outline package; 20 leads; body width 5.3 mm  
1997 Aug 12  
2
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
BLOCK DIAGRAM  
HM9A7  
bnok,lfuapgedwith  
1997 Aug 12  
3
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
PINNING  
SYMBOL PIN  
DESCRIPTION  
negative mixer output  
MON  
MOP  
VCC  
1
2
3
4
5
6
7
8
9
positive mixer output  
positive supply voltage  
oscillator collector  
handbook, halfpage  
MON  
MOP  
20 FA  
1
2
OSC  
OSE  
VEO  
V
19  
18 MXIN  
17  
EM  
oscillator emitter  
V
3
CC  
negative supply voltage for oscillator  
negative supply voltage  
RSSI comparator output  
comparator input B  
OSC  
OSE  
LIN  
4
VEE  
16 LFB  
5
COMP  
CPB  
CPA  
DATA  
PWD  
CPC  
DMOD  
RSSI  
LFB  
UAA3202M  
V
6
15 RSSI  
EO  
10 comparator input A  
11 data output  
V
DMOD  
7
14  
EE  
COMP  
CPB  
8
13 CPC  
12 power-down control input  
13 comparator input C  
14 demodulator frequency adjustment  
15 RSSI current output  
16 limiter feedback  
PWD  
9
12  
11  
CPA  
DATA  
10  
MHA796  
LIN  
17 limiter input  
MXIN  
VEM  
18 mixer input  
19 negative supply voltage for mixer  
20 IF amplifier output  
Fig.2 Pin configuration.  
FA  
1997 Aug 12  
4
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
FUNCTIONAL DESCRIPTION  
Post mixer amplifier  
The device is based on the superheterodyne architecture  
incorporating a mixer, local oscillator, IF amplifier, limiter,  
RSSI, RSSI comparator, FSK demodulator, data filter,  
data slicer and power-down circuitry. The device employs  
a low IF frequency of typically 1 MHz in order to allow IF  
filtering by means of external low cost R, L and C  
The Post Mixer Amplifier (PMA) is a differential input,  
single-ended output amplifier. It separates the first and  
second IF filters from each other. Amplifier gain is provided  
in order to reduce the influence of the limiter noise figure  
on the total noise figure.  
components. If image rejection is required it can be  
achieved by applying a matching external front-end SAW  
filter. The device provides a wide IF range of 300 kHz in  
order to allow the use of a SAW stabilized oscillator.  
Limiter  
The limiter is a single-ended input multiple stage amplifier  
with high total gain. Amplifier stability is achieved by  
means of an external DC feedback capacitor, which is also  
used to determine the lower limiter cut-off frequency.  
An RSSI signal proportional to the limiter input signal is  
provided.  
The on-chip local oscillator provides the injection signal for  
the mixer. Tuning of the on-chip local oscillator is not  
necessary. The oscillator frequency is determined by an  
external 1-port SAW resonator. The RF input signal is fed  
to the mixer and down converted to the IF frequency. After  
amplification and filtering the RF signal is applied to a  
limiter. The IF filter order and characteristics are  
IF filters  
IF filtering with high selectivity is realized by means of  
external low cost R, L and C components. The first IF filter  
is located directly following the mixer output. An external  
L/C network assembles a band-pass with low sensitivity in  
order to meet the bandwidth of an elliptic low-pass filter  
external to the device and is located in front of the limiter.  
The filter source impedance is determined by the drive  
impedance of the IF amplifier. In order to improve the IF  
filter selectivity below the pass-band a high-pass  
characteristic is added by means of a DC blocking  
capacitor in front of the limiter input and by means of the  
limiter DC feedback capacitor.  
determined by the external low cost R, L and C  
components. The limiter amplifier provides a RSSI signal  
which can be routed to an on-chip RSSI level comparator  
in order to derive a field strength indication for external  
use. The limited IF signal is fed to the FSK demodulator.  
The demodulator centre frequency is determined by an  
external capacitor. No alignment is necessary for the FSK  
demodulator. After filtering the demodulated data signal is  
fed to a data slicer and is made available at the data  
output. The data filter characteristics are determined by  
external capacitors. The data slicer employs an adaptive  
slice reference in order to track frequency offsets.  
RSSI  
The device is switched from power-down to operating  
mode and vice versa by means of a control input.  
Extremely low supply current is drawn when the device is  
in power-down mode. Measures are taken to allow fast  
receiver settling when the device is switched from  
power-down to operating mode.  
The RSSI signal is a current proportional to the limiter input  
level (RF input power). By means of an external resistor  
the resulting RSSI voltage level is set in order to fit the  
application. The RSSI voltage is available to external  
circuits and is fed to the input of the RSSI level  
comparator. For RSSI filtering an external capacitor is  
connected.  
Mixer  
The mixer is a single balanced emitter coupled mixer with  
internal biasing. Matching of the RF source impedance to  
the mixer input requires an external matching network.  
RSSI level comparator  
The RSSI level comparator compares the RSSI level with  
a fixed and independent internal reference voltage. If the  
RSSI level exceeds the internal reference voltage a logic  
HIGH signal is generated. The level comparator provides  
some hysteresis in order to avoid spurious oscillation.  
The output of the level comparator is designed as an  
open-collector with internal pull-up.  
Oscillator  
The oscillator consists of an on-chip transistor in common  
base configuration. An external tank and SAW resonator  
determines the oscillator frequency. Oscillator alignment is  
not necessary. Oscillator bias is controlled by an external  
resistor.  
1997 Aug 12  
5
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
The other path is fed to an integration circuit with a large  
time constant in order to derive the average value  
(DC component) as an adaptive slice reference which is  
presented to the negative comparator input. The adaptive  
reference enables the received data over a large range of  
demodulator frequency offsets to be detected.  
The integration circuit consists of a simple R/C low-pass  
filter with on-chip resistor. The level comparator output is  
designed as an open-collector with internal pull-up.  
FSK demodulator  
The limited IF signal is converted into baseband data by  
means of a quadrature FM demodulator consisting of an  
all-pass filter and a mixer stage. No alignment of the  
demodulator is necessary. The demodulator centre  
frequency is set by a capacitor external to the device.  
The demodulator provides a large audio bandwidth in  
order to allow high data rate applications.  
The demodulator can detect a small IF frequency deviation  
even if a relatively large IF frequency offset is  
encountered.  
Power-down circuitry  
The device provides a power-down mode. While in  
power-down mode the device disables the majority of the  
internal circuits and consumes extremely low current.  
Measures are taken to allow fast receiver settling when  
normal operation is resumed. Thus circuits with large time  
constants are only powered down partly or provide a high  
impedance during power-down in order to avoid the  
discharge of external capacitors as much as possible.  
Power-down mode is entered when the control input is  
active HIGH. The control input provides an internal pull-up  
resistor of high impedance.  
Data filters  
After demodulation a two-stage data filtering circuit is  
provided in order to suppress unwanted frequency  
components. Two R/C low-pass filters with on-chip  
resistors are provided which are separated by a buffer  
stage.  
Data slicer  
Data detection is provided by means of a level comparator  
with adaptive slice reference. After the first data filter stage  
the pre-filtered data is split into two parts. One part passes  
the second data filter stage and is fed to the positive  
comparator input.  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL PARAMETER CONDITIONS  
VCC supply voltage  
MIN.  
0.3  
MAX.  
+8.0  
UNIT  
V
Tamb  
Tstg  
operating ambient temperature  
storage temperature  
electrostatic handling  
pins 4 and 5  
40  
55  
+85  
°C  
°C  
+125  
Vesd  
note 1  
2000  
1500  
2000  
+1500  
+2000  
+2000  
V
V
V
pins 18 and 19  
all other pins  
Note  
1. Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth j-a  
PARAMETER  
VALUE  
UNIT  
thermal resistance from junction to ambient in free air  
125  
K/W  
1997 Aug 12  
6
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
DC CHARACTERISTICS  
VCC = 3.5 V; Tamb = 25 °C; for application diagram see Fig.11; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supplies  
VCC  
ICC  
supply voltage  
3.5  
6
V
supply current for  
operating mode on  
note 1  
VPWD = 0 V;  
2.0  
3.4  
4.7  
mA  
R2 = 560 Ω  
operating mode off  
VPWD = VCC  
3
30  
µA  
mV  
V
VPWD(on)  
VPWD(off)  
IPWD(on)  
PWD voltage for operating mode ON  
PWD voltage for operating mode OFF  
PWD current for operating mode ON  
PWD current for operating mode OFF  
0
300  
VCC  
3  
V
CC 0.3 −  
VPWD = 0 V  
VPWD = VCC  
30  
10  
µA  
µA  
IPWD(off)  
1
3
Oscillator  
VOSC(DC)  
Mixer  
DC operating point pin 4  
3.28  
3.34  
3.40  
V
VMXIN(DC)  
VMOP(DC)  
VMON(DC)  
DC operating point pin 18  
DC operating point pin 2  
DC operating point pin 1  
0.68  
2.78  
2.78  
0.78  
2.98  
2.98  
0.88  
3.18  
3.18  
V
V
V
Post mixer amplifier  
VFA(DC)  
DC operating point pin 20  
2.14  
2.27  
2.40  
V
Limiter  
VLIN(DC)  
VLFB(DC)  
VRSSI(DC)  
DC operating point pin 17  
DC operating point pin 16  
DC operating point pin 15  
3.45  
2.76  
2.21  
3.49  
2.81  
2.36  
3.50  
2.86  
2.51  
V
V
V
Demodulator  
VDMOD(DC) DC operating point pin 14  
Data slicer  
1.63  
1.83  
2.03  
V
VCPC(DC)  
VCPA(DC)  
VCPB(DC)  
VOH(DAT)  
VOL(DAT)  
DC operating point pin 13  
DC operating point pin 10  
DC operating point pin 9  
note 2  
1.43  
1.43  
1.43  
1.93  
1.93  
1.93  
2.43  
2.43  
2.43  
VCC  
0.6  
V
V
V
V
V
note 2  
note 2  
HIGH-level data output voltage  
LOW-level data output voltage  
IDATA = 10 µA  
IDATA = 200 µA  
V
0
CC 0.5 −  
RSSI comparator  
VOH(RSSI) HIGH-level comparator output voltage  
VOL(RSSI) LOW-level comparator output voltage  
IRSSI = 10 µA  
IRSSI = 200 µA  
V
0
CC 0.5 −  
VCC  
0.6  
V
V
Notes  
1. The given values are valid for the whole temperature range from Tamb = 40 to +85 °C.  
2. Tune RF input frequency until IF = 1 MHz.  
1997 Aug 12  
7
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
AC CHARACTERISTICS  
VCC = 3.5 V; Tamb = 25 °C; for application diagram see Fig.11; fi = 433.92 MHz; f = ±25 kHz; fmod = 250 Hz square  
wave, i.e. 500 bits/s; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
System performance  
Psens  
Pi(max)  
αrad  
sensitivity  
BER 3%  
2
94  
30  
60  
5
dBm  
dBm  
dBm  
ms  
maximum input power  
spurious radiation  
receiver settling time  
IF bandwidth range  
data frequency  
BER 3%  
note 1  
tst  
Pi = Psens + 10 dB; see Fig.5  
Pi = Psens + 3 dB  
BIF  
850  
140  
1000 1150 kHz  
fD  
250  
Hz  
Mixer  
Gmix  
Ro(mix)  
mixer conversion gain  
mixer output resistance  
31  
33  
3
35  
dB  
2.7  
3.3  
kΩ  
Post mixer amplifier  
IP3PMA  
GPMA  
P<1dB  
BWPMA  
RoPMA  
Limiter  
Glim  
interception point (mixer + PMA)  
note 2  
38  
9
35  
dBm  
dB  
PMA gain  
note 2  
10.4 12  
compression (mixer + PMA)  
PMA LP cut-off frequency  
PMA output resistance  
Pi = 45 dBm  
0
1
dBm  
MHz  
kΩ  
5
1.2  
1.4  
1.6  
limiter gain  
60  
2
63.5 67  
dB  
Blim  
limiter LP cut-off frequency  
limiter input resistance  
5
8
MHz  
kΩ  
Ri(lim)  
40  
50  
60  
Demodulator  
GDMOD  
demodulator gain  
note 2  
0.8  
1
1.2  
mV  
---------  
kHz  
fc(DMOD)  
demodulator centre frequency  
frequency deviation  
800  
20  
1000 1200 kHz  
f  
25  
30  
70  
36  
kHz  
Ro(DMOD) demodulator output resistance  
24  
kΩ  
Data slicer  
BDS  
data slicer bandwidth  
35  
50  
kHz  
Ro(DS)  
data slicer output resistance  
120  
150  
180  
kΩ  
RSSI comparator  
Vo(RSSI)  
RSSI output voltage  
see Fig.3  
see Fig.4  
Vo(COMP) COMP output voltage  
Pth(on)  
threshold for switching COMP output  
99.5 95.5 91.5 dBm  
voltage to HIGH  
Phys(W)  
hysteresis width of COMP output voltage  
1
2
4
dBm  
Notes  
1. Measured at the RF input connector of the test board.  
2. Measured at test point A in Fig.11.  
1997 Aug 12  
8
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
2.8  
V
(1)  
o(RSSI)  
(V)  
2.7  
(2)  
(3)  
2.6  
2.5  
2.4  
100  
90  
80  
70  
60  
50  
P (dBm)  
i
MHA811  
(1) Tamb = 85 °C.  
(2) Tamb = 25 °C.  
(3) Tamb = 40 °C.  
Fig.3 RSSI output voltage as a function of RF input power.  
MHA812  
handbook, halfpage  
V
o(COMP)  
(V)  
P
hys(W)  
3.0  
0.6  
97.5  
95.5  
P (dBm)  
i
P
th(ON)  
Fig.4 Comparator output voltage as a function of HF input power.  
9
1997 Aug 12  
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
INTERNAL CIRCUITRY  
Table 1 Equivalent pin circuits and pin voltages for rough test of printed circuit board; VCC = 3.5 V; no input signal  
DC VOLTAGE  
PIN  
SYMBOL  
EQUIVALENT CIRCUIT  
(V)  
1
2
MON  
MOP  
2.98  
2.98  
V
CC  
1.5 kΩ  
1.5 kΩ  
1
2
V
EE  
MHA798  
V
EM  
3
4
5
VCC  
3.34  
OSC  
OSE  
4
5
6 kΩ  
MHA799  
V
EE  
6
7
8
VEO  
0
0
VEE  
COMP  
V
CC  
1 kΩ  
8
V
MHA800  
EE  
9
CPB  
CPA  
1.93  
1.93  
V
CC  
10  
9
150 kΩ  
150 Ω  
10  
V
EE  
MHA801  
1997 Aug 12  
10  
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
DC VOLTAGE  
PIN  
SYMBOL  
EQUIVALENT CIRCUIT  
(V)  
11  
DATA  
V
CC  
1 kΩ  
11  
V
MHA802  
EE  
12  
PWD  
V
CC  
300 kΩ  
12  
MHA803  
13  
CPC  
1.93  
V
CC  
30 kΩ  
13  
V
EE  
MHA804  
14  
DMOD  
1.83  
V
CC  
14  
V
EE  
MHA805  
1997 Aug 12  
11  
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
DC VOLTAGE  
PIN  
SYMBOL  
EQUIVALENT CIRCUIT  
(V)  
15  
RSSI  
2.36  
V
CC  
MHA806  
15  
16  
LFB  
2.81  
V
CC  
16  
V
EE  
MHA807  
17  
LIN  
3.49  
V
CC  
50 kΩ  
17  
MHA808  
V
EE  
1997 Aug 12  
12  
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
DC VOLTAGE  
PIN  
SYMBOL  
EQUIVALENT CIRCUIT  
(V)  
18  
19  
MXIN  
VEM  
0.78  
0
18  
15 Ω  
19  
MHA809  
20  
FA  
2.27  
V
CC  
1.2 kΩ  
20  
MHA810  
V
EE  
1997 Aug 12  
13  
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
TEST INFORMATION  
Tuning procedure for AC tests  
1. Turn on the signal generator (fi = 433.92 MHz; no modulation; RF input level = 60 dBm).  
2. Tune C6 (RF stage input) to obtain a peak voltage on test point A (see Fig.11).  
3. Turn on modulation (fi = 433.92 MHz; fmod = 250 Hz square wave; f = 25 kHz; RF input level = 60 dBm).  
4. Check that data is appearing on the data output (pin 11) and proceed with the AC tests.  
AC test conditions  
Table 2 Test signals  
The reference signal level Pref for the following tests is defined as the minimum input level in dBm to give a  
BER 3 × 102 (e.g. 15 bit errors per second for 500 bits/s).  
TEST  
SIGNAL  
FREQUENCY  
(MHz)  
FREQUENCY  
DEVIATION  
DATA SIGNAL  
MODULATION  
1
2
3
433.92  
433.92  
433.82  
250 Hz square wave  
FM (FSK)  
25 kHz  
no modulation  
no modulation  
Table 3 Test results  
P1 is the maximum available power from signal generator 1 at the input of the test board; P2 is the maximum available  
power from signal generator 2 at the input of the test board.  
GENERATOR  
TEST  
RESULT  
1
2
Sensitivity into pin MXIN  
(see Fig.6)  
modulated test  
signal 1; P1 ≤ −94 dBm  
BER 3 × 102  
(e.g. 15 bit errors per second for 500 bits/s)  
BER 3 × 102  
(e.g. 15 bit errors per second for 500 bits/s)  
Maximum input power  
(see Fig.6)  
modulated test  
signal 1; P1 ≥ −30 dBm  
(minimum Pmax  
Receiver turn-on time; note 1 test signal 1;  
P1 = Pref + 10 dB  
)
check that the first 10 bits are correct; error  
counting is started 10 ms after PWD  
switched to operating mode: ON  
Intercept point (mixer + PMA) test signal 3;  
test signal 2; IP3 = P1 + 12 × IM3 (dB); IP3 ≥ −38 dBm  
see note 2 and Fig.7  
P1 = 55 dBm  
P2 = P1  
Spurious radiation see note 3  
and Fig.8  
no spurious radiation (25 MHz 1 GHz)  
with level higher than 60 dBm  
(maximum Pspur  
)
1 dB compression point  
(mixer + PMA) see note 2  
and Fig.9  
test signal 3;  
(Po1 + 70 dB) [Po2 + 45 dB (minimum  
P1 dB)] 1 dB, where Po1, Po2 is the output  
power for test signals with P11 or P12,  
respectively  
P11 = 70 dBm;  
P12 = 45 dBm  
(minimum P1dB  
)
Notes  
1. The power-down voltage VPWD alternates between operating mode ON (100 ms) and OFF (100 ms); see Fig.5.  
2. Probe of spectrum analyzer connected to test point A.  
3. Spectrum analyzer connected to the input of the test board.  
1997 Aug 12  
14  
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
MHA834  
V
PWD  
(V)  
3.5  
0
0
100  
200  
300  
400  
500  
t (ms)  
Fig.5 Timing diagram for pulsed power-down voltage.  
GENERATOR 1  
BER TEST  
FACILITY  
(1)  
50 Ω  
TEST CIRCUIT  
(2)  
MED900  
(1) For test circuit see Fig.11.  
(2) For BER test facility see Fig.10.  
Fig.6 Test configuration A (single generator).  
GENERATOR 1  
50 Ω  
SPECTRUM  
ANALYZER  
WITH  
50 Ω  
2-SIGNAL  
POWER  
(1)  
TEST CIRCUIT  
PROBE  
COMBINER  
GENERATOR 2  
50 Ω  
IM3  
f  
f  
f = 100 kHz  
f  
MED901  
(1) For test circuit see Fig.11.  
Fig.7 Test configuration B (IP3).  
15  
1997 Aug 12  
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
SPECTRUM  
ANALYZER  
INPUT IMPEDANCE  
50 Ω  
(1)  
TEST CIRCUIT  
MED902  
(1) For test circuit see Fig.11.  
Fig.8 Test configuration C (spurious radiation).  
GENERATOR 1  
SPECTRUM  
ANALYZER  
WITH  
(1)  
50 Ω  
TEST CIRCUIT  
PROBE  
MED903  
(1) For test circuit see Fig.11.  
Fig.9 Test configuration D (1 dB compression point).  
TX data  
SIGNAL  
GENERATOR  
MASTER  
CLOCK  
BIT PATTERN  
GENERATOR  
PRESET  
DELAY  
delayed  
TX data  
DEVICE  
UNDER TEST  
INTEGRATE  
AND DUMP  
DATA  
COMPARATOR  
to error counter  
RX data  
BER TEST BOARD  
MED904  
Fig.10 BER test facility.  
1997 Aug 12  
16  
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
APPLICATION INFORMATION  
HM8A14  
a
1997 Aug 12  
17  
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
Table 4 Application component list for Fig.11  
COMPONENT  
VALUE  
TOLERANCE  
DESCRIPTION  
R2  
R3  
560 Ω  
220 Ω  
820 kΩ  
4.7 µF  
150 pF  
100 nF  
100 pF  
2.7 pF  
3 to 10 pF  
56 pF  
±2%  
±2%  
TC = 50 ppm/K  
TC = 50 ppm/K  
TC = 50 ppm/K  
R4  
±2%  
C1  
±20%  
±10%  
±10%  
±10%  
±10%  
C2  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
TC = 0 ±150 ppm/K; tan δ ≤ 30 × 104; f = 1 MHz  
TC = 0 ±300 ppm/K; tan δ ≤ 20 × 104; f = 1 MHz  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
TC = 0 ±30 ppm/K; tan δ ≤ 20 × 104; f = 1 MHz  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
tan δ ≤ 25 × 103; f = 1 kHz  
tan δ ≤ 25 × 103; f = 1 kHz  
tan δ ≤ 25 × 103; f = 1 kHz  
TC = 0 ±150 ppm/K; tan δ ≤ 30 × 104; f = 1 MHz  
tan δ ≤ 25 × 103; f = 1 kHz  
TC = 0 ±150 ppm/K; tan δ ≤ 30 × 104; f = 1 MHz  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
TC = 0 ±150 ppm/K; tan δ ≤ 30 × 104; f = 1 MHz  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
tan δ ≤ 25 × 103; f = 1 kHz  
C3  
C4  
C5  
C6  
C7  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
±5%  
C8  
33 pF  
C9  
100 pF  
5.6 pF  
100 pF  
100 nF  
2.2 nF  
33 nF  
C10  
C11  
C12  
C13  
C14  
C16  
C17  
C18  
C19  
C20  
C22  
C23  
C24  
C25  
L1  
3.9 pF  
10 nF  
1.8 pF  
39 pF  
3.3 pF  
18 pF  
47 nF  
±10%  
±5%  
22 pF  
TC = 0 ±30 ppm/K; tan δ ≤ 10 × 104; f = 1 MHz  
tan δ ≤ 25 × 103; f = 1 kHz  
1 nF  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
10 nH  
150 µH  
220 µH  
33 nH  
470 µH  
Q
Q
Q
min = 50 to 450 MHz; TC = 25 to 125 ppm/K  
L2  
min = 45 to 800 kHz; Cstray 1 pF  
L3  
min = 45 to 800 kHz; Cstray 1 pF  
L4  
Qmin = 45 to 450 MHz; TC = 25 to 125 ppm/K  
min = 45 to 800 kHz; Cstray 1 pF  
L5  
Q
Table 5 Surface Acoustic Wave Resonator (SAWR) data  
DESCRIPTION  
SPECIFICATION  
Type  
one-port  
Centre frequency  
Maximum insertion loss  
Typical loaded Q  
Temperature drift  
Turnover temperature  
432.92 MHz ±75 kHz  
1.5 dB  
1600 (50 load)  
0.032 ppm/K2  
43 °C  
1997 Aug 12  
18  
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
LAYOUT OF PRINTED-CIRCUIT BOARD FOR AC APPLICATION  
a. Copper side.  
C5  
L1  
L3  
C6  
C19  
C10  
C9  
C8  
C25  
DATA  
C20  
L2  
POWER  
DOWN  
C13  
C14  
C24 C21  
R2  
L5  
UAA3202M  
COMP  
C2  
C18  
C3  
V
CC  
L4  
C1  
SAWR  
R3  
MHA813  
b. Component side.  
Fig.12 Printed-circuit board layout.  
1997 Aug 12  
19  
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
PACKAGE OUTLINE  
SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm  
SOT339-1  
D
E
A
X
c
H
v
M
A
y
E
Z
20  
11  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
10  
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
max.  
8o  
0o  
0.21  
0.05  
1.80  
1.65  
0.38  
0.25  
0.20  
0.09  
7.4  
7.0  
5.4  
5.2  
7.9  
7.6  
1.03  
0.63  
0.9  
0.7  
0.9  
0.5  
mm  
2.0  
0.25  
0.65  
1.25  
0.2  
0.13  
0.1  
Note  
1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
93-09-08  
95-02-04  
SOT339-1  
MO-150AE  
1997 Aug 12  
20  
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
If wave soldering cannot be avoided, the following  
conditions must be observed:  
SOLDERING  
Introduction  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave)  
soldering technique should be used.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
The longitudinal axis of the package footprint must  
be parallel to the solder flow and must incorporate  
solder thieves at the downstream end.  
Even with these conditions, only consider wave  
soldering SSOP packages that have a body width of  
4.4 mm, that is SSOP16 (SOT369-1) or  
SSOP20 (SOT266-1).  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Reflow soldering  
Reflow soldering techniques are suitable for all SSOP  
packages.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Repairing soldered joints  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
Wave soldering  
Wave soldering is not recommended for SSOP packages.  
This is because of the likelihood of solder bridging due to  
closely-spaced leads and the possibility of incomplete  
solder penetration in multi-lead devices.  
1997 Aug 12  
21  
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1997 Aug 12  
22  
Philips Semiconductors  
Preliminary specification  
Frequency Shift Keying (FSK) receiver  
UAA3202M  
NOTES  
1997 Aug 12  
23  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,  
Fax. +43 160 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Belgium: see The Netherlands  
Brazil: see South America  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. +65 350 2538, Fax. +65 251 6500  
Colombia: see South America  
Czech Republic: see Austria  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 0044  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580920  
South America: Rua do Rocio 220, 5th floor, Suite 51,  
04552-903 São Paulo, SÃO PAULO - SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 829 1849  
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 3 301 6312, Fax. +34 3 301 4107  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 632 2000, Fax. +46 8 632 2745  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2686, Fax. +41 1 481 7730  
Hungary: see Austria  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Indonesia: see Singapore  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,  
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Uruguay: see South America  
Vietnam: see Singapore  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,  
Internet: http://www.semiconductors.philips.com  
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1997  
SCA55  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
547027/1200/01/pp24  
Date of release: 1997 Aug 12  
Document order number: 9397 750 02306  

相关型号:

UAA3202M/V1/S5

IC SPECIALTY TELECOM CIRCUIT, PDSO20, PLASTIC, SOT-339, SSOP-20, Telecom IC:Other
NXP

UAA3220

Frequency Shift Keying FSK/Amplitude Shift Keying ASK receiver
NXP

UAA3220TS

Frequency Shift Keying FSK/Amplitude Shift Keying ASK receiver
NXP

UAA3220TS/V1,118

UAA3220TS - Frequency Shift Keying (FSK)/Amplitude Shift Keying (ASK) receiver SSOP2 24-Pin
NXP

UAA3500

Pager receiver
NXP

UAA3500HL

Pager receiver
NXP

UAA3515A

900 MHz analog cordless telephone IC
NXP

UAA3515AHL

900 MHz analog cordless telephone IC
NXP

UAA3522

Low power dual-band GSM transceiver with an image rejecting front-end
NXP

UAA3522HL

Low power dual-band GSM transceiver with an image rejecting front-end
NXP

UAA3535

Low power GSM/DCS/PCS multi-band transceiver
NXP

UAA3535HL

Low power GSM/DCS/PCS multi-band transceiver
NXP