UAA3500HL [NXP]

Pager receiver; 寻呼接收机
UAA3500HL
型号: UAA3500HL
厂家: NXP    NXP
描述:

Pager receiver
寻呼接收机

寻呼电路 电信集成电路 电信电路 寻呼;传讯 信息通信管理 接收机
文件: 总16页 (文件大小:87K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
UAA3500HL  
Pager receiver  
Preliminary specification  
2000 Jan 18  
Supersedes data of 1999 Mar 30  
File under Integrated Circuits, IC17  
Philips Semiconductors  
Preliminary specification  
Pager receiver  
UAA3500HL  
FEATURES  
The UAA3500HL contains a front-end receiver, which can  
be configured through external components for any  
frequency band between 130 and 930 MHz. The back-end  
receiver consists of the channel filter and limiters. An  
external VCO ensures the Local Oscillator (LO) for the  
front-end. Designed in an advanced BiCMOS process, it  
combines high performance with low-power consumption  
and a high degree of integration, thus reducing external  
component costs and total radio size.  
Double frequency conversion, zero-IF receiver with:  
– Configurable in all paging bands (130 to 930 MHz)  
– Low noise amplifier featured with four step Automatic  
Gain Control (AGC)  
– Down-conversion mixers  
– On-chip, zero-IF channel filter  
– I/Q, non-demodulated outputs  
Its first advantage is to remove the expensive SAW filter  
necessary in a superhet architecture, replacing it by an  
integrated, elliptic channel filter that provides 70 dB  
adjacent channel rejection. The receive front-end section  
consists of a low-noise amplifier that drives mixers through  
an external LC image rejection filter. The output drives the  
I and Q second mixers, whose outputs are at zero  
frequency. The receiver back-end section consists of  
filters (channel filtering), limiters (limited output required)  
and high-pass filters (DC block) to remove DC offsets.  
Outputs are I and Q, undemodulated signals.  
– Highpass filters to remove DC offsets.  
External Voltage Controlled Oscillator (VCO):  
– Both Local Oscillators (LOs) derived from the VCO.  
APPLICATIONS  
FLEXTM, ERMES and POCSAG pagers  
Remote control terminals.  
GENERAL DESCRIPTION  
Its second advantage is to provide the two LO signals from  
one VCO only, tuned by a PLL. An on-chip frequency  
divider-by-2 and buffers provide the LO sources.  
The UAA3500HL is a one-chip pager receiver complying  
with POCSAG, FLEXTM and ERMES standards. The IC  
performs in accordance with specifications in the  
10 to +55 °C temperature range.  
Its third advantage is to provide two voltage regulators,  
allowing to obtain 1.0 and 1.8 V regulated voltages.  
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
VERSION  
UAA3500HL  
LQFP48 plastic low profile quad flat package; 48 leads; body 7 × 7 × 1.4 mm  
SOT313-2  
2000 Jan 18  
2
Philips Semiconductors  
Preliminary specification  
Pager receiver  
UAA3500HL  
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
CONDITIONS(1)  
MIN.  
TYP.  
MAX. UNIT  
VCC1  
supply voltage 1  
(B++;see note 2)  
1.85 2.1  
3.3  
V
VCC2  
supply voltage 2  
(B+; see note 2)  
1.05 1.4  
1.5  
V
ICC1(RX)  
supply current from B++  
supply current from B+  
receiver noise figure  
RF input sensitivity  
RX section on; DC tested  
f
RF = 160 MHz  
RF = 280 MHz  
2.4  
2.4  
3
mA  
mA  
mA  
f
fRF = 930 MHz  
2.35 2.7  
ICC2(RX)  
RX section on; DC tested  
f
RF = 160 MHz  
fRF = 280 MHz  
RF = 930 MHz  
from RF input to 2nd mixer input  
1.3  
1.4  
mA  
mA  
f
1.85 2.3  
2.45 mA  
NFRX  
f
RF = 160 MHz  
RF = 280 MHz  
2.7  
3.1  
4.4  
dB  
dB  
dB  
f
fRF = 930 MHz  
3% BER  
RF = 160 MHz; 1600 bits/s 2-level FSK  
fRF = 280 MHz; 1600 bits/s 2-level FSK  
Pi(ref)  
f
128.5  
128  
126.5  
123  
70  
dBm  
dBm  
dBm  
dBm  
dB  
f
RF = 930 MHz; 6400 bits/s 2-level FSK  
RF = 930 MHz; 6400 bits/s 4-level FSK  
f
ACR  
Tamb  
adjacent channel rejection  
ambient temperature  
65  
10 +25  
+55  
°C  
Notes  
1. For 930 MHz band; for other conditions see Chapters “DC characteristics” and “AC characteristics”.  
2. For B+ and B++, see Fig.3.  
2000 Jan 18  
3
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
ahdnbok,uflapegwidt  
V
)
IMOUTA  
IMINB IMOUTB  
FILINA  
FILOUTA  
CC(DC  
CAPI1A  
CAPI1B  
V
)
FILOUTB  
CC(LO  
V
)
M2GND  
IMINA  
DRV2  
FASTON  
RXON  
CC(FE  
CAPI2A  
CAPI2B  
FILINB  
DRV1  
M1GND  
37 40  
35 36 38 39 42 41 46 47 16 17 18 25 24  
28 23 43 44  
3
4
45  
5
GYROUTI  
VOLTAGE  
REGULATOR  
V
BIAS  
CC(O)  
BUFFER  
2
1
CAPI3A  
CAPI3B  
OUTPUT  
PMA  
33  
32  
6
OUTI  
RSET  
LIMITER  
LIMITER  
×
26  
LNAGND2  
AGCADJ  
LNA  
31  
30  
RFINA  
RFINB  
GYRATOR  
REGULATOR  
34  
27  
×
RSSI  
RSSI  
AGC  
AGCTAU  
29  
21  
LNAGND1  
LOIN  
BUFFER  
7
OUTQ  
LIMITER  
LIMITER  
×
PMA  
OUTPUT  
11  
BUFFER  
CAPQ3A  
CAPQ3B  
0
12  
8
2
UAA3500HL  
BUFFER  
90  
OGND  
15  
GYROUTQ  
BUFFER  
22  
14  
13  
20  
19  
10  
9
48  
BEGND  
FCA022  
LOGND  
GYRCO1  
CAPQ1A  
CAPQ2A  
CAPQ2B  
GYRCO2  
CAPQ1B  
Fig.1 Block diagram.  
Philips Semiconductors  
Preliminary specification  
Pager receiver  
UAA3500HL  
PINNING  
SYMBOL  
CAPI3B  
PIN  
DESCRIPTION  
1
3rd DC filter (I path) external capacitor B (I path)  
3rd DC filter (I path) external capacitor A (I path)  
2nd DC filter (I path) external capacitor A (I path)  
2nd DC filter (I path) external capacitor A (I path)  
output stage supply voltage B++ (I path)  
output I and Q signals (I path)  
output I and Q signals (Q path)  
output stage ground  
CAPI3A  
CAPI2A  
CAPI2B  
VCC(O)  
2
3
4
5
OUTI  
6
OUTQ  
7
OGND  
8
CAPQ2B  
CAPQ2A  
CAPQ3A  
CAPQ3B  
GYRCO2  
GYRCO1  
GYROUTQ  
DRV1  
9
2nd DC filter external capacitor B (Q path)  
2nd DC filter external capacitor A (Q path)  
3rd DC filter external capacitor A (Q path)  
3rd DC filter external capacitor B (Q path)  
external resistor to set-up gyrator filter cut-off frequency  
external resistor to set-up gyrator filter cut-off frequency  
Q-gyrator output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
regulator driver (1.8 V)  
VCC(FE)  
VCC(DC)  
CAPQ1B  
CAPQ1A  
LOIN  
regulated voltage for front-end (1.8 V)  
input voltage from DC-to-DC converter (2.1 V)  
1st DC filter external capacitor (Q path)  
1st DC filter external capacitor (Q path)  
LO input  
LOGND  
FASTON  
VCC(LO)  
DRV2  
LO strip ground  
fast mode enable  
regulated voltage for LO strip (1.0 V)  
regulator driver (1.0)  
AGCADJ  
AGCTAU  
RXON  
AGC loop gain control  
AGC loop time constant  
receiver mode enable  
LNAGND1  
RFINB  
receiver LNA (Low Noise Amplifier) ground 1  
LNA input B  
RFINA  
LNA input A  
LNAGND2  
RSET  
receiver LNA ground 2  
LNA current setup  
RSSI  
received signal strength indicator  
image rejection filter input A  
IMINA  
IMINB  
image rejection filter input B  
M1GND  
IMOUTA  
IMOUTB  
M2GND  
first mixer ground  
image rejection filter output A  
image rejection filter output B  
second mixers ground  
2000 Jan 18  
5
Philips Semiconductors  
Preliminary specification  
Pager receiver  
UAA3500HL  
SYMBOL  
FILINB  
PIN  
DESCRIPTION  
41  
42  
43  
44  
45  
46  
47  
48  
band filter input B  
band filter input A  
FILINA  
CAPI1A  
CAPI1B  
GYROUTI  
FILOUTA  
FILOUTB  
BEGND  
1st DC filter external capacitor (I path)  
1st DC filter external capacitor (I path)  
I-gyrator output  
band filter output to second mixers  
band filter output to second mixers  
receiver back-end ground  
CAPI3B  
CAPI3A  
CAPI2A  
CAPI2B  
1
2
3
4
5
6
7
8
9
36 IMINB  
35 IMINA  
34 RSSI  
33 RSET  
V
32 LNAGND2  
31 RFINA  
30 RFINB  
29 LNAGND1  
28 RXON  
CC(O)  
OUTI  
UAA3500HL  
OUTQ  
OGND  
CAPQ2B  
CAPQ2A 10  
CAPQ3A 11  
CAPQ3B 12  
27 AGCTAU  
26 AGCADJ  
25 DRV2  
FCA023  
Fig.2 Pin configuration.  
6
2000 Jan 18  
Philips Semiconductors  
Preliminary specification  
Pager receiver  
UAA3500HL  
FUNCTIONAL DESCRIPTION  
Receiver front-end section  
The first, second and third DC block frequencies are set at  
4, 8 and 12 Hz respectively by external 330 nF capacitors.  
The two voltage regulators are also activated by RXON.  
The receiver front-end consists of an LNA, followed by the  
first and the second mixers. For operation at low frequency  
(160 and 280 MHz, for instance), the first mixer can be  
bypassed, saving some current. The image rejection is  
done by an external LC filter placed between the LNA, the  
first mixer and the antenna selectivity. The IF band is  
filtered by an external filter placed between the first mixer  
and the second mixers for the I and Q paths. The  
At the output of the gyrator filter, the signal is buffered and  
logarithmically converted. It then controls the AGC loop.  
To rapidly reach the DC operating point, a fast mode is  
built into the three DC blocks.  
LO  
RF signals are in phase, and the LO signals are shifted  
by 90°. The output signals are at zero frequency.  
The external VCO is AC-coupled at input LOIN. It is then  
buffered to drive the first mixer. LOIN also enters a  
quadrature divider-by-2, whose output signals are also  
buffered to drive the second mixers. The VCO frequency  
should be 23 of the input RF signal.  
To increase the immunity to interferers, an AGC loop  
controls the LNA gain by attenuating the RF input signal.  
Four steps of attenuation are possible (each having 8 dB),  
ranging therefore from 0 to 32 dB. The AGC loop  
threshold level and time constant may be controlled  
externally at pins AGCADJ and AGCTAU. The second  
LO I/Q phase shift is made by a quadrature divider, whose  
input is the VCO oscillating signal.  
The LO signal must be generated with an external  
frequency synthesizer and VCO or with a crystal oscillator.  
OPERATING MODES  
To use the IC, all VCC pins must be connected to the  
supply voltage B++ (2.1 V). The 1.8 V regulated voltage  
sinks current from B++ and the 1.0 V regulated voltage  
from B+ (1.4 V). In a typical application, the B+ supply is  
the battery and the B++ supply is the DC/DC converter  
located in the baseband chip.  
The LNA current is setup by an external resistor. All the  
receivers (front-end and back-end) are turned on by  
pin RXON.  
Receiver back-end section  
The down-converted signal is amplified and then filtered  
by a Sallen-Key filter, which shows a notch at 15 kHz and  
about 6 dB rejection out-of-band. Then comes the first  
high-pass filter (DC block), followed by the gyrator filter,  
which performs an elliptic, 7-pole low-pass filtering. The  
signal is then amplified by the first limiter, filtered by the  
second DC block, amplified again, and filtered again by  
the third DC block. Finally, an output stage delivers the  
signal with rail-to-rail logic levels.  
In normal operating mode, the receiver should be  
powered-on in fast mode. The fast mode can be turned off  
after several milliseconds.  
Table 1 gives the definition of the polarity of the switching  
signals on the receive section.  
Table 1 Switching signals on the receiver  
SIGNAL  
RXON  
SECTION  
LEVEL  
HIGH  
LOW  
ON/OFF  
on  
receive section powered-on  
receive section powered-off  
fast mode powered-on  
off  
FASTON  
HIGH  
LOW  
on  
fast mode powered-off  
off  
2000 Jan 18  
7
Philips Semiconductors  
Preliminary specification  
Pager receiver  
UAA3500HL  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
MAX.  
UNIT  
VCC  
supply voltage  
6
V
GND  
difference in ground supply voltage applied between note 1  
all grounds  
0.3  
V
Pl(max)  
Tj(max)  
P(max)  
Tstg  
maximum power input  
20  
dBm  
°C  
maximum operating junction temperature  
150  
500  
+150  
maximum power dissipation  
storage temperature  
in stagnant air at 25 °C −  
65  
mW  
°C  
Note  
1. Pins short circuited internally must be short circuited externally.  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth(j-a)  
PARAMETER  
CONDITIONS  
VALUE  
UNIT  
K/W  
thermal resistance from junction to ambient  
in free air  
90  
HANDLING  
All pins withstand the ESD test in accordance with “MIL-STD-883C class 2 (method 3015.5)”.  
DC CHARACTERISTICS  
VCC = 2.1 V; Tamb = 25 °C; 930 MHz band application, 3% BER and 1600 bits/s 2 level; unless otherwise specified.  
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT  
Pins: VCC(O), DRV1, VCC(FE), VCC(DC), VCC(LO) and DRV2  
VCC1  
supply voltage 1  
(B++; see note 1)  
over full temperature range  
over full temperature range  
RX section on; DC tested  
1.85  
2.1  
3.3  
V
VCC2  
supply voltage 2  
(B+; see note 1)  
1.05  
1.4  
1.5  
V
ICC1(RX)  
supply current from B++  
f
RF = 160 MHz  
fRF = 280 MHz  
RF = 930 MHz  
RX section on; DC tested  
RF = 160 MHz  
fRF = 280 MHz  
RF = 930 MHz  
standby current from B++ Power-down mode; DC tested  
standby current from B+ Power-down mode; DC tested  
2.4  
2.4  
2.7  
3
mA  
mA  
mA  
f
2.35  
ICC2(RX)  
supply current from B+  
f
1.3  
mA  
mA  
mA  
µA  
1.4  
f
1.85  
0
2.3  
2.45  
1
ICC1(pd)  
ICC2(pd)  
0.01  
0.01  
0
0.5  
µA  
2000 Jan 18  
8
Philips Semiconductors  
Preliminary specification  
Pager receiver  
UAA3500HL  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Pins: RXON, FASTON, OUTI and OUTQ  
VIH  
VIL  
IIH  
HIGH-level voltage  
V
CC 0.3 VCC  
VCC + 0.3  
+0.4  
+1  
V
LOW-level voltage  
0.3  
1  
V
HIGH-level static current  
LOW-level static current  
V
CC 0.4 V  
µA  
µA  
IIL  
pin at 0.4 V  
1  
+1  
Pins: CAPI1A, CAPI1B, CAPQ1A and CAPQ1B  
VCAP DC level RX section on  
Pins: CAPI2A, CAPI2B, CAPQ2A, CAPQ2B  
VCAP DC level RX section on  
Pins: CAPI3A, CAPI3B, CAPQ3A, CAPQ3B  
VCAP DC level  
Pins: RFINA and RFINB  
VRF DC level  
Pins: IMOUTA and IMOUTB  
VIMOUT DC level  
Pins: VCC(LO)  
1.20  
1.40  
1.30  
1.40  
1.57  
1.57  
0.92  
0.17  
1.00  
1.80  
0.24  
1.60  
1.80  
1.90  
V
V
V
V
V
V
V
V
RX section on  
RX section on  
RX section on  
RX section on  
RX section on  
RX section on  
VVcc(lo)  
DC level  
0.95  
1.75  
1.05  
1.85  
Pins: VCC(FE)  
VVcc(fe)  
DC level  
Pins: FILOUTA and FILOUTB  
VFILOUT  
DC level  
Pins: AGCTAU and RSSI  
VRSSI  
DC level  
DC level  
RX section on; FASTON is LOW −  
0
0.30  
V
V
RX section on;  
V
CC 0.3 VCC  
FASTON is HIGH  
VAGCTAU  
RX section on;  
FASTON is HIGH  
1.50  
1.37  
1.60  
1.42  
1.70  
1.47  
V
Pins: GYROUTI and GYROUTQ  
VGYROUT DC level  
Output stage  
RX section on  
V
VOH  
VOL  
HIGH-level output voltage Io = 5 µA  
LOW-level output voltage Io = 5 µA  
V
CC 0.2 −  
V
V
0.2  
Note  
1. For B+ and B++, see Fig.3.  
2000 Jan 18  
9
Philips Semiconductors  
Preliminary specification  
Pager receiver  
UAA3500HL  
AC CHARACTERISTICS  
VCC = 2.1 V; Tamb = 25 °C; 930 MHz band application, 3% BER and 1600 bits/s 2 level; on evaluation board according  
to Fig.3; system measurement done using PCD5009, PCD5010 baseband; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
Receiver  
Pi(ref)  
RF input sensitivity  
3% BER  
f
RF = 160 MHz; 1600 bits/s 2-level FSK  
RF = 280 MHz; 1600 bits/s 2-level FSK  
128.5  
128  
dBm  
dBm  
dBm  
dBm  
f
fRF = 930 MHz; 6400 bits/s 2-level FSK  
RF = 930 MHz; 6400 bits/s 4-level FSK  
126.5  
123  
f
G(PCFE)  
front-end conversion power  
gain  
from RF input to 2nd mixer input  
fRF = 160 MHz  
20  
dB  
dB  
dB  
f
RF = 280 MHz  
RF = 930 MHz  
12.8  
12.7  
f
NFRX  
receiver noise figure  
from RF input to 2nd mixer input  
f
f
f
RF = 160 MHz  
RF = 280 MHz  
RF = 930 MHz  
2.7  
3.1  
4.4  
38  
dB  
dB  
dB  
IP1  
1 dB input compression point from RF input to 2nd mixer input  
dBm  
dBm  
dBm  
dB  
IP2  
2nd order intercept point  
3rd order intercept point  
3rd order intermodulation  
co-channel rejection  
from 2nd mixer input to gyrator output  
from RF input to 2nd mixer input; note 1  
3 signal measurement  
45  
IP3  
33  
IM3  
CCR  
ACR  
55  
threshold +3 dB  
5
dB  
adjacent channel rejection  
channel spacing = 25 kHz; from RF input 65  
to gyrator output  
70  
dB  
αbl  
blocking immunity  
frequency offset >1 MHz  
75  
7
80  
8
dB  
dB  
GAGC  
front-end gain reduction by  
AGC step  
9
AGCth  
ton  
AGC threshold  
above sensitivity  
20  
25  
30  
30  
2
dB  
ms  
dB  
kΩ  
kΩ  
kΩ  
kΩ  
establishment time  
IQ channel unbalance  
LNA current set resistor  
until sensitivity +3 dB is reached  
IQ  
RLNA  
160 MHz  
56  
47  
27  
47  
280 MHz  
930 MHz  
Rgyr  
gyrator cut-off frequency set  
resistor  
cut-off frequency = 8.5 kHz  
LO  
fVCO  
VCO frequency  
23fRF  
MHz  
2000 Jan 18  
10  
Philips Semiconductors  
Preliminary specification  
Pager receiver  
UAA3500HL  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
LNA  
GLNA  
RF amplifier power gain  
from RF input to image filter output  
f
RF = 160 MHz  
RF = 280 MHz  
20  
dB  
dB  
dB  
f
16.2  
fRF = 930 MHz  
12.5 14.2  
NFLNA  
RF amplifier noise figure  
from RF input to image filter output  
f
RF = 160 MHz  
fRF = 280 MHz  
RF = 930 MHz  
1 dB input compression point from RF input to image filter output  
1.8  
dB  
1.9  
dB  
f
2.2  
2.5  
dB  
IP1LNA  
IP3LNA  
27  
17.6  
dBm  
dBm  
3rd order intercept point  
from RF input to image filter output  
21  
First mixer  
GFM  
1st mixer power gain  
0.5  
0
dB  
NFFM  
IP1FM  
IP3FM  
1st mixer noise figure  
10.2  
22  
13  
dB  
1 dB input compression point  
3rd order intercept point  
dBm  
dBm  
12.5 11  
Second mixer, PMA, Sallen-Key, 1st DC block and gyrator filter  
GvBE  
IP3BE  
voltage gain  
from 2nd mixer input to gyrator output  
from 2nd mixer input to gyrator output  
42  
45  
dB  
3rd order intercept point  
59  
dBm  
1st DC block  
fcut-off cut-off frequency  
measured at gyrator output;  
FASTON is LOW  
4
Hz  
Hz  
fcut-off  
cut-off frequency  
measured at gyrator output;  
FASTON is HIGH  
150  
400  
Note  
1. The two tones for intermodulation test would normally be set at 2 and 4 or 4 and 8 channels for type approval tests  
i.e 930 and 930.1 or 930.1 and 930.2 MHz.  
2000 Jan 18  
11  
Philips Semiconductors  
Preliminary specification  
Pager receiver  
UAA3500HL  
APPLICATION INFORMATION  
BAND  
FILTER  
GYROUTI  
330 nF  
IMAGE  
FILTER  
48 47  
45 44  
41 40  
37  
46  
43 42  
39 38  
IMINB  
IMINA  
RSSI  
36  
35  
34  
33  
32  
31  
CAP13B  
1
2
330 nF  
CAP13A  
CAP12A  
RSSI  
LNA  
3
R
RSET  
330 nF  
B++  
CAP12B  
4
LNAGND2  
RFINA  
V
CC(O)  
5
OUTI  
6
OUTI  
UAA3500HL  
RFIN  
OUTQ  
7
OUTQ  
RFINB  
30  
29  
OGND  
8
LNAGND1  
RXON  
CAPQ2B  
9
28  
27  
26  
25  
RXON  
10 nF  
330 nF  
330 nF  
CAPQ2A  
CAPQ3A  
AGCTAU  
10  
11  
12  
AGCADJ  
DRV2  
B+  
CAPQ3B  
100  
k  
15  
kΩ  
13  
14 15 16 17 18 19  
21 22 23  
24  
20  
B++  
47 kΩ  
GYROUTQ  
330 nF  
FASTON  
100 pF  
10 µF  
100 pF  
10 nF  
VCO  
10 µF  
100 kΩ  
FCA024  
B++  
Electrical diagram of the UAA3500HL demonstration board for FLEXTM applications. All matching is to 50 for measurement purposes.  
B+ = 1.4 V; B++ = 2.1 V.  
Fig.3 Demonstration board diagram.  
2000 Jan 18  
12  
Philips Semiconductors  
Preliminary specification  
Pager receiver  
UAA3500HL  
PACKAGE OUTLINE  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
c
y
X
36  
25  
A
E
37  
24  
Z
E
e
H
E
A
2
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
L
13  
48  
detail X  
1
12  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 7.1  
0.17 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
1.60  
mm  
0.25  
0.5  
1.0  
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
97-08-01  
99-12-27  
SOT313-2  
MS-026  
2000 Jan 18  
13  
Philips Semiconductors  
Preliminary specification  
Pager receiver  
UAA3500HL  
SOLDERING  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
Typical dwell time is 4 seconds at 250 °C. A  
mildly-activated flux will eliminate the need for removal of  
corrosive residues in most applications.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
Manual soldering  
Wave soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
2000 Jan 18  
14  
Philips Semiconductors  
Preliminary specification  
Pager receiver  
UAA3500HL  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
WAVE  
REFLOW(1)  
BGA, SQFP  
not suitable  
suitable  
suitable  
suitable  
suitable  
suitable  
HLQFP, HSQFP, HSOP, HTSSOP, SMS not suitable(2)  
PLCC(3), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
not recommended(3)(4)  
not recommended(5)  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
2000 Jan 18  
15  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
69  
SCA  
© Philips Electronics N.V. 2000  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
465008/02/pp16  
Date of release: 2000 Jan 18  
Document order number: 9397 750 06478  

相关型号:

UAA3515A

900 MHz analog cordless telephone IC
NXP

UAA3515AHL

900 MHz analog cordless telephone IC
NXP

UAA3522

Low power dual-band GSM transceiver with an image rejecting front-end
NXP

UAA3522HL

Low power dual-band GSM transceiver with an image rejecting front-end
NXP

UAA3535

Low power GSM/DCS/PCS multi-band transceiver
NXP

UAA3535HL

Low power GSM/DCS/PCS multi-band transceiver
NXP

UAA3535HL

Telecom IC, PQFP48
PHILIPS

UAA3540

DECT receiver
NXP

UAA3540TS

DECT receiver
NXP

UAA3545

Fully integrated DECT transceiver
NXP

UAA3545HL

Fully integrated DECT transceiver
NXP

UAA3545HL/C1,118

IC TELECOM, CORDLESS, RF AND BASEBAND CIRCUIT, PQFP32, 5 X 5 X 1.40 MM, PLASTIC, LQFP-32, Cordless Telephone IC
NXP