MC44603ADWR2G [ONSEMI]

Enhanced Mixed Frequency Mode GreenLine TM PWM Controller:Fixed Frequency, Variable Frequency,Standby Mode; 增强的混合频率模式GREENLINE TM PWM控制器:固定频率,变频,待机模式
MC44603ADWR2G
型号: MC44603ADWR2G
厂家: ONSEMI    ONSEMI
描述:

Enhanced Mixed Frequency Mode GreenLine TM PWM Controller:Fixed Frequency, Variable Frequency,Standby Mode
增强的混合频率模式GREENLINE TM PWM控制器:固定频率,变频,待机模式

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总22页 (文件大小:260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC44603A  
Enhanced Mixed Frequency  
Mode GreenLinet PWM  
Controller:  
Fixed Frequency, Variable Frequency,  
Standby Mode  
http://onsemi.com  
MARKING  
The MC44603A is an enhanced high performance controller that is  
specifically designed for off−line and dc−to−dc converter applications.  
This device has the unique ability of automatically changing operating  
modes if the converter output is overloaded, unloaded, or shorted,  
offering the designer additional protection for increased system  
reliability. The MC44603A has several distinguishing features when  
compared to conventional SMPS controllers. These features consist of  
a foldback facility for overload protection, a standby mode when the  
converter output is slightly loaded, a demagnetization detection for  
reduced switching stresses on transistor and diodes, and a high current  
totem pole output ideally suited for driving a power MOSFET. It can  
also be used for driving a bipolar transistor in low power converters  
(< 150 W). It is optimized to operate in discontinuous mode but can  
also operate in continuous mode. Its advanced design allows use in  
current mode or voltage mode control applications.  
DIAGRAMS  
16  
MC44603AP  
AWLYYWWG  
16  
PDIP−16  
P SUFFIX  
CASE 648  
1
1
16  
MC44603ADW  
AWLYYWWG  
Features  
16  
Pb−Free Packages are Available*  
SOIC−16  
DW SUFFIX  
CASE 751G  
1
Current or Voltage Mode Controller  
Operation up to 250 kHz Output Switching Frequency  
Inherent Feed Forward Compensation  
Latching PWM for Cycle−by−Cycle Current Limiting  
Oscillator with Precise Frequency Control  
1
A
= Assembly Location  
= Wafer Lot  
WL  
YY  
WW  
G
= Year  
High Flexibility  
= Work Week  
= Pb−Free Package  
Externally Programmable Reference Current  
Secondary or Primary Sensing7  
Synchronization Facility  
PIN CONNECTIONS  
High Current Totem Pole Output  
V
1
2
16  
15  
14  
R
R
CC  
ref  
Undervoltage Lockout with Hysteresis  
Safety/Protection Features  
Frequency  
V
C
Standby  
Voltage Feedback  
Input  
Output  
GND  
3
4
5
6
7
Overvoltage Protection Against Open Current and Open Voltage Loop  
Protection Against Short Circuit on Oscillator Pin  
Fully Programmable Foldback  
13 Error Amp Output  
R
Foldback Input  
Overvoltage  
Protection (OVP)  
12  
11  
10  
Power Standby  
Soft−Start/D  
max  
Voltage Mode  
/
Soft−Start Feature  
Accurate Maximum Duty Cycle Setting  
Demagnetization (Zero Current Detection) Protection  
Internally Trimmed Reference  
Current Sense Input  
C
T
Demag Detection  
8
9
Sync Input  
(Top View)  
Enhanced Output Drive  
GreenLine Controller: Low Power Consumption in Standby Mode  
Low Startup and Operating Current  
Fully Programmable Standby Mode  
Controlled Frequency Reduction in Standby Mode  
Low dV/dT for Low EMI Radiations  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 21 of this data sheet.  
*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
©
Semiconductor Components Industries, LLC, 2005  
1
Publication Order Number:  
November, 2005 − Rev. 4  
MC44603A/D  
MC44603A  
MAXIMUM RATINGS  
Rating  
Symbol  
(I + I )  
Value  
30  
Unit  
mA  
V
Total Power Supply and Zener Current  
CC  
Z
Supply Voltage with Respect to Ground (Pin 4)  
V
18  
C
V
CC  
Output Current (Note 1)  
Source  
mA  
I
−750  
750  
O(Source)  
Sink  
I
O(Sink)  
Output Energy (Capacitive Load per Cycle)  
W
5.0  
J  
V
R
F Stby  
, C , Soft−Start, R , R  
Inputs  
V
in  
V
in  
−0.3 to 5.5  
T
ref  
P Stby  
Foldback Input, Current Sense Input,  
E/A Output, Voltage Feedback Input,  
Overvoltage Protection, Synchronization Input  
V
−0.3 to V + 0.3  
CC  
Synchronization Input  
High State Voltage  
V
V
+ 0.3  
CC  
V
IH  
Low State Reverse Current  
Demagnetization Detection Input Current  
Source  
V
−20  
mA  
mA  
IL  
I
−4.0  
10  
demag−ib (Source)  
Sink  
I
demag−ib (Sink)  
Error Amplifier Output Sink Current  
Power Dissipation and Thermal Characteristics  
P Suffix, Dual−In−Line, Case 648  
I
20  
mA  
E/A (Sink)  
Maximum Power Dissipation at T = 85°C  
P
0.6  
W
A
D
Thermal Resistance, Junction−to−Air  
DW Suffix, Surface Mount, Case 751G  
R
JA  
100  
°C/W  
Maximum Power Dissipation at T = 85°C  
P
0.45  
145  
150  
W
°C/W  
°C  
A
D
Thermal Resistance, Junction−to−Air  
Operating Junction Temperature  
R
JA  
T
J
Operating Ambient Temperature  
T
A
−25 to +85  
°C  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
1. ESD data available upon request.  
http://onsemi.com  
2
MC44603A  
ELECTRICAL CHARACTERISTICS (V and V = 12 V, (Note 2), R = 10 k, C = 820 pF, for typical values T =  
CC  
C
ref  
T
A
25°C, for min/max values T = −25° to +85°C (Note 3), unless otherwise noted.)  
A
Characteristic  
OUTPUT SECTION  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (Note 4)  
V
Low State (I  
Low State (I  
= 100 mA)  
= 500 mA)  
V
1.0  
1.4  
1.2  
2.0  
Sink  
Sink  
OL  
High State (I  
High State (I  
= 200 mA)  
= 500 mA)  
V
1.5  
2.0  
2.0  
2.7  
Source  
Source  
OH  
Output Voltage During Initialization Phase  
V
V
OL  
V
V
V
= 0 to 1.0 V, I  
= 1.0 to 5.0 V, I  
= 5.0 to 13 V, I  
= 10 A  
Sink  
0.1  
0.1  
1.0  
1.0  
1.0  
CC  
CC  
CC  
= 100 A  
Sink  
Sink  
= 1.0 mA  
Output Voltage Rising Edge Slew−Rate (C = 1.0 nF, T = 25°C)  
dVo/dT  
dVo/dT  
300  
V/s  
V/s  
L
J
Output Voltage Falling Edge Slew−Rate (C = 1.0 nF, T = 25°C)  
−300  
L
J
ERROR AMPLIFIER SECTION  
Voltage Feedback Input (V  
= 2.5 V)  
V
2.42  
−2.0  
65  
2.5  
−0.6  
70  
2.58  
V
A  
E/A out  
FB  
Input Bias Current (V = 2.5 V)  
I
FB−ib  
FB  
Open Loop Voltage Gain (V  
Unity Gain Bandwidth  
= 2.0 to 4.0 V)  
A
VOL  
dB  
E/A out  
BW  
MHz  
T = 25°C  
4.0  
J
T = −25° to +85°C  
J
5.5  
10  
Voltage Feedback Input Line Regulation (V = 10 to 15 V)  
V
−10  
mV  
mA  
CC  
FBline−reg  
Output Current  
Sink (V  
T = −25° to +85°C  
A
= 1.5 V, V = 2.7 V)  
I
Sink  
2.0  
12  
E/A out  
FB  
Source (V  
= 5.0 V, V = 2.3 V)  
I
Source  
−2.0  
−0.2  
E/A out  
FB  
T = −25° to +85°C  
A
Output Voltage Swing  
V
High State (I  
Low State (I  
= 0.5 mA, V = 2.3 V)  
V
OH  
5.5  
6.5  
1.0  
7.5  
1.1  
E/A out (source)  
FB  
= 0.33 mA, V = 2.7 V)  
V
OL  
E/A out (sink)  
FB  
REFERENCE SECTION  
Reference Output Voltage (V = 10 to 15 V)  
V
2.4  
−500  
−40  
2.5  
2.6  
−100  
40  
V
CC  
ref  
Reference Current Range (I = V /R , R = 5.0 k to 25 k)  
I
A  
mV  
ref  
ref ref  
ref  
Reference Voltage Over I Range  
V
ref  
ref  
OSCILLATOR AND SYNCHRONIZATION SECTION  
Frequency  
f
kHz  
OSC  
T = 0° to +70°C  
44.5  
44  
48  
51.5  
52  
A
T = −25° to +85°C  
A
Frequency Change with Voltage (V = 10 to 15 V)  
f  
f  
/V  
/T  
0.05  
0.05  
%/V  
CC  
OSC  
Frequency Change with Temperature (T = −25° to +85°C)  
%/°C  
A
OSC  
2. Adjust V above the startup threshold before setting to 12 V.  
CC  
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
4. V must be greater than 5.0 V.  
C
5. Standby is disabled for V  
< 25 mV typical.  
R P Stby  
6. If not used, Synchronization input must be connected to Ground.  
7. Synchronization Pulse Width must be shorter than t = 1/f  
.
OSC  
OSC  
8. This function can be inhibited by connecting Pin 8 to GND. This allows a continuous current mode operation.  
9. This function can be inhibited by connecting Pin 5 to V  
.
CC  
10.The MC44603A can be shut down by connecting the Soft−Start pin (Pin 11) to Ground.  
http://onsemi.com  
3
MC44603A  
ELECTRICAL CHARACTERISTICS (continued) (V and V = 12 V, (Note 2), R = 10 k, C = 820 pF, for typical values T =  
CC  
C
ref  
T
A
25°C, for min/max values T = −25° to +85°C (Note 3), unless otherwise noted.)  
A
Characteristic  
OSCILLATOR AND SYNCHRONIZATION SECTION  
Oscillator Voltage Swing (Peak−to−Peak)  
Ratio Charge Current/Reference Current  
T = 0° to +70°C (V = 2.0 V)  
Symbol  
Min  
Typ  
Max  
Unit  
V
1.65  
1.8  
1.95  
V
OSC(pp)  
I
/I  
charge ref  
0.375  
0.37  
78  
0.4  
0.425  
0.43  
82  
A
CT  
T = −25° to +85°C  
A
Fixed Maximum Duty Cycle = I  
/(I  
+ I  
)
charge  
D
80  
%
discharge discharge  
Ratio Standby Discharge Current versus I  
(Note 5)  
I
/
disch−Stby  
R F Stby  
T = 0° to +70°C  
I
0.46  
0.43  
2.4  
0.53  
0.6  
0.63  
2.6  
A
R F Stby  
T = −25° to +85°C (Note 8)  
A
V
(I  
= 100 A)  
V
2.5  
21  
V
kHz  
A  
V
R F Stby R F Stby  
R F Stby  
Frequency in Standby Mode (R  
Current Range  
(Pin 15) = 25 k)  
F
18  
24  
F Stby  
Stby  
R F Stby  
I
−200  
−50  
Synchronization Input Threshold Voltage (Note 6)  
V
V
3.2  
0.45  
3.7  
0.7  
4.3  
0.9  
inthH  
inthL  
Synchronization Input Current  
I
−5.0  
0
A  
s  
Sync−in  
Minimum Synchronization Pulse Width (Note 7)  
UNDERVOLTAGE LOCKOUT SECTION  
Startup Threshold  
t
0.5  
Sync  
V
13.6  
14.5  
15.4  
V
V
stup−th  
Output Disable Voltage After Threshold Turn−On (UVLO 1)  
V
disable1  
T = 0° to +70°C  
8.6  
8.3  
7.0  
9.0  
9.4  
9.6  
8.0  
A
T = −25° to +85°C  
A
Reference Disable Voltage After Threshold Turn−On (UVLO 2)  
DEMAGNETIZATION DETECTION SECTION (Note 8)  
Demagnetization Detect Input  
V
7.5  
V
disable2  
Demagnetization Comparator Threshold (V  
Decreasing)  
V
50  
65  
0.25  
80  
mV  
s  
A  
V
Pin 9  
demag−th  
Propagation Delay (Input to Output, Low to High)  
Input Bias Current (V  
= 65 mV)  
I
−0.5  
demag  
demag−lb  
Negative Clamp Level (I  
= −2.0 mA)  
C
C
−0.38  
0.72  
demag  
L(neg)  
L(pos)  
Positive Clamp Level (I  
= 2.0 mA)  
V
demag  
SOFT−START SECTION (Note 10)  
Ratio Charge Current/I  
I
/I  
ss(ch) ref  
ref  
T = 0° to +70°C  
0.37  
0.36  
1.5  
0.4  
0.43  
0.44  
A
T = −25° to +85°C  
A
Discharge Current (V  
Clamp Level  
= 1.0 V)  
I
5.0  
2.4  
mA  
V
soft−start  
discharge  
V
2.2  
2.6  
ss(CL)  
2. Adjust V above the startup threshold before setting to 12 V.  
CC  
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
4. V must be greater than 5.0 V.  
C
5. Standby is disabled for V  
< 25 mV typical.  
R P Stby  
6. If not used, Synchronization input must be connected to Ground.  
7. Synchronization Pulse Width must be shorter than t = 1/f  
.
OSC  
OSC  
8. This function can be inhibited by connecting Pin 8 to GND. This allows a continuous current mode operation.  
9. This function can be inhibited by connecting Pin 5 to V  
.
CC  
10.The MC44603A can be shut down by connecting the Soft−Start pin (Pin 11) to Ground.  
http://onsemi.com  
4
MC44603A  
ELECTRICAL CHARACTERISTICS (continued) (V and V = 12 V, (Note 2), R = 10 k, C = 820 pF, for typical values T =  
CC  
C
ref  
T
A
25°C, for min/max values T = −25° to +85°C (Note 3), unless otherwise noted.)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
SOFT−START SECTION (Note 10)  
Duty Cycle (R  
Duty Cycle (V  
= 12 k)  
D
36  
42  
49  
0
%
soft−start  
soft−start (Pin 11)  
soft−start 12k  
D
soft−start  
= 0.1 V)  
OVERVOLTAGE SECTION  
Protection Threshold Level on V  
V
2.42  
1.0  
2.5  
2.58  
3.0  
V
s  
V
OVP  
OVP−th  
Propagation Delay (V  
Protection Level on V  
> 2.58 V to V Low)  
out  
OVP  
CC  
V
CC prot  
T = 0° to +70°C  
16.1  
15.9  
17  
17.9  
18.1  
A
T = −25° to +85°C  
A
Input Resistance  
kꢂ  
T = 0° to +70°C  
1.5  
1.4  
2.0  
3.0  
3.4  
A
T = −25° to +85°C  
A
FOLDBACK SECTION (Note 9)  
Current Sense Voltage Threshold (V  
= 0.9 V)  
V
0.86  
−6.0  
0.89  
−2.0  
0.9  
V
foldback (Pin 5)  
CS−th  
Foldback Input Bias Current (V  
= 0 V)  
I
A  
foldback (Pin 5)  
foldback−lb  
STANDBY SECTION  
Ratio I  
/I  
I
/I  
R P Stby ref  
R P Stby ref  
T = 0° to +70°C  
A
0.37  
0.36  
0.4  
0.43  
0.44  
T = −25° to +85°C  
A
Ratio Hysteresis (V Required to Return to Normal Operation from  
V /V  
h R P Stby  
h
Standby Operation)  
T = 0° to +70°C  
1.42  
1.4  
1.5  
1.58  
1.6  
A
T = −25° to +85°C  
A
Current Sense Voltage Threshold (V  
= 1.0 V)  
V
0.28  
0.31  
0.34  
V
V
R P Stby (Pin 12)  
CS−Stby  
CURRENT SENSE SECTION  
Maximum Current Sense Input Threshold  
(V = 2.3 V and V  
V
0.96  
1.0  
1.04  
CS−th  
= 1.2 V)  
foldback (Pin 6)  
feedback (Pin 14)  
Input Bias Current  
I
−10  
−2.0  
120  
A
CS−ib  
Propagation Delay (Current Sense Input to Output at V of  
200  
ns  
TH  
MOS transistor = 3.0 V)  
TOTAL DEVICE  
Power Supply Current  
I
mA  
CC  
Startup (V = 13 V with V Increasing)  
13  
0.3  
17  
0.45  
20  
CC  
CC  
Operating T = −25° to +85°C (Note 2)  
A
Power Supply Zener Voltage (I = 25 mA)  
V
18.5  
V
CC  
Z
Thermal Shutdown  
155  
°C  
2. Adjust V above the startup threshold before setting to 12 V.  
CC  
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
4. V must be greater than 5.0 V.  
C
5. Standby is disabled for V  
< 25 mV typical.  
R P Stby  
6. If not used, Synchronization input must be connected to Ground.  
7. Synchronization Pulse Width must be shorter than t = 1/f  
.
OSC  
OSC  
8. This function can be inhibited by connecting Pin 8 to GND. This allows a continuous current mode operation.  
9. This function can be inhibited by connecting Pin 5 to V  
.
CC  
10.The MC44603A can be shut down by connecting the Soft−Start pin (Pin 11) to Ground.  
http://onsemi.com  
5
 
MC44603A  
R
R
ref  
F Stby  
R
15 16 V  
ref  
F Stby  
Negative  
Active  
Clamp  
R
S
Q
UVLO2  
Demag  
Detect  
V
CC  
V
aux  
8
1
+
18.0 V  
+
65 mV  
V
Demag Out  
V
+
CC  
Reference  
Block  
3.7 V  
Sync  
Input  
Synchro  
14.5 V/7.5 V  
V
ref  
To Power  
Transformer  
9
+
V
ref  
I
ref  
I
F Stby  
V
0.4 I  
OSC prot  
0.7 V  
ref  
1.0 V  
R
V
C
Q
1.6 V  
S
2
C
T
R
S
Q
10  
+
V
OSC  
Output  
C
3.6 V  
T
S
3
Q
R
4
V
Out  
OVP  
Thermal  
Shutdown  
2.0 s  
Delay  
GND  
0.4 I  
I
ref  
Discharge  
V
ref  
V
CC  
V
ref  
V
ref  
V
ref  
V
ref  
V
ref  
V
ref  
0.25  
I
V
ref  
0.8 I  
0.6 I  
ref  
ref  
F Stby  
0.4 I  
ref  
0.2 I  
ref  
0.4 I  
ref  
11.6 k  
5.0 s  
Delay  
R
Pwr Stby  
OVP  
12  
6
2.0 k  
V
CC  
R
OVP  
I
+
Discharge/2  
Feed−  
back  
1.0 mA  
Current Mirror X2  
+
2.5 V  
2R  
1.6 V  
14  
+
Error Amplifier  
Current  
Sense Input  
2.5 V  
Compensation  
13  
7
R
1.0 V  
UVLO1  
5
Foldback  
Input  
V
CC  
2.4 V  
5.0 mA  
+
9.0 V  
11 SS/D /VM  
max  
= Sink only  
= Positive True Logic  
R
C
SS  
SS  
This device contains 243 active transistors.  
Figure 1. Representative Block Diagram  
http://onsemi.com  
6
MC44603A  
100  
10000  
C
= 100 pF  
T
V
T
= 16 V  
CC  
= 25°C  
V
T
R
= 16 V  
CC  
= 25°C  
= 10 k  
ref  
A
A
C
= 500 pF  
T
R
= 2.0 k  
F Stby  
C
= 1000 pF  
T
R
= 5.0 k  
F Stby  
10  
1000  
300  
R
= 27 k  
F Stby  
R
= 100 k  
F Stby  
C
= 2200 pF  
T
3.0  
10 k  
100 k  
, Oscillator Frequency (Hz)  
1.0 M  
10 k  
100 k  
, Oscillator Frequency (Hz)  
1.0 M  
f
f
OSC  
OSC  
Figure 2. Timing Resistor versus  
Oscillator Frequency  
Figure 3. Standby Mode Timing Capacitor  
versus Oscillator Frequency  
52  
51  
50  
49  
48  
0.43  
0.42  
0.41  
0.40  
0.39  
47  
46  
45  
44  
V
R
C
= 12 V  
= 10 k  
= 820 pF  
V
R
C
= 12 V  
= 10 k  
ref  
CC  
CC  
0.38  
0.37  
ref  
= 820 pF  
T
T
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 4. Oscillator Frequency  
versus Temperature  
Figure 5. Ratio Charge Current/Reference  
Current versus Temperature  
600  
400  
200  
0
70  
70  
60  
50  
40  
30  
30  
20  
10  
0
V = 12 V  
C = 2200 pF  
V
= 12 V  
CC  
CC  
60  
50  
40  
30  
20  
10  
C = 2200 pF  
L
T = 25°C  
A
L
T
= 25°C  
A
Current  
Voltage  
Current  
−200  
−1  
−400  
−600  
20  
10  
−2  
−3  
−4  
−5  
V
O
Voltage  
−800  
0
0
I
CC  
−10  
−10  
−1000  
1.0 s/Div  
1.0 s/Div  
Figure 6. Output Waveform  
Figure 7. Output Cross Conduction  
http://onsemi.com  
7
 
MC44603A  
500  
475  
450  
425  
400  
2.5  
2.0  
1.5  
375  
350  
325  
300  
V
R
C
= 12 V  
= 10 k  
= 820 pF  
V
= 12 V  
= 10 k  
ref  
= 820 pF  
T
= 25°C  
CC  
CC  
R
C
T
ref  
T
1.0  
A
−50  
−25  
0
25  
50  
75  
100  
0
100  
I
200  
300  
400  
500  
T , AMBIENT TEMPERATURE (°C)  
, OUTPUT SOURCE CURRENT (mA)  
A
source  
Figure 8. Oscillator Discharge Current  
versus Temperature  
Figure 9. Source Output Saturation Voltage  
versus Load Current  
2.0  
1.6  
80  
60  
V
G = 10  
= 12 V  
CC  
Sink Saturation  
)
(Load to V  
CC  
140  
V
V
= 30 mV  
= 2.0 to 4.0 V  
in  
O
R = 100 k  
L
1.2  
0.8  
40  
20  
0
T
A
= 25°C  
50  
T
V
= 25°C  
= 12 V  
CC  
A
0.4  
0
80 s Pulsed Load  
120 Hz Rate  
−20  
0
−40  
4
1
2
3
0
100  
200  
300  
400  
500  
10  
10  
10  
10  
10  
I , SINK OUTPUT CURRENT (mA)  
sink  
f, FREQUENCY (kHz)  
Figure 10. Sink Output Saturation Voltage  
versus Sink Current  
Figure 11. Error Amplifier Gain and Phase  
versus Frequency  
2.60  
2.55  
80  
V
= 12 V  
V
= 12 V  
CC  
CC  
75  
70  
65  
60  
55  
50  
G = 10  
= 2.0 to 4.0 V  
R = 100 k  
V
O
L
2.50  
2.45  
2.40  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 12. Voltage Feedback Input  
versus Temperature  
Figure 13. Demag Comparator Threshold  
versus Temperature  
http://onsemi.com  
8
MC44603A  
100  
80  
5.0  
4.0  
3.2  
3.1  
3.0  
Printed circuit board heatsink example  
2.0 oz  
L
Copper  
L
3.0 mm  
R
P
60  
40  
20  
0
3.0  
2.0  
JA  
Graphs represent symmetrical layout  
V
R
C
= 12 V  
= 10 k  
= 820 pF  
CC  
2.9  
2.8  
for T = 70°C  
D(max)  
A
1.0  
0
ref  
T
−50  
−25  
0
25  
50  
75  
100  
0
10  
20  
30  
40  
50  
T , AMBIENT TEMPERATURE (°C)  
A
L, LENGTH OF COPPER (mm)  
Figure 14. Current Sense Gain  
versus Temperature  
Figure 15. Thermal Resistance and Maximum  
Power Dissipation versus P.C.B. Copper Length  
140  
120  
100  
80  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
R
C
= 12 V  
= 10 k  
= 820 pF  
R
C
= 10 k  
ref  
= 820 pF  
CC  
ref  
T
T
−50  
−25  
0
25  
50  
75  
100  
0
2.0  
4.0  
V
6.0  
, SUPPLY VOLTAGE (V)  
CC  
8.0  
10  
12  
14  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 16. Propagation Delay Current Sense  
Input to Output versus Temperature  
Figure 17. Startup Current versus VCC  
21.5  
21.0  
20.5  
16  
14  
12  
10  
8.0  
6.0  
4.0  
2.0  
0
20.0  
19.5  
19.0  
T
R
C
V
V
= 25°C  
= 10 k  
ref  
A
= 820 pF  
T
I
CC  
= 25 mA  
75  
= 0 V  
= 0 V  
FB  
CS  
2.0  
4.0  
6.0  
8.0  
10  
12  
14  
16  
−50  
−25  
0
25  
50  
100  
V
, SUPPLY VOLTAGE (V)  
CC  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 18. Supply Current versus  
Supply Voltage  
Figure 19. Power Supply Zener Voltage  
versus Temperature  
http://onsemi.com  
9
MC44603A  
15.5  
15.0  
9.50  
9.25  
14.5  
14.0  
13.5  
9.00  
8.55  
8.50  
V
Increasing  
V
Decreasing  
CC  
CC  
−50  
−25  
0
25  
50  
75  
100  
100  
100  
−50  
−25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (°C)  
T , AMBIENT TEMPERATURE (°C)  
A
A
Figure 20. Startup Threshold Voltage  
versus Temperature  
Figure 21. Disable Voltage After Threshold  
Turn−On (UVLO1) versus Temperature  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
6.8  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
V
= 12 V  
CC  
V
Decreasing  
CC  
−50  
−25  
0
25  
50  
75  
−50  
−25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (°C)  
T , AMBIENT TEMPERATURE (°C)  
A
A
Figure 22. Disable Voltage After Threshold  
Turn−On (UVLO2) versus Temperature  
Figure 23. Protection Threshold Level on  
OVP versus Temperature  
V
18  
17.5  
17  
3.0  
2.5  
2.0  
R
C
= 10 k  
= 820 pF  
ref  
T
Pin 6 Open  
V
= 12 V  
= 10 k  
= 820 pF  
CC  
16.5  
16  
1.5  
1.0  
R
C
ref  
T
−50  
−25  
0
25  
50  
75  
−50  
−25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 24. Protection Level on VCC  
versus Temperature  
Figure 25. Propagation Delay (VOVP > 2.58 V  
to Vout Low) versus Temperature  
http://onsemi.com  
10  
MC44603A  
270  
265  
260  
0.33  
0.32  
0.31  
0.30  
255  
250  
V
R P Stdby (Pin 12)  
Voltage Increasing  
245  
240  
235  
230  
V
R
C
= 12 V  
= 10 k  
= 820 pF  
CC  
ref  
T
Pin 12 Clamped  
at 1.0 V  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 26. Standby Reference Current  
versus Temperature  
Figure 27. Current Sense Voltage Threshold  
Standby Mode versus Temperature  
PIN FUNCTION DESCRIPTION  
Pin  
Name  
Description  
This pin is the positive supply of the IC. The operating voltage range after startup is 9.0 to 14.5 V.  
1
V
CC  
2
3
4
5
V
The output high state (V ) is set by the voltage applied to this pin. With a separate connection to the power  
source, it can reduce the effects of switching noise on the control circuitry.  
C
OH  
Output  
GND  
Peak currents up to 750 mA can be sourced or sunk, suitable for driving either MOSFET or Bipolar  
transistors. This output pin must be shunted by a Schottky diode, 1N5819 or equivalent.  
The ground pin is a single return, typically connected back to the power source; it is used as control and  
power ground.  
Foldback Input  
The foldback function provides overload protection. Feeding the foldback input with a portion of the V  
CC  
voltage (1.0 V max) establishes on the system control loop a foldback characteristic allowing a smoother  
startup and sharper overload protection. Above 1.0 V the foldback input is inactive.  
6
7
Overvoltage  
Protection  
When the overvoltage protection pin receives a voltage greater than 17 V, the device is disabled and  
requires a complete restart sequence. The overvoltage level is programmable.  
Current Sense  
Input  
A voltage proportional to the current flowing into the power switch is connected to this input. The PWM latch  
uses this information to terminate the conduction of the output buffer when working in a current mode of  
operation. A maximum level of 1.0 V allows either current or voltage mode operation.  
8
9
Demagnetization A voltage delivered by an auxiliary transformer winding provides to the demagnetization pin an indication of  
Detection  
the magnetization state of the flyback transformer. A zero voltage detection corresponds to complete core  
saturation. The demagnetization detection ensures a discontinuous mode of operation. This function can be  
inhibited by connecting Pin 8 to GND.  
Synchronization  
Input  
The synchronization input pin can be activated with either a negative pulse going from a level between 0.7 V  
and 3.7 V to GND or a positive pulse going from a level between 0.7 V and 3.7 V up to a level higher than  
3.7 V. The oscillator runs free when Pin 9 is connected to GND.  
10  
11  
12  
C
The normal mode oscillator frequency is programmed by the capacitor C choice together with the R  
T ref  
T
resistance value. C , connected between Pin 10 and GND, generates the oscillator sawtooth.  
T
Soft−Start/D  
Voltage−Mode  
/
A capacitor, resistor or a voltage source connected to this pin limits the switching duty−cycle. This pin can  
be used as a voltage mode control input. By connecting Pin 11 to Ground, the MC44603A can be shutdown.  
max  
R
A voltage level applied to the R  
pin determines the output power level at which the oscillator will  
P Standby  
P Standby  
turn into the reduced frequency mode of operation (i.e. standby mode). An internal hysteresis comparator  
allows to return in the normal mode at a higher output power level.  
13  
14  
E/A Out  
The error amplifier output is made available for loop compensation.  
Voltage  
Feedback  
This is the inverting input of the Error Amplifier. It can be connected to the switching power supply output  
through an optical (or other) feedback loop.  
15  
16  
R
The reduced frequency or standby frequency programming is made by the R  
resistance choice.  
F Standby  
F Standby  
R
ref  
R
ref  
sets the internal reference current. The internal reference current ranges from 100 A to 500 A. This  
requires that 5.0 kR 25 k.  
ref  
http://onsemi.com  
11  
MC44603A  
No−Take Over  
Loop Failure  
>2.0 s  
Startup  
Restart  
V
CC  
V
CC prot  
V
stup−th  
Normal Mode  
V
V
disable1  
disable2  
V
ref  
UVLO1  
V
Pin 11  
(Soft−Start)  
V
OVP Out  
Output  
I
CC  
17 mA  
0.3 mA  
Figure 28. Starting Behavior and Overvoltage Management  
V
Demag In  
Output  
(Pin 3)  
V
Demag Out  
V
Demag Out  
Demagnetization  
Management  
V
Oscillator  
Demag In  
Buffer  
Output  
Figure 29. Demagnetization  
http://onsemi.com  
12  
MC44603A  
V
CC  
V
stup−th  
V
V
disable1  
disable2  
V
ref  
UVLO1  
V
Pin 11  
(Soft−Start)  
Output  
(Pin 3)  
I
CC  
17 mA  
0.3 mA  
Figure 30. Switching Off Behavior  
3.6 V  
1.6 V  
V
CT  
1.0 V  
V
Stby  
V
Demag Out  
V
OSC  
V
OSC prot  
V
Demag Out  
V
OSC prot  
Synchronization  
Input  
Oscillator  
V
OSC  
C
T
V
Stby  
Figure 31. Oscillator  
http://onsemi.com  
13  
 
MC44603A  
V
ref  
V
+ 1.6 V  
CSS  
Internal Clamp  
Soft−Start  
External Clamp  
V
3.6 V  
CT  
V
low 1.6 V  
CT  
V
OSC  
Output  
(Pin 3)  
Figure 32. Soft−Start & Dmax  
OPERATING DESCRIPTION  
+
Error Amplifier  
A fully compensated Error Amplifier with access to the  
inverting input and output is provided. It features a typical  
DC voltage gain of 70 dB. The noninverting input is  
internally biased at 2.5 V and is not pinned out. The  
converter output voltage is typically divided down and  
monitored by the inverting input. The maximum input bias  
current with the inverting input at 2.5 V is −2.0 A. This can  
cause an output voltage error that is equal to the product of  
the input bias current and the equivalent input divider source  
resistance.  
The Error Amp output (Pin 13) is provided for external  
loop compensation. The output voltage is offset by two  
diode drops (1.4 V) and divided by three before it connects  
to the inverting input of the Current Sense Comparator. This  
guarantees that no drive pulses appear at the Output (Pin 3)  
1.0 mA  
Compensation  
13  
Error  
Amplifier  
R
FB  
R
f
2R  
R
C
2.5 V  
f
14  
Voltage  
Feedback  
Input  
Current Sense  
Comparator  
1.0 V  
GND  
5
Foldback  
Input  
4
From Power Supply Output  
R2  
R1  
Figure 33. Error Amplifier Compensation  
when Pin 13 is at its lowest state (V ). The Error Amp  
minimum feedback resistance is limited by the amplifier’s  
minimum source current (0.2 mA) and the required output  
OL  
Current Sense Comparator and PWM Latch  
The MC44603A can operate as a current mode controller  
or as a voltage mode controller. In current mode operation,  
the MC44603A uses the current sense comparator. The  
output switch conduction is initiated by the oscillator and  
terminated when the peak inductor current reaches the  
voltage (V ) to reach the current sense comparator’s 1.0 V  
OH  
clamp level:  
3.0 (1.0 V) ) 1.4 V  
R
f(min)  
[
+ 22 kꢂ  
0.2 mA  
http://onsemi.com  
14  
 
MC44603A  
threshold level established by the Error Amplifier output  
(Pin 13). Thus, the error signal controls the peak inductor  
current on a cycle−by−cycle basis. The Current Sense  
Comparator PWM Latch ensures that only a single pulse  
appears at the Source Output during the appropriate  
oscillator cycle.  
connected to the charging current source (0.4 I ) and so,  
ref  
the discharge current source has to be higher than the  
charge current to be able to decrease the C voltage (refer  
T
to Figure 36).  
This condition is performed, its value being (2.0 I ) in  
ref  
normal working and (0.4 I + 0.5 I  
in standby mode).  
ref  
F Stby  
The inductor current is converted to a voltage by inserting  
V
the ground referenced sense resistor R in series with the  
ref  
S
power switch Q1.  
0.4 I  
ref  
This voltage is monitored by the Current Sense Input  
(Pin 7) and compared to a level derived from the Error Amp  
output. The peak inductor current under normal operating  
conditions is controlled by the voltage at Pin 13 where:  
C
VOS prot  
V
OSC prot  
1.0 V  
1.6 V  
V
OSC  
C
OSC Low  
R
Q
C
< 1.6 V  
T
V
L
(Pin 13) – 1.4 V  
OSC  
Discharge  
R Q  
Disch  
I
[
pk  
S
3 R  
S
C
OSC High  
Synchro  
10  
The Current Sense Comparator threshold is internally  
clamped to 1.0 V. Therefore, the maximum peak switch  
current is:  
S
C
T
3.6 V  
V
Demag  
Out  
C
OSC Regul  
1.0 V  
0
1
I
[
pk(max)  
R
S
1
0
I
Regul  
V
in  
I
Discharge  
V
C
14  
UVLO  
Figure 35. Oscillator  
V
OSC prot  
R2  
Q1  
V
Demag Out  
3
V
ref  
S
R Q  
R
D
1N5819  
R3  
Thermal  
Protection  
I
Charge  
0.4 I  
C
OSC Regul  
PWM  
Latch  
ref  
Current  
Sense  
1.6 V  
Substrate  
10  
R
Current Sense  
Comparator  
7
0
1
R
0: Discharge Phase  
1: Charge Phase  
C
S
C
T
I
Figure 34. Output Totem Pole  
Discharge  
I
Regul  
Series gate resistor, R2, will dampen any high frequency  
oscillations caused by the MOSFET input capacitance and  
any series wiring inductance in the gate−source circuit.  
Diode D is required if the negative current into the output  
drive pin exceeds 15 mA.  
Figure 36. Simplified Block Oscillator  
Two comparators are used to generate the sawtooth. They  
compare the C voltage to the oscillator valley (1.6 V) and  
T
peak reference (3.6 V) values. A latch (L  
the oscillator state.  
In addition to the charge and discharge cycles, a third state  
can exist. This phase can be produced when, at the end of the  
discharge phase, the oscillator has to wait for a  
synchronization or demagnetization pulse before restarting.  
) memorizes  
disch  
Oscillator  
The oscillator is a very accurate sawtooth generator that  
can work either in free mode or in synchronization mode. In  
this second mode, the oscillator stops in the low state and  
waits for a demagnetization or a synchronization pulse to  
start a new charging cycle.  
During this delay, the C voltage must remain equal to the  
T
The Sawtooth Generation:  
oscillator valley value (]1.6 V). So, a third regulated  
In the steady state, the oscillator voltage varies between  
about 1.6 V and 3.6 V.  
current source I  
controlled by C  
, is connected  
Regul  
OSC Regul  
to C in order to perfectly compensate the (0.4 I ) current  
T
ref  
The sawtooth is obtained by charging and discharging an  
external capacitor C (Pin 10), using two distinct current  
sources = I  
source that permanently supplies C .  
T
T
The maximum duty cycle is 80%. Indeed, the on−time is  
allowed only during the oscillator capacitor charge.  
and I  
. In fact, C is permanently  
discharge T  
charge  
http://onsemi.com  
15  
 
MC44603A  
Consequently:  
= C x V/I  
charge  
That is why, the MC44603A demagnetization detection  
T
charge  
consists of a comparator that can compare the auxiliary  
winding voltage to a reference that is typically equal to  
65 mV.  
T
T
= C x V/I  
T discharge  
discharge  
where:  
T
charge  
is the oscillator charge time  
V is the oscillator peak−to−peak value  
I
is the oscillator charge current  
charge  
0.75 V  
and  
T
Zero Current  
Detection  
V
is the oscillator discharge time  
Pin 8  
discharge  
I
is the oscillator discharge current  
discharge  
So, as f = 1 /(T  
+ T  
) when the Regul  
discharge  
S
charge  
65 mV  
arrangement is not activated, the operating frequency can be  
obtained from the graph in Figure 2.  
−0.33 V  
NOTE: The output is disabled by the signal V  
when  
OSC prot  
V
CT  
is lower than 1.0 V (refer to Figure 31).  
On−Time  
Off−Time Dead−Time  
Synchronization and Demagnetization Blocks  
To enable the output, the L  
output must be low. Reset is activated by the L  
latch complementary  
OSC  
Figure 38. Demagnetization Detection  
output  
disch  
during the discharge phase. To restart, the L  
(refer to Figure 35). To perform this, the demagnetization  
signal and the synchronization must be low.  
has to be set  
OSC  
A diode D has been incorporated to clamp the positive  
applied voltages while an active clamping system limits the  
negative voltages to typically −0.33 V. This negative clamp  
level is sufficient to avoid the substrate diode switching on.  
In addition to the comparator, a latch system has been  
incorporated in order to keep the demagnetization block  
output level low as soon as a voltage lower than 65 mV is  
detected and as long as a new restart is produced (high level  
on the output) (refer to Figure 39). This process prevents  
ringing on the signal at Pin 8 from disrupting the  
demagnetization detection. This results in a very accurate  
demagnetization detection.  
Synchronization:  
The synchronization block consists of two comparators  
that compare the synchronization signal (external) to 0.7 and  
3.7 V (typical values). The comparators’ outputs are  
connected to the input of an AND gate so that the final output  
of the block should be:  
− high when 0.7 < SYNC < 3.7 V  
− low in the other cases.  
As a low level is necessary to enable the output,  
synchronized low level pulses have to be generated on the  
output of the synchronization block. If synchronization is  
not required, the Pin 9 must be connected to the ground.  
The demagnetization block output is also directly  
connected to the output, disabling it during the  
demagnetization phase (refer to Figure 34).  
NOTE: The demagnetization detection can be inhibited by  
connecting Pin 8 to the ground.  
3.7 V  
Oscillator  
Sync  
9
Oscillator  
Output  
R
Q
Buffer  
Demag  
S
Output Buffer  
0.7 V  
V
CC  
Figure 37. Synchronization  
Negative Active  
Clamping System  
V
Demag Out  
8
Demagnetization:  
C Dem  
In flyback applications, a good means to detect magnetic  
saturation of the transformer core, or demagnetization,  
consists in using the auxiliary winding voltage. This voltage  
is:  
65 mV  
D
Figure 39. Demagnetization Block  
− negative during the on−time,  
− positive during the off−time,  
− equal to zero for the dead−time with generally some  
ringing (refer to Figure 38).  
Standby  
Power Losses in a Classical Flyback Structure  
http://onsemi.com  
16  
 
MC44603A  
Clamping  
Network  
Also,  
V
in  
V
R
CS  
R
ICL  
I
+
pk  
S
+
+
AC Line  
where R is the resistor used to measure the power switch  
S
R
startup  
current.  
2
Thus, the input power is proportional to V  
(V being  
CS  
CS  
V
CC  
the internal current sense comparator input).  
That is why the standby detection is performed by creating  
a V threshold. An internal current source (0.4 x I ) sets  
MC44603A  
CS  
ref  
R
S
the threshold level by connecting a resistor to Pin 12.  
As depicted in Figure 41, the standby comparator  
Snubber  
noninverting input voltage is typically equal to (3.0 x V  
+
CS  
Figure 40. Power Losses in a Classical  
Flyback Structure  
V ) while the inverter input value is (V  
+ V ).  
F
R P Stby  
F
Oscillator  
Discharge  
Current  
V
V
ref ref  
V
V
ref ref  
In a classical flyback (as depicted in Figure 40), the  
standby losses mainly consist of the energy waste due to:  
0.6 I  
1
ref  
0.4 I  
0.8 I  
ref  
ref  
V
ref  
0.25  
I
F Stby  
− the startup resistor R  
P  
R
startup  
startup  
0.2 I  
ref  
P Stby  
0
− the consumption of the IC and the power  
switch control  
12  
1
0
C
Stby  
P  
P  
control  
− the inrush current limitation resistor R  
ICL  
ICL  
13  
I
I
Discharge  
Discharge/2  
− the switching losses in the power switch P  
− the snubber and clamping network  
SW  
ER  
AmpOut  
2R  
1R  
C. S. Comparator  
P  
SN−CLN  
Current Mirror X2  
P
startup  
is nearly constant and is equal to:  
2
ǒ
Ǔ
(V –V ) ńR  
in CC startup  
Figure 41. Standby  
P
ICL  
only depends on the current drawn from the mains.  
Losses can be considered constant. This waste of energy  
decreases when the standby losses are reduced.  
The V  
threshold level is typically equal to  
)/3] and if the corresponding power threshold is  
CS  
[(V  
R P Stby  
P
increases when the oscillator frequency is  
control  
labelled P  
:
thL  
increased (each switching requires some energy to turn on  
the power switch).  
V
2
R P Stby  
3.0 R  
S
+ 0.5 x L x ǒ Ǔ  
P
thL  
x f  
S
P
SW  
and P  
are proportional to the switching  
SN−CLN  
frequency.  
And as:  
Consequently, standby losses can be minimized by  
decreasing the switching frequency as much as possible.  
The MC44603A was designed to operate at a standby  
frequency lower than the normal working one.  
V
+ R  
+ R  
x 0.4 x I  
ref  
R P Stby  
P Stby  
V
ref  
R
ref  
x 0.4 x  
R P Stby  
Standby Power Calculations with MC44603A  
During a switching period, the energy drawn by the  
transformer during the on−time to be transferred to the  
output during the off−time, is equal to:  
10.6 x R x R  
P
thL  
S
ref  
x Ǹ  
R
+
P Stby  
V
ref  
L x f  
S
Thus, when the power drawn by the converter decreases,  
decreases and when V becomes lower than [V  
V
x (V  
CS  
CS  
CS−th  
1
2
E + x L x I  
pk  
)/3], the standby mode is activated. This results in  
2
R P Stby  
an oscillator discharge current reduction in order to increase  
the oscillator period and to diminish the switching  
where:  
− L is the transformer primary inductor,  
− l is the inductor peak current.  
frequency. As it is represented in Figure 41, the (0.8 x I  
)
ref  
pk  
current source is disconnected and is replaced by a lower  
value one (0.25 x I ).  
Input power is labelled P :  
in  
F Stby  
2
x f  
pk  
S
P
in  
+ 0.5 x L x I  
Where: I  
= V /R  
ref F Stby  
F Stby  
where f is the normal working switching frequency.  
S
http://onsemi.com  
17  
 
MC44603A  
In order to prevent undesired mode switching when power  
is close to the threshold value, a hysteresis that is  
proportional to V is incorporated creating a second  
Pin 11  
Voltage  
V
CT  
(Pin 10)  
R P Stby  
V
CS  
threshold level that is equal to [2.5 x (V  
)/3].  
D
R P Stby  
max  
When the standby comparator output is high, a second  
current source (0.6 x I ) is connected to Pin 12.  
ref  
Figure 44. Maximum Duty Cycle Control  
Finally, the standby mode function can be shown  
graphically in Figure 42.  
Using the internal current source (0.4 I ), the Pin 11  
ref  
voltage can easily be set by connecting a resistor to this pin.  
If a capacitor is connected to Pin 11, the voltage increases  
from 0 to its maximum value progressively (refer to  
Figure 45), thereby, implementing a soft−start. The  
P
in  
f
S
soft−start capacitor is discharged internally when the V  
(Pin 1) voltage drops below 9.0 V.  
CC  
Normal  
Working  
Pin 11  
R Connected to Pin 11  
I = 0.4 I  
C
C // R  
f
Stby  
V
RI  
V
Z
ref  
Z
RI  
P
thH  
=
R
C
Standby  
2.5 x [(V  
P
thL  
V
CS  
[(V  
)/3]  
R P Stby  
)/3]  
R P Stby  
1
Figure 45. Different Possible Uses of Pin 11  
Figure 42. Dynamic Mode Change  
If no external component is connected to Pin 11, an  
internal zener diode clamps the Pin 11 voltage to a value V  
that is higher than the oscillator peak value, disabling  
soft−start and maximum duty cycle limitation.  
Z
This curve shows that there are two power threshold  
levels:  
− the low one:  
fixed by V  
P
thL  
R P Stby  
Foldback  
− the high one:  
As depicted in Figures 33 and 49, the foldback input  
(Pin 5) can be used to reduce the maximum V value,  
providing foldback protection. The foldback arrangement is  
a programmable peak current limitation.  
f
CS  
Stby  
2
P
+ (2.5) x P  
thL  
x
f
thH  
thH  
f
S
Stby  
f
If the output load is increased, the required converter peak  
P
+ 6.25 x P  
x
thL  
current becomes higher and V increases until it reaches its  
S
CS  
maximum value (normally, V  
= 1.0 V).  
CS max  
Maximum Duty Cycle and Soft−Start Control  
Maximum duty cycle can be limited to values less than  
Then, if the output load keeps on increasing, the system is  
unable to supply enough energy to maintain the output  
voltages in regulation. Consequently, the decreasing output  
can be applied to Pin 5, in order to limit the maximum peak  
current. In this way, the well known foldback characteristic  
can be obtained (refer to Figure 46).  
80% by utilizing the D  
and soft−start control. As  
max  
depicted in Figure 43, the Pin 11 voltage is compared to the  
oscillator sawtooth.  
V
ref  
Output  
Control  
0.4 I  
ref  
11  
Output  
Drive  
C
D
Dmax  
max  
D
2.4 V  
Z
V
OSC  
Soft−Start  
Capacitor  
Oscillator  
Figure 43. Dmax and Soft−Start  
http://onsemi.com  
18  
 
MC44603A  
I
Undervoltage Lockout Section  
V
out  
pk max  
V
Nominal  
O
R
R
ref  
F Stby  
Pin 15  
Pin 16  
V
ref enable  
New Startup  
Sequence Initiated  
V
C
CC  
startup  
V
CC  
1
Reference Block:  
Voltage and Current  
Sources Generator  
V
1
0
disable2  
I
out  
1
0
Overload  
(V , I , ...)  
ref ref  
V
7.5 V  
Startup  
14.5 V  
disable2  
Figure 46. Foldback Characteristic  
C
UVLO1  
UVLO1  
(to Soft−Start)  
NOTE: Foldback is disabled by connecting Pin 5 to V  
.
CC  
Overvoltage Protection  
The overvoltage arrangement consists of a comparator  
V
9.0 V  
disable1  
that compares the Pin 6 voltage to V (2.5 V) (refer to  
ref  
Figure 47).  
Figure 48. VCC Management  
If no external component is connected to Pin 6, the  
comparator noninverting input voltage is nearly equal to:  
As depicted in Figure 48, an undervoltage lockout has  
been incorporated to guarantee that the IC is fully functional  
before allowing system operation.  
2.0 kꢂ  
11.6 k) 2.0 kꢂ  
ǒ
Ǔx V  
CC  
This block particularly, produces V (Pin 16 voltage) and  
ref  
The comparator output is high when:  
I
that is determined by the resistor R connected between  
ref  
ref  
2.0 kꢂ  
11.6 k) 2.0 kꢂ  
Pin 16 and the ground:  
ǒ
Ǔ
x V  
w 2.5 V  
CC  
V
ref  
R
ref  
I
+
where V + 2.5 V (typically)  
ref  
ref  
à V  
w 17 V  
CC  
A delay latch (2.0 s) is incorporated in order to sense  
overvoltages that last at least 2.0 s.  
Another resistor is connected to the Reference Block:  
that is used to fix the standby frequency.  
R
F Stby  
If this condition is achieved, V  
, the delay latch  
OVP out  
In addition to this, V is compared to a second threshold  
CC  
output, becomes high. As this level is brought back to the  
input through an OR gate, V remains high (disabling  
level that is nearly equal to 9.0 V (V  
generated to reset the maximum duty cycle and soft−start  
block disabling the output stage as soon as V becomes  
). UVLO1 is  
disable1  
OVP out  
the IC output) until V is disabled.  
ref  
CC  
Consequently, when an overvoltage longer than 2.0 s is  
lower than V  
. In this way, the circuit is reset and made  
disable1  
detected, the output is disabled until V is removed and  
CC  
ready for the next startup, before the reference block is  
disabled (refer to Figure 30). Finally, the upper limit for the  
minimum normal operating voltage is 9.4 V (maximum  
then re−applied.  
The V is connected after V has reached steady state  
CC  
ref  
in order to limit the circuit startup consumption.  
The overvoltage section is enabled 5.0 s after the  
value of V  
) and so the minimum hysteresis is 4.2 V.  
disable1  
((V  
)
= 13.6 V).  
stup−th min  
regulator has started to allow the reference V to stabilize.  
ref  
The large hysteresis and the low startup current of the  
MC44603A make it ideally suited for off−line converter  
applications where efficient bootstrap startup techniques are  
required.  
By connecting an external resistor to Pin 6, the threshold  
V
CC  
level can be changed.  
V
ref  
V
CC  
Out  
Delay  
In  
τ
5.0 s  
T
2.5 V  
0
Enable  
11.6 k  
V
OVP  
V
OVP out  
τ
In  
Out  
Delay  
6
C
External  
Resistor  
OVLO  
2.0 k  
2.0 s  
2.5 V  
(V  
(If V = 1.0,  
OVP out  
the Output is Disabled)  
)
ref  
Figure 47. Overvoltage Protection  
http://onsemi.com  
19  
 
MC44603A  
185 VAC  
to  
270 VAC  
RFI  
Filter  
R1  
1.0/5.0 W  
C3  
1.0 nF/1.0 kV  
C4 ... C7  
1.0 nF/1000 V  
R3  
4.7 M  
D1 ... D4  
1N4007  
C1  
220 F  
R20  
22 k  
5.0 W  
L2  
22.5 H  
C32 220 pF  
D8  
150 V/0.6 A  
C17  
47 nF  
D5  
1N4934  
R2  
68 k/2.0 W  
MR856  
C30 C33  
100 F 100 F  
C31  
0.1 F  
C2  
220 F  
Sync  
D7  
M856  
L1  
1.0 H  
C29 220 pF  
C16 R12  
100 pF 27 k  
30 V/2.0 A  
C8 2.2 nF  
9
8
D9  
MR852  
D6  
1N4148  
C28  
0.1 F  
C27  
1000 F  
C9 1.0 nF  
R9 1.0 k  
L
L
aux  
p
10  
11  
12  
13  
14  
15  
16  
7
6
5
4
3
2
1
R5  
1.2 k  
C15  
1.0 nF  
C14  
4.7 nF  
C10 1.0 F  
C26 220 pF  
R7 180 k  
14 V/2.0 A  
R6  
150  
R8  
15 k  
R15  
5.6 k  
D10  
MR852  
C25  
1000 F  
C24  
0.1 F  
C11  
1.0 nF  
C18  
2.2 nF  
D12  
MR856  
MTP6N60E  
*D15 1N5819  
R10 10  
R15  
22 k  
R26  
1.0 k  
C23 220 pF  
7.0 V/2.0 A  
R11 39  
D11  
MR852  
R12 22  
C21  
1000 F  
C22  
0.1 F  
R14  
0.2  
R13  
1.0 k  
R17  
22 k  
R18  
27 k  
R19  
10 k  
C13  
100 nF  
R24  
270  
R23  
147.5 k  
MOC8101  
R21  
10 k  
C19  
100 nF  
D14  
1N4733  
C20  
33 nF  
TL431  
R25  
1.0 k  
C12  
6.8 nF  
R22  
2.5 k  
* Diode D15 is required if the negative current into the output pin exceeds 15 mA.  
Figure 49. 250 W Input Power Off−Line Flyback Converter with MOSFET Switch  
http://onsemi.com  
20  
MC44603A  
250 W Input Power Fly−Back Converter  
185 V − 270 V Mains Range  
MC44603AP & MTP6N60E  
Tests  
Conditions  
Results  
Line Regulation  
V
= 185 VAC to 270 VAC  
in  
F
= 50 Hz  
mains  
150 V  
130 V  
114 V  
7.0 V  
I
I
I
I
= 0.6 A  
10 mV  
10 mV  
10 mV  
20 mV  
out  
out  
out  
out  
= 2.0 A  
= 2.0 A  
= 2.0 A  
Load Regulation  
150 V  
V
= 220 VAC  
= 0.3 A to 0.6 A  
in  
I
50 mV  
out  
Cross Regulation  
V
= 220 VAC  
in  
out  
out  
out  
out  
I
I
I
I
(150 V) = 0.6 A  
(30 V) = 0 A to 2.0 A  
(14 V) = 2.0 A  
(7.0 V) = 2.0 A  
150 V  
< 1.0 mV  
81%  
Efficiency  
V
V
= 220 VAC, P = 250 W  
in  
in  
Standby Mode  
P input  
= 220 VAC, P = 0 W  
3.3 W  
in  
out  
Switching Frequency  
Output Short Circuit  
Startup  
20 kHz fully stable  
Safe on all outputs  
VAC = 160 V  
P
P
= 270 W  
out (max)  
= 250 W  
in  
DEVICE ORDERING INFORMATION  
Device  
MC44603AP  
Operating Temperature Range  
Package  
Shipping  
PDIP−16  
25 Units / Rail  
25 Units / Rail  
MC44603APG  
PDIP−16  
(Pb−Free)  
MC44603ADW  
SOIC−16  
47 Units / Rail  
47 Units / Rail  
TA = −25°C to +85°C  
MC44603ADWG  
SOIC−16  
(Pb−Free)  
MC44603ADWR2  
MC44603ADWR2G  
SOIC−16  
1000 / Tape & Reel  
1000 / Tape & Reel  
SOIC−16  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
21  
MC44603A  
PACKAGE DIMENSIONS  
PDIP−16  
CASE 648−08  
ISSUE T  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
−A−  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
16  
1
9
8
B
S
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
18.80  
6.35  
3.69  
0.39  
1.02  
MAX  
19.55  
6.85  
4.44  
0.53  
1.77  
F
A
B
C
D
F
0.740  
0.250  
0.145  
0.015  
0.040  
0.770  
0.270  
0.175  
0.021  
0.70  
C
L
SEATING  
PLANE  
−T−  
G
H
J
0.100 BSC  
0.050 BSC  
2.54 BSC  
1.27 BSC  
K
M
0.008  
0.015  
0.130  
0.305  
10  
0.21  
0.38  
3.30  
7.74  
10  
H
J
K
L
0.110  
0.295  
0
2.80  
7.50  
0
G
D 16 PL  
M
S
_
_
_
_
0.020  
0.040  
0.51  
1.01  
M
M
0.25 (0.010)  
T A  
SOIC−16WB  
CASE 751G−03  
ISSUE C  
NOTES:  
A
D
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
q
3. DIMENSIONS D AND E DO NOT INLCUDE  
MOLD PROTRUSION.  
16  
9
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 TOTAL IN  
EXCESS OF THE B DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
MILLIMETERS  
DIM MIN  
2.35  
A1 0.10  
MAX  
2.65  
0.25  
0.49  
0.32  
1
8
A
B
C
D
E
e
H
h
L
q
0.35  
0.23  
10.15 10.45  
7.40 7.60  
1.27 BSC  
10.05 10.55  
B
16X B  
M
S
S
B
0.25  
T
A
0.25  
0.50  
0
0.75  
0.90  
7
_
_
SEATING  
PLANE  
14X  
e
C
T
GreenLine is a trademark of Motorola, Inc.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
MC44603A/D  

相关型号:

MC44603AP

MIXED FREQUENCY MODE GREENLINE PWM CONTROLLER
ONSEMI

MC44603AP

MIXED FREQUENCY MODE GREENLINE PWM CONTROLLER
MOTOROLA

MC44603APG

Enhanced Mixed Frequency Mode GreenLine TM PWM Controller:Fixed Frequency, Variable Frequency,Standby Mode
ONSEMI

MC44603A_05

Enhanced Mixed Frequency Mode GreenLine TM PWM Controller:Fixed Frequency, Variable Frequency,Standby Mode
ONSEMI

MC44603DW

MIXED FREQUENCY MODE GREENLINE PWM CONTROLLER
ONSEMI

MC44603DW

MIXED FREQUENCY MODE GREENLINE PWM CONTROLLER
MOTOROLA

MC44603DWG

0.75A SWITCHING CONTROLLER, 250kHz SWITCHING FREQ-MAX, PDSO16, PLASTIC, SOP-16
ONSEMI

MC44603DWR2

0.75A SWITCHING CONTROLLER, 250kHz SWITCHING FREQ-MAX, PDSO16, PLASTIC, SOP-16
MOTOROLA

MC44603P

MIXED FREQUENCY MODE GREENLINE PWM CONTROLLER
ONSEMI

MC44603P

MIXED FREQUENCY MODE GREENLINE PWM CONTROLLER
MOTOROLA

MC44603PG

0.75 A SWITCHING CONTROLLER, 250 kHz SWITCHING FREQ-MAX, PDIP16, PLASTIC, DIP-16
ROCHESTER

MC44603PG

0.75A SWITCHING CONTROLLER, 250kHz SWITCHING FREQ-MAX, PDIP16, PLASTIC, DIP-16
ONSEMI