MC44603PG [ONSEMI]

0.75A SWITCHING CONTROLLER, 250kHz SWITCHING FREQ-MAX, PDIP16, PLASTIC, DIP-16;
MC44603PG
型号: MC44603PG
厂家: ONSEMI    ONSEMI
描述:

0.75A SWITCHING CONTROLLER, 250kHz SWITCHING FREQ-MAX, PDIP16, PLASTIC, DIP-16

开关 光电二极管
文件: 总21页 (文件大小:390K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢘ ꢙ ꢀ  
Fixed Frequency, Variable Frequency,  
Standby Mode  
http://onsemi.com  
MARKING  
The MC44603A is an enhanced high performance controller that is  
specifically designed for offline and dctodc converter applications.  
This device has the unique ability of automatically changing operating  
modes if the converter output is overloaded, unloaded, or shorted,  
offering the designer additional protection for increased system  
reliability. The MC44603A has several distinguishing features when  
compared to conventional SMPS controllers. These features consist of  
a foldback facility for overload protection, a standby mode when the  
converter output is slightly loaded, a demagnetization detection for  
reduced switching stresses on transistor and diodes, and a high current  
totem pole output ideally suited for driving a power MOSFET. It can  
also be used for driving a bipolar transistor in low power converters  
(< 150 W). It is optimized to operate in discontinuous mode but can  
also operate in continuous mode. Its advanced design allows use in  
current mode or voltage mode control applications.  
DIAGRAMS  
MC44603AP  
AWLYYWW  
16  
1
PDIP16  
P SUFFIX  
CASE 648  
MC44603ADW  
AWLYYWW  
16  
1
SOIC16  
DW SUFFIX  
CASE 751G  
Features  
PbFree Package is Available*  
Current or Voltage Mode Controller  
A
= Assembly Location  
= Wafer Lot  
= Year  
Operation up to 250 kHz Output Switching Frequency  
Inherent Feed Forward Compensation  
WL  
YY  
WW  
= Work Week  
Latching PWM for CyclebyCycle Current Limiting  
Oscillator with Precise Frequency Control  
High Flexibility  
PIN CONNECTIONS  
Externally Programmable Reference Current  
Secondary or Primary Sensing7  
Synchronization Facility  
High Current Totem Pole Output  
Undervoltage Lockout with Hysteresis  
Safety/Protection Features  
Overvoltage Protection Against Open Current and Open Voltage Loop  
Protection Against Short Circuit on Oscillator Pin  
Fully Programmable Foldback  
ꢎꢌ  
ꢬꢦ ꢲ  
ꢀꢆ ꢓ  
SoftStart Feature  
Accurate Maximum Duty Cycle Setting  
Demagnetization (Zero Current Detection) Protection  
Internally Trimmed Reference  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 378 of this data sheet.  
Enhanced Output Drive  
GreenLine Controller: Low Power Consumption in Standby Mode  
Low Startup and Operating Current  
Fully Programmable Standby Mode  
Controlled Frequency Reduction in Standby Mode  
Low dV/dT for Low EMI Radiations  
*For additional information on our PbFree strategy  
and soldering details, please download the  
ON Semiconductor Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
©
Semiconductor Components Industries, LLC, 2004  
358  
Publication Order Number:  
February, 2004 Rev. 3  
MC44603A/D  
MC44603A  
MAXIMUM RATINGS  
Rating  
Symbol  
(I + I )  
Value  
30  
Unit  
mA  
V
Total Power Supply and Zener Current  
CC  
Z
Supply Voltage with Respect to Ground (Pin 4)  
V
18  
C
V
CC  
Output Current (Note 1)  
Source  
mA  
I
750  
750  
O(Source)  
Sink  
I
O(Sink)  
Output Energy (Capacitive Load per Cycle)  
W
5.0  
J  
V
R
F Stby  
, C , SoftStart, R , R  
Inputs  
V
in  
V
in  
0.3 to 5.5  
T
ref  
P Stby  
Foldback Input, Current Sense Input,  
E/A Output, Voltage Feedback Input,  
Overvoltage Protection, Synchronization Input  
V
0.3 to  
V
+ 0.3  
CC  
Synchronization Input  
High State Voltage  
V
V
+ 0.3  
V
IH  
CC  
Low State Reverse Current  
Demagnetization Detection Input Current  
Source  
V
20  
mA  
mA  
IL  
I
4.0  
10  
demagib (Source)  
Sink  
I
demagib (Sink)  
Error Amplifier Output Sink Current  
Power Dissipation and Thermal Characteristics  
P Suffix, DualInLine, Case 648  
I
20  
mA  
E/A (Sink)  
Maximum Power Dissipation at T = 85°C  
P
0.6  
W
A
D
Thermal Resistance, JunctiontoAir  
R
JA  
100  
°C/W  
DW Suffix, Surface Mount, Case 751G  
Maximum Power Dissipation at T = 85°C  
P
0.45  
145  
150  
W
°C/W  
°C  
A
D
Thermal Resistance, JunctiontoAir  
Operating Junction Temperature  
R
JA  
T
J
Operating Ambient Temperature  
T
A
25 to +85  
°C  
1. Maximum package power dissipation limits must be observed.  
2. ESD data available upon request.  
http://onsemi.com  
359  
MC44603A  
ELECTRICAL CHARACTERISTICS (V and V = 12 V, (Note 3), R = 10 k, C = 820 pF, for typical values T =  
CC  
C
ref  
T
A
25°C, for min/max values T = 25° to +85°C (Note 4), unless otherwise noted.)  
A
Characteristic  
OUTPUT SECTION  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (Note 5)  
V
Low State (I  
Low State (I  
= 100 mA)  
= 500 mA)  
V
1.0  
1.4  
1.2  
2.0  
Sink  
Sink  
OL  
High State (I  
High State (I  
= 200 mA)  
= 500 mA)  
V
1.5  
2.0  
2.0  
2.7  
Source  
Source  
OH  
Output Voltage During Initialization Phase  
V
V
OL  
V
V
V
= 0 to 1.0 V, I  
= 1.0 to 5.0 V, I  
= 5.0 to 13 V, I  
= 10 A  
0.1  
0.1  
1.0  
1.0  
1.0  
CC  
CC  
CC  
Sink  
= 100 A  
Sink  
Sink  
= 1.0 mA  
Output Voltage Rising Edge SlewRate (C = 1.0 nF, T = 25°C)  
dVo/dT  
dVo/dT  
300  
V/s  
V/s  
L
J
Output Voltage Falling Edge SlewRate (C = 1.0 nF, T = 25°C)  
300  
L
J
ERROR AMPLIFIER SECTION  
Voltage Feedback Input (V  
= 2.5 V)  
V
2.42  
2.0  
65  
2.5  
0.6  
70  
2.58  
V
E/A out  
FB  
Input Bias Current (V = 2.5 V)  
I
A  
dB  
FB  
FBib  
Open Loop Voltage Gain (V  
= 2.0 to 4.0 V)  
A
VOL  
E/A out  
ERROR AMPLIFIER SECTION (continued)  
Unity Gain Bandwidth  
BW  
MHz  
T = 25°C  
4.0  
J
T = 25° to +85°C  
J
5.5  
10  
Voltage Feedback Input Line Regulation (V = 10 to 15 V)  
V
10  
mV  
mA  
CC  
FBlinereg  
Output Current  
Sink (V  
= 1.5 V, V = 2.7 V)  
I
Sink  
2.0  
12  
E/A out  
FB  
T = 25° to +85°C  
A
Source (V  
= 5.0 V, V = 2.3 V)  
I
Source  
2.0  
0.2  
E/A out  
FB  
T = 25° to +85°C  
A
Output Voltage Swing  
V
High State (I  
Low State (I  
= 0.5 mA, V = 2.3 V)  
V
OH  
5.5  
6.5  
1.0  
7.5  
1.1  
E/A out (source)  
FB  
= 0.33 mA, V = 2.7 V)  
V
OL  
E/A out (sink)  
FB  
REFERENCE SECTION  
Reference Output Voltage (V = 10 to 15 V)  
V
2.4  
500  
40  
2.5  
2.6  
V
CC  
ref  
Reference Current Range (I = V /R , R = 5.0 k to 25 k)  
I
100  
A  
mV  
ref  
ref ref  
ref  
Reference Voltage Over I Range  
V
40  
ref  
ref  
OSCILLATOR AND SYNCHRONIZATION SECTION  
Frequency  
f
kHz  
%/V  
OSC  
T = 0° to +70°C  
A
44.5  
44  
48  
51.5  
52  
T = 25° to +85°C  
A
Frequency Change with Voltage (V = 10 to 15 V)  
f
/
V
0.05  
CC  
OSC  
3. Adjust V above the startup threshold before setting to 12 V.  
CC  
4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
5. V must be greater than 5.0 V.  
C
6. Standby is disabled for V  
< 25 mV typical.  
R P Stby  
7. If not used, Synchronization input must be connected to Ground.  
8. Synchronization Pulse Width must be shorter than t = 1/f  
.
OSC  
OSC  
9. This function can be inhibited by connecting Pin 8 to GND. This allows a continuous current mode operation.  
10.This function can be inhibited by connecting Pin 5 to V  
.
CC  
11. The MC44603A can be shut down by connecting the SoftStart pin (Pin 11) to Ground.  
http://onsemi.com  
360  
MC44603A  
ELECTRICAL CHARACTERISTICS (continued) (V and V = 12 V, (Note 3), R = 10 k, C = 820 pF, for typical values T =  
CC  
C
ref  
T
A
25°C, for min/max values T = 25° to +85°C (Note 4), unless otherwise noted.)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OSCILLATOR AND SYNCHRONIZATION SECTION  
Frequency Change with Temperature (T = 25° to +85°C)  
f  
/T  
OSC  
0.05  
1.8  
%/°C  
A
Oscillator Voltage Swing (PeaktoPeak)  
V
1.65  
1.95  
V
OSC(pp)  
Ratio Charge Current/Reference Current  
I
/I  
charge ref  
T = 0° to +70°C (V = 2.0 V)  
0.375  
0.37  
78  
0.4  
0.425  
0.43  
82  
A
CT  
T = 25° to +85°C  
A
Fixed Maximum Duty Cycle = I  
/(I  
+ I  
charge  
)
D
80  
%
discharge discharge  
Ratio Standby Discharge Current versus I  
(Note 6)  
I
/
dischStby  
R F Stby  
T = 0° to +70°C  
I
0.46  
0.43  
2.4  
0.53  
0.6  
0.63  
2.6  
A
R F Stby  
T = 25° to +85°C (Note 8)  
A
V
(I  
= 100 A)  
V
2.5  
21  
V
kHz  
A  
V
R F Stby R F Stby  
R F Stby  
Frequency in Standby Mode (R  
Current Range  
(Pin 15) = 25 k)  
F
18  
24  
F Stby  
Stby  
R F Stby  
I
200  
50  
Synchronization Input Threshold Voltage (Note 7)  
V
V
3.2  
0.45  
3.7  
0.7  
4.3  
0.9  
inthH  
inthL  
Synchronization Input Current  
I
5.0  
0
A  
s  
Syncin  
Minimum Synchronization Pulse Width (Note 8)  
UNDERVOLTAGE LOCKOUT SECTION  
Startup Threshold  
t
0.5  
Sync  
V
13.6  
14.5  
15.4  
V
V
stupth  
Output Disable Voltage After Threshold TurnOn (UVLO 1)  
V
disable1  
disable2  
T = 0° to +70°C  
A
8.6  
8.3  
7.0  
9.0  
9.4  
9.6  
8.0  
T = 25° to +85°C  
A
Reference Disable Voltage After Threshold TurnOn (UVLO 2)  
DEMAGNETIZATION DETECTION SECTION (Note 9)  
Demagnetization Detect Input  
V
7.5  
V
Demagnetization Comparator Threshold (V  
Decreasing)  
V
50  
65  
0.25  
80  
mV  
s  
A  
V
Pin 9  
demagth  
Propagation Delay (Input to Output, Low to High)  
Input Bias Current (V  
= 65 mV)  
I
0.5  
demag  
demaglb  
Negative Clamp Level (I  
= 2.0 mA)  
C
C
0.38  
0.72  
demag  
L(neg)  
Positive Clamp Level (I  
= 2.0 mA)  
V
demag  
L(pos)  
SOFTSTART SECTION (Note 11)  
Ratio Charge Current/I  
I
/I  
ss(ch) ref  
ref  
T = 0° to +70°C  
0.37  
0.36  
1.5  
0.4  
0.43  
0.44  
A
T = 25° to +85°C  
A
Discharge Current (V  
Clamp Level  
= 1.0 V)  
I
5.0  
2.4  
mA  
V
softstart  
discharge  
V
2.2  
2.6  
ss(CL)  
3. Adjust V above the startup threshold before setting to 12 V.  
CC  
4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
5. V must be greater than 5.0 V.  
C
6. Standby is disabled for V  
< 25 mV typical.  
R P Stby  
7. If not used, Synchronization input must be connected to Ground.  
8. Synchronization Pulse Width must be shorter than t = 1/f  
.
OSC  
OSC  
9. This function can be inhibited by connecting Pin 8 to GND. This allows a continuous current mode operation.  
10.This function can be inhibited by connecting Pin 5 to V  
.
CC  
11. The MC44603A can be shut down by connecting the SoftStart pin (Pin 11) to Ground.  
http://onsemi.com  
361  
MC44603A  
ELECTRICAL CHARACTERISTICS (continued) (V and V = 12 V, (Note 3), R = 10 k, C = 820 pF, for typical values T =  
CC  
C
ref  
T
A
25°C, for min/max values T = 25° to +85°C (Note 4), unless otherwise noted.)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
SOFTSTART SECTION (Note 11)  
Duty Cycle (R  
Duty Cycle (V  
= 12 k)  
D
36  
42  
49  
0
%
softstart  
softstart (Pin 11)  
softstart 12k  
= 0.1 V)  
D
softstart  
OVERVOLTAGE SECTION  
Protection Threshold Level on V  
V
2.42  
1.0  
2.5  
2.58  
3.0  
V
s  
V
OVP  
OVPth  
Propagation Delay (V  
> 2.58 V to V Low)  
OVP  
CC  
out  
Protection Level on V  
V
CC prot  
T = 0° to +70°C  
16.1  
15.9  
17  
17.9  
18.1  
A
T = 25° to +85°C  
A
Input Resistance  
kꢂ  
T = 0° to +70°C  
1.5  
1.4  
2.0  
3.0  
3.4  
A
T = 25° to +85°C  
A
FOLDBACK SECTION (Note 10)  
Current Sense Voltage Threshold (V  
= 0.9 V)  
V
0.86  
0.89  
0.9  
V
foldback (Pin 5)  
CSth  
Foldback Input Bias Current (V  
= 0 V)  
I
6.0  
2.0  
A
foldback (Pin 5)  
foldbacklb  
STANDBY SECTION  
Ratio I  
/I  
I
/I  
R P Stby ref  
R P Stby ref  
T = 0° to +70°C  
0.37  
0.36  
0.4  
0.43  
0.44  
A
T = 25° to +85°C  
A
Ratio Hysteresis (V Required to Return to Normal Operation from Standby  
V /V  
h
h
R P Stby  
Operation)  
T = 0° to +70°C  
1.42  
1.4  
1.5  
1.58  
1.6  
A
T = 25° to +85°C  
A
Current Sense Voltage Threshold (V  
= 1.0 V)  
V
0.28  
0.31  
0.34  
V
V
R P Stby (Pin 12)  
CSStby  
CURRENT SENSE SECTION  
Maximum Current Sense Input Threshold  
(V = 2.3 V and V  
V
0.96  
1.0  
1.04  
CSth  
= 1.2 V)  
foldback (Pin 6)  
feedback (Pin 14)  
Input Bias Current  
I
10  
2.0  
A
CSib  
Propagation Delay (Current Sense Input to Output at V of  
120  
200  
ns  
TH  
MOS transistor = 3.0 V)  
TOTAL DEVICE  
Power Supply Current  
I
mA  
CC  
Startup (V = 13 V with V Increasing)  
13  
0.3  
17  
0.45  
20  
CC  
CC  
Operating T = 25° to +85°C (Note 3)  
A
Power Supply Zener Voltage (I = 25 mA)  
V
18.5  
V
CC  
Z
Thermal Shutdown  
155  
°C  
3. Adjust V above the startup threshold before setting to 12 V.  
CC  
4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
5. V must be greater than 5.0 V.  
C
6. Standby is disabled for V  
< 25 mV typical.  
R P Stby  
7. If not used, Synchronization input must be connected to Ground.  
8. Synchronization Pulse Width must be shorter than t = 1/f  
.
OSC  
OSC  
9. This function can be inhibited by connecting Pin 8 to GND. This allows a continuous current mode operation.  
10.This function can be inhibited by connecting Pin 5 to V  
.
CC  
11. The MC44603A can be shut down by connecting the SoftStart pin (Pin 11) to Ground.  
http://onsemi.com  
362  
MC44603A  
ꢘ ꢐ ꢙ  
ꢂ ꢀ ꢁ ꢎ  
ꢘ ꢐ ꢙ  
ꢢ ꢚ ꢖꢥ ꢛ  
ꢝꢖ  
ꢏꢨ  
ꢼꢎ ꢻ ꢔ ꢅ  
ꢓ ꢓ  
ꢦ ꢕ ꢲ  
ꢀ ꢉꢶ ꢆ ꢎ  
ꢡ ꢐ ꢬꢦ ꢩ ꢔꢕ ꢖ  
ꢓ ꢓ  
ꢣꢌ ꢝꢧ  
ꢝꢐ  
ꢚꢛꢜ ꢝ  
ꢞꢜ ꢍ ꢕꢖ  
ꢚ ꢛꢜꢝꢷꢘ ꢌ  
ꢃꢶ  
ꢈꢶ  
ꢘ ꢐ ꢙ  
ꢘ ꢐ ꢙ  
ꢘ ꢐ ꢙ  
ꢢ ꢚ ꢖꢥ ꢛ  
ꢶꢃ  
ꢘ ꢐ ꢙ  
ꢔꢚ ꢓ ꢍ ꢘ ꢌ ꢖ  
ꢶꢆ  
ꢶꢁ  
ꢔꢚ ꢓ  
ꢔ ꢕ ꢖꢍ ꢕ ꢖ  
ꢄꢶ  
ꢔꢎ ꢪ  
ꢔ ꢕ ꢖ  
ꢅ ꢶ ꢫ  
ꢡꢐ ꢣꢦ ꢛ  
ꢟ ꢠꢡ  
ꢶꢃ  
ꢘ ꢐ ꢙ  
ꢌꢑ  
ꢡꢏ ꢫꢝꢷ ꢦ ꢘ ꢩ ꢐ  
ꢘ ꢐ ꢙ  
ꢓ ꢓ  
ꢘ ꢐ ꢙ  
ꢘ ꢐ ꢙ  
ꢘ ꢐ ꢙ  
ꢘ ꢐ ꢙ  
ꢘ ꢐ ꢙ  
ꢘ ꢐ ꢙ  
ꢘ ꢐ ꢙ  
ꢆꢶ ꢉ ꢞ  
ꢘ ꢐ ꢙ  
ꢘ ꢐ ꢙ  
ꢆ ꢶꢃ ꢞ  
ꢘ ꢐ ꢙ  
ꢓꢕ ꢘꢘ ꢐ ꢜꢖ  
ꢚ ꢐꢜ ꢫꢐ ꢞꢜ ꢍ ꢕ ꢖ  
ꢱ ꢎ ꢳ  
ꢬ ꢦ ꢲ  
ꢚ ꢚ  
This device contains 243 active transistors.  
Figure 1. Representative Block Diagram  
http://onsemi.com  
363  
MC44603A  
ꢆꢆ  
°  
ꢺ ꢀ ꢆ ꢧ  
ꢀ ꢁ ꢎ  
°ꢓ  
ꢓꢓ  
ꢓ ꢓ  
ꢺ ꢂꢆ ꢆ ꢍꢢ  
ꢺ ꢅ ꢶꢆ ꢧ  
ꢢ ꢚ ꢖꢥ ꢛ  
ꢅ ꢈ ꢧ  
ꢢ ꢚ ꢖꢥ ꢛ  
ꢺ ꢅ ꢅꢆ ꢆ ꢍ ꢢ  
ꢆꢽ  
ꢀꢆ  
ꢆꢽ  
ꢶꢆ  
ꢆꢽ  
ꢆꢆ  
ꢀ ꢶꢆ ꢽ ꢳ  
ꢫꢝ  
ꢦꢖ  
ꢌꢘ  
ꢢꢘ  
ꢭꢕ  
ꢜꢝ  
ꢊꢿ  
ꣀꢒ  
ꢙ ꢾ ꢔ  
ꢔꢚ ꢓ  
Figure 2. Timing Resistor versus  
Oscillator Frequency  
Figure 3. Standby Mode Timing Capacitor  
versus Oscillator Frequency  
ꢓ ꢓ  
°
°
Figure 4. Oscillator Frequency  
versus Temperature  
Figure 5. Ratio Charge Current/Reference  
Current versus Temperature  
ꢺ ꢀ ꢅ ꢎ  
ꢓ ꢓ  
ꢅ ꢅꢆ ꢆ ꢍ ꢢ  
ꢅ ꢂ°ꢓ  
°
ꢃꢆ  
ꢁꢆ  
ꢉꢆ  
ꢆ ꢆ  
Figure 6. Output Waveform  
Figure 7. Output Cross Conduction  
http://onsemi.com  
364  
MC44603A  
ꢆꢆ  
ꢈꢂ  
ꢂꢆ  
ꢅꢂ  
ꢆꢆ  
ꢈꢂ  
ꢂꢆ  
ꢅꢂ  
ꢓ ꢓ  
ꢅꢆ  
°
ꢄ ꢆꢆ  
ꢂꢆ  
ꢆꢆ  
ꢂ ꢆ ꢆ  
ꢠꢋ  
°  
ꢾ ꢔ  
ꢫꢌ ꢕ ꢘ ꢝꢐ  
ꢼꢋ  
ꢼꢗ  
ꢓꢮ  
ꢗꢮ  
ꢠꢋ  
ꢬꢯ  
Figure 8. Oscillator Discharge Current  
versus Temperature  
Figure 9. Source Output Saturation Voltage  
versus Load Current  
ꢓ ꢓ  
ꢚꢦ ꢖꢕ ꢘꢦꢖ ꢏ ꢌꢜ  
ꢟ ꢺ ꢀ ꢆ  
ꢊꢻ  
ꢖꢌ  
ꢓꢓ  
ꢀ ꢃ ꢆ  
ꢏ ꢜ  
ꢶꢆ  
ꢆꢆ  
ꢅ ꢂ°ꢓ  
°  
ꢅ ꢎ  
ꢓꢓ  
ꢕꢣ ꢫꢐꢤ ꢻ ꢌꢦ ꢤ  
ꢰ ꢃ ꢆ  
ꢀ ꢆ  
Figure 10. Sink Output Saturation Voltage  
versus Sink Current  
Figure 11. Error Amplifier Gain and Phase  
versus Frequency  
ꢺ ꢀ ꢅ ꢎ  
ꢓ ꢓ  
ꢟ ꢺ ꢀꢆ  
°
°
Figure 12. Voltage Feedback Input  
versus Temperature  
Figure 13. Demag Comparator Threshold  
versus Temperature  
http://onsemi.com  
365  
MC44603A  
ꢂ ꢶꢆ  
ꢶꢆ  
ꢅꢶ ꢆ ꢌꣀ  
ꢌꢍꢍ ꢐꢘ  
ꢦꢍ  
ꢐꢍ  
ꢐꢫ  
ꢫꢛ  
ꢬꢬ  
ꢏꢝ  
ꢣꢦ  
ꢌꢕ  
ꢶꢆ  
ꢓꢓ  
ꢌꢘ ꢋ ꢺ ꢈ °ꢓ  
ꢡꢊ ꢬ ꢦ ꢲ ꢒ  
ꢶꢆ  
ꢘ ꢐ ꢙ  
ꢅꢆ  
ꢅꢂ  
ꢅꢂ  
ꢂꢆ  
ꢀ ꢆꢆ  
ꢂ ꢆ  
ꢳꢴ  
ꢞꢮ  
ꢠꢋ  
°
Figure 14. Current Sense Gain  
versus Temperature  
Figure 15. Thermal Resistance and Maximum  
Power Dissipation versus P.C.B. Copper Length  
ꢶꢅ  
ꢶꢀ  
ꢶꢀ  
ꢶꢆ  
ꢺ ꢀ ꢆ ꢧ  
ꢘ ꢐ ꢙ  
°
ꢾ ꢚ  
ꢓ ꢓ  
Figure 16. Propagation Delay Current Sense  
Input to Output versus Temperature  
Figure 17. Startup Current versus VCC  
ꢆꢶ  
ꢇꢶ  
ꢇꢶ  
ꢺ ꢅ °ꢓ  
ꢘ ꢐ ꢙ  
ꢺ ꢉ ꢅꢆ ꢍꢢ  
ꢓ ꢓ  
ꢢꢴ  
ꢓ ꢚ  
°
Figure 18. Supply Current versus  
Supply Voltage  
Figure 19. Power Supply Zener Voltage  
versus Temperature  
http://onsemi.com  
366  
MC44603A  
ꢶꢅ  
ꢃꢶ  
ꢃꢶ  
ꢄꢶ  
ꢶꢆ  
ꢶꢂ  
ꢶꢂ  
ꢜꢝ  
ꢦꢫ  
ꢏꢜ  
ꢡꢐ ꢝꢘ ꢐ ꢦꢫ ꢏꢜ ꢩ  
ꢓ ꢓ  
ꢅꢂ  
ꢆꢆ  
ꢀ ꢆ ꢆ  
ꢳꢴ  
ꢋꢮ  
ꢳꢪ  
ꢗꢮ  
°  
ꢓꢒ  
ꢾ ꢯ  
ꢳꢴ  
ꢮꢠ  
ꢋꢮ  
ꢳꢪ  
ꢼꢗ  
°  
ꢓꢒ  
Figure 20. Startup Threshold Voltage  
versus Temperature  
Figure 21. Disable Voltage After Threshold  
TurnOn (UVLO1) versus Temperature  
ꢅ ꢶꢁ ꢆ  
ꢅ ꢶꢂ ꢂ  
ꢶꢂ  
ꢶꢃ  
ꢶꢃ  
ꢶꢄ  
ꢶꢄ  
ꢺ ꢀ ꢅ ꢎ  
ꢓ ꢓ  
ꢡꢐ ꢝꢘꢐꢦ ꢫꢏꢜ ꢩ  
ꢓꢓ  
ꢂꢆ  
ꢅꢂ  
°
°
Figure 22. Disable Voltage After Threshold  
Figure 23. Protection Threshold Level on  
TurnOn (UVLO2) versus Temperature  
VOVP versus Temperature  
ꢺ ꢀꢆ ꢧ  
ꢺ ꢉ ꢅ ꢆ ꢍꢢ  
°
°
Figure 24. Protection Level on VCC  
versus Temperature  
Figure 25. Propagation Delay (VOVP > 2.58 V  
to Vout Low) versus Temperature  
http://onsemi.com  
367  
MC44603A  
ꢶꢄ  
ꢶꢄ  
ꢶꢄ  
ꢶꢄ  
ꢅ ꢃ  
ꢅ ꢃ  
ꢅ ꢄ  
ꢅ ꢄ  
ꢎꢌꢣ ꢖ ꢦꢩꢐ ꢞ ꢜꢝꢘꢐ ꢦꢫꢏ ꢜ ꢩ  
ꢘ ꢐ ꢙ  
ꢏꢜ  
ꢍꢐ  
ꢅꢂ  
ꢆꢆ  
ꢀ ꢆ ꢆ  
ꢳꢴ  
ꢞꢮ  
ꢠꢋ  
ꢋꢮ  
ꢳꢪ  
°  
ꢓꢒ  
ꢾ ꢯ  
ꢳꢴ  
ꢮꢠ  
ꢋꢮ  
ꢳꢪ  
ꢼꢗ  
°  
ꢓꢒ  
Figure 26. Standby Reference Current  
versus Temperature  
Figure 27. Current Sense Voltage Threshold  
Standby Mode versus Temperature  
PIN FUNCTION DESCRIPTION  
Pin  
1
Name  
Description  
This pin is the positive supply of the IC. The operating voltage range after startup is 9.0 to 14.5 V.  
V
CC  
2
V
The output high state (V ) is set by the voltage applied to this pin. With a separate connection to the  
C
OH  
power source, it can reduce the effects of switching noise on the control circuitry.  
3
4
5
Output  
GND  
Peak currents up to 750 mA can be sourced or sunk, suitable for driving either MOSFET or Bipolar tran-  
sistors. This output pin must be shunted by a Schottky diode, 1N5819 or equivalent.  
The ground pin is a single return, typically connected back to the power source; it is used as control and  
power ground.  
Foldback Input  
The foldback function provides overload protection. Feeding the foldback input with a portion of the V  
CC  
voltage (1.0 V max) establishes on the system control loop a foldback characteristic allowing a smoother  
startup and sharper overload protection. Above 1.0 V the foldback input is inactive.  
6
7
Overvoltage  
Protection  
When the overvoltage protection pin receives a voltage greater than 17 V, the device is disabled and  
requires a complete restart sequence. The overvoltage level is programmable.  
Current Sense  
Input  
A voltage proportional to the current flowing into the power switch is connected to this input. The PWM  
latch uses this information to terminate the conduction of the output buffer when working in a current  
mode of operation. A maximum level of 1.0 V allows either current or voltage mode operation.  
8
9
Demagnetization  
Detection  
A voltage delivered by an auxiliary transformer winding provides to the demagnetization pin an indication  
of the magnetization state of the flyback transformer. A zero voltage detection corresponds to complete  
core saturation. The demagnetization detection ensures a discontinuous mode of operation. This function  
can be inhibited by connecting Pin 8 to GND.  
Synchronization  
Input  
The synchronization input pin can be activated with either a negative pulse going from a level between  
0.7 V and 3.7 V to GND or a positive pulse going from a level between 0.7 V and 3.7 V up to a level high-  
er than 3.7 V. The oscillator runs free when Pin 9 is connected to GND.  
10  
11  
C
The normal mode oscillator frequency is programmed by the capacitor C choice together with the R  
T ref  
T
resistance value. C , connected between Pin 10 and GND, generates the oscillator sawtooth.  
T
SoftStart/D  
VoltageMode  
/
A capacitor, resistor or a voltage source connected to this pin limits the switching dutycycle. This pin  
can be used as a voltage mode control input. By connecting Pin 11 to Ground, the MC44603A can be  
shut down.  
max  
12  
R
A voltage level applied to the R  
turn into the reduced frequency mode of operation (i.e. standby mode). An internal hysteresis comparator  
allows to return in the normal mode at a higher output power level.  
pin determines the output power level at which the oscillator will  
P Standby  
P Standby  
13  
14  
E/A Out  
The error amplifier output is made available for loop compensation.  
Voltage Feedback This is the inverting input of the Error Amplifier. It can be connected to the switching power supply output  
through an optical (or other) feedback loop.  
15  
16  
R
The reduced frequency or standby frequency programming is made by the R  
resistance choice.  
F Standby  
F Standby  
R
ref  
R
sets the internal reference current. The internal reference current ranges from 100 A to 500 A.  
ref  
This requires that 5.0 kR 25 k.  
ref  
http://onsemi.com  
368  
MC44603A  
ꢌꢰ  
ꢋꢦ  
ꢧꢐ  
ꢨꢐ  
ꢻ ꢌꢌ ꢍ ꢢꢦ ꢏꢣ ꢕꢘ ꢐ  
ꢗꢐ ꢫꢖ ꢦꢘ ꢖ  
ꢓꢓ  
ꢓꢓ ꢍ ꢘ ꢌ ꢖ  
ꢠꢌ ꢘꢬ ꢦ ꢣ ꢳꢌ ꢤ ꢐ  
ꢤ ꢏ ꢫꢦ ꢥ ꢣ ꢐ ꢀ  
ꢤ ꢏ ꢫꢦ ꢥ ꢣ ꢐ ꢅ  
ꢘ ꢐ ꢙ  
ꢼ ꢎꢻꢔ ꢀ  
ꢪ ꢏ ꢜ ꢀ ꢀ  
ꢊ ꢚ ꢌ ꢙꢖ ꢰ ꢚ ꢖꢦ ꢘ ꢖꢒ  
ꢔ ꢕꢖ ꢍꢕꢖ  
ꢓꢓ  
ꢀꢈ  
ꢆꢶ  
Figure 28. Starting Behavior and Overvoltage Management  
ꢡ ꢐ ꢬꢦ ꢩ ꢞꢜ  
ꢕꢖ  
ꢍꢕ  
ꢊꢪ  
ꢄꢒ  
ꢡ ꢐ ꢬꢦ ꢩ ꢔꢕ ꢖ  
ꢡꢐ ꢬ ꢦ ꢩ ꢔꢕ ꢖ  
ꢔ ꢫꢝꢏꢣ ꢣꢦ ꢖ ꢌꢘ  
ꢡ ꢐ ꢬꢦ ꢩ ꢞꢜ  
ꢳꢦ ꢜ ꢦꢩ ꢐ ꢬꢐ ꢜ  
ꢴ ꢕꢙ ꢙꢐ ꢘ  
Figure 29. Demagnetization  
http://onsemi.com  
369  
MC44603A  
ꢓꢓ  
ꢫꢖꢕ ꢍ ꢰ ꢖꢷ  
ꢤ ꢏ ꢫꢦ ꢥ ꢣ ꢐ ꢀ  
ꢤ ꢏ ꢫꢦ ꢥ ꢣ ꢐ ꢅ  
ꢘ ꢐ ꢙ  
ꢊꢚ ꢌꢙ ꢖꢰ ꢚ ꢖꢦ ꢘꢖ ꢒ  
ꢍꢕ  
ꢏꢜ  
ꢄꢒ  
ꢀꢈ  
ꢆꢶ ꢄ ꢬ  
Figure 30. Switching Off Behavior  
ꢡ ꢐ ꢬꢦ ꢩ ꢔꢕ ꢖ  
ꢔꢚ ꢓ  
ꢔꢚ ꢓ ꢍ ꢘ ꢌ ꢖ  
ꢔꢚ ꢓ ꢍ ꢘ ꢌ ꢖ  
ꢛꢜ  
ꢝꢷ  
ꢘꢌ  
ꢜꢏ  
ꣀꢦ  
ꢌꢜ  
ꢞ ꢜꢍꢕ  
ꢔ ꢫꢝꢏꢣ ꢣꢦ ꢖ ꢌꢘ  
ꢔꢚ ꢓ  
ꢚ ꢖꢥ ꢛ  
Figure 31. Oscillator  
http://onsemi.com  
370  
MC44603A  
ꢘ ꢐ ꢙ  
ꢵ ꢀꢶ ꢁ ꢎ  
ꢓꢚ ꢚ  
ꢞ ꢜꢖ ꢐ ꢘ ꢜꢦ ꢣ ꢓꢣ ꢦꢬ ꢍ  
ꢌꢙ  
ꢦꢘ  
ꢦꢣ  
ꢓꢣ  
ꢓ ꢋ  
ꢓ ꢋ  
ꢔꢚ ꢓ  
ꢕꢖ  
ꢊꢪ  
Figure 32. SoftStart & Dmax  
OPERATING DESCRIPTION  
Error Amplifier  
A fully compensated Error Amplifier with access to the  
inverting input and output is provided. It features a typical  
dc voltage gain of 70 dB. The noninverting input is  
internally biased at 2.5 V and is not pinned out. The  
converter output voltage is typically divided down and  
monitored by the inverting input. The maximum input bias  
current with the inverting input at 2.5 V is 2.0 A. This can  
cause an output voltage error that is equal to the product of  
the input bias current and the equivalent input divider source  
resistance.  
The Error Amp output (Pin 13) is provided for external  
loop compensation. The output voltage is offset by two  
diode drops (1.4 V) and divided by three before it connects  
to the inverting input of the Current Sense Comparator. This  
guarantees that no drive pulses appear at the Output (Pin 3)  
ꢓꢌ ꢬꢍ ꢐ ꢜꢫꢦ ꢖ ꢏꢌ ꢜ  
ꢢ ꢴ  
ꢬꢍ  
ꢏꢙ  
ꢐꢘ  
ꢅ ꢶꢂ ꢎ  
ꢎꢌ ꢣꢖ ꢦ ꢩꢐ  
ꢢꢐ ꢐꢤ ꢥ ꢦ ꢝꢧ  
ꢓ ꢕꢘ ꢘ ꢐ ꢜ ꢖ ꢚꢐ ꢜ ꢫ ꢐ  
ꢓ ꢌꢬ ꢍꢦ ꢘ ꢦ ꢖꢌ ꢘ  
ꢜꢍ  
ꢶꢆ  
ꢢꢌ ꢣꢤ ꢥ ꢦꢝꢧ  
ꢠꢡ  
ꢞ ꢜꢍ ꢕ ꢖ  
ꢢꢘ  
Figure 33. Error Amplifier Compensation  
when Pin 13 is at its lowest state (V ). The Error Amp  
minimum feedback resistance is limited by the amplifier’s  
minimum source current (0.2 mA) and the required output  
OL  
Current Sense Comparator and PWM Latch  
The MC44603A can operate as a current mode controller  
or as a voltage mode controller. In current mode operation,  
the MC44603A uses the current sense comparator. The  
output switch conduction is initiated by the oscillator and  
terminated when the peak inductor current reaches the  
voltage (V ) to reach the current sense comparator’s 1.0 V  
OH  
clamp level:  
3.0 (1.0 V) ) 1.4 V  
R
f(min)  
[
+ 22 kꢂ  
0.2 mA  
http://onsemi.com  
371  
MC44603A  
threshold level established by the Error Amplifier output  
(Pin 13). Thus, the error signal controls the peak inductor  
current on a cyclebycycle basis. The Current Sense  
Comparator PWM Latch ensures that only a single pulse  
appears at the Source Output during the appropriate  
oscillator cycle.  
connected to the charging current source (0.4 I ) and so,  
ref  
the discharge current source has to be higher than the  
charge current to be able to decrease the C voltage (refer  
T
to Figure 36).  
This condition is performed, its value being (2.0 I ) in  
ref  
normal working and (0.4 I + 0.5 I  
in standby mode).  
ref  
F Stby  
The inductor current is converted to a voltage by inserting  
the ground referenced sense resistor R in series with the  
ꢘ ꢐ ꢙ  
S
power switch Q1.  
ꢆ ꢶꢃ ꢞ  
ꢘ ꢐ ꢙ  
This voltage is monitored by the Current Sense Input  
(Pin 7) and compared to a level derived from the Error Amp  
output. The peak inductor current under normal operating  
conditions is controlled by the voltage at Pin 13 where:  
ꢎ ꢔꢚ ꢍ ꢘ ꢌ ꢖ  
ꢔꢚ ꢓ ꢍ ꢘ ꢌ ꢖ  
꣇ ꢀ ꢶ ꢁ ꢎ  
V
(Pin 13) – 1.4 V  
ꢡꢏ ꢫꢝꢷꢦ ꢘ ꢩꢐ  
I
[
pk  
3 R  
S
ꢔꢚ ꢓ ꢿ ꢏ ꢩ ꢷ  
ꢛ ꢜ ꢝꢷ ꢘ ꢌ  
ꢡꢏ ꢫꢝꢷ  
The Current Sense Comparator threshold is internally  
clamped to 1.0 V. Therefore, the maximum peak switch  
current is:  
ꢡ ꢐ ꢬ ꢦ ꢩ  
ꢔ ꢕ ꢖ  
ꢔꢚ ꢓ ꢗꢐ ꢩ ꢕ ꢣ  
1.0 V  
I
[
pk(max)  
R
S
ꢗꢐ ꢩ ꢕ ꢣ  
ꢏ ꢜ  
ꢡꢏ ꢫꢝꢷ ꢦ ꢘ ꢩ ꢐ  
ꢀꢃ  
Figure 35. Oscillator  
ꢘ ꢐ ꢙ  
ꢻ ꢦꢖ ꢝꢷ  
Figure 34. Output Totem Pole  
Series gate resistor, R2, will dampen any high frequency  
oscillations caused by the MOSFET input capacitance and  
any series wiring inductance in the gatesource circuit.  
Diode D is required if the negative current into the output  
drive pin exceeds 15 mA.  
Figure 36. Simplified Block Oscillator  
Two comparators are used to generate the sawtooth. They  
compare the C voltage to the oscillator valley (1.6 V) and  
T
peak reference (3.6 V) values. A latch (L  
the oscillator state.  
In addition to the charge and discharge cycles, a third state  
can exist. This phase can be produced when, at the end of the  
discharge phase, the oscillator has to wait for a  
synchronization or demagnetization pulse before restarting.  
) memorizes  
disch  
Oscillator  
The oscillator is a very accurate sawtooth generator that  
can work either in free mode or in synchronization mode. In  
this second mode, the oscillator stops in the low state and  
waits for a demagnetization or a synchronization pulse to  
start a new charging cycle.  
During this delay, the C voltage must remain equal to the  
T
The Sawtooth Generation:  
oscillator valley value (]1.6 V). So, a third regulated  
In the steady state, the oscillator voltage varies between  
about 1.6 V and 3.6 V.  
current source I  
controlled by C  
, is connected  
Regul  
OSC Regul  
to C in order to perfectly compensate the (0.4 I ) current  
T
ref  
The sawtooth is obtained by charging and discharging an  
external capacitor C (Pin 10), using two distinct current  
sources = I  
source that permanently supplies C .  
T
T
The maximum duty cycle is 80%. Indeed, the ontime is  
allowed only during the oscillator capacitor charge.  
and I  
. In fact, C is permanently  
discharge T  
charge  
http://onsemi.com  
372  
MC44603A  
Consequently:  
= C x V/I  
charge  
That is why, the MC44603A demagnetization detection  
T
charge  
consists of a comparator that can compare the auxiliary  
winding voltage to a reference that is typically equal to  
65 mV.  
T
T
= C x V/I  
discharge  
T discharge  
where:  
T
charge  
is the oscillator charge time  
V is the oscillator peaktopeak value  
I
is the oscillator charge current  
charge  
ꢶꢈ  
and  
T
ꣅꢐ ꢘꢌ ꢓꢕ ꢘ ꢘꢐ ꢜꢖ  
ꢡꢐ ꢖ ꢐꢝꢖ ꢏ ꢌꢜ  
is the oscillator discharge time  
discharge  
I
is the oscillator discharge current  
discharge  
So, as f = 1 /(T  
arrangement is not activated, the operating frequency can be  
obtained from the graph in Figure 2.  
+ T  
) when the Regul  
S
charge  
discharge  
ꢆ ꢶꢄ ꢄ ꢎ  
NOTE: The output is disabled by the signal V  
when  
OSC prot  
V
CT  
is lower than 1.0 V (refer to Figure 31).  
ꢰꢋ  
ꢏꢬ  
ꢙꢙ  
ꢏꢬ  
ꢡꢐ ꢦ ꢤꢰ ꢋ ꢏꢬ ꢐ  
Synchronization and Demagnetization Blocks  
To enable the output, the L  
output must be low. Reset is activated by the L  
latch complementary  
OSC  
Figure 38. Demagnetization Detection  
output  
disch  
during the discharge phase. To restart, the L  
(refer to Figure 35). To perform this, the demagnetization  
signal and the synchronization must be low.  
has to be set  
OSC  
A diode D has been incorporated to clamp the positive  
applied voltages while an active clamping system limits the  
negative voltages to typically 0.33 V. This negative clamp  
level is sufficient to avoid the substrate diode switching on.  
In addition to the comparator, a latch system has been  
incorporated in order to keep the demagnetization block  
output level low as soon as a voltage lower than 65 mV is  
detected and as long as a new restart is produced (high level  
on the output) (refer to Figure 39). This process prevents  
ringing on the signal at Pin 8 from disrupting the  
demagnetization detection. This results in a very accurate  
demagnetization detection.  
Synchronization:  
The synchronization block consists of two comparators  
that compare the synchronization signal (external) to 0.7 and  
3.7 V (typical values). The comparators’ outputs are  
connected to the input of an AND gate so that the final output  
of the block should be:  
high when 0.7 < SYNC < 3.7 V  
low in the other cases.  
As a low level is necessary to enable the output,  
synchronized low level pulses have to be generated on the  
output of the synchronization block. If synchronization is  
not required, the Pin 9 must be connected to the ground.  
The demagnetization block output is also directly  
connected to the output, disabling it during the  
demagnetization phase (refer to Figure 34).  
NOTE: The demagnetization detection can be inhibited by  
connecting Pin 8 to the ground.  
Figure 37. Synchronization  
Demagnetization:  
In flyback applications, a good means to detect magnetic  
saturation of the transformer core, or demagnetization,  
consists in using the auxiliary winding voltage. This voltage  
is:  
Figure 39. Demagnetization Block  
negative during the ontime,  
positive during the offtime,  
equal to zero for the deadtime with generally some  
ringing (refer to Figure 38).  
Standby  
Power Losses in a Classical Flyback Structure  
http://onsemi.com  
373  
MC44603A  
ꢣ ꢦꢬ ꢍ ꢏꢜ ꢩ  
Also,  
ꢘꢧ  
ꢏ ꢜ  
V
R
CS  
S
ꢞ ꢓ ꢻ  
I
+
pk  
ꢯꢓ ꢻ ꢏꢜ ꢐ  
where R is the resistor used to measure the power switch  
S
ꢫ ꢖꢦ ꢘ ꢖ ꢕ ꢍ  
current.  
2
Thus, the input power is proportional to V  
(V being  
CS  
CS  
ꢓꢓ  
the internal current sense comparator input).  
That is why the standby detection is performed by creating  
a V threshold. An internal current source (0.4 x I ) sets  
ꢀꢁꢂꢂꢃꢄꢅꢆ  
CS  
ref  
the threshold level by connecting a resistor to Pin 12.  
As depicted in Figure 41, the standby comparator  
noninverting input voltage is typically equal to (3.0 x V  
+
CS  
Figure 40. Power Losses in a Classical  
Flyback Structure  
V ) while the inverter input value is (V  
+ V ).  
F
R P Stby  
F
ꢘ ꢐ ꢙ ꢘ ꢐ ꢙ  
ꢘ ꢐ ꢙ ꢘ ꢐ ꢙ  
ꢏꢫ  
In a classical flyback (as depicted in Figure 40), the  
standby losses mainly consist of the energy waste due to:  
ꢕꢘ  
ꢆ ꢶ ꢁ ꢞ  
ꢘ ꢐ ꢙ  
ꢶꢃ  
ꢆ ꢶ ꢉ ꢞ  
ꢘ ꢐ ꢙ  
ꢘ ꢐ ꢙ  
ꢘ ꢐ ꢙ  
ꢆ ꢶ ꢅꢂ  
ꢢ ꢚ ꢖꢥ ꢛ  
the startup resistor R  
P  
startup  
startup  
ꢆ ꢶꢅ ꢞ  
ꢘ ꢐ ꢙ  
the consumption of the IC and the power  
switch control  
P  
P  
control  
the inrush current limitation resistor R  
ICL  
ICL  
ꢡꢏ ꢫꢝꢷ ꢦ ꢘ ꢩ ꢐ  
the switching losses in the power switch P  
the snubber and clamping network  
SW  
ꢯ ꢬ ꢍ ꢔꢕ ꢖ  
P  
SNCLN  
P
startup  
is nearly constant and is equal to:  
2
ǒ
Ǔ
(V –V ) ńR  
in CC startup  
Figure 41. Standby  
P
ICL  
only depends on the current drawn from the mains.  
Losses can be considered constant. This waste of energy  
decreases when the standby losses are reduced.  
The V  
threshold level is typically equal to  
)/3] and if the corresponding power threshold is  
CS  
[(V  
R P Stby  
P
increases when the oscillator frequency is  
control  
labelled P  
:
thL  
increased (each switching requires some energy to turn on  
the power switch).  
V
2
R P Stby  
+ 0.5 x L x ǒ Ǔ  
P
thL  
x f  
S
3.0 R  
P
SW  
and P  
are proportional to the switching  
S
SNCLN  
frequency.  
And as:  
Consequently, standby losses can be minimized by  
decreasing the switching frequency as much as possible.  
The MC44603A was designed to operate at a standby  
frequency lower than the normal working one.  
Standby Power Calculations with MC44603A  
During a switching period, the energy drawn by the  
transformer during the ontime to be transferred to the  
output during the offtime, is equal to:  
V
+ R  
+ R  
x 0.4 x I  
ref  
R P Stby  
P Stby  
V
ref  
R
ref  
x 0.4 x  
R P Stby  
10.6 x R x R  
P
thL  
S
ref  
x Ǹ  
R
+
P Stby  
V
ref  
L x f  
S
Thus, when the power drawn by the converter decreases,  
decreases and when V becomes lower than [V  
V
CS  
CS  
CSth  
1
2
E + x L x I  
pk  
x (V  
)/3], the standby mode is activated. This results in  
2
R P Stby  
an oscillator discharge current reduction in order to increase  
the oscillator period and to diminish the switching  
where:  
L is the transformer primary inductor,  
l is the inductor peak current.  
frequency. As it is represented in Figure 41, the (0.8 x I  
)
ref  
pk  
current source is disconnected and is replaced by a lower  
value one (0.25 x I ).  
Input power is labelled P :  
in  
F Stby  
2
x f  
pk  
S
P
in  
+ 0.5 x L x I  
Where: I  
= V /R  
ref F Stby  
F Stby  
where f is the normal working switching frequency.  
S
http://onsemi.com  
374  
MC44603A  
In order to prevent undesired mode switching when power  
is close to the threshold value, a hysteresis that is  
ꢏ ꢜ ꢀ ꢀ  
ꢎꢌ ꢣꢖ ꢦ ꢩꢐ  
ꢊ ꢪꢏꢜ ꢀ ꢆ ꢒ  
proportional to V  
is incorporated creating a second  
R P Stby  
V
CS  
threshold level that is equal to [2.5 x (V  
)/3].  
R P Stby  
ꢬ ꢦ ꢲ  
When the standby comparator output is high, a second  
current source (0.6 x I ) is connected to Pin 12.  
Finally, the standby mode function can be shown  
graphically in Figure 42.  
ref  
Figure 44. Maximum Duty Cycle Control  
Using the internal current source (0.4 I ), the Pin 11  
ref  
voltage can easily be set by connecting a resistor to this pin.  
If a capacitor is connected to Pin 11, the voltage increases  
from 0 to its maximum value progressively (refer to Figure  
45), thereby, implementing a softstart. The softstart  
ꢏ ꢜ  
capacitor is discharged internally when the V (Pin 1)  
CC  
voltage drops below 9.0 V.  
ꢬ ꢦꢣ  
ꢪ ꢏꢜ ꢀꢀ  
ꢐꢤ  
ꢏꢜ  
ꢧꢏꢜ  
ꢚ ꢖꢥ ꢛ  
ꢗꢞ  
ꢘ ꢐ ꢙ  
ꢖ ꢷ ꢿ  
ꢺ ꢗ ꢓ  
ꢖꢦ ꢜꢤꢥ ꢛ  
ꢖ ꢷ ꢻ  
꣉ꢊ  
ꢒꢱ ꢄ꣊  
ꢗ ꢪ ꢚ ꢖꢥ ꢛ  
Figure 45. Different Possible Uses of Pin 11  
Figure 42. Dynamic Mode Change  
If no external component is connected to Pin 11, an  
internal zener diode clamps the Pin 11 voltage to a value V  
that is higher than the oscillator peak value, disabling  
Z
This curve shows that there are two power threshold  
levels:  
the low one:  
fixed by V  
softstart and maximum duty cycle limitation.  
P
thL  
R P Stby  
Foldback  
the high one:  
As depicted in Figures 33 and 49, the foldback input (Pin  
5) can be used to reduce the maximum V value, providing  
foldback protection. The foldback arrangement is a  
programmable peak current limitation.  
f
CS  
Stby  
2
P
+ (2.5) x P  
thL  
x
f
thH  
thH  
f
S
Stby  
f
If the output load is increased, the required converter peak  
P
+ 6.25 x P  
x
thL  
current becomes higher and V increases until it reaches its  
S
CS  
maximum value (normally, V  
= 1.0 V).  
CS max  
Maximum Duty Cycle and SoftStart Control  
Maximum duty cycle can be limited to values less than  
Then, if the output load keeps on increasing, the system is  
unable to supply enough energy to maintain the output  
voltages in regulation. Consequently, the decreasing output  
can be applied to Pin 5, in order to limit the maximum peak  
current. In this way, the well known foldback characteristic  
can be obtained (refer to Figure 46).  
80% by utilizing the D  
and softstart control. As  
max  
depicted in Figure 43, the Pin 11 voltage is compared to the  
oscillator sawtooth.  
ꢘ ꢐ ꢙ  
ꢆꢶ ꢃ ꢞ  
ꢘ ꢐ ꢙ  
Figure 43. Dmax and SoftStart  
http://onsemi.com  
375  
MC44603A  
Undervoltage Lockout Section  
ꢌ ꢕ ꢖ  
ꢍ ꢧ ꢬ ꢦ ꢲ  
ꢘ ꢐ ꢙ  
ꢢ ꢚ ꢖꢥ ꢛ  
ꢠꢐ ꢑ ꢚ ꢖꢦꢘ ꢖꢕ ꢍ  
ꢚ ꢐꢭꢕ ꢐꢜꢝꢐ ꢞ ꢜꢏ ꢖꢏ ꢦꢖ ꢐꢤ  
ꢫꢖ ꢦ ꢘ ꢖ ꢕ ꢍ  
ꢓ ꢓ  
ꢤ ꢏ ꢫꢦ ꢥ ꢣ ꢐ ꢅ  
ꢌ ꢕ ꢖ  
ꢚ ꢌꢕ ꢘ ꢝꢐꢫ ꢟ ꢐ ꢜꢐ ꢘꢦ ꢖꢌ ꢘ  
ꢎ ꢾ ꢞ ꢾ ꢶ ꢶ ꢶꢒ  
ꢘ ꢐ ꢙ ꢘ ꢐ ꢙ  
ꢚ ꢖ ꢦꢘ ꢖ ꢕꢍ  
ꢤ ꢏ ꢫꢦ ꢥ ꢣ ꢐ ꢅ  
ꢀ ꢃꢶ ꢂ ꢎ  
Figure 46. Foldback Characteristic  
ꢼ ꢎ ꢻ ꢔꢀ  
ꢎ ꢻ ꢔ ꢀ  
NOTE: Foldback is disabled by connecting Pin 5 to V  
Overvoltage Protection  
The overvoltage arrangement consists of a comparator  
.
CC  
ꢖꢌ  
ꢌꢙ  
ꢦꢘ  
ꢇ ꢶ ꢆ ꢎ  
ꢤ ꢏ ꢫꢦ ꢥ ꢣ ꢐ ꢀ  
that compares the Pin 6 voltage to V (2.5 V) (refer to  
ref  
Figure 47).  
Figure 48. VCC Management  
If no external component is connected to Pin 6, the  
comparator noninverting input voltage is nearly equal to:  
As depicted in Figure 48, an undervoltage lockout has  
been incorporated to guarantee that the IC is fully functional  
before allowing system operation.  
2.0 kꢂ  
ǒ
Ǔx V  
CC  
11.6 k) 2.0 kꢂ  
This block particularly, produces V (Pin 16 voltage) and  
ref  
The comparator output is high when:  
I
that is determined by the resistor R connected between  
ref  
ref  
2.0 kꢂ  
Pin 16 and the ground:  
ǒ
Ǔ
x V  
w 2.5 V  
CC  
11.6 k) 2.0 kꢂ  
V
ref  
R
ref  
I
+
where V + 2.5 V (typically)  
ref  
ref  
à V  
w 17 V  
CC  
A delay latch (2.0 s) is incorporated in order to sense  
overvoltages that last at least 2.0 s.  
Another resistor is connected to the Reference Block:  
that is used to fix the standby frequency.  
R
F Stby  
If this condition is achieved, V  
, the delay latch  
OVP out  
In addition to this, V is compared to a second threshold  
CC  
output, becomes high. As this level is brought back to the  
input through an OR gate, V remains high (disabling  
level that is nearly equal to 9.0 V (V  
). UVLO1 is  
disable1  
OVP out  
generated to reset the maximum duty cycle and softstart  
block disabling the output stage as soon as V becomes  
the IC output) until V is disabled.  
ref  
CC  
Consequently, when an overvoltage longer than 2.0 s is  
lower than V  
. In this way, the circuit is reset and made  
disable1  
detected, the output is disabled until V is removed and  
CC  
ready for the next startup, before the reference block is  
disabled (refer to Figure 30). Finally, the upper limit for the  
minimum normal operating voltage is 9.4 V (maximum  
then reapplied.  
The V is connected after V has reached steady state  
CC  
ref  
in order to limit the circuit startup consumption.  
The overvoltage section is enabled 5.0 s after the  
value of V  
) and so the minimum hysteresis is 4.2 V.  
disable1  
((V  
)
= 13.6 V).  
stupth min  
regulator has started to allow the reference V to stabilize.  
ref  
The large hysteresis and the low startup current of the  
MC44603A make it ideally suited for offline converter  
applications where efficient bootstrap startup techniques are  
required.  
By connecting an external resistor to Pin 6, the threshold  
V
CC  
level can be changed.  
τ
τ
Figure 47. Overvoltage Protection  
http://onsemi.com  
376  
MC44603A  
ꢎꢯ  
ꢢ ꢞ  
ꢏꢣ  
ꢐꢘ  
ꢀ ꢶꢆ ꢱꢂꢶ ꢆ ꣄  
ꢓꢄ  
ꢢꢱ  
ꢀꢶ  
ꢧꢎ  
ꢓ ꢃ ꢶ ꢶꢶ ꢓꢈ  
ꢀꢶ ꢆ ꢜꢢ ꢱꢀ ꢆꢆꢆ ꢎ  
ꢀꢠ  
ꢃꢆ  
ꢅꢅ ꢆ ꢢ  
ꢓꢄ  
ꢅꢆ  
ꢂ ꢶ ꢆ ꣄  
ꢀ ꢂ ꢆ ꢎꢱ ꢆ ꢶꢁ ꢯ  
ꢓꢀ ꢈ  
ꢃ ꢈ ꢜ ꢢ  
ꢳꢗ ꢉꢂ ꢁ  
ꢠꢃ  
ꢁꢉ  
ꢧꢱ  
ꢛꢜ  
ꢡꢈ  
ꢀ ꢶꢆ ꢿ  
ꢀꢅ  
ꢀꢆ ꢆ ꢍꢢ  
ꢅꢈ  
ꢓ ꢅꢉ  
ꢓꢅ ꢈ  
ꢳꢗ ꢉꢂ ꢅ  
ꢂꢆ  
ꢗ ꢀ ꢂ  
ꢂ ꢶꢁ ꢧ  
ꢡꢀ ꢆ  
ꢳꢗ ꢉꢂ ꢅ  
ꢡꢀ ꢅ  
ꢳꢗ ꢉꢂ ꢁ  
ꢗꢅ ꢁ  
ꢀ ꢶꢆ ꢧ  
ꢡꢀꢀ  
ꢳꢗ ꢉꢂ ꢅ  
ꢓ ꢅꢅ  
ꢆ ꢶꢀ ꢢ  
ꢗꢀ ꢄ  
ꢀ ꢶ ꢆ ꢧ  
ꢓꢀ ꢄ  
ꢀꢆ ꢆ ꢜꢢ  
ꢓꢀ ꢇ  
ꢀ ꢆꢆ ꢜ ꢢ  
ꢓ ꢀꢅ  
ꢁ ꢶꢉ ꢜꢢ  
ꢅ ꢶꢂ  
* Diode D15 is required if the negative current into the output pin exceeds 15 mA.  
Figure 49. 250 W Input Power OffLine Flyback Converter with MOSFET Switch  
http://onsemi.com  
377  
MC44603A  
250 W Input Power FlyBack Converter  
185 V 270 V Mains Range  
MC44603AP & MTP6N60E  
Tests  
Conditions  
Results  
Line Regulation  
V
= 185 VAC to 270 VAC  
in  
F
= 50 Hz  
mains  
150 V  
130 V  
114 V  
7.0 V  
I
I
I
I
= 0.6 A  
10 mV  
10 mV  
10 mV  
20 mV  
out  
out  
out  
out  
= 2.0 A  
= 2.0 A  
= 2.0 A  
Load Regulation  
150 V  
V
out  
= 220 VAC  
= 0.3 A to 0.6 A  
in  
I
50 mV  
Cross Regulation  
V
= 220 VAC  
in  
out  
out  
out  
out  
I
I
I
I
(150 V) = 0.6 A  
(30 V) = 0 A to 2.0 A  
(14 V) = 2.0 A  
(7.0 V) = 2.0 A  
150 V  
< 1.0 mV  
81%  
Efficiency  
V
V
= 220 VAC, P = 250 W  
in  
in  
Standby Mode  
P input  
= 220 VAC, P = 0 W  
3.3 W  
in  
out  
Switching Frequency  
Output Short Circuit  
Startup  
20 kHz fully stable  
Safe on all outputs  
VAC = 160 V  
P
P
= 270 W  
out (max)  
= 250 W  
in  
DEVICE ORDERING INFORMATION  
Device  
Operating Temperature Range  
Package  
PDIP16  
SOIC16  
SOIC16  
Shipping  
MC44603P  
25 Units / Rail  
47 Units / Rail  
MC44603ADW  
MCRR602ADWR2  
MC44603APG  
TA = 25°C to +85°C  
1000 / Tape & Reel  
25 Units / Rail  
SOIC16  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
378  

相关型号:

MC44604

High Safety Pulsed Mode Stanby GreenLine PWM Controller
ONSEMI

MC44604P

High Safety Pulsed Mode Stanby GreenLine PWM Controller
ONSEMI

MC44604P

HIGH SAFETY STANDBY LADDER MODE GREENLINE PWM CONTROLLER
MOTOROLA

MC44604PG

High Safety Pulsed Mode Standby GreenLine TM PWM Controller
ONSEMI

MC44604_05

High Safety Pulsed Mode Standby GreenLine TM PWM Controller
ONSEMI

MC44605

High Safety, Latched Mode, GreenLine PWM Controller for (Multi)Synchronized Applications
ONSEMI

MC44605P

High Safety, Latched Mode, GreenLine PWM Controller for (Multi)Synchronized Applications
ONSEMI

MC44605P

HIGH SAFETY LATCHED MODE GREENLINE PWM CONTROLLER FOR (MULTI)SYNCHRONIZED APPLICATIONS
MOTOROLA

MC44605PG

High Safety, Latched Mode, GreenLine TM PWM Controller for (Multi) Synchronized Applications
ONSEMI

MC44605_06

High Safety, Latched Mode, GreenLine TM PWM Controller for (Multi) Synchronized Applications
ONSEMI

MC44608

Few External Components Reliable Flexible GreenLine Very High Voltage PWM Controller
ONSEMI

MC44608P100

SWITCHING CONTROLLER, 110kHz SWITCHING FREQ-MAX, PDIP8, PLASTIC, DIP-8
ONSEMI