MC44603AP [ONSEMI]

MIXED FREQUENCY MODE GREENLINE PWM CONTROLLER; 混合频率GREENLINE模式PWM控制器
MC44603AP
型号: MC44603AP
厂家: ONSEMI    ONSEMI
描述:

MIXED FREQUENCY MODE GREENLINE PWM CONTROLLER
混合频率GREENLINE模式PWM控制器

开关 光电二极管 控制器
文件: 总24页 (文件大小:409K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by MC44603A/D  
MIXED FREQUENCY MODE  
GREENLINE PWM*  
CONTROLLER:  
Fixed Frequency, Variable Frequency,  
Standby Mode  
VARIABLE FREQUENCY,  
FIXED FREQUENCY,  
STANDBY MODE  
The MC44603A is an enhanced high performance controller that is  
specifically designed for off–line and dc–to–dc converter applications. This  
device has the unique ability of automatically changing operating modes if  
the converter output is overloaded, unloaded, or shorted, offering the  
designer additional protection for increased system reliability. The  
MC44603A has several distinguishing features when compared to  
conventional SMPS controllers. These features consist of a foldback facility  
for overload protection, a standby mode when the converter output is slightly  
loaded, a demagnetization detection for reduced switching stresses on  
transistor and diodes, and a high current totem pole output ideally suited for  
driving a power MOSFET. It can also be used for driving a bipolar transistor  
in low power converters (< 150 W). It is optimized to operate in  
discontinuous mode but can also operate in continuous mode. Its advanced  
design allows use in current mode or voltage mode control applications.  
* PWM = Pulse Width Modulation  
16  
1
P SUFFIX  
PLASTIC PACKAGE  
CASE 648  
Current or Voltage Mode Controller  
Operation up to 250 kHz Output Switching Frequency  
Inherent Feed Forward Compensation  
Latching PWM for Cycle–by–Cycle Current Limiting  
Oscillator with Precise Frequency Control  
High Flexibility  
16  
1
DW SUFFIX  
PLASTIC PACKAGE  
CASE 751G  
Externally Programmable Reference Current  
Secondary or Primary Sensing  
(SOP–16L)  
Synchronization Facility  
High Current Totem Pole Output  
Undervoltage Lockout with Hysteresis  
Safety/Protection Features  
PIN CONNECTIONS  
V
1
2
16  
15  
14  
R
R
CC  
ref  
Overvoltage Protection Against Open Current and Open Voltage Loop  
Protection Against Short Circuit on Oscillator Pin  
Fully Programmable Foldback  
Frequency  
V
C
Standby  
Voltage Feedback  
Input  
Output  
Gnd  
3
4
5
13 Error Amp Output  
Soft–Start Feature  
R
Foldback Input  
12  
Power Standby  
Accurate Maximum Duty Cycle Setting  
Demagnetization (Zero Current Detection) Protection  
Internally Trimmed Reference  
Overvoltage  
Protection (OVP)  
Soft–Start/D  
Voltage Mode  
/
max  
6
7
11  
10  
Current Sense Input  
C
T
Enhanced Output Drive  
Demag Detection  
8
9
Sync Input  
GreenLine Controller: Low Power Consumption in Standby Mode  
Low Startup and Operating Current  
Fully Programmable Standby Mode  
Controlled Frequency Reduction in Standby Mode  
Low dV/dT for Low EMI Radiations  
(Top View)  
ORDERING INFORMATION  
Operating  
Temperature Range  
Device  
Package  
Plastic DIP–16  
SOP–16L  
GreenLine is a trademark of Motorola, Inc.  
MC44603AP  
MC44603ADW  
T
A
= –25° to +85°C  
Motorola, Inc. 1999  
Rev 1  
MC44603A  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
mA  
V
Total Power Supply and Zener Current  
(I  
CC  
+ I )  
Z
30  
18  
Supply Voltage with Respect to Ground (Pin 4)  
V
C
V
CC  
Output Current (Note 1)  
mA  
Source  
Sink  
I
–750  
750  
O(Source)  
I
O(Sink)  
Output Energy (Capacitive Load per Cycle)  
W
5.0  
µJ  
V
R
, C , Soft–Start, R , R  
F Stby ref P Stby  
Inputs  
V
V
–0.3 to 5.5  
T
in  
Foldback Input, Current Sense Input,  
E/A Output, Voltage Feedback Input,  
V
in  
–0.3 to  
Overvoltage Protection, Synchronization Input  
V
V
+ 0.3  
CC  
Synchronization Input  
High State Voltage  
V
IH  
+ 0.3  
V
CC  
Low State Reverse Current  
V
IL  
–20  
mA  
Demagnetization Detection Input Current  
mA  
Source  
Sink  
I
–4.0  
10  
demag–ib (Source)  
I
demag–ib (Sink)  
Error Amplifier Output Sink Current  
I
20  
mA  
E/A (Sink)  
Power Dissipation and Thermal Characteristics  
P Suffix, Dual–In–Line, Case 648  
Maximum Power Dissipation at T = 85°C  
P
D
0.6  
W
A
Thermal Resistance, Junction–to–Air  
R
100  
°C/W  
θJA  
DW Suffix, Surface Mount, Case 751G  
Maximum Power Dissipation at T = 85°C  
P
0.45  
145  
W
°C/W  
A
D
Thermal Resistance, Junction–to–Air  
Operating Junction Temperature  
Operating Ambient Temperature  
R
θJA  
T
150  
°C  
°C  
J
T
A
–25 to +85  
NOTES: 1. Maximum package power dissipation limits must be observed.  
2. ESD data available upon request.  
ELECTRICAL CHARACTERISTICS (V  
CC  
and V = 12 V, [Note 3], R = 10 k, C = 820 pF, for typical values T = 25°C,  
for min/max values T = –25° to +85°C [Note 4], unless otherwise noted.)  
C
ref  
T
A
A
Characteristic  
OUTPUT SECTION  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (Note 5)  
V
Low State (I  
Low State (I  
= 100 mA)  
= 500 mA)  
V
OL  
1.0  
1.4  
1.2  
2.0  
Sink  
Sink  
High State (I  
High State (I  
= 200 mA)  
= 500 mA)  
V
OH  
1.5  
2.0  
2.0  
2.7  
Source  
Source  
Output Voltage During Initialization Phase  
V
OL  
V
V
CC  
V
CC  
V
CC  
= 0 to 1.0 V, I  
= 1.0 to 5.0 V, I  
= 5.0 to 13 V, I  
= 10 µA  
0.1  
0.1  
1.0  
1.0  
1.0  
Sink  
= 100 µA  
Sink  
Sink  
= 1.0 mA  
Output Voltage Rising Edge Slew–Rate (C = 1.0 nF, T = 25°C)  
dVo/dT  
dVo/dT  
300  
V/µs  
V/µs  
L
J
Output Voltage Falling Edge Slew–Rate (C = 1.0 nF, T = 25°C)  
–300  
L
J
ERROR AMPLIFIER SECTION  
Voltage Feedback Input (V  
= 2.5 V)  
V
2.42  
–2.0  
65  
2.5  
–0.6  
70  
2.58  
V
E/A out  
= 2.5 V)  
FB  
Input Bias Current (V  
I
µA  
dB  
FB  
Open Loop Voltage Gain (V  
FB–ib  
= 2.0 to 4.0 V)  
A
VOL  
E/A out  
NOTES: 3. Adjust V  
above the startup threshold before setting to 12 V.  
CC  
4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
5. V must be greater than 5.0 V.  
C
2
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
ELECTRICAL CHARACTERISTICS (continued) (V  
CC  
and V = 12 V, [Note 3], R = 10 k, C = 820 pF, for typical values T = 25°C,  
C ref T A  
for min/max values T = –25° to +85°C [Note 4], unless otherwise noted.)  
A
Characteristic  
ERROR AMPLIFIER SECTION (continued)  
Unity Gain Bandwidth  
Symbol  
Min  
Typ  
Max  
Unit  
BW  
MHz  
T = 25°C  
T = –25° to +85°C  
J
4.0  
5.5  
J
Voltage Feedback Input Line Regulation (V  
= 10 to 15 V)  
V
–10  
10  
mV  
mA  
CC  
FBline–reg  
Output Current  
Sink (V  
T
A
= 1.5 V, V  
= 2.7 V)  
I
Sink  
2.0  
12  
E/A out  
= –25° to +85°C  
FB  
Source (V  
= 5.0 V, V  
= 2.3 V)  
I
Source  
–2.0  
–0.2  
E/A out  
= –25° to +85°C  
FB  
T
A
Output Voltage Swing  
V
High State (I  
Low State (I  
= 0.5 mA, V  
= 2.3 V)  
= 2.7 V)  
V
V
OL  
5.5  
6.5  
1.0  
7.5  
1.1  
E/A out (source)  
= 0.33 mA, V  
FB  
OH  
E/A out (sink)  
FB  
REFERENCE SECTION  
Reference Output Voltage (V  
= 10 to 15 V)  
V
2.4  
–500  
–40  
2.5  
2.6  
–100  
40  
V
CC  
ref  
Reference Current Range (I = V /R , R = 5.0 k to 25 k)  
ref ref ref  
I
µA  
mV  
ref  
Reference Voltage Over I Range  
ref  
V  
ref  
OSCILLATOR AND SYNCHRONIZATION SECTION  
Frequency  
f
kHz  
OSC  
T
T
A
= 0° to +70°C  
= –25° to +85°C  
44.5  
44  
48  
51.5  
52  
A
Frequency Change with Voltage (V  
= 10 to 15 V)  
f  
f  
/V  
0.05  
0.05  
1.8  
%/V  
%/°C  
V
CC  
OSC  
Frequency Change with Temperature (T = –25° to +85°C)  
/T  
OSC  
A
Oscillator Voltage Swing (Peak–to–Peak)  
V
1.65  
1.95  
OSC(pp)  
Ratio Charge Current/Reference Current  
I
/I  
charge ref  
T
T
A
= 0° to +70°C (V  
= –25° to +85°C  
= 2.0 V)  
CT  
0.375  
0.37  
0.4  
0.425  
0.43  
A
Fixed Maximum Duty Cycle = I  
/(I  
R F Stby  
+ I  
)
D
78  
80  
82  
%
discharge discharge charge  
Ratio Standby Discharge Current versus I (Note 6)  
I
/
disch–Stby  
T
T
A
= 0° to +70°C  
= –25° to +85°C (Note 8)  
I
0.46  
0.43  
0.53  
0.6  
0.63  
A
R F Stby  
V
(I  
= 100 µA)  
V
2.4  
18  
2.5  
21  
2.6  
24  
V
kHz  
µA  
V
R F Stby R F Stby  
R F Stby  
Frequency in Standby Mode (R  
Current Range  
(Pin 15) = 25 k)  
F
Stby  
F Stby  
I
–200  
–50  
R F Stby  
Synchronization Input Threshold Voltage (Note 7)  
V
V
3.2  
0.45  
3.7  
0.7  
4.3  
0.9  
inthH  
inthL  
Synchronization Input Current  
I
–5.0  
0
µA  
µs  
Sync–in  
Minimum Synchronization Pulse Width (Note 8)  
UNDERVOLTAGE LOCKOUT SECTION  
Startup Threshold  
t
0.5  
Sync  
V
13.6  
14.5  
15.4  
V
V
stup–th  
Output Disable Voltage After Threshold Turn–On (UVLO 1)  
V
disable1  
T
T
A
= 0° to +70°C  
= –25° to +85°C  
8.6  
8.3  
9.0  
9.4  
9.6  
A
Reference Disable Voltage After Threshold Turn–On (UVLO 2)  
V
7.0  
7.5  
8.0  
V
disable2  
NOTES: 13. Adjust V  
above the startup threshold before setting to 12 V.  
CC  
14. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
16. Standby is disabled for V < 25 mV typical.  
R P Stby  
17. If not used, Synchronization input must be connected to Ground.  
18. Synchronization Pulse Width must be shorter than t  
= 1/f .  
OSC  
OSC  
3
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
ELECTRICAL CHARACTERISTICS (continued) (V  
CC  
and V = 12 V, [Note 3], R = 10 k, C = 820 pF, for typical values T = 25°C,  
C ref T A  
for min/max values T = –25° to +85°C [Note 4], unless otherwise noted.)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
DEMAGNETIZATION DETECTION SECTION (Note 9)  
Demagnetization Detect Input  
Demagnetization Comparator Threshold (V  
Decreasing)  
V
50  
–0.5  
65  
0.25  
80  
mV  
µs  
µA  
Pin 9  
Propagation Delay (Input to Output, Low to High)  
demag–th  
Input Bias Current (V  
= 65 mV)  
I
demag  
Negative Clamp Level (I  
demag–lb  
= –2.0 mA)  
C
–0.38  
0.72  
V
V
demag  
L(neg)  
L(pos)  
Positive Clamp Level (I  
= 2.0 mA)  
SOFT–START SECTION (Note 11)  
C
demag  
Ratio Charge Current/I  
I
/I  
ref  
ss(ch) ref  
T
T
A
= 0° to +70°C  
= –25° to +85°C  
0.37  
0.36  
0.4  
0.43  
0.44  
A
Discharge Current (V  
Clamp Level  
= 1.0 V)  
I
1.5  
2.2  
5.0  
2.4  
mA  
V
soft–start  
discharge  
V
2.6  
ss(CL)  
Duty Cycle (R  
Duty Cycle (V  
= 12 k)  
D
36  
42  
49  
0
%
soft–start  
soft–start (Pin 11)  
soft–start 12k  
D
soft–start  
= 0.1 V)  
OVERVOLTAGE SECTION  
Protection Threshold Level on V  
V
2.42  
1.0  
2.5  
2.58  
3.0  
V
µs  
V
OVP  
OVP–th  
Propagation Delay (V  
Protection Level on V  
> 2.58 V to V Low)  
out  
OVP  
V
CC  
CC prot  
T
T
A
= 0° to +70°C  
= –25° to +85°C  
16.1  
15.9  
17  
17.9  
18.1  
A
Input Resistance  
kΩ  
T
T
A
= 0° to +70°C  
= –25° to +85°C  
1.5  
1.4  
2.0  
3.0  
3.4  
A
FOLDBACK SECTION (Note 10)  
Current Sense Voltage Threshold (V  
= 0.9 V)  
V
0.86  
–6.0  
0.89  
–2.0  
0.9  
V
foldback (Pin 5)  
= 0 V)  
CS–th  
Foldback Input Bias Current (V  
I
µA  
foldback (Pin 5)  
foldback–lb  
STANDBY SECTION  
Ratio I  
/I  
R P Stby ref  
I
/I  
R P Stby ref  
T
A
= 0° to +70°C  
0.37  
0.36  
0.4  
0.43  
0.44  
T
A
= –25° to +85°C  
Ratio Hysteresis (V Required to Return to Normal Operation from Standby  
h
Operation)  
V /V  
h
R P Stby  
T
T
A
= 0° to +70°C  
= –25° to +85°C  
1.42  
1.4  
1.5  
1.58  
1.6  
A
Current Sense Voltage Threshold (V  
= 1.0 V)  
= 1.2 V)  
V
0.28  
0.31  
0.34  
V
V
R P Stby (Pin 12)  
CS–Stby  
CURRENT SENSE SECTION  
Maximum Current Sense Input Threshold  
(V = 2.3 V and V  
V
CS–th  
0.96  
1.0  
1.04  
feedback (Pin 14) foldback (Pin 6)  
Input Bias Current  
I
–10  
–2.0  
120  
µA  
CS–ib  
Propagation Delay (Current Sense Input to Output at V  
MOS transistor = 3.0 V)  
of  
200  
ns  
TH  
TOTAL DEVICE  
Power Supply Current  
I
mA  
CC  
Startup (V  
Operating T = –25° to +85°C (Note 3)  
= 13 V with V  
Increasing)  
13  
0.3  
17  
0.45  
20  
CC  
A
CC  
Power Supply Zener Voltage (I  
Thermal Shutdown  
= 25 mA)  
V
18.5  
V
CC  
Z
155  
°C  
NOTES: 13. Adjust V  
above the startup threshold before setting to 12 V.  
CC  
14. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
19. This function can be inhibited by connecting Pin 8 to Gnd. This allows a continuous current mode operation.  
10. This function can be inhibited by connecting Pin 5 to V  
11. The MC44603A can be shut down by connecting the Soft–Start pin (Pin 11) to Ground.  
.
CC  
4
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
Representative Block Diagram  
R
R
ref  
F Stby  
R
F Stby  
15 16  
V
ref  
Negative  
Active  
Clamp  
R
S
Q
+
UVLO2  
Demag  
Detect  
V
CC  
V
aux  
8
1
+
18.0 V  
+
65 mV  
3.7 V  
V
Demag Out  
Synchro  
V
CC  
Reference  
Block  
Sync  
Input  
14.5 V/7.5 V  
V
To Power  
Transformer  
9
ref  
+
V
I
I
F Stby  
V
0.4 I  
ref  
ref  
0.7 V  
OSC prot  
ref  
1.0 V  
R
S
V
C
Q
1.6 V  
2
C
T
R
S
Q
10  
+
V
OSC  
Output  
C
3.6 V  
T
S
3
Q
R
4
V
Out  
V
OVP  
Thermal  
Shutdown  
2.0  
Delay  
µs  
Gnd  
0.4 I  
I
ref  
Discharge  
V
ref  
CC  
V
V
V
V
V
ref  
ref ref  
0.6 I  
ref  
ref  
0.25  
V
ref  
V
ref  
0.8 I  
ref  
ref  
I
F Stby  
0.4 I  
0.2 I  
ref  
0.4 I  
ref  
ref  
11.6 k  
5.0  
µs  
R
Pwr Stby  
12  
OVP  
Delay  
6
2.0 k  
V
CC  
1.0 mA  
R
OVP  
I
Discharge/2  
+
Feed–  
back  
Current Mirror X2  
+
2.5 V  
2R  
1.6 V  
14  
+
Error Amplifier  
Current  
Sense Input  
2.5 V  
Compen–  
sation  
7
13  
R
1.0 V  
UVLO1  
5
V
Foldback  
CC  
2.4 V  
5.0 mA  
Input  
+
9.0 V  
11 SS/D  
C
/VM  
max  
= Sink only  
= Positive True Logic  
R
SS  
SS  
This device contains 243 active transistors.  
5
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
Figure 1. Timing Resistor versus  
Oscillator Frequency  
Figure 2. Standby Mode Timing Capacitor  
versus Oscillator Frequency  
100  
10000  
C
= 100 pF  
T
V
= 16 V  
V
= 16 V  
= 25°C  
= 10 k  
CC  
CC  
T
= 25  
°C  
T
A
A
C
= 500 pF  
R
T
ref  
R
= 2.0 k  
F Stby  
C
= 1000 pF  
T
R
= 5.0 k  
F Stby  
10  
1000  
300  
R
= 27 k  
F Stby  
R
= 100 k  
F Stby  
C
= 2200 pF  
T
3.0  
10 k  
100 k  
, Oscillator Frequency (Hz)  
1.0 M  
10 k  
100 k  
, Oscillator Frequency (Hz)  
1.0 M  
f
f
OSC  
OSC  
Figure 3. Oscillator Frequency  
versus Temperature  
Figure 4. Ratio Charge Current/Reference  
Current versus Temperature  
52  
51  
50  
49  
48  
0.43  
0.42  
0.41  
0.40  
0.39  
47  
46  
45  
44  
V
R
C
= 12 V  
= 10 k  
V
R
C
= 12 V  
= 10 k  
ref  
T
CC  
CC  
0.38  
0.37  
ref  
= 820 pF  
= 820 pF  
75  
T
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
100  
T , AMBIENT TEMPERATURE (  
°C)  
T , AMBIENT TEMPERATURE (°C)  
A
A
Figure 5. Output Waveform  
Figure 6. Output Cross Conduction  
600  
400  
200  
0
70  
70  
300  
200  
100  
0
V
C
= 12 V  
= 2200 pF  
V
C
= 12 V  
= 2200 pF  
CC  
L
CC  
L
60  
50  
40  
30  
20  
10  
60  
50  
40  
30  
20  
10  
T
= 25  
°C  
T = 25°C  
A
A
Current  
Voltage  
Current  
–200  
–100  
–400  
–600  
–200  
–300  
–400  
–500  
V
O
Voltage  
–800  
0
0
I
CC  
–10  
–10  
–1000  
1.0  
µs/Div  
1.0 µs/Div  
6
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
Figure 7. Oscillator Discharge Current  
versus Temperature  
Figure 8. Source Output Saturation Voltage  
versus Load Current  
500  
475  
450  
425  
2.5  
2.0  
400  
375  
1.5  
1.0  
V
R
C
= 12 V  
= 10 k  
= 820 pF  
V
R
C
= 12 V  
= 10 k  
ref  
CC  
ref  
T
CC  
350  
325  
300  
= 820 pF  
T
T
= 25°C  
A
–50  
–25  
0
25  
50  
75  
100  
0
100  
200  
300  
400  
500  
T , AMBIENT TEMPERATURE (  
°C)  
I , OUTPUT SOURCE CURRENT (mA)  
source  
A
Figure 9. Sink Output Saturation Voltage  
versus Sink Current  
Figure 10. Error Amplifier Gain and Phase  
versus Frequency  
2.0  
1.6  
80  
60  
V
= 12 V  
CC  
Sink Saturation  
G = 10  
(Load to V  
)
140  
CC  
V
V
R
= 30 mV  
= 2.0 to 4.0 V  
= 100 k  
in  
O
L
1.2  
0.8  
40  
20  
T = 25°C  
A
50  
T
V
80  
= 25°C  
A
= 12 V  
CC  
0.4  
0
0
µ
s Pulsed Load  
120 Hz Rate  
–20  
–40  
0
1
2
3
4
10  
0
100  
200  
300  
400  
500  
10  
10  
10  
f, FREQUENCY (kHz)  
10  
I
, SINK OUTPUT CURRENT (mA)  
sink  
Figure 11. Voltage Feedback Input  
versus Temperature  
Figure 12. Demag Comparator Threshold  
versus Temperature  
2.60  
2.55  
80  
V
= 12 V  
V
= 12 V  
CC  
CC  
75  
70  
65  
60  
55  
50  
G = 10  
V
R
= 2.0 to 4.0 V  
= 100 k  
O
L
2.50  
2.45  
2.40  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (  
°C)  
T , AMBIENT TEMPERATURE (°C)  
A
A
7
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
Figure 13. Current Sense Gain  
versus Temperature  
Figure 14. Thermal Resistance and Maximum  
Power Dissipation versus P.C.B. Copper Length  
100  
80  
5.0  
4.0  
3.2  
3.1  
3.0  
Printed circuit board heatsink example  
2.0 oz  
L
Copper  
L
3.0 mm  
R
60  
40  
20  
0
3.0  
2.0  
θ
JA  
Graphs represent symmetrical layout  
V
R
C
= 12 V  
= 10 k  
= 820 pF  
CC  
ref  
T
2.9  
2.8  
P
for T = 70°C  
A
D(max)  
1.0  
0
–50  
–25  
0
25  
50  
75  
100  
0
10  
20  
30  
40  
50  
T , AMBIENT TEMPERATURE (  
°C)  
L, LENGTH OF COPPER (mm)  
A
Figure 15. Propagation Delay Current Sense  
Input to Output versus Temperature  
Figure 16. Startup Current versus V  
CC  
140  
120  
100  
80  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
R
C
= 12 V  
= 10 k  
= 820 pF  
R
= 10 k  
ref  
CC  
ref  
T
C
= 820 pF  
T
–50  
–25  
0
25  
50  
75  
100  
0
2.0  
4.0  
6.0  
, SUPPLY VOLTAGE (V)  
CC  
8.0  
10  
12  
14  
T , AMBIENT TEMPERATURE (  
°C)  
V
A
Figure 17. Supply Current versus  
Supply Voltage  
Figure 18. Power Supply Zener Voltage  
versus Temperature  
21.5  
16  
14  
12  
10  
21.0  
20.5  
8.0  
6.0  
4.0  
2.0  
0
20.0  
19.5  
19.0  
T
= 25°C  
A
R
C
V
= 10 k  
= 820 pF  
= 0 V  
ref  
T
I
= 25 mA  
75  
CC  
FB  
CS  
V
= 0 V  
2.0  
4.0  
6.0  
V
8.0  
10  
12  
14  
16  
–50  
–25  
0
25  
50  
100  
, SUPPLY VOLTAGE (V)  
T , AMBIENT TEMPERATURE (  
°C)  
CC  
A
8
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
Figure 19. Startup Threshold Voltage  
versus Temperature  
Figure 20. Disable Voltage After Threshold  
Turn–On (UVLO1) versus Temperature  
15.5  
15.0  
9.50  
9.25  
14.5  
14.0  
13.5  
9.00  
8.55  
8.50  
V
Increasing  
V
Decreasing  
CC  
CC  
–50  
–25  
0
25  
50  
75  
100  
100  
100  
–50  
–25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (  
°
C)  
T , AMBIENT TEMPERATURE (°  
C)  
A
A
Figure 21. Disable Voltage After Threshold  
Turn–On (UVLO2) versus Temperature  
Figure 22. Protection Threshold Level on  
V
versus Temperature  
OVP  
8.0  
7.8  
7.6  
7.4  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
V
= 12 V  
CC  
V
Decreasing  
CC  
7.2  
7.0  
6.8  
–50  
–25  
0
25  
50  
75  
–50  
–25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (  
°
C)  
T , AMBIENT TEMPERATURE (°C)  
A
A
Figure 23. Protection Level on V  
versus Temperature  
Figure 24. Propagation Delay (V  
> 2.58 V  
CC  
OVP  
Low) versus Temperature  
to V  
out  
18  
17.5  
17  
3.0  
2.5  
2.0  
R
C
= 10 k  
= 820 pF  
ref  
T
Pin 6 Open  
V
= 12 V  
= 10 k  
= 820 pF  
CC  
ref  
16.5  
16  
1.5  
1.0  
R
C
T
–50  
–25  
0
25  
50  
75  
–50  
–25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (  
°C)  
T , AMBIENT TEMPERATURE (°C)  
A
A
9
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
Figure 25. Standby Reference Current  
versus Temperature  
Figure 26. Current Sense Voltage Threshold  
Standby Mode versus Temperature  
270  
265  
260  
0.33  
0.32  
0.31  
0.30  
255  
250  
V
R P Stdby (Pin 12)  
Voltage Increasing  
245  
V
R
C
= 12 V  
= 10 k  
= 820 pF  
CC  
ref  
T
240  
235  
230  
Pin 12 Clamped  
at 1.0 V  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (  
°C)  
T , AMBIENT TEMPERATURE (°C)  
A
A
PIN FUNCTION DESCRIPTION  
Pin  
1
Name  
Description  
This pin is the positive supply of the IC. The operating voltage range after startup is 9.0 to 14.5 V.  
The output high state (V ) is set by the voltage applied to this pin. With a separate connection to the  
V
CC  
2
V
C
OH  
power source, it can reduce the effects of switching noise on the control circuitry.  
3
4
5
Output  
Peak currents up to 750 mA can be sourced or sunk, suitable for driving either MOSFET or Bipolar  
transistors. This output pin must be shunted by a Schottky diode, 1N5819 or equivalent.  
Gnd  
The ground pin is a single return, typically connected back to the power source; it is used as control and  
power ground.  
Foldback Input  
The foldback function provides overload protection. Feeding the foldback input with a portion of the V  
CC  
voltage (1.0 V max) establishes on the system control loop a foldback characteristic allowing a smoother  
startup and sharper overload protection. Above 1.0 V the foldback input is inactive.  
6
7
Overvoltage  
Protection  
When the overvoltage protection pin receives a voltage greater than 17 V, the device is disabled and  
requires a complete restart sequence. The overvoltage level is programmable.  
Current Sense  
Input  
A voltage proportional to the current flowing into the power switch is connected to this input. The PWM  
latch uses this information to terminate the conduction of the output buffer when working in a current  
mode of operation. A maximum level of 1.0 V allows either current or voltage mode operation.  
8
9
Demagnetization  
Detection  
A voltage delivered by an auxiliary transformer winding provides to the demagnetization pin an indication  
of the magnetization state of the flyback transformer. A zero voltage detection corresponds to complete  
core saturation. The demagnetization detection ensures a discontinuous mode of operation. This  
function can be inhibited by connecting Pin 8 to Gnd.  
Synchronization  
Input  
The synchronization input pin can be activated with either a negative pulse going from a level between  
0.7 V and 3.7 V to Gnd or a positive pulse going from a level between 0.7 V and 3.7 V up to a level  
higher than 3.7 V. The oscillator runs free when Pin 9 is connected to Gnd.  
10  
11  
C
The normal mode oscillator frequency is programmed by the capacitor C choice together with the R  
ref  
T
T
resistance value. C , connected between Pin 10 and Gnd, generates the oscillator sawtooth.  
T
Soft–Start/D  
max  
Voltage–Mode  
/
A capacitor, resistor or a voltage source connected to this pin limits the switching duty–cycle. This pin  
can be used as a voltage mode control input. By connecting Pin 11 to Ground, the MC44603A can be  
shut down.  
12  
R
A voltage level applied to the R pin determines the output power level at which the oscillator will  
P Standby  
turn into the reduced frequency mode of operation (i.e. standby mode). An internal hysteresis  
comparator allows to return in the normal mode at a higher output power level.  
P Standby  
13  
14  
E/A Out  
Voltage Feedback  
The error amplifier output is made available for loop compensation.  
This is the inverting input of the Error Amplifier. It can be connected to the switching power supply output  
through an optical (or other) feedback loop.  
15  
16  
R
R
The reduced frequency or standby frequency programming is made by the R  
resistance choice.  
sets the internal reference current. The internal reference current ranges from 100 µA to 500 µA.  
F Standby  
ref  
F Standby  
R
ref  
This requires that 5.0 kR 25 k.  
ref  
10  
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
Figure 27. Starting Behavior and Overvoltage Management  
No–Take Over  
Loop Failure  
>2.0 µs  
Startup  
Restart  
V
CC  
CC prot  
stup–th  
V
V
Normal Mode  
V
V
disable1  
disable2  
V
ref  
UVLO1  
V
Pin 11  
(Soft–Start)  
V
OVP Out  
Output  
I
CC  
17 mA  
0.3 mA  
Figure 28. Demagnetization  
V
Demag In  
Output  
(Pin 3)  
V
Demag Out  
V
Demag Out  
Demagnetization  
Management  
V
Oscillator  
Demag In  
Buffer  
Output  
11  
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
Figure 29. Switching Off Behavior  
V
CC  
stup–th  
V
V
V
disable1  
disable2  
V
ref  
UVLO1  
V
Pin 11  
(Soft–Start)  
Output  
(Pin 3)  
I
CC  
17 mA  
0.3 mA  
Figure 30. Oscillator  
3.6 V  
1.6 V  
V
CT  
1.0 V  
V
Stby  
V
Demag Out  
V
OSC  
V
OSC prot  
V
Demag Out  
V
Synchronization  
Input  
OSC prot  
Oscillator  
V
OSC  
C
T
V
Stby  
12  
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
Figure 31. Soft–Start & D  
max  
V
ref  
V
+ 1.6 V  
CSS  
Internal Clamp  
Soft–Start  
External Clamp  
V
3.6 V  
CT  
V
low 1.6 V  
CT  
V
OSC  
Output  
(Pin 3)  
OPERATING DESCRIPTION  
Error Amplifier  
Figure 32. Error Amplifier Compensation  
A fully compensated Error Amplifier with access to the  
inverting input and output is provided. It features a typical dc  
voltage gain of 70 dB. The noninverting input is internally  
biased at 2.5 V and is not pinned out. The converter output  
voltage is typically divided down and monitored by the  
inverting input. The maximum input bias current with the  
inverting input at 2.5 V is –2.0 µA. This can cause an output  
voltage error that is equal to the product of the input bias  
current and the equivalent input divider source resistance.  
The Error Amp output (Pin 13) is provided for external loop  
compensation. The output voltage is offset by two diode  
drops (1.4 V) and divided by three before it connects to the  
inverting input of the Current Sense Comparator. This  
guarantees that no drive pulses appear at the Output (Pin 3)  
+
1.0 mA  
Compensation  
13  
Error  
R
FB  
Amplifier  
R
f
2R  
C
2.5 V  
f
14  
R
Voltage  
Feedback  
Input  
Current Sense  
Comparator  
1.0 V  
Gnd  
5
Foldback  
Input  
4
From Power Supply Output  
R2  
R1  
when Pin 13 is at its lowest state (V ). The Error Amp  
OL  
minimum feedback resistance is limited by the amplifier’s  
minimum source current (0.2 mA) and the required output  
Current Sense Comparator and PWM Latch  
The MC44603A can operate as a current mode controller  
or as a voltage mode controller. In current mode operation,  
the MC44603A uses the current sense comparator. The  
output switch conduction is initiated by the oscillator and  
terminated when the peak inductor current reaches the  
voltage (V  
OH  
clamp level:  
) to reach the current sense comparator’s 1.0 V  
3.0 (1.0 V) 1.4 V  
R
22 k  
f(min)  
0.2 mA  
13  
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
threshold level established by the Error Amplifier output (Pin  
Figure 34. Oscillator  
13). Thus, the error signal controls the peak inductor current  
on a cycle–by–cycle basis. The Current Sense Comparator  
PWM Latch ensures that only a single pulse appears at the  
Source Output during the appropriate oscillator cycle.  
The inductor current is converted to a voltage by inserting  
V
ref  
0.4 I  
ref  
C
VOS prot  
V
OSC prot  
1.0 V  
1.6 V  
V
the ground referenced sense resistor R in series with the  
OSC  
S
C
power switch Q1.  
OSC Low  
R
Q
C
< 1.6 V  
T
This voltage is monitored by the Current Sense Input  
(Pin 7) and compared to a level derived from the Error Amp  
output. The peak inductor current under normal operating  
conditions is controlled by the voltage at Pin 13 where:  
L
S
OSC  
Discharge  
R Q  
C
OSC High  
Synchro  
10  
Disch  
S
C
T
3.6 V  
V
Demag  
Out  
C
OSC Regul  
V
(Pin 13) – 1.4 V  
3 R  
I
pk  
0
1
S
The Current Sense Comparator threshold is internally  
clamped to 1.0 V. Therefore, the maximum peak switch  
current is:  
1
0
I
Regul  
I
Discharge  
1.0 V  
I
pk(max)  
R
S
Figure 35. Simplified Block Oscillator  
Figure 33. Output Totem Pole  
V
V
in  
ref  
V
C
14  
I
C
UVLO  
Charge  
OSC Regul  
0.4 I  
V
ref  
OSC prot  
1.6 V  
10  
R2  
Q1  
V
Demag Out  
3
0
1
0: Discharge Phase  
1: Charge Phase  
S
R
R
D
R3  
Thermal  
Protection  
C
Q
1N5819  
T
I
Discharge  
I
PWM  
Latch  
Regul  
Current  
Sense  
Substrate  
R
Current Sense  
Comparator  
7
R
C
S
Two comparators are used to generate the sawtooth. They  
compare the C voltage to the oscillator valley (1.6 V) and  
T
peak reference (3.6 V) values. A latch (L  
oscillator state.  
) memorizes the  
disch  
Series gate resistor, R2, will dampen any high frequency oscillations caused by  
the MOSFET input capacitance and any series wiring inductance in the  
gate–source circuit. Diode D is required if the negative current into the output  
drive pin exceeds 15 mA.  
In addition to the charge and discharge cycles, a third  
state can exist. This phase can be produced when, at the end  
of the discharge phase, the oscillator has to wait for a  
synchronization or demagnetization pulse before restarting.  
Oscillator  
The oscillator is a very accurate sawtooth generator that  
can work either in free mode or in synchronization mode. In  
this second mode, the oscillator stops in the low state and  
waits for a demagnetization or a synchronization pulse to  
start a new charging cycle.  
During this delay, the C voltage must remain equal to the  
oscillator valley value ( 1.6 V). So, a third regulated current  
T
sourceI  
controlledbyC ,isconnectedtoC in  
Regul  
OSCRegul T  
order to perfectly compensate the (0.4 I ) current source  
that permanently supplies C .  
The maximum duty cycle is 80%. Indeed, the on–time is  
allowed only during the oscillator capacitor charge.  
ref  
T
The Sawtooth Generation:  
In the steady state, the oscillator voltage varies between  
about 1.6 V and 3.6 V.  
Consequently:  
The sawtooth is obtained by charging and discharging an  
T
T
= C x V/I  
charge T charge  
external capacitor C (Pin 10), using two distinct current  
= C x V/I  
discharge  
T
discharge  
where:  
T
sources = I  
and I  
. In fact, C is permanently  
charge  
discharge T  
connected to the charging current source (0.4 I ) and so,  
the discharge current source has to be higher than the  
ref  
T
is the oscillator charge time  
charge  
V is the oscillator peak–to–peak value  
is the oscillator charge current  
charge current to be able to decrease the C voltage (refer  
T
I
charge  
to Figure 35).  
and  
T
This condition is performed, its value being (2.0 I ) in  
ref  
in standby mode).  
is the oscillator discharge time  
is the oscillator discharge current  
discharge  
discharge  
normal working and (0.4 I + 0.5 I  
ref  
F Stby  
I
14  
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
So, as f = 1 /(T  
charge  
+ T  
) when the Regul  
A diode D has been incorporated to clamp the positive  
applied voltages while an active clamping system limits the  
negative voltages to typically –0.33 V. This negative clamp  
level is sufficient to avoid the substrate diode switching on.  
In addition to the comparator, a latch system has been  
incorporated in order to keep the demagnetization block  
output level low as soon as a voltage lower than 65 mV is  
detected and as long as a new restart is produced (high level  
on the output) (refer to Figure 38). This process prevents  
ringing on the signal at Pin 8 from disrupting the  
demagnetization detection. This results in a very accurate  
demagnetization detection.  
S
discharge  
arrangement is not activated, the operating frequency can be  
obtained from the graph in Figure 1.  
NOTE: The output is disabled by the signal V  
when  
OSC prot  
V
is lower than 1.0 V (refer to Figure 30).  
CT  
Synchronization and Demagnetization Blocks  
To enable the output, the L latch complementary  
OSC  
output must be low. Reset is activated by the L  
during the discharge phase. To restart, the L  
(refer to Figure 34). To perform this, the demagnetization  
signal and the synchronization must be low.  
output  
disch  
has to be set  
OSC  
The demagnetization block output is also directly  
connected to the output, disabling it during the  
demagnetization phase (refer to Figure 33).  
Synchronization:  
The synchronization block consists of two comparators  
that compare the synchronization signal (external) to 0.7 and  
3.7 V (typical values). The comparators’ outputs are  
connected to the input of an AND gate so that the final output  
of the block should be :  
NOTE: The demagnetization detection can be inhibited by  
connecting Pin 8 to the ground.  
Figure 38. Demagnetization Block  
– high when 0.7 < SYNC < 3.7 V  
– low in the other cases.  
Oscillator  
Output  
R
Q
Buffer  
As a low level is necessary to enable the output,  
synchronized low level pulses have to be generated on the  
output of the synchronization block. If synchronization is not  
required, the Pin 9 must be connected to the ground.  
Demag  
S
V
CC  
Negative Active  
Clamping System  
Figure 36. Synchronization  
V
Demag Out  
3.7 V  
8
C Dem  
65 mV  
Oscillator  
Sync  
9
D
Standby  
Output Buffer  
0.7 V  
Power Losses in a Classical Flyback Structure  
Figure 39. Power Losses in a Classical  
Flyback Structure  
Demagnetization:  
In flyback applications, a good means to detect magnetic  
saturation of the transformer core, or demagnetization,  
consists in using the auxiliary winding voltage. This voltage is:  
Clamping  
Network  
V
in  
R
ICL  
– negative during the on–time,  
– positive during the off–time,  
+
+
AC Line  
– equal to zero for the dead–time with generally some  
ringing (refer to Figure 37).  
R
startup  
That is why, the MC44603A demagnetization detection  
consists of a comparator that can compare the auxiliary  
winding voltage to a reference that is typically equal to  
65 mV.  
V
CC  
MC44603A  
R
S
Figure 37. Demagnetization Detection  
Snubber  
In a classical flyback (as depicted in Figure 39), the  
standby losses mainly consist of the energy waste due to:  
0.75 V  
Zero Current  
Detection  
V
Pin 8  
– the startup resistor R  
startup  
P
startup  
– the consumption of the IC and  
the power switch control  
P
control  
65 mV  
– the inrush current limitation resistor R  
P
ICL  
ICL  
– the switching losses in the power switch  
– the snubber and clamping network  
P
SW  
–0.33 V  
P
SN–CLN  
P
is nearly constant and is equal to:  
startup  
On–Time  
Off–Time  
Dead–Time  
2
R
startup  
(V –V  
in CC  
)
15  
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
P
only depends on the current drawn from the mains.  
The V  
threshold level is typically equal to  
ICL  
CS  
)/3] and if the corresponding power threshold is  
Losses can be considered constant. This waste of energy  
decreases when the standby losses are reduced.  
[(V  
R P Stby  
labelled P  
P
:
thL  
P
increases when the oscillator frequency is  
V
control  
2
R P Stby  
3.0 R  
S
0.5 x L x  
x f  
S
thL  
increased (each switching requires some energy to turn on  
the power switch).  
And as:  
P
and P are proportional to the switching  
SW  
frequency.  
SN–CLN  
V
R
x 0.4 x I  
x 0.4 x  
ref  
R P Stby  
P Stby  
Consequently, standby losses can be minimized by  
decreasing the switching frequency as much as possible.  
The MC44603A was designed to operate at a standby  
frequency lower than the normal working one.  
V
ref  
ref  
R
R P Stby  
R
Standby Power Calculations with MC44603A  
During a switching period, the energy drawn by the  
transformer during the on–time to be transferred to the output  
during the off–time, is equal to:  
10.6 x R x R  
P
S
ref  
thL  
L x f  
R
x
P Stby  
V
ref  
Thus, when the power drawn by the converter decreases,  
decreases and when V becomes lower than [V  
S
V
CS  
x (V  
1
2
CS  
CS–th  
2
E
x L x I  
pk  
)/3], the standby mode is activated. This results in  
R P Stby  
an oscillator discharge current reduction in order to increase  
the oscillator period and to diminish the switching frequency.  
As it is represented in Figure 40, the (0.8 x I ) current  
where:  
– L is the transformer primary inductor,  
– l is the inductor peak current.  
pk  
ref  
source is disconnected and is replaced by a lower value one  
(0.25 x I  
).  
F Stby  
Input power is labelled P :  
in  
2
0.5 x L x I x f  
pk  
S
P
Where: I  
= V /R  
ref F Stby  
in  
F Stby  
where f is the normal working switching frequency.  
S
In order to prevent undesired mode switching when power  
is close to the threshold value, a hysteresis that is  
Also,  
proportional to V  
is incorporated creating a second  
R P Stby  
thresholdlevelthatisequalto[2.5x(V  
V
R
CS  
I
pk  
V
)/3].When  
CS  
RPStby  
S
the standby comparator output is high, a second current  
where R is the resistor used to measure the power switch  
S
source (0.6 x I ) is connected to Pin 12.  
ref  
current.  
Finally, the standby mode function can be shown  
graphically in Figure 41.  
2
Thus, the input power is proportional to V  
(V  
being  
CS  
CS  
the internal current sense comparator input).  
That is why the standby detection is performed by creating  
a V threshold. An internal current source (0.4 x I ) sets  
the threshold level by connecting a resistor to Pin 12.  
As depicted in Figure 40, the standby comparator  
Figure 41. Dynamic Mode Change  
CS  
ref  
P
in  
f
S
noninverting input voltage is typically equal to (3.0 x V  
+ V )  
CS  
F
while the inverter input value is (V  
+ V ).  
R P Stby  
F
Figure 40. Standby  
Normal  
Working  
Oscillator  
Discharge  
Current  
V
V
ref ref  
f
Stby  
V
V
ref ref  
0.6 I  
1
P
thH  
ref  
0.4 I  
0.8 I  
ref  
ref  
V
0.25  
I
ref  
F Stby  
R
0.2 I  
P Stby  
ref  
0
Standby  
P
thL  
V
CS  
12  
1
0
C
Stby  
[(V  
R P Stby  
)/3]  
2.5 x [(V )/3]  
R P Stby  
1
13  
I
I
Discharge  
Discharge/2  
This curve shows that there are two power threshold  
levels:  
ER  
AmpOut  
2R  
1R  
C. S. Comparator  
Current Mirror X2  
– the low one:  
– the high one:  
P
fixed by V  
2
thL  
R P Stby  
f
Stby  
P
(2.5) x P  
x
f
thH  
thL  
f
S
Stby  
P
6.25 x P  
x
thH  
thL  
f
S
16  
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
Figure 45. Foldback Characteristic  
Maximum Duty Cycle and Soft–Start Control  
Maximum duty cycle can be limited to values less than  
80% by utilizing the D and soft–start control. As depicted  
in Figure 42, the Pin 11 voltage is compared to the oscillator  
sawtooth.  
I
V
pk max  
out  
max  
V
O
Nominal  
Figure 42. D  
and Soft–Start  
max  
New Startup  
Sequence Initiated  
V
ref  
Output  
Control  
0.4 I  
ref  
V
CC  
disable2  
V
I
11  
out  
Output  
Drive  
C
D
Dmax  
max  
Overload  
D
2.4 V  
Z
V
OSC  
NOTE: Foldback is disabled by connecting Pin 5 to V  
.
CC  
Soft–Start  
Capacitor  
Oscillator  
Overvoltage Protection  
The overvoltage arrangement consists of a comparator  
that compares the Pin 6 voltage to V  
Figure 46).  
(2.5 V) (refer to  
ref  
Figure 43. Maximum Duty Cycle Control  
If no external component is connected to Pin 6, the  
comparator noninverting input voltage is nearly equal to:  
Pin 11  
Voltage  
V
CT  
(Pin 10)  
2.0 k  
11.6 k  
x V  
CC  
2.0 k  
D
max  
The comparator output is high when:  
2.0 k  
11.6 k  
Using the internal current source (0.4 I ), the Pin 11  
ref  
x V  
2.5 V  
CC  
2.0 k  
voltage can easily be set by connecting a resistor to this pin.  
If a capacitor is connected to Pin 11, the voltage increases  
from 0 to its maximum value progressively (refer to Figure  
44), thereby, implementing a soft–start. The soft–start  
V
17 V  
CC  
A delay latch (2.0 µs) is incorporated in order to sense  
overvoltages that last at least 2.0 µs.  
If this condition is achieved, V , the delay latch  
output, becomes high. As this level is brought back to the  
input through an OR gate, V remains high (disabling  
capacitor is discharged internally when the V  
voltage drops below 9.0 V.  
(Pin 1)  
CC  
OVP out  
OVP out  
Figure 44. Different Possible Uses of Pin 11  
the IC output) until V is disabled.  
ref  
Consequently, when an overvoltage longer than 2.0 µs is  
Pin 11  
RI  
R Connected to Pin 11  
I = 0.4 I  
C
C // R  
detected, the output is disabled until V  
then re–applied.  
is connected after V has reached steady state  
in order to limit the circuit startup consumption.  
is removed and  
CC  
V
RI  
V
Z
ref  
Z
The V  
CC  
ref  
τ
= RC  
The overvoltage section is enabled 5.0 µs after the  
regulator has started to allow the reference V to stabilize.  
ref  
If no external component is connected to Pin 11, an  
internal zener diode clamps the Pin 11 voltage to a value V  
that is higher than the oscillator peak value, disabling  
soft–start and maximum duty cycle limitation.  
By connecting an external resistor to Pin 6, the threshold  
Z
V
level can be changed.  
CC  
Figure 46. Overvoltage Protection  
Foldback  
V
ref  
V
As depicted in Figures 32 and 48, the foldback input (Pin  
CC  
5) can be used to reduce the maximum V  
foldback protection. The foldback arrangement is a  
programmable peak current limitation.  
value, providing  
CS  
Out  
Delay  
In  
5.0 µs  
τ
T
If the output load is increased, the required converter peak  
2.5 V  
0
current becomes higher and V  
increases until it reaches its  
CS  
Enable  
11.6 k  
maximum value (normally, V  
= 1.0 V).  
CS max  
V
OVP  
6
V
OVP out  
Then, if the output load keeps on increasing, the system is  
unable to supply enough energy to maintain the output  
voltages in regulation. Consequently, the decreasing output  
can be applied to Pin 5, in order to limit the maximum peak  
current. In this way, the well known foldback characteristic  
can be obtained (refer to Figure 45).  
τ
In  
Out  
C
External  
Resistor  
OVLO  
2.0 k  
Delay  
2.0 µs  
2.5 V  
(If V  
= 1.0,  
OVP out  
(V  
)
ref  
the Output is Disabled)  
17  
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
As depicted in Figure 47, an undervoltage lockout has  
been incorporated to garantee that the IC is fully functional  
before allowing system operation.  
Undervoltage Lockout Section  
Figure 47. V  
Management  
CC  
This block particularly, produces V (Pin 16 voltage) and  
ref  
I
that is determined by the resistor R connected between  
ref  
ref  
Pin 16 and the ground:  
R
R
ref  
F Stby  
V
R
ref  
ref  
I
where V  
2.5 V (typically)  
ref  
ref  
Pin 15  
Pin 16  
V
Another resistor is connected to the Reference Block:  
ref enable  
startup  
1
R
that is used to fix the standby frequency.  
F Stby  
V
C
CC  
In addition to this, V  
is compared to a second threshold  
). UVLO1 is  
CC  
level that is nearly equal to 9.0 V (V  
1
disable1  
generated to reset the maximum duty cycle and soft–start  
block disabling the output stage as soon as V becomes  
Reference Block:  
Voltage and Current  
Sources Generator  
0
CC  
. In this way, the circuit is reset and made  
1
0
(V , I , ...)  
lower than V  
ref ref  
disable1  
V
Startup  
14.5 V  
ready for the next startup, before the reference block is  
disabled (refer to Figure 29). Finally, the upper limit for the  
minimum normal operating voltage is 9.4 V (maximum value  
disable2  
7.5 V  
C
UVLO1  
UVLO1  
of V  
) and so the minimum hysteresis is 4.2 V.  
disable1  
(to Soft–Start)  
((V  
)
= 13.6 V).  
stup–th min  
V
disable1  
9.0 V  
The large hysteresis and the low startup current of the  
MC44603A make it ideally suited for off–line converter  
applications where efficient bootstrap startup techniques are  
required.  
18  
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
Figure 48. 250 W Input Power Off–Line Flyback Converter with MOSFET Switch  
185 Vac  
to  
270 Vac  
RFI  
Filter  
R1  
1.0/5.0 W  
C3  
1.0 nF/1.0 kV  
C4 ... C7  
1.0 nF/1000 V  
R3  
4.7 M  
D1 ... D4  
1N4007  
C1  
220  
µF  
R20  
22 k  
L2  
22.5  
C32 220 pF  
D8  
5.0 W  
µ
H
150 V/0.6 A  
C31  
C17  
47 nF  
D5  
1N4934  
R2  
68 k/2.0 W  
MR856  
C30  
C33  
100  
100  
µF  
µ
F
0.1 µF  
C2  
220  
µF  
Sync  
D7  
M856  
L1  
1.0 µH  
C29 220 pF  
C16  
R12  
30 V/2.0 A  
C28  
C8 2.2 nF  
C9 1.0 nF  
100 pF 27 k  
9
8
D9  
MR852  
D6  
1N4148  
C27  
1000  
R9 1.0 k  
0.1 µF  
L
L
p
µF  
aux  
10  
11  
12  
13  
14  
15  
16  
7
6
5
4
3
2
1
R5  
1.2 k  
C15  
1.0 nF  
C14  
C10 1.0 µF  
4.7 nF  
C26 220 pF  
R7 180 k  
14 V/2.0 A  
C24  
R6  
150  
R8  
15 k  
R15  
5.6 k  
D10  
MR852  
C25  
1000  
C11  
1.0 nF  
µF  
0.1 µF  
C18  
2.2 nF  
D12  
MR856  
MTP6N60E  
*D15 1N5819  
R10 10  
R15  
22 k  
R26  
1.0 k  
C23 220 pF  
7.0 V/2.0 A  
C22  
R11 39  
D11  
MR852  
R12 22  
C21  
1000  
R14  
0.2  
R13  
1.0 k  
R17  
22 k  
µF  
0.1 µF  
R18  
27 k  
R19  
10 k  
C13  
100 nF  
R24  
270  
R23  
147.5 k  
MOC8101  
R21  
10 k  
C19  
100 nF  
D14  
1N4733  
C20  
33 nF  
TL431  
R25  
1.0 k  
C12  
6.8 nF  
R22  
2.5 k  
* Diode D15 is required if the negative current into the output pin exceeds 15 mA.  
19  
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
250 W Input Power Fly–Back Converter  
185 V – 270 V Mains Range  
MC44603AP & MTP6N60E  
Tests  
Conditions  
Results  
Line Regulation  
V
= 185 Vac to 270 Vac  
= 50 Hz  
= 0.6 A  
= 2.0 A  
= 2.0 A  
= 2.0 A  
in  
F
mains  
150 V  
130 V  
114 V  
7.0 V  
I
I
I
I
10 mV  
10 mV  
10 mV  
20 mV  
out  
out  
out  
out  
Load Regulation  
150 V  
V
= 220 Vac  
= 0.3 A to 0.6 A  
in  
I
50 mV  
out  
Cross Regulation  
V
in  
= 220 Vac  
I
I
I
I
(150 V) = 0.6 A  
(30 V) = 0 A to 2.0 A  
(14 V) = 2.0 A  
(7.0 V) = 2.0 A  
out  
out  
out  
out  
150 V  
< 1.0 mV  
81%  
Efficiency  
V
= 220 Vac, P = 250 W  
in  
in  
in  
Standby Mode  
P input  
V
= 220 Vac, P  
= 0 W  
3.3 W  
out  
Switching Frequency  
Output Short Circuit  
Startup  
20 kHz fully stable  
Safe on all outputs  
Vac = 160 V  
P
P
= 270 W  
out (max)  
= 250 W  
in  
20  
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
OUTLINE DIMENSIONS  
P SUFFIX  
PLASTIC PACKAGE  
CASE 648–08  
ISSUE R  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
16  
1
9
8
B
S
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
MIN  
MAX  
0.770  
0.270  
0.175  
0.021  
0.70  
MIN  
18.80  
6.35  
3.69  
0.39  
1.02  
MAX  
19.55  
6.85  
4.44  
0.53  
1.77  
F
0.740  
0.250  
0.145  
0.015  
0.040  
C
L
SEATING  
PLANE  
–T–  
G
H
J
K
L
0.100 BSC  
0.050 BSC  
2.54 BSC  
1.27 BSC  
K
M
0.008  
0.015  
0.130  
0.305  
10  
0.21  
0.38  
3.30  
7.74  
10  
H
J
0.110  
0.295  
0
2.80  
7.50  
0
G
D 16 PL  
0.25 (0.010)  
M
S
0.020  
0.040  
0.51  
1.01  
M
M
T
A
21  
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
OUTLINE DIMENSIONS  
DW SUFFIX  
PLASTIC PACKAGE  
CASE 751G–02  
(SOP–16L)  
ISSUE A  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
16  
9
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN  
EXCESS OF D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
–B–  
8X P  
0.010 (0.25)  
M
M
B
1
8
J
16X D  
MILLIMETERS  
INCHES  
M
S
S
0.010 (0.25)  
T
A
B
DIM  
A
B
C
D
MIN  
10.15  
7.40  
2.35  
0.35  
0.50  
MAX  
10.45  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.411  
0.299  
0.104  
0.019  
0.035  
0.400  
0.292  
0.093  
0.014  
0.020  
F
R X 45  
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
0.25  
0.10  
0
0.32  
0.25  
7
0.010  
0.004  
0
0.012  
0.009  
7
C
–T–  
M
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
SEATING  
14X G  
K
PLANE  
22  
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
23  
MOTOROLA ANALOG IC DEVICE DATA  
MC44603A  
Mfax is a trademark of Motorola, Inc.  
JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141,  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488  
Customer Focus Center: 1–800–521–6274  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 1–602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,  
Motorola Fax Back System  
– US & Canada ONLY 1–800–774–1848 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.  
– http://sps.motorola.com/mfax/  
852–26629298  
HOME PAGE: http://motorola.com/sps/  
MC44603A/D  

相关型号:

MC44603APG

Enhanced Mixed Frequency Mode GreenLine TM PWM Controller:Fixed Frequency, Variable Frequency,Standby Mode
ONSEMI

MC44603A_05

Enhanced Mixed Frequency Mode GreenLine TM PWM Controller:Fixed Frequency, Variable Frequency,Standby Mode
ONSEMI

MC44603DW

MIXED FREQUENCY MODE GREENLINE PWM CONTROLLER
ONSEMI

MC44603DW

MIXED FREQUENCY MODE GREENLINE PWM CONTROLLER
MOTOROLA

MC44603DWG

0.75A SWITCHING CONTROLLER, 250kHz SWITCHING FREQ-MAX, PDSO16, PLASTIC, SOP-16
ONSEMI

MC44603DWR2

0.75A SWITCHING CONTROLLER, 250kHz SWITCHING FREQ-MAX, PDSO16, PLASTIC, SOP-16
MOTOROLA

MC44603P

MIXED FREQUENCY MODE GREENLINE PWM CONTROLLER
ONSEMI

MC44603P

MIXED FREQUENCY MODE GREENLINE PWM CONTROLLER
MOTOROLA

MC44603PG

0.75 A SWITCHING CONTROLLER, 250 kHz SWITCHING FREQ-MAX, PDIP16, PLASTIC, DIP-16
ROCHESTER

MC44603PG

0.75A SWITCHING CONTROLLER, 250kHz SWITCHING FREQ-MAX, PDIP16, PLASTIC, DIP-16
ONSEMI

MC44604

High Safety Pulsed Mode Stanby GreenLine PWM Controller
ONSEMI

MC44604P

High Safety Pulsed Mode Stanby GreenLine PWM Controller
ONSEMI