UPD98421F1-GA1 [RENESAS]

Content Addressable SRAM, 8KX64, MOS, PBGA240, 16 X 16 MM, PLASTIC, FBGA-240;
UPD98421F1-GA1
型号: UPD98421F1-GA1
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Content Addressable SRAM, 8KX64, MOS, PBGA240, 16 X 16 MM, PLASTIC, FBGA-240

静态存储器
文件: 总44页 (文件大小:325K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD98421  
HIGH-SPEED ADDRESS SEARCH ENGINE  
DESCRIPTION  
The µPD98421 is a CAM (Content Addressable Memory) with a capacity of 64 bits × 8192 entries. Equipped with  
three types of search modes, this memory can search data at high speeds. One of these search modes, Longest  
Prefix Match mode, can mask data in entry units and output the address with the longest match in the search data.  
This function is effective for searching IP addresses of Layer 3.  
FEATURES  
64 bits × 8K entries  
High-speed synchronous operation. Maximum operating frequency: 33 MHz (normal mode)/50 MHz (FF mode)  
Mask register masking any bit of 64-bit search data  
Three search modes supported for high-speed searching.  
Full Match mode:  
30 ns (at 33 MHz)  
Full Match with Mask mode: 30 ns  
Longest Prefix Match mode: 60 ns  
Number of entries can be expanded by connecting multiple µPD98421s.  
Can read/write data by high-speed synchronous operation (memory operation).  
Supply voltage: 3.3 V 0.15 V  
240-pin plastic FBGA  
ORDERING INFORMATION  
Part Number  
Package  
µPD98421F1-GA1  
240-pin plastic FBGA (16 × 16)  
Remark In this document, active-low pins are expressed as xxx_B (_B suffixed to a pin name).  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No. S13650EJ5V0DS00 (5th edition)  
Date Published January 2002 NS CP (K)  
Printed in Japan  
The mark shows major revised points.  
©
1998  
µPD98421  
BLOCK DIAGRAM  
CLK  
RESET_B  
CE  
V
GND  
DD  
Sequencer block  
CE_B  
WAIT_B  
Bus I/F block  
Search engine block  
A12 to A0  
DATA63 to DATA0  
WE_B  
FULL  
FMSK  
ENHIT_B  
Search data register  
OE_B  
MEM  
HAD0 to HAD12  
HIT_B  
ERR_B  
Search mask data register  
Mode register  
SMD63 to SMD0  
Memory block  
Entry data memory  
(64 bits 4096 words)  
Mask data memory  
(64 bits 4096 words)  
×
×
2
Data Sheet S13650EJ5V0DS  
µPD98421  
SYSTEM CONFIGURATION EXAMPLE  
Router LSI  
Synchronous SRAM  
CE_B, CE  
A14 to A0  
V
DD  
SRAM_CE  
DATA63 to DATA0  
OE_B, WE_B  
µ
PD98421 #0  
ENHIT_B  
ENHIT_B0  
HIT_B0  
CE_B, CE  
µPD98421_CE0  
HIT_B  
HAD12 to HAD0  
ERR_B  
A12 to A0  
DATA63 to DATA0  
OE_B, WE_B  
MEM, FULL, FMSK  
SMD63 to SMD0  
µ
PD98421 #1  
ENHIT_B  
ENHIT_B1  
HIT_B1  
µPD98421_CE1  
CE_B, CE  
HIT_B  
HAD12 to HAD0  
ERR_B  
A12 to A0  
DATA63 to DATA0  
OE_B, WE_B  
MEM, FULL, FMSK  
SMD63 to SMD0  
Glue  
logic  
A14 to A0  
DATA63 to DATA0  
OE_B, WE_B  
MEM, FULL, FMSK  
µ
PD98421 #n  
ENHIT_Bn  
HIT_Bn  
ENHIT_B  
µPD98421_CEn  
CE_B, CE  
HIT_B  
HAD12 to HAD0  
ERR_B  
A12 to A0  
DATA63 to DATA0  
OE_B, WE_B  
MEM, FULL, FMSK  
SMD63 to SMD0  
Hit address12 to 0  
Hit address14, 13  
HADOUT  
ERR_B  
HIT_B  
ERROUT_B  
HITOUT_B  
3
Data Sheet S13650EJ5V0DS  
µPD98421  
PIN CONFIGURATION  
240-pin plastic FBGA (16 × 16)  
µ
PD98421F1-GA1  
(Top view)  
Index mark  
43  
44  
45  
108 109  
164  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
47  
48  
49  
50  
51  
52  
53  
35  
36  
38  
39  
40  
41  
42  
46  
37  
105 106 107  
161  
102  
110 111  
114  
115  
34  
33  
99  
98  
100 101  
103 104  
112 113  
168  
156  
155  
160  
162 163  
157 158 159  
165 166 167  
54  
55  
208 209  
211 212 213 214 169 116  
32  
97 154 203 204 205 206 207  
210  
233 234 235 236  
215  
31  
30  
96  
95  
94  
153 202  
152 201  
170 117  
56  
216 171 118  
217 172 119  
57  
58  
29  
151 200  
28  
27  
93 150 199 232  
92 149 198 231  
237 218 173 120  
59  
60  
61  
µ
PD98421F1-GA1  
(Bottom view)  
238 219 174 121  
239 220 175 122  
240 221 176 123  
222 177 124  
26  
25  
91  
90  
148 197 230  
8
147 196 229  
146 195  
62  
63  
7
89  
24  
23  
88 145 194  
6
223 178 125  
64  
65  
66  
22  
21  
20  
87  
86  
85  
144 193  
143  
228 227 226 225  
126  
5
224 179  
192 191 190 189 188 187 186 185 184 183 182 181  
127  
4
180  
142 141  
140 139 138 137 136 135 134  
133 132 131 130 129 128 67  
3
19  
18  
84  
17  
83  
16  
82  
15  
81  
14  
79  
12  
2
80  
13  
78  
11  
77  
10  
76  
9
75  
8
74  
7
73  
6
72  
5
71  
4
70  
3
69  
2
68  
1
1
Index mark  
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
4
Data Sheet S13650EJ5V0DS  
µPD98421  
Pin No.  
1 (A1)  
Pin Name  
Pin No.  
49 (D18)  
50 (C18)  
51 (B18)  
52 (A18)  
53 (A17)  
54 (A16)  
55 (A15)  
56 (A14)  
57 (A13)  
58 (A12)  
59 (A11)  
60 (A10)  
61 (A9)  
62 (A8)  
63 (A7)  
64 (A6)  
65 (A5)  
66 (A4)  
67 (A3)  
68 (A2)  
69 (B2)  
70 (C2)  
71 (D2)  
72 (E2)  
73 (F2)  
74 (G2)  
75 (H2)  
76 (J2)  
Pin Name  
DATA23  
SMD22  
DATA21  
SMD20  
VDD  
Pin No.  
Pin Name  
Pin No.  
145 (T6)  
146 (T7)  
147 (T8)  
148 (T9)  
Pin Name  
GND  
Pin No.  
Pin Name  
DATA38  
DATA40  
SMD38  
DATA35  
GND  
L
97 (U15) GND  
98 (U16) A3  
193 (R5)  
194 (R6)  
195 (R7)  
196 (R8)  
197 (R9)  
2 (B1)  
L
GND  
3 (C1)  
I.C.  
99 (U17)  
VDD  
SMD36  
DATA34  
4 (D1)  
DATA63  
GND  
100 (T17) A1  
5 (E1)  
101 (R17) HAD12  
102 (P17) GND  
149 (T10) DATA32  
150 (T11) WE_B  
151 (T12) MEM  
152 (T13) GND  
153 (T14) A9  
6 (F1)  
DATA60  
SMD59  
DATA57  
VDD  
DATA18  
DATA17  
GND  
198 (R10) SMD32  
199 (R11) OE_B  
200 (R12) CE_B  
201 (R13) A12  
202 (R14) A8  
7 (G1)  
103 (N17) HAD6  
104 (M17) HAD3  
105 (L17) GND  
8 (H1)  
9 (J1)  
SMD15  
SMD13  
VDD  
10 (K1)  
11 (L1)  
12 (M1)  
13 (N1)  
14 (P1)  
15 (R1)  
16 (T1)  
17 (U1)  
18 (V1)  
19 (V2)  
20 (V3)  
21 (V4)  
22 (V5)  
23 (V6)  
24 (V7)  
25 (V8)  
26 (V9)  
27 (V10)  
28 (V11)  
29 (V12)  
30 (V13)  
31 (V14)  
32 (V15)  
33 (V16)  
34 (V17)  
35 (V18)  
36 (U18)  
37 (T18)  
38 (R18)  
39 (P18)  
40 (N18)  
SMD55  
SMD53  
GND  
106 (K17) ENHIT_B  
107 (J17) SMD30  
108 (H17) DATA28  
109 (G17) DATA26  
110 (F17) DATA25  
111 (E17) GND  
154 (T15) A6  
155 (T16) A4  
203 (R15) A0  
SMD10  
SMD9  
DATA7  
GND  
156 (R16) HAD11  
157 (P16) HAD9  
158 (N16) HAD7  
159 (M16) HAD2  
160 (L16) VDD  
204 (P15) GND  
205 (N15) VDD  
206 (M15) HAD4  
207 (L15) HIT_B  
208 (K15) SMD31  
SMD50  
DATA48  
GND  
DATA46  
DATA45  
SMD44  
GND  
SMD4  
SMD3  
GND  
112 (D17) GND  
113 (C17) DATA20  
114 (B17) GND  
161 (K16) RESET_B  
162 (J16) GND  
163 (H16) SMD28  
164 (G16) SMD26  
165 (F16) SMD25  
166 (E16) SMD23  
167 (D16) VDD  
209 (J15)  
VDD  
210 (H15) GND  
DATA0  
VDD  
115 (B16) DATA19  
116 (B15) SMD18  
117 (B14) DATA16  
118 (B13) DATA15  
119 (B12) GND  
211 (G15) VDD  
DATA42  
GND  
212 (F15) SMD24  
213 (E15) DATA22  
214 (D15) SMD19  
215 (D14) DATA14  
216 (D13) SMD16  
217 (D12) SMD14  
218 (D11) DATA11  
219 (D10) DATA9  
GND  
SMD40  
SMD39  
DATA37  
GND  
I.C.  
VDD  
DATA62  
SMD61  
GND  
120 (B11) SMD12  
121 (B10) SMD11  
122 (B9) DATA8  
123 (B8) SMD7  
124 (B7) SMD5  
168 (C16) SMD21  
169 (C15) GND  
170 (C14) SMD17  
171 (C13) VDD  
SMD34  
DATA33  
CLK  
SMD58  
DATA56  
DATA54  
DATA52  
SMD51  
DATA49  
VDD  
172 (C12) DATA13  
173 (C11) GND  
174 (C10) DATA10  
220 (D9)  
221 (D8)  
222 (D7)  
223 (D6)  
224 (D5)  
225 (H5)  
226 (J5)  
227 (K5)  
228 (L5)  
229 (P8)  
230 (P9)  
GND  
WAIT_B  
CE  
77 (K2)  
78 (L2)  
125 (B6)  
VDD  
SMD6  
GND  
126 (B5) SMD2  
127 (B4) SMD0  
N.C.  
79 (M2)  
80 (N2)  
81 (P2)  
82 (R2)  
83 (T2)  
84 (U2)  
85 (U3)  
86 (U4)  
87 (U5)  
88 (U6)  
89 (U7)  
90 (U8)  
91 (U9)  
92 (U10)  
93 (U11)  
94 (U12)  
95 (U13)  
96 (U14)  
175 (C9)  
176 (C8)  
177 (C7)  
178 (C6)  
179 (C5)  
180 (C4)  
181 (D4)  
182 (E4)  
183 (F4)  
184 (G4)  
185 (H4)  
186 (J4)  
187 (K4)  
188 (L4)  
SMD8  
DATA6  
DATA4  
DATA3  
DATA1  
GND  
DATA2  
SMD1  
DATA58  
GND  
A10  
128 (B3)  
129 (C3)  
L
L
A7  
A5  
SMD46  
DATA44  
VDD  
130 (D3) GND  
A2  
131 (E3) SMD63  
132 (F3) DATA61  
133 (G3) DATA59  
134 (H3) GND  
DATA53  
DATA51  
SMD37  
VDD  
GND  
N.C.  
DATA43  
SMD42  
SMD41  
DATA39  
VDD  
L
HAD10  
HAD8  
HAD5  
SMD60  
SMD62  
VDD  
135 (J3) SMD56  
136 (K3) SMD54  
137 (L3) SMD52  
138 (M3) DATA50  
139 (N3) SMD49  
140 (P3) DATA47  
141 (R3) GND  
231 (P10) GND  
232 (P11) FULL  
233 (L14) HAD0  
234 (K14) DATA31  
235 (J14) DATA29  
236 (H14) SMD27  
237 (E11) DATA12  
238 (E10) GND  
41 (M18) HAD1  
SMD57  
DATA55  
GND  
42 (L18)  
43 (K18)  
44 (J18)  
45 (H18)  
ERR_B  
GND  
DATA36  
SMD35  
SMD33  
GND  
DATA30  
SMD29  
VDD  
189 (M4) GND  
46 (G18) DATA27  
FMSK  
VDD  
142 (T3) SMD45  
190 (N4)  
191 (P4)  
192 (R4)  
SMD48  
47 (F18)  
48 (E18)  
GND  
143 (T4)  
VDD  
SMD47  
SMD43  
239 (E9)  
240 (E8)  
VDD  
DATA24  
A11  
144 (T5) DATA41  
DATA5  
Remarks 1. Figures in parentheses indicate the coordinates in the pin configuration.  
2. I.C.: Internal Connection  
L:  
Fixed at low level  
N.C.: No Connection  
5
Data Sheet S13650EJ5V0DS  
µPD98421  
PIN NAMES  
A12 to A0:  
CE, CE_B:  
CLK:  
Address  
Chip Select  
Clock  
DATA63 to DATA0: Data  
ENHIT_B:  
ERR_B:  
FMSK:  
Enable Hit  
Error  
Full Match Mask Mode  
Full Match Mode  
Ground  
FULL:  
GND:  
HAD12 to HAD0:  
HIT_B:  
Hit Address  
Hit  
MEM:  
Memory  
OE_B:  
Output Enable  
Reset  
RESET_B:  
SMD63 to SMD0:  
VDD:  
Search Mask Data  
Supply Voltage  
Wait  
WAIT_B:  
WE_B:  
Write Enable  
6
Data Sheet S13650EJ5V0DS  
µPD98421  
CONTENTS  
1. PIN FUNCTIONS...................................................................................................................................8  
2. MEMORY/REGISTER CONFIGURATION..........................................................................................11  
2.1 Memory Configuration...............................................................................................................11  
2.1.1 Full Match mode...............................................................................................................................11  
2.1.2 Full Match with Mask/Longest Prefix Match mode...........................................................................11  
2.2 Register Configuration ..............................................................................................................12  
2.2.1 Search data register.........................................................................................................................12  
2.2.2 Mask data register............................................................................................................................12  
2.2.3 Mode register ...................................................................................................................................13  
2.2.4 NOP register.....................................................................................................................................13  
3. FUNCTIONAL DESCRIPTION............................................................................................................14  
3.1 Memory Operation .....................................................................................................................14  
3.2 Search Operation .......................................................................................................................14  
3.2.1 Full Match mode...............................................................................................................................14  
3.2.2 Full Match with Mask mode..............................................................................................................15  
3.2.3 Longest Prefix Match mode..............................................................................................................17  
3.2.4 Other points to be noted...................................................................................................................19  
4. ELECTRICAL SPECIFICATIONS.......................................................................................................21  
5. RECOMMENDED SOLDERING CONDITIONS.................................................................................38  
6. PACKAGE DRAWING ........................................................................................................................39  
7
Data Sheet S13650EJ5V0DS  
µPD98421  
1. PIN FUNCTIONS  
Pin Name  
CLK  
Pin No.  
I/O  
Description  
28  
29  
Input  
Clock.  
System clock input pin. Inputs a clock of up to 33 MHz (normal mode)/50 MHz  
(FF mode).  
WAIT_B  
Input  
Wait.  
Wait input pin. Asserted active at low level. If the WAIT_B signal is active at  
the rising edge of CLK, the µPD98421 is placed in a wait status for the duration  
of 1 CLK cycle from the next rising of CLK. In wait status, all the pins retain the  
status immediately before the wait status was set. However, output control by  
CE, CE_B, and ENHIT_B is valid.  
CE_B  
200  
30  
Input  
Input  
Chip select.  
Asserted active at low level. When the CE signal and CE_B signal of a chip  
are asserted active at the same time, the chip is selected.  
DATA, HAD, ERR_B, and SMD of the unselected chip enter a high-impedance  
state.  
CE  
Chip select.  
Asserted active at low level. When the CE signal and CE_B signal of a chip  
are asserted active at the same time, the chip is selected.  
DATA, HAD, ERR_B, and SMD of the unselected chip enter a high-impedance  
state.  
A12 to A0  
201, 96, 32, 153,  
202, 33, 154, 34,  
155, 98, 35, 100,  
203  
Input  
I/O  
Address.  
A12 to A0 are 13-bit address signals.  
Signals input to A12 through A8 are ignored in the I/O access mode.  
DATA63 to  
DATA0  
4, 72, 132, 6, 133,  
225, 8, 76, 186,  
77, 227, 78, 228,  
138, 80, 14, 140,  
16, 17, 83, 85, 20,  
144, 194, 88, 193,  
24, 90, 196, 148,  
27, 149, 234, 44,  
235, 108, 46, 109,  
110, 48, 49, 213,  
51, 113, 115, 54,  
55, 117, 118, 215,  
172, 237, 218,  
Data.  
DATA63 to DATA0 are data bus signals that input/output 64-bit data to/from the  
internal memory and registers.  
174, 219, 122, 62,  
176, 240, 177,  
178, 223, 179, 67  
WE_B  
OE_B  
150  
Input  
Input  
Write enable.  
Enables writing to DATA63 to DATA0. When the WE_B signal is active,  
DATA63 to DATA0 enter a high-impedance state.  
199  
Output enable.  
Enables output of data from DATA63 to DATA0.  
8
Data Sheet S13650EJ5V0DS  
µPD98421  
Pin Name  
MEM  
Pin No.  
I/O  
Description  
151  
Input  
Memory.  
Specifies access right to memory/register.  
When the MEM signal is high, the µPD98421 performs the same operations as  
an SRAM (refer to 3. FUNCTIONAL DESCRIPTION). When this signal is low,  
the internal registers can be accessed for input/output.  
MEM  
Access function  
Memory access  
I/O access  
1
0
FULL  
232  
94  
Input  
Input  
Full Match Mode.  
Sets a search mode with the MEM and FMSK signals (refer to 3.  
FUNCTIONAL DESCRIPTION).  
FMSK  
Full Match with Mask mode.  
Sets a search mode with the MEM and FULL signals (refer to 3. FUNCTIONAL  
DESCRIPTION).  
HAD12 to  
HAD0  
101, 156, 38, 157, Output  
39, 158, 103, 40, 3 state  
Hit address.  
HAD12 through HAD0 output a matched valid address if the HIT_B signal goes  
206, 104, 159, 41, (Internal low and ERR_B goes high during a search operation. If ERR_B is asserted  
233  
pull-up) active (low level), HAD output is invalid. HAD12 is meaningless except in the  
Full Match mode.  
These pins are internally pulled up.  
HIT_B  
207  
Output  
Hit.  
Data is searched after it is written to the search data register during a search  
operation. HIT_B is a low-active signal that indicates that data matching the  
search data has been found.  
0: Match data found, 1: Match data not found  
ERR_B  
ENHIT_B  
42  
Output  
(Open  
drain)  
Error.  
This signal goes low if two or more sets of entry data having the same mask  
data are found during a search operation.  
Because this is an open-drain signal, pull it up.  
This signal is inactive (high-impedance) during a memory operation.  
106  
Input  
Enable hit.  
This signal controls output of the HAD12 to HAD0 and ERR_B signals.  
ENHIT_B HAD[12:0]  
ERR_B  
1
0
Hi-Z  
Hi-Z  
Output enabled  
SMD63 to  
SMD0  
131, 183, 73, 182, 7, I/O  
75, 185, 135, 10,  
136, 11, 137, 79, 13, pull-up) in the Longest Prefix Match mode. Connect each of these pins to the  
Search mask data.  
(Internal The SMD63 to SMD0 signals are used for temporary I/O with other µPD98421s  
139, 190, 191, 82,  
142, 18, 192, 86, 87,  
22, 23, 195, 229,  
147, 91, 26, 92, 198,  
208, 107, 45, 163,  
236, 164, 165, 212,  
166, 50, 168, 52,  
214, 116, 170, 216,  
57, 217, 58, 120,  
121, 60, 61, 175,  
123, 221, 124, 64,  
65, 126, 224, 127  
corresponding pin of the other µPD98421s.  
9
Data Sheet S13650EJ5V0DS  
µPD98421  
Pin Name  
RESET_B  
Pin No.  
I/O  
Description  
161  
Input  
Reset.  
When this signal is set to low, the chip is initialized. Only the internal  
sequencer and mode register are initialized; the memory area is not cleared.  
Be sure to create an external circuit in which RESET_B becomes low level after  
power application. In addition, input at least 2 CLK or more NOP commands  
continuously after releasing reset.  
VDD  
GND  
9, 53, 59, 68, 71, 81,  
84, 89, 95, 99, 125,  
143, 160, 167, 171,  
184, 188, 205, 209,  
211, 230, 239  
3.3 V power supply  
5, 12, 15, 19, 21, 25,  
36, 43, 47, 56, 63,  
66, 69, 74, 93, 97,  
102, 105, 111, 112,  
114, 119, 130, 134,  
141, 145, 146, 152,  
162, 169, 173, 180,  
187, 189, 197, 204,  
210, 220, 222, 226,  
231, 238  
Ground  
N.C.  
I.C.  
L
31, 37  
No connection.  
Leave open.  
3, 70  
Internally connected.  
Leave open.  
1, 2, 128, 129, 181  
Always fix these pins at low level.  
10  
Data Sheet S13650EJ5V0DS  
µPD98421  
2. MEMORY/REGISTER CONFIGURATION  
2.1 Memory Configuration  
The µPD98421 has a memory area of 64 bits × 8192 entries. Two types of memory configurations can be  
selected in accordance with the search mode. For this selection, no special setting of the chip is necessary. The  
µPD98421 can also be used as a synchronous SRAM.  
2.1.1 Full Match mode  
64 bits × 8192 entries: Entry data  
In the Full Match mode, all the 8192 entries are used as a data area.  
Table 2-1. Memory Mapping in Full Match Mode  
Address  
0000h  
0001h  
:
Contents  
Entry data  
Entry data  
:
0FFFh  
1000h  
:
Entry data  
Entry data  
:
1FFEh  
1FFFh  
Entry data  
Entry data  
2.1.2 Full Match with Mask/Longest Prefix Match mode  
64 bits × 4096 entries: Entry data  
64 bits × 4096 entries: Entry mask data  
In the Full Match with Mask and Longest Prefix Match modes, 4096 entries at addresses 0000h to 0FFFh are  
used as a data area, and addresses 1000h to 1FFFh are used as a mask data area.  
The mask data at 1000h to 1FFFh mask each of the corresponding entry data as shown in Table 2-2. If a bit of  
the mask data is 0, the corresponding bit of the entry data is ignored during the search.  
The mask data must be successively masked, starting from the LSB, in the Longest Prefix Match mode.  
Example FFFF0000 Correct, FF00F000 Incorrect  
11  
Data Sheet S13650EJ5V0DS  
µPD98421  
Table 2-2. Memory Mapping in Full Match with Mask/Longest Prefix Match Modes  
Address  
0000h  
0001h  
:
Contents  
Entry data  
Entry data  
:
0FFFh  
1000h  
:
Entry data  
Mask data of 0000h  
:
1FFEh  
1FFFh  
Mask data of 0FFEh  
Mask data of 0FFFh  
2.2 Register Configuration  
The µPD98421 allocates the internal registers to 256 words of I/O addresses. Each register is 64 bits long.  
Address signal lines A0 through A7 are used to specify an I/O address to access a register. A8 through A12 are not  
used. When a register is accessed, the MEM signal line is made low. To write data to the register, the WE_B pin is  
asserted active; to read data from the register, the OE_B pin is asserted active. Data can be written to a register in 1  
clock cycle in both the normal and FF modes (except a search operation by writing data to the search data register).  
When a register is read in the normal mode, the read data is output 1 clock cycle after the I/O address has been  
input. In the FF mode, the read data is output 2 clock cycles after address input. For the details of the normal and  
FF modes, refer to 2.2.3 Mode register.  
Table 2-3. Internal Registers  
I/O Address  
00h  
Register  
Search data register  
01h  
Mask data register  
02h  
Mode register  
03h  
Reserved (do not access this register.)  
NOP register  
04h  
05 to FFh  
Reserved (do not access this register.)  
2.2.1 Search data register  
The search data is stored in this register. When 64-bit search data is written to the search data register, the  
µPD98421 starts a search operation.  
The search data register is not initialized even when the chip is reset.  
2.2.2 Mask data register  
The mask data register stores a value to mask the search data stored in the search data register. Store a valid  
value in this register before a value is written to the search data register.  
If a bit of the mask data register is 0, the corresponding bit of the search data register is masked and ignored. The  
masking specified by this register is valid for all entries in all the search modes.  
The mask data register is not initialized even when the chip is reset. When the bit width of all entries is less than  
64 bits, it is recommended to mask unused bits using this function (to reduce the current consumption of the chip).  
However, do not mask bit 63.  
12  
Data Sheet S13650EJ5V0DS  
µPD98421  
2.2.3 Mode register  
The mode register selects the search timing mode (normal/FF mode) of the µPD98421 and controls the operations  
of the µPD98421 without using the FULL, FMSK, and WAIT_B signal lines. This register is initialized to 0 after the  
chip has been reset.  
63  
6
5
ff  
4
3
2
1
0
reserved  
full  
fmsk  
wait_b2  
wait_b1  
enbl  
enbl  
Validates or invalidates the full, fmsk, wait_b2, and wait_b1 bits of the mode register.  
0: Invalidates full, fmsk, wait_b2, and wait_b1 bits, and validates the FULL, FMSK, and  
WAIT_B signal lines.  
1: Validates full, fmsk, wait_b2, and wait_b1 bits, and invalidates the FULL, FMSK, and  
WAIT_B signal lines.  
wait_b1  
Specifies whether a wait cycle is inserted after the first clock.  
0: Inserts 1 wait cycle after a search operation. In the Longest Prefix Match mode, one wait  
cycle is inserted between the first search clock and second search clock.  
1:  
No operation  
wait_b2  
Specifies whether a wait cycle is inserted after the second clock.  
0: Inserts one wait cycle after the second search clock in the Longest Prefix Match mode.  
1: No operation  
full, fmsk  
Selects a search mode ([full, fmsk] = [xx]).  
00: Longest Prefix Match mode  
01: Reserved  
10: Full Match mode  
11: Full Match with Mask mode  
ff  
Selects a search timing mode (normal or FF mode).  
0: Normal mode.  
The hit address is output one clock after data has been input in the Full Match or Full  
Match with Mask mode at up to 33 MHz. In the Longest Prefix Match mode, the hit  
address is output two clocks after data has been input.  
1: FF mode  
The hit address is output two clocks after data has been input in the Full Match or Full  
Match with Mask mode at up to 50 MHz. In the Longest Prefix Match mode, the hit  
address is output four clocks after data has been input.  
Reserved  
reserved  
bit 64 to bit 6  
Do not access these bits.  
Remark Do not execute another operation immediately after write access to the mode register or mask data  
register. Be sure to perform NOP (write the NOP register) for the duration of at least 1 clock before  
executing the another operation.  
2.2.4 NOP register  
When data is written to the NOP register, the µPD98421 is in a no-operation status, in which it performs nothing.  
Keep the µPD98421 in this status when no operations such as search memory access are being performed. An  
undefined value is read from the NOP register if it is read.  
13  
Data Sheet S13650EJ5V0DS  
µPD98421  
3. FUNCTIONAL DESCRIPTION  
The µPD98421 can select an operation mode for memory operation and search operation by using combinations  
of the MEM, FULL, and FMSK signals, or combinations of the full and fmsk bits.  
Table 3-1. Operation Modes  
MEM  
FULL  
FMSK  
Function  
Memory operation  
1
0
0
0
0
×
1
1
0
0
×
0
1
0
1
Full Match mode  
Full Match with Mask mode  
Longest Prefix Match mode  
None (setting prohibited)  
3.1 Memory Operation  
The µPD98421 can read or write 64-bit data from or to an internal memory cell during operation, like a  
synchronous SRAM.  
During memory operation, the MEM pin is set to high. When data is written, the WE_B signal is asserted active;  
when data is read, the OE_B signal is asserted active.  
Data can be written within 1 clock in both the normal and FF modes. When data is read, the read data is output 1  
clock after address input in the normal mode. In the FF mode, the read data is output 2 clocks after address input.  
Note, however, that outputting the read data can be delayed by inserting a WAIT cycle.  
3.2 Search Operation  
A search operation is started when a search mode is set and the search data is written to the search data register.  
A search mode can be set by setting the MEM, FULL, and FMSK signal lines in the search mode (refer to Table 3-1)  
or by using the mode register (refer to 2.2.3 Mode register).  
3.2.1 Full Match mode  
In the Full Match mode, data that completely matches is searched. In this mode, entry data of 8K entries and one  
mask register can be used.  
To search data in the Full Match mode, set the signal lines as shown in Table 3-1 (or set the mode register), and  
write the search data to the search data register.  
The value of the search data register is masked by the value of the mask data register and compared with the 64-  
bit value of 8K words of memory cells. The bit of the search data register corresponding to a bit of the mask data  
register that is set to 0 is not used for comparison.  
One clock after the search data has been written to the search data register in the normal mode (in the FF mode,  
two clocks after), the HIT_B signal is asserted active. The address of the match data is output to HAD12 to HAD0 if  
ENHIT_B is set to 0. If two or more match data items are found during the search operation, ERR_B goes low, and  
the output to HAD12 to HAD0 is invalid.  
The timing to output the hit address can be delayed by inserting WAIT_B. When the ENHIT_B signal is set to 1,  
ERR_B and HAD12 to HAD0 enter a high-impedance state.  
14  
Data Sheet S13650EJ5V0DS  
µPD98421  
Example To search the data in Table 3-2 from the data shown in Table 3-3 in the Full Match mode (for the sake  
of convenience, 64-bit values are indicated in hexadecimal form in units of 8 bits).  
Because bits 40 to 47 and 8 to 15 of the mask data register in Table 3-2 are 0, the data of the  
corresponding bits of the search register (44 and 77) is not compared when the data of memory cells is  
compared.  
Bits 40 to 47 (ABh) and 8 to 15 (78h) of the data stored in 0003h are different from the values of the  
search data register, but this is ignored depending on the mask data register setting. All the other bits  
match the values of the search data register. This data is match data, and address 0003h is the match  
address.  
Table 3-2. Example of Search Data  
Search Data Register  
Mask Data Register  
11.22.33.44.55.66.77.88  
FF.FF.00.FF.FF.FF.00.FF  
Table 3-3. Example of Data  
Address  
0000h  
Data  
FF.FF.FF.FF.FF.FF.FF.FF.  
0001h  
0002h  
0003h  
:
11.11.22.33.44.55.66.77  
11.22.33.44.55.66.77.99  
11.22.AB.44.55.66.77.88  
:
3.2.2 Full Match with Mask mode  
In the Full Match with Mask mode, data can be masked in entry units, and the data that completely matches is  
searched. In this mode, 4K entry data can be used, and the mask register is valid.  
To use the Full Match with Mask mode, set the signal line as shown in Table 3-1 (or set the mode register), and  
write the search data to the search data register.  
Write the mask data that masks the search data to the mask data register. This must be completed before the  
search data is written to the search data register.  
Each bit of the search data register is compared or ignored, depending on the value of the bit of the mask data  
register at the same bit position.  
A bit of the mask data register that is set to 1 is compared with the corresponding bit of the search data register; a  
bit of the mask register that is reset to 0 is not compared with the corresponding bit of the search data register but  
ignored.  
The search data is compared with a 64-bit value of 4K words of memory cells.  
The data of memory cells at addresses 0000h to 0FFFh are masked by the data of memory cells at 1000h to  
1FFFh.  
If a match data is found, one clock after the search data was written to the search data register in the normal  
mode (two clocks after in the FF mode), the HIT signal is asserted active. The address of the match data is output to  
HAD12 to HAD0 if ENHIT_B is set to 0.  
The timing to output the hit address can be delayed by inserting WAIT_B.  
15  
Data Sheet S13650EJ5V0DS  
µPD98421  
Example To search data in Table 3-4 from data in Table 3-5  
The value of the search data register is ignored when bits 24 to 31 and 8 to 15 are searched from the  
value of the mask data register.  
Data of 0000h is masked by the mask of 1000h and is not compared when bits 48 to 63 are searched.  
In this way, the data of 0001h is the match data because of the relationship between each data and  
mask. The match address is 0001h.  
The value of 1003h is exactly the same as the value of the search data register, but it is not used as  
the match data because this area is used as the mask data area in the Full Match with Mask mode.  
Table 3-4. Example of Search Data  
Search Data Register  
Mask Data Register  
11.22.33.44.55.66.77.88  
FF.FF.FF.FF.00.FF.00.FF  
Table 3-5. Example of Data  
Address  
0000h  
Data  
11.22.33.44.55.66.77.BB  
11.22.AA.44.55.66.77.88  
CC.22.33.44.55.66.77.88  
99.AA.BB.CC.DD.EE.FF.00  
:
Address  
Mask  
1000h  
1001h  
1002h  
1003h  
:
00.00.FF.FF.FF.FF.FF.FF.  
FF.FF.00.FF.FF.FF.FF.FF  
FF.FF.FF.FF.FF.FF.00.00  
11.22.33.44.55.66.77.88  
:
0001h  
0002h  
0003h  
:
16  
Data Sheet S13650EJ5V0DS  
µPD98421  
3.2.3 Longest Prefix Match mode  
The Longest Prefix Match mode can search the data with the longest match in the search data, by means of  
masking in entry units. The 4K-word area of addresses 0000h to 0FFFh is used as an entry data area, and 1000h to  
1FFFh are used as a mask data area corresponding to the entry data. In the Longest Prefix Match mode, contiguous  
bits, starting from the least significant bit, must be masked as the mask data (refer to 2.1.2 Full Match with  
Mask/Longest Prefix Match mode). The mask data register is valid, and the masking set by this register is valid for  
all the entries. The contiguous bits of the mask data register must be also masked, starting from the least significant  
bit. To connect two or more µPD98421 chips, the values of the mask data registers of all the chips must be the  
same.  
Searching in the Longest Prefix Match mode is started by setting the signal lines as shown in Table 3-1 (or setting  
the mode register) and writing the search data to the search data register. Two clocks after the search has been  
started in the normal mode (four clocks after in the FF mode), the HIT_B pin is asserted active. The address of the  
match data is output to the HAD12 to HAD0 pins if ENHIT_B is set to 0.  
The timing to output the hit address can be delayed by inserting WAIT_B.  
If two or more match data are found during the search operation, the ERR_B pin goes low, and the output to the  
HAD12 to HAD0 pins is invalid. If no match data is found, both the HIT_B and ERR_B pins go high.  
The mask data that masks search data is written to the mask data register. This must be completed before the  
search data is written to the search data register.  
The search data is compared with a 64-bit value of 4K words of memory cells.  
The data of the memory cells at addresses 0000h to 0FFFh is masked by the data of memory cells at addresses  
1000h to 1FFFh.  
Unlike the other two modes, the data of a memory cell having a bit string with the longest successive match in the  
search data, starting from the MSB, is the match data.  
Example 1 To search with only one chip  
The data shown in Table 3-6 is searched from the data of the memory cells shown in Table 3-7.  
The value of the mask data register is masked after a value has been written to the search data register. Because  
all the bits of the mask data are 1, all the bits of the search data register are compared when searched.  
The data stored to each memory cell is compared in the same manner as in the Full Match with Mask mode.  
Of the matching data, that which has the longest number of bits that match is the final match data. In this  
example, it is the data of 0001h.  
17  
Data Sheet S13650EJ5V0DS  
µPD98421  
Table 3-6. Example of Search Data  
Search Data Register  
Mask Data Register  
FF.FF.FF.FF.FF.FF.FF.FF  
11.22.33.44.55.66.77.88  
Table 3-7. Example of Data  
Address  
0000h  
Data  
11.22.33.44.00.00.00.00  
11.22.33.44.55.66.77.00  
11.22.33.44.55.00.00.00  
11.22.33.44.55.66.77.AA  
:
Address  
1000h  
Mask  
FF.FF.FF.FF.00.00.00.00  
FF.FF.FF.FF.FF.FF.FF.00  
FF.FF.FF.FF.FF.00.00.00  
FF.FF.FF.FF.FF.FF.00.00  
:
0001h  
0002h  
0003h  
:
1001h  
1002h  
1003h  
:
Even when two or more µPD98421 chips are connected, the data with the longest match in the search data can  
be searched from all the µPD98421s. This can be done by connecting the SMD63 to SMD0 pins of all the chips.  
When two or more chips are connected, make sure that the values of the mask data registers of all the chips are  
the same.  
Example 2 To search with two or more chips  
Data in Table 3-8 is searched from the data of the memory cells shown in Tables 3-9 to 3-11. These  
tables show different µPD98421 chips.  
When searching is started, 0001h of chip 1, 0002h of chip 2, and 0001h of chip 3 match as the match  
addresses. In this case, 0002h of chip 2 in Table 3-10 has the shortest mask bit. Therefore, the data  
of 0002h of chip 2 is the match data. At this time, only the HIT_B pin of chip 2 goes low; the HIT_B  
pins of chips 1 and 3 go high.  
Table 3-8. Search Data  
Search Data Register  
Mask Data Register  
6E.13.01.22.5F.C2.77.E8  
FF.FF.FF.FF.FF.FF.FF.FF  
Table 3-9. Memory Cells of Chip 1  
Address  
0000h  
Data  
11.22.33.44.55.00.00.00  
6E.13.01.22.5F.C2.77.00  
6E.13.01.22.00.00.00.00  
6F.FF.FF.FF.FF.00.00.00  
:
Address  
Mask  
1000h  
1001h  
1002h  
1003h  
:
FF.FF.FF.FF.FF.00.00.00  
FF.FF.FF.FF.FF.FF.00.00  
FF.FF.FF.FF.00.00.00.00  
FF.FF.FF.FF.FF.00.00.00  
:
0001h  
0002h  
0003h  
:
18  
Data Sheet S13650EJ5V0DS  
µPD98421  
Table 3-10. Memory Cells of Chip 2  
Address  
0000h  
Data  
Address  
1000h  
Mask  
FF.FF.FF.FF.00.00.00.00  
FF.FF.FF.FF.FF.FF.00.00  
FF.FF.FF.FF.FF.FF.FF.00  
FF.FF.FF.FF.FF.FF.00.00  
:
11.22.33.44.00.00.00  
6E.13.01.22.5F.C2.00.00  
6E.13.01.22.5F.C2.77.00  
6D.FF.FE.EF.FF.FF.00.00  
:
0001h  
0002h  
0003h  
:
1001h  
1002h  
1003h  
:
Table 3-11. Memory Cells of Chip 3  
Address  
Data  
Address  
1000h  
Mask  
FF.FF.FF.FF.FF.FF.FF.00  
FF.FF.FF.FF.FF.FF.00.00  
FF.FF.FF.FF.FF.FF.00.00  
FF.FF.FF.FF.FF.FF.00.00  
:
0000h  
0001h  
0002h  
0003h  
:
6E.13.01.22.5F.C2.AA.00  
6E.13.01.22.5F.C2.00.00  
6E.13.01.22.5F.BF.00.00  
6E.13.01.22.61.01.00.00  
:
1001h  
1002h  
1003h  
:
3.2.4 Other points to be noted  
Do not change the mode by using the MEM, FULL, and FMSK pins in a mode that operates with two or more clock  
cycles. Similarly, do not change A12 to A0.  
Remark Modes that operate with two or more clock cycles  
In normal mode: Longest Prefix Match mode  
In FF mode:  
Memory/register read, Full Match mode, Full Match with Mask mode, and Longest  
Prefix Match mode  
Write to the NOP register for one or more clocks when changing the operation and the search mode.  
Create an external circuit in which RESET_B becomes low after power application.  
After releasing reset, input at least 2 CLK or more NOP commands continuously.  
When a search operation is stopped temporarily using CE (CE_B) during a continuous search operation, almost  
the same power is consumed as during a search operation. In this case, shift into no-operation mode by writing to  
the NOP register or inserting a wait.  
When performing a continuous search operation in the normal mode, make the total search frequency 66% or  
below.  
19  
Data Sheet S13650EJ5V0DS  
µPD98421  
Cautions when connecting multiple µPD98421s  
The output load capacitance in the AC characteristics described later is 50 pF, so if the load capacitance exceeds  
50 pF through the connection of multiple devices, the delay amount shown in the figure below must be added as  
an output delay.  
Reference this delay value when designing external circuits. The delay value in the figure is only that of the  
output buffer. Note also that the level at which output of the delay value is determined is VIH (2.0 V) for the rising  
delay and VIL (0.8 V) for the falling delay.  
Output Buffer Load Dependence (typ.) @ Rising Delay  
5.00E-09  
4.50E-09  
4.00E-09  
3.50E-09  
3.00E-09  
2.50E-09  
2.00E-09  
1.50E-09  
1.00E-09  
5.00E-10  
0.00E+00  
0
25  
50  
75  
100  
125  
150  
Load exceeding 50 pF [pF]  
Output Buffer Load Dependence (typ.) @ Falling Delay  
5.00E-09  
4.50E-09  
4.00E-09  
3.50E-09  
3.00E-09  
2.50E-09  
2.00E-09  
1.50E-09  
1.00E-09  
5.00E-10  
0.00E+00  
0
25  
50  
75  
100  
125  
150  
Load exceeding 50 pF [pF]  
20  
Data Sheet S13650EJ5V0DS  
µPD98421  
4. ELECTRICAL SPECIFICATIONS  
All the rated values below are when the µPD98421 is cooled at a wind velocity of 2 m/s.  
Absolute Maximum Ratings  
Parameter  
Supply voltage  
Symbol  
VDD  
VI  
Conditions  
Rating  
0.5 to +4.6  
Unit  
V
Input voltage  
I/O voltage  
0.5 to +VDD + 0.5  
0.5 to +VDD + 0.5  
0 to 70  
V
VIO  
V
Operating ambient  
temperature  
TA  
°C  
Storage temperature  
Tstg  
65 to +150  
°C  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on  
the verge of suffering physical damage, and therefore the product must be used under  
conditions that ensure that the absolute maximum ratings are not exceeded.  
Recommended Operating Conditions  
Parameter  
Supply voltage  
Symbol  
VDD  
Conditions  
MIN.  
3.15  
2.0  
2.4  
0
TYP.  
3.3  
MAX.  
3.45  
VDD  
VDD  
0.8  
Unit  
V
Input voltage, high  
VIH1  
VIH2  
VIL1  
Other than CLK, RESET_B  
CLK, RESET_B  
V
V
Input voltage, low  
Other than CLK, RESET_B  
CLK, RESET_B  
V
VIL2  
0
0.4  
V
Operating ambient  
temperature  
TA  
Cooled at a wind velocity of 2 m/s or  
more  
0
70  
°C  
DC Characteristics (TA = 0 to +70°C, VDD = 3.3 V 0.15 V)  
Parameter  
Output voltage, high  
Output voltage, low  
Operating current  
Symbol  
VOH  
Conditions  
MIN.  
2.4  
TYP.  
MAX.  
Unit  
V
IOH = 4.0 mA  
VOL  
IOL = 8.0 mA  
0.4  
1150  
1150  
10  
V
Note  
fclk = 33 MHz (normal mode)  
fclk = 50 MHz (FF mode)  
VI = 0 V to VDD  
mA  
mA  
µA  
µA  
IDD  
Input leakage current  
Output leakage current  
ILI  
ILO  
VIO = 0 V to VDD  
10  
Output: not selected  
Pull-up resistance (HAD  
and SMD pins)  
RPU  
VI = 0 V  
25  
50  
150  
k  
Note When performing a continuous search operation in the normal mode, make the total search frequency 66%  
or below.  
21  
Data Sheet S13650EJ5V0DS  
µPD98421  
Capacitance  
Parameter  
Symbol  
CIN  
Conditions  
VIN = 0 V, f = 1 MHz  
MIN.  
TYP.  
MAX.  
10  
Unit  
pF  
Input capacitance  
Output capacitance  
I/O capacitance  
COUT  
CI/O  
VIN = 0 V, f = 1 MHz  
VIN = 0 V, f = 1 MHz  
10  
pF  
10  
pF  
AC Characteristics (TA = 0 to 70°C, VDD = 3.3 V 0.15 V)  
All the values below are at an output load capacitance of 50 pF.  
CLK input  
Parameter  
CLK cycle time  
Symbol  
tCYCLK  
Conditions  
MIN.  
30  
20  
13  
9
TYP.  
MAX.  
125  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Normal mode  
FF mode  
125  
CLK high-level width  
CLK low-level width  
tCLKH  
Normal mode  
FF mode  
tCLKL  
Normal mode  
FF mode  
13  
9
CLK rise time  
CLK fall time  
tCLKR  
tCLKF  
3
3
t
CLKR  
t
CLKF  
2.4 V (MIN.)  
2.4 V  
1.5 V  
V
PPCLK  
0.4 V  
0.4 V (MAX.)  
t
CLKH  
t
CLK  
t
CYCLK  
RESET input  
Parameter  
Symbol  
tWRSTL  
Conditions  
MIN.  
tCYCLK × 2  
TYP.  
MAX.  
Unit  
ns  
RESET_B low-level width  
22  
Data Sheet S13650EJ5V0DS  
µPD98421  
CE and CE_B operations  
Parameter  
Symbol  
tDCEDATA  
Conditions  
MIN.  
TYP.  
MAX.  
10  
Unit  
ns  
CE ↑ → DATA valid time  
CE_B ↓ → DATA valid time  
CE ↑ → HAD valid time  
CE_B ↓ → HAD valid time  
CE ↑ → ERR_B valid time  
CE_B ↓ → ERR_B valid time  
CE ↑ → SMD valid time  
CE_B ↓ → SMD valid time  
CE ↓ → DATA float time  
CE_B ↑ → DATA float time  
CE ↓ → HAD float time  
CE_B ↑ → HAD float time  
CE ↓ → ERR_B float time  
CE_B ↑ → ERR_B float time  
CE ↓ → SMD float time  
CE_B ↑ → SMD float time  
tDCEHAD  
tDCEERR  
tDCESMD  
tFCEDATA  
tFCEHAD  
tFCEERR  
tFCESMD  
10  
10  
10  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
23  
Data Sheet S13650EJ5V0DS  
µPD98421  
Search/memory operations (1/2)  
Parameter  
Address setup time  
Address hold time  
Data setup time  
Symbol  
tSA  
Conditions  
MIN.  
4
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHA  
4
tSDATA  
tHDATA  
tSCE  
4
Data hold time  
4
CE, CE_B setup time  
CE, CE_B hold time  
MEM setup time  
4
tHCE  
3
tSMEM  
tHMEM  
tSWE  
3
MEM hold time  
3
WE_B setup time  
3
WE_B hold time  
tDWE  
3
WAIT_B setup time  
WAIT_B hold time  
FULL, FMSK setup time  
FULL, FMSK hold time  
Delay time from CLK to DATA  
tSWAIT  
tHWAIT  
tSMODE  
tHMODE  
tDDATA  
3
3
4
3
Normal mode  
26  
10  
FF mode  
CLK ↑ → DATA invalid time  
WE_B ↑ → DATA valid time  
WE_B ↓ → DATA float time  
OE_B ↓ → DATA valid time  
OE_B ↑ → DATA float time  
ENHIT_B ↓ → HAD valid time  
ENHIT_B ↑ → HAD float time  
ENHIT_B ↓ → ERR_B valid time  
ENHIT_B ↑ → ERR_B float time  
CLK ↑ → HAD valid time  
tDDATAX  
tDWEDATA  
tFWEDATA  
tDOEDATA  
tFOEDATA  
tDEHHAD  
tFEHHAD  
tDEHERR  
tFEHERR  
tDHAD  
Normal mode  
4
10  
10  
10  
10  
10  
10  
10  
10  
26  
10  
26  
10  
Normal mode  
FF mode  
CLK ↑ → HAD float time  
tFHAD  
Normal mode  
FF mode  
CLK ↑ → HAD invalid time  
CLK ↑ → HIT_B delay time  
tDHADX  
tDHIT  
5
5
Normal mode  
FF mode  
26  
10  
CLK ↑ → HIT_B invalid time  
CLK ↑ → ERR_B valid time  
tDHITX  
tDERR  
Normal mode  
FF mode  
26  
10  
26  
10  
CLK ↑ → ERR_B float time  
tFERR  
Normal mode  
FF mode  
CLK ↑ → ERR_B invalid time  
tDERRX  
tSSMD  
5
2
SMD setup time  
24  
Data Sheet S13650EJ5V0DS  
µPD98421  
Search/memory operations (2/2)  
Parameter  
SMD hold time  
Symbol  
tHSMD  
Conditions  
MIN.  
3
TYP.  
MAX.  
Unit  
ns  
Note  
CLK ↑ → SMD low-level valid time  
Normal mode  
26  
10  
12  
ns  
tDSMDL1  
FF mode  
ns  
Note  
CLK ↓ → SMD low-level valid time  
Normal mode  
ns  
tDSMDL2  
CLK ↓ → SMD high-level valid time  
CLK ↑ → SMD high-level valid time  
CLK ↑ → SMD float time  
tDSMDH1  
tDSMDH2  
tFSMD  
Normal mode  
FF mode  
2
2
2
13  
10  
10  
ns  
ns  
ns  
Note The  
SMD low-level valid time satisfies either the tDSMDL1 or tDSMDL2 value.  
(1) Memory access (normal mode)  
tCYCLK  
tCLKH  
tCLKL  
CLK  
tSA  
tHA  
Memory write  
Memory write  
Memory write  
Memory read  
address 1  
Memory read  
address 2  
A[12:0]  
NOP  
NOP  
address 1  
address 2  
address 3  
Memory read data 1  
Memory read data 2  
tSDATA  
tHDATA  
Memory write  
data 1  
Memory write  
data 2  
Memory write  
data 3  
DATA[63:0]  
CE_B  
tDDATAX  
tDDATA  
tDCEDATA  
tDDATA  
tSCE  
tHCE  
CE has timing identical to CE_B.  
tFCEDATA  
tHMEM  
MEM  
tSMEM  
tSWE tHWE  
tFWEDATA  
WE_B  
OE_B  
tDWEDATA  
tDOEDATA  
tFOEDATA  
tSWAIT tHWAIT  
WAIT_B  
FULL,FMSK  
tFEHHAD  
tFCEHAD  
tDEHHAD  
tDCEHAD  
HAD[12:0]  
HIT_B  
tFEHERR  
tFCEERR  
tDEHERR  
tDCEERR  
Hi-Z  
ERR_B  
ENHIT_B  
SMD[63:0]  
Hi-Z  
Remark CE is the inversion of CE_B.  
25  
Data Sheet S13650EJ5V0DS  
µPD98421  
(2) Memory access (FF mode)  
tCYCLK  
tCLKH  
tHA  
tCLKL  
CLK  
A[12:0]  
DATA[63:0]  
CE_B  
tSA  
Memory write  
address 1  
Memory write  
address 2  
Memory write  
address 3  
Memory read  
address 1  
NOP  
NOP  
tSDATA  
tHDATA  
Memory write  
data 1  
Memory write  
data 2  
Memory write  
data 3  
Memory read data 1  
tDDATA  
tSCE  
tHCE  
CE has timing identical to CE_B.  
tHMEM  
MEM  
tSMEM  
tSWE tHWE  
tFWEDATA  
WE_B  
tDWEDATA  
OE_B  
tSWAIT tHWAIT  
WAIT_B  
FULL,FMSK  
HAD[12:0]  
tFEHHAD  
tFCEHAD  
tDEHHAD  
tDCEHAD  
HIT_B  
tFEHERR  
tFCEERR  
tDEHERR  
tDCEERR  
Hi-Z  
ERR_B  
ENHIT_B  
SMD[63:0]  
Hi-Z  
Remark CE is the inversion of CE_B.  
26  
Data Sheet S13650EJ5V0DS  
µPD98421  
(3) I/O access (normal mode)  
tCYCLK  
tCLKH  
tCLKL  
CLK  
A[12:0]  
tSA  
tHA  
I/O write  
address 2  
I/O write  
address 3  
I/O write  
address 1  
I/O read  
address 1  
I/O read  
address 2  
NOP  
NOP  
I/O read data 1  
I/O read data 2  
tSDATA  
tHDATA  
I/O write  
data 1  
I/O write  
data 2  
I/O write  
data 3  
DATA[63:0]  
CE_B  
tDDATAX  
tDDATA  
tDCEDATA  
tDDATA  
tSCE  
tHCE  
CE has timing identical to CE_B.  
tFCEDATA  
tHMEM  
MEM  
tSMEM  
tSWE tHWE  
tFWEDATA  
WE_B  
tDWEDATA  
tDOEDATA  
tFOEDATA  
OE_B  
WAIT_B  
tSWAIT tHWAIT  
FULL,FMSK  
HAD[12:0]  
HIT_B  
tFEHHAD  
tFCEHAD  
tDEHHAD  
tDCEHAD  
tFEHERR  
tFCEERR  
tDEHERR  
tDCEERR  
Hi-Z  
ERR_B  
ENHIT_B  
Hi-Z  
SMD[63:0]  
Remark CE is the inversion of CE_B.  
27  
Data Sheet S13650EJ5V0DS  
µPD98421  
(4) I/O access (FF mode)  
tCYCLK  
tCLKH  
tCLKL  
CLK  
A[12:0]  
tSA  
tHA  
I/O write  
address 1  
I/O write  
I/O write  
I/O read  
address 1  
NOP  
NOP  
address 2  
address 3  
tSDATA  
tHDATA  
I/O read  
data 1  
I/O write  
data 2  
I/O write  
data 3  
I/O write  
data 1  
DATA[63:0]  
CE_B  
tDDATA  
tSCE  
tHCE  
CE has timing identical to CE_B.  
tHMEM  
MEM  
tSMEM  
tSWE tHWE  
tFWEDATA  
WE_B  
tDWEDATA  
OE_B  
tSWAIT tHWAIT  
WAIT_B  
FULL,FMSK  
HAD[12:0]  
HIT_B  
tFEHHAD  
tFCEHAD  
tDEHHAD  
tDCEHAD  
tFEHERR  
tFCEERR  
tDEHERR  
tDCEERR  
Hi-Z  
ERR_B  
ENHIT_B  
SMD[63:0]  
Hi-Z  
Remark CE is the inversion of CE_B.  
28  
Data Sheet S13650EJ5V0DS  
µPD98421  
(5) Full Match search (normal mode)  
tCYCLK  
tCLKH  
tCLKL  
CLK  
A[12:0]  
tSA  
tHA  
00H  
NOP  
tSDATA  
tHDATA  
Search  
data 1  
Search  
data 2  
Search  
data 3  
Search  
data 4  
Search  
data 5  
Search  
data 6  
Search  
data 7  
DATA[63:0]  
CE_B  
Low  
CE has timing identical to CE_B.  
tHMEM  
tSMEM  
MEM  
tSWE tHWE  
WE_B  
High  
OE_B  
tSWAIT tHWAIT  
WAIT_B  
FULL,FMSK  
HAD[12:0]  
HIT_B  
tSMODE  
tHMODE  
Full match search mode  
tFHAD  
tDEHHAD  
tDHAD  
tDHAD  
tDHITX  
Hit  
address 1  
Hit  
Hit  
address 6  
Hit  
address 7  
address 5  
tFEHHAD  
tDHIT  
tDHADX  
tDERR  
tFEHERR  
tDEHERR  
Hi-Z  
tFEERR  
Hi-Z  
ERR_B  
ENHIT_B  
SMD[63:0]  
tDERRX  
Hi-Z  
Remark CE is the inversion of CE_B.  
29  
Data Sheet S13650EJ5V0DS  
µPD98421  
(6) Full Match search with Mask (normal mode)  
tCYCLK  
tCLKH  
tCLKL  
CLK  
A[12:0]  
tSA  
tHA  
00H  
NOP  
tSDATA  
tHDATA  
Search  
data 1  
Search  
data 2  
Search  
data 3  
Search  
data 4  
Search  
data 5  
Search  
data 6  
Search  
data 7  
DATA[63:0]  
CE_B  
Low  
CE has timing identical to CE_B  
tHMEM  
tSMEM  
MEM  
tSWE tHWE  
WE_B  
High  
OE_B  
tSWAIT tHWAIT  
WAIT_B  
FULL,FMSK  
HAD[12:0]  
HIT_B  
tSMODE  
tHMODE  
Full match with mask  
tFHAD  
tDEHHAD  
tDHAD  
tDHAD  
tDHITX  
Hit  
address 1  
Hit  
Hit  
address 6  
Hit  
address 7  
address 5  
tFEHHAD  
tDHIT  
tDHADX  
tDERR  
tFEHERR  
tDEHERR  
Hi-Z  
tFEERR  
Hi-Z  
ERR_B  
ENHIT_B  
SMD[63:0]  
tDERRX  
Hi-Z  
Remark CE is the inversion of CE_B.  
30  
Data Sheet S13650EJ5V0DS  
µPD98421  
(7) Longest Prefix Match search (normal mode)  
tCYCLK  
tCLKH  
tCLKL  
CLK  
tSA  
tHA  
00H  
NOP  
A[12:0]  
tSDATA  
tHDATA  
Search  
data 1  
Search  
data 1  
Search  
data 1  
DATA[63:0]  
CE_B  
MEM  
Low  
CE has timing identical to CE_B.  
tHMEM  
tSMEM  
tSWE tHWE  
WE_B  
High  
OE_B  
tSWAIT tHWAIT  
WAIT_B  
FULL,FMSK  
HAD[12:0]  
HIT_B  
tSMODE  
tHMODE  
Longest prefix match search mode  
tFHAD  
tDHAD  
tDHAD  
Hit  
address 1  
tDHITX  
tDHADX  
tDHIT  
tDERR  
tFEERR  
Hi-Z  
ERR_B  
tDERRX  
Low  
ENHIT_B  
tDSMDH tFSMD  
tFSMD  
tDSMDL2  
Hi-Z  
All high  
All high  
SMD[63:0]  
temp data 1  
temp data 2  
temp data 3  
tDSMDL1  
Remark CE is the inversion of CE_B.  
31  
Data Sheet S13650EJ5V0DS  
µPD98421  
(8) Full Match search (FF mode)  
tCYCLK  
tCLKH  
tCLKL  
CLK  
A[12:0]  
tSA  
tHA  
00H  
NOP  
tSDATA  
tHDATA  
Search  
data 1  
Search  
data 2  
Search  
data 3  
Search  
data 4  
DATA[63:0]  
CE_B  
Low  
CE has timing identical to CE_B.  
tHMEM  
tSMEM  
MEM  
tSWE tHWE  
WE_B  
High  
OE_B  
tSWAIT tHWAIT  
WAIT_B  
FULL,FMSK  
HAD[12:0]  
HIT_B  
tSMODE  
tHMODE  
Full match search mode  
tFHAD  
tDHAD  
tDHAD  
Hit  
address 1  
tDHITX  
tDHIT  
tDHADX  
tDERR  
tFEERR  
Hi-Z  
ERR_B  
ENHIT_B  
SMD[63:0]  
tDERRX  
Low  
Hi-Z  
Remark CE is the inversion of CE_B.  
32  
Data Sheet S13650EJ5V0DS  
µPD98421  
(9) Full Match search with Mask (FF mode)  
tCYCLK  
tCLKH  
tCLKL  
CLK  
A[12:0]  
tSA  
tHA  
00H  
NOP  
tSDATA  
tHDATA  
Search  
data 1  
Search  
data 2  
Search  
data 3  
Search  
data 4  
DATA[63:0]  
CE_B  
Low  
CE has timing identical to CE_B.  
tHMEM  
tSMEM  
MEM  
tSWE tHWE  
WE_B  
High  
OE_B  
tSWAIT tHWAIT  
WAIT_B  
FULL,FMSK  
HAD[12:0]  
HIT_B  
tHMODE  
tSMODE  
Full match with mask search mode  
tFHAD  
tDHAD  
tDHAD  
Hit  
address 1  
tDHITX  
tDHIT  
tDHADX  
tDERR  
tFEERR  
Hi-Z  
ERR_B  
ENHIT_B  
SMD[63:0]  
tDERRX  
Low  
Hi-Z  
Remark CE is the inversion of CE_B.  
33  
Data Sheet S13650EJ5V0DS  
µPD98421  
(10) Longest Prefix Match search (FF mode)  
tCYCLK  
tCLKH  
tCLKL  
CLK  
A[12:0]  
tSA  
tHA  
00H  
NOP  
tSDATA  
tHDATA  
Search  
data 1  
DATA[63:0]  
CE_B  
Low  
CE has timing identical to CE_B.  
tHMEM  
tSMEM  
MEM  
tSWE tHWE  
WE_B  
High  
OE_B  
tSWAIT tHWAIT  
WAIT_B  
FULL,FMSK  
HAD[12:0]  
HIT_B  
tSMODE  
t
HMODE  
Longest prefix match  
search mode  
tFHAD  
tDHAD  
Hit  
address 1  
tDHADX  
tDHIT  
tFEERR  
Hi-Z  
ERR_B  
Low  
ENHIT_B  
tFSMD  
tFSMD  
tDSMDH  
Hi-Z  
All high  
SMD[63:0]  
temp data 1  
tDSMDL1  
Remark CE is the inversion of CE_B.  
34  
Data Sheet S13650EJ5V0DS  
µPD98421  
(11) Full Match search (normal mode, insertion wait)  
tCYCLK  
tCLKH  
tCLKL  
CLK  
A[12:0]  
tSA  
tHA  
00H  
NOP  
tSDATA  
tHDATA  
Search  
data 1  
Search  
data 2  
Search  
data 3  
Search  
data 4  
DATA[63:0]  
CE_B  
Low  
CE has timing identical to CE_B.  
tHMEM  
tSMEM  
MEM  
tSWE tHWE  
WE_B  
High  
OE_B  
tSWAIT tHWAIT  
WAIT_B  
tSMODE  
tHMODE  
FULL,FMSK  
Full match search mode  
tFHAD  
tDHAD  
tDHAD  
tDHAD  
tDHITX  
Hit  
address 1  
Hit  
address 1  
HAD[12:0]  
HIT_B  
tDHIT  
tDHADX  
tDERR  
tFEERR  
Hi-Z  
tFEERR  
ERR_B  
ENHIT_B  
SMD[63:0]  
tDERRX  
Low  
Hi-Z  
Remark CE is the inversion of CE_B.  
35  
Data Sheet S13650EJ5V0DS  
µPD98421  
(12) Longest Prefix Match search (normal mode, insertion wait)  
tCYCLK  
tCLKH  
tCLKL  
CLK  
tSA  
tHA  
A[12:0]  
00H  
NOP  
tSDATA  
tHDATA  
Search  
data 1  
Search  
data 2  
DATA[63:0]  
CE_B  
Low  
CE has timing identical to CE_B.  
tHMEM  
tSMEM  
MEM  
tSWE tHWE  
WE_B  
High  
OE_B  
tSWAIT tHWAIT  
WAIT_B  
FULL,FMSK  
HAD[12:0]  
HIT_B  
tSMODE  
tHMODE  
Longest prefix match search mode  
tDHAD  
tDHADX  
tDHAD  
Hit  
address 1  
Hit  
address 2  
tDHADX  
tDHIT  
tDHIT  
tFEERR  
Hi-Z  
ERR_B  
ENHIT_B  
SMD[63:0]  
Low  
tFSMD  
tDSMDH  
tFSMD  
tDSMDL2  
Hi-Z  
All high  
All high  
temp data 1  
temp data 2  
tDSMDL1  
Remark CE is the inversion of CE_B.  
36  
Data Sheet S13650EJ5V0DS  
µPD98421  
(13) Search Memory access Search (normal mode)  
tCYCLK  
tCLKH  
tHA  
tCLKL  
CLK  
tSA  
Memory write  
address 1  
NOP  
00H  
A[12:0]  
00H  
NOP  
00H  
NOP  
tSDATA  
tHDATA  
Search  
data 1  
Search  
data 2  
Memory  
data 1  
Search  
data 3  
DATA[63:0]  
CE_B  
Low  
CE has timing identical to CE_B.  
tHMEM  
tSMEM  
MEM  
tSWE tHWE  
WE_B  
High  
OE_B  
tSWAIT tHWAIT  
WAIT_B  
FULL,FMSK  
HAD[12:0]  
HIT_B  
tSMODE  
t
HMODE  
Full match  
Longest prefix  
search mode  
Full match  
with mask  
search mode  
tDHAD  
Hit  
address 1  
Hit  
address 2  
tDHIT  
tDHADX  
Hi-Z  
tFEERR  
ERR_B  
Low  
ENHIT_B  
Hi-Z  
All high  
SMD[63:0]  
temp data 1  
Remark CE is the inversion of CE_B.  
37  
Data Sheet S13650EJ5V0DS  
µPD98421  
5. RECOMMENDED SOLDERING CONDITIONS  
The µPD98421 should be soldered and mounted under the following recommended conditions. For details of the  
recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual  
(C10535E).  
For soldering methods and conditions other than those recommended below, contact your NEC sales  
representative.  
Surface-mount type  
µPD98421F1-GA1: 240-pin plastic FBGA (16 × 16)  
Recommended  
Soldering Method  
Infrared reflow  
Soldering Conditions  
Condition Symbol  
Package peak temperature: 230°C, Time: 30 seconds max. (at 210°C or higher),  
Count: Two times or less, Exposure limit: 3 daysNote (after that, prebake at  
125°C for 10 hours)  
IR30-103-2  
Note After opening a dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.  
38  
Data Sheet S13650EJ5V0DS  
µPD98421  
6. PACKAGE DRAWING  
240-PIN PLASTIC FBGA (16x16)  
D
w
S
B
B
D
1
ZE  
A
ZD  
SD  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
E
1
E
8
SE  
7
6
5
4
3
2
1
VUTRPNMLKJHGFEDCBA  
4-C1.0  
w
Index mark  
4-R0.3MAX.  
S
A
A
A2  
25°  
y
1
S
S
e
y
S
A1  
φ
x
M
240- b  
S
A B  
φ
ITEM MILLIMETERS  
16.00 0.10  
15.4  
D
D
E
E
w
e
1
1
16.00 0.10  
15.4  
0.20  
0.80  
A
1.31 0.15  
0.35 0.10  
0.96  
A
A
1
2
+0.05  
0.50  
b
0.10  
x
y
y
0.08  
0.10  
1
0.20  
SD  
SE  
ZD  
ZE  
0.40  
0.40  
1.2  
1.2  
P240F1-80-GA1  
39  
Data Sheet S13650EJ5V0DS  
µPD98421  
[MEMO]  
40  
Data Sheet S13650EJ5V0DS  
µPD98421  
[MEMO]  
41  
Data Sheet S13650EJ5V0DS  
µPD98421  
[MEMO]  
42  
Data Sheet S13650EJ5V0DS  
µPD98421  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
43  
Data Sheet S13650EJ5V0DS  
µPD98421  
The information in this document is current as of January, 2002. The information is subject to  
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or  
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all  
products and/or types are available in every country. Please check with an NEC sales representative  
for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without prior  
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.  
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of  
third parties by or arising from the use of NEC semiconductor products listed in this document or any other  
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any  
patents, copyrights or other intellectual property rights of NEC or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of customer's equipment shall be done under the full  
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third  
parties arising from the use of these circuits, software and information.  
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers  
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize  
risks of damage to property or injury (including death) to persons arising from defects in NEC  
semiconductor products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment, and anti-failure features.  
NEC semiconductor products are classified into the following three quality grades:  
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products  
developed based on a customer-designated "quality assurance program" for a specific application. The  
recommended applications of a semiconductor product depend on its quality grade, as indicated below.  
Customers must check the quality grade of each semiconductor product before using it in a particular  
application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's  
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not  
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness  
to support a given application.  
(Note)  
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.  
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for  
NEC (as defined above).  
M8E 00. 4  

相关型号:

UPD98421F1-GA1-A

8KX64 CONTENT ADDRESSABLE SRAM, PBGA240, 16 X 16 MM, PLASTIC, FBGA-240
RENESAS

UPD98431

Controller Miscellaneous - Datasheet Reference
ETC

UPD98431S1-F6

8 CHANNEL(S), 100Mbps, LOCAL AREA NETWORK CONTROLLER, PBGA352, 35 X 35 MM, BGA-352
RENESAS

UPD98433

Controller Miscellaneous - Datasheet Reference
ETC

UPD98433S9-K6

LAN Controller, 8 Channel(s), 125MBps, CMOS, PBGA756, 45 X 45 MM, PLASTIC, BGA-756
NEC

UPD98452

Analog IC
ETC

UPD98501

LAN Controller, 12.5MBps, CMOS, PBGA352, TBGA-352
NEC

UPD98501N7-F6

LAN Controller, 3 Channel(s), 12.5MBps, CMOS, PBGA352, 35 X 35 MM, BGA-352
NEC

UPD98501N7-F6-A

3 CHANNEL(S), 100Mbps, LOCAL AREA NETWORK CONTROLLER, PBGA352, 35 X 35 MM, BGA-352
RENESAS

UPD98501N7-F6-A

LAN Controller, 3 Channel(s), 12.5MBps, CMOS, PBGA352, 35 X 35 MM, BGA-352
NEC

UPD98502N7-H6

LAN Controller, 3 Channel(s), 12.5MBps, CMOS, PBGA500, 40 X 40 MM, BGA-500
NEC

UPD98502N7-H6-A

LAN Controller, 3 Channel(s), 12.5MBps, CMOS, PBGA500, 40 X 40 MM, BGA-500
NEC