RT9245CPC [RICHTEK]

Multi-Phase PWM Controller for CPU Core Power Supply; 多相PWM控制器,用于CPU核心供电
RT9245CPC
型号: RT9245CPC
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

Multi-Phase PWM Controller for CPU Core Power Supply
多相PWM控制器,用于CPU核心供电

多相元件 控制器
文件: 总25页 (文件大小:545K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RT9245C  
Multi-Phase PWM Controller for CPU Core Power Supply  
General Description  
Features  
z Multi-Phase Power Conversion with Automatic  
RT9245C is a multi-phase buck DC/DC controller  
integrated with all control functions for AMD K8 CPU or  
Intel® GHz CPU which is VRD10.x-compliant. The  
RT9245C could be operated with 2, 3 or 4 buck switching  
stages operating in interleaved phase set automatically.  
The multiphase architecture provides high output current  
while maintaining low power dissipation on power devices  
and low stress on input and output capacitors. The high  
equivalent operating frequency also reduces the  
component dimension and the output voltage ripple in load  
transient.  
Phase Selection  
z 6-bits VRD10.x or 5-bit K8 DAC Output with Active  
Droop Compensation for Fast Load Transient  
z Smooth VCORE Transition at VID Jump  
z Power Stage Thermal Balance by DCR Current  
Sense  
z Hiccup Mode Over-Current Protection  
z Programmable Switching Frequency (50kHz to  
400kHz per Phase), Under-Voltage Lockout and Soft-  
Start  
z High Ripple Frequency Times Channel Number  
z 28-TSSOP Package  
RT9245C implements both voltage and current loops to  
achieve good regulation, response and power stage  
thermal balance.  
z RoHS Compliant and 100% Lead (Pb)-Free  
RT9245C applies theDCR sensing technology newly. The  
RT9245C extracts the DCR of output inductor as sense  
component to deliver a precise load line regulation and  
good thermal balance for next generation processor  
application.  
Applications  
z Intel® Processors Voltage Regulator : VRD10.x andAMD  
K8  
z Low Output Voltage, High CurrentDC-DC Converters  
z Voltage Regulator Modules  
Current sense setting, droop tuning, VCORE initial offset  
and over current protection are independent on  
compensation circuit of voltage loop. The feature greatly  
facilitates the flexibility of CPU power supply design and  
tuning. The DAC output of RT9245C supports AMD K8  
5-bit VIDand Intel® VRD10.x with 6-bit VIDinput, precise  
offset value & smooth VCORE transient at VID jump. The  
IC monitors the VCORE voltage for PGOODand over-voltage  
protection. Soft-start, over-current protection and  
programmable under-voltage lockout are also provided to  
assure the safety of microprocessor and power system.  
The RT9245C comes to a small footprint package  
TSSOP-28.  
Pin Configurations  
(TOP VIEW)  
VID4  
VID3  
VID2  
VCC  
28  
27  
26  
25  
24  
23  
22  
21  
PWM1  
PWM2  
PWM3  
PWM4  
CSP4  
CSP2  
CSP3  
CSP1  
GND  
2
3
4
5
6
7
8
VID1  
VID0  
VID125/VIDSEL  
SGND  
FB  
9
20  
19  
18  
17  
16  
15  
COMP  
PGOOD  
DVD  
SS  
RT  
VOSS  
10  
11  
12  
13  
14  
ADJ  
IOUT  
CSN  
IMAX  
TSSOP-28  
Ordering Information  
Note :  
RichTek Pb-free and Green products are :  
RT9245C  
Package Type  
C : TSSOP-28  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
cial Standard)  
`Suitable for use in SnPb or Pb-free soldering processes.  
`100% matte tin (Sn) plating.  
DS9245C-02 March 2007  
www.richtek.com  
1
RT9245C  
Typical Application Circuit  
+
+
+
+
+
+
+
+
+
Figure A. For Intel  
www.richtek.com  
2
DS9245C-02 March 2007  
RT9245C  
+
+
+
+
+
+
+
+
+
Figure B. For AMD  
DS9245C-02 March 2007  
www.richtek.com  
3
RT9245C  
Functional Pin Description  
VID4 (Pin 1), VID3 (Pin 2), VID2 (Pin 3), VID1 (Pin 4),  
VID0 (Pin 5)  
IMAX (Pin 15)  
Programmable over currert setting.  
DAC voltage identification inputs for VRD10.x. These pins  
are internally pulled to 1.2V (VRD10.x) or 2.1V (K8) if left  
open.  
CSN (Pin 16)  
Current sense negative input of all channels.  
VID125/VIDSEL (Pin 6)  
IOUT (Pin 17)  
When this pin pull low or left pen -->VR10 VID input, pull  
high to 5V -->K8.  
Output Current Indication Pin. The current through IOUT  
pin is proportional to the output current.  
SGND (Pin 7)  
ADJ (Pin 18)  
VCORE differential sense negative input.  
Current sense output for active droop adjust. Connect a  
resistor from this pin to GND to set the load droop.  
FB (Pin 8)  
GND (Pin 19)  
Inverting input of the internal error amplifier.  
Ground for the IC.  
COMP (Pin 9)  
CSP1 (Pin 20), CSP2 (Pin 22), CSP3 (Pin 21) & CSP4  
(Pin 23)  
Output of the error amplifier and input of the PWM  
comparator.  
Current sense positive inputs for individual converter  
channel current sense.  
PGOOD (Pin 10)  
Power good open-drain output.  
PWM1 (Pin 27), PWM2 (Pin 26), PWM3 (Pin 25) &  
PWM4 (Pin 24)  
DVD (Pin 11)  
Programmable power UVLO detection input. Trip threshold  
= 1.0V at VDVD rising.  
PWM outputs for each driven channel. Connect these pins  
to the PWM input of the MOSFET driver. For systems  
which use 3 channels, connect PWM4 high. Two channel  
systems connect PWM3 high.  
SS (Pin 12)  
Connect this SS pin to GND with a capacitor to set the  
soft-start time interval.  
VCC (Pin 28)  
IC power supply. Connect this pin to a 5V supply.  
RT (Pin 13)  
Switching frequency setting. Connect this pin toGNDwith  
a resistor to set the frequency.  
VOSS (Pin 14)  
VCORE initial value offset. Connect this pin to GND with a  
resistor to set the negative offset value. Connect this pin  
to VCC to set positive offset value.  
www.richtek.com  
4
DS9245C-02 March 2007  
RT9245C  
Function Block Diagram  
DS9245C-02 March 2007  
www.richtek.com  
5
RT9245C  
Table 1. Output Voltage Program (VRD 10.x)  
Pin Name  
Nominal Output oltage DACOUT  
ID4  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
ID3  
ID2  
1
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
ID1  
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
0
0
1
1
1
1
ID0  
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
0
0
1
1
0
0
ID125  
X
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
No CPU  
0.8375  
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
To be continued  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
www.richtek.com  
6
DS9245C-02 March 2007  
RT9245C  
Table 1. Output Voltage Program (VRD 10.x)  
Pin Name  
Nominal Output oltage DACOUT  
ID4  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
ID3  
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
ID2  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
ID1  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
ID0  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
ID125  
1
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
1.4750  
1.4875  
1.5000  
1.5125  
1.5250  
1.5375  
1.5500  
1.5625  
1.5750  
1.5875  
1.6000  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Note: (1) 0 : Connected to GND  
(2) 1 : Open  
(3) X : Don't Care  
DS9245C-02 March 2007  
www.richtek.com  
7
RT9245C  
Table 2. Output Voltage Program (K8)  
VID4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
VID2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
VID1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
VID0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Nominal Output Voltage DACOUT  
1.550  
1.525  
1.500  
1.475  
1.450  
1.425  
1.400  
1.375  
1.350  
1.325  
1.200  
1.275  
1.250  
1.225  
1.200  
1.175  
1.150  
1.125  
1.100  
1.075  
1.050  
1.025  
1.000  
0.975  
0.950  
0.925  
0.900  
0.875  
0.850  
0.825  
0.800  
Shutdown  
Note: (1) 0 : Connected to GND  
(2) 1 : Open  
www.richtek.com  
DS9245C-02 March 2007  
8
RT9245C  
Absolute Maximum Ratings (Note 1)  
z Supply Voltage, VCC ------------------------------------------------------------------------------------------- 7V  
z Input, Output or I/O Voltage ---------------------------------------------------------------------------------- GND 0.3V to VCC + 0.3V  
z Power Dissipation, PD @ TA = 25°C  
TSSOP-28-------------------------------------------------------------------------------------------------------- 1W  
z Package Thermal Resistance (Note 4)  
TSSOP-28, θJA -------------------------------------------------------------------------------------------------- 100°C/W  
z Junction Temperature ------------------------------------------------------------------------------------------ 150°C  
z Lead Temperature (Soldering, 10 sec.)-------------------------------------------------------------------- 260°C  
z Storage Temperature Range --------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ----------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions  
(Note 3)  
z Supply Voltage, VCC ------------------------------------------------------------------------------------------- 5V 10%  
z Junction Temperature Range--------------------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range--------------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VCC = 5V, TA = 25°C, unless otherwise specified)  
Parameter  
Supply Current  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
V
CC  
Nominal Supply Current  
Power-On Reset  
POR Threshold  
Hysteresis  
PWM 1,2,3,4 Open  
--  
12  
16  
mA  
I
CC  
4.0  
0.2  
0.94  
--  
4.2  
0.5  
1.0  
50  
4.5  
--  
V
V
V
V
V
V
V
CC  
Rising  
CCRTH  
CCHYS  
DVDTP  
DVDHYS  
Trip (Low to High)  
Hysteresis  
Enable  
1.06  
--  
V
V
DVD  
Threshold  
mV  
Oscillator  
Free Running Frequency  
Frequency Adjustable Range  
Ramp Amplitude  
170  
50  
--  
200  
--  
230  
400  
--  
kHz  
kHz  
V
f
R
R
= 20kΩ  
OSC  
RT  
RT  
f
OSC_ADJ  
1.9  
1.0  
64  
ΔV  
= 20kΩ  
OSC  
Ramp Valley  
0.7  
58  
0.9  
--  
V
V
RV  
Maximum Duty of Each Channel  
RT Pin Voltage  
70  
1.1  
%
1.0  
V
V
R
= 20kΩ  
1V  
RT  
RT  
Reference and DAC  
--  
--  
+0.5  
+5  
%
0.5  
5  
V
V
DAC  
DACOUT Voltage Accuracy  
ΔV  
DAC  
mV  
< 1V  
DAC  
To be continued  
DS9245C-02 March 2007  
www.richtek.com  
9
RT9245C  
Parameter  
Symbol  
Test Conditions  
VRD 10.x  
Min  
--  
Typ  
--  
Max  
0.4  
0.8  
--  
Units  
V
V
ILDAC  
DAC (VID0-VID125) Input Low  
K8  
--  
--  
V
VRD 10.x  
K8  
0.8  
1.2  
2.5  
--  
--  
V
V
IHDAC  
DAC (VID0-VID125) Input High  
DAC (VID0-VID125) pull up resistor  
DAC Pull Up Voltage  
--  
--  
V
3.5  
1.2  
2.1  
1.0  
4.5  
--  
kΩ  
V
VRD 10.x  
K8  
--  
--  
V
VOSS Pin Voltage  
Error Amplifier  
0.9  
1.1  
V
V
VOSS  
R
VOSS  
= 100kΩ  
DC Gain  
--  
--  
--  
60  
10  
6
--  
--  
--  
dB  
Gain-Bandwidth Product  
Slew Rate  
GBW  
SR  
MHz  
V/μs  
COMP = 10pF  
Current Sense GM Amplifier  
CSN Full Scale Source Current  
CSN Current for OCP  
Protection  
100  
150  
--  
--  
--  
--  
μA  
μA  
I
ISPFSS  
320  
0.9  
400  
1.0  
450  
1.1  
mV  
V
Over-Voltage Trip (V V  
)
Δ
R
= 0Ω  
ADJ  
FB  
DAC  
OVT  
IMAX Voltage  
V
R = 20kΩ  
IMAX  
IMAX  
Power Good  
Output Low Voltage  
--  
--  
0.2  
V
V
I
= 4mA  
PGOODL PGOOD  
Note 1. Stresses listed as the above Absolute Maximum Ratingsmay cause permanent damage to the device. These are  
for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for  
extended periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
Note 4. θJA is measured in the natural convection at TA = 25°C on a low effective single layer thermal conductivity test board of  
JEDEC 51-3 thermal measurement standard.  
www.richtek.com  
10  
DS9245C-02 March 2007  
RT9245C  
Typical Operating Characteristics  
PWM vs. VCOMP  
Adjustable Frequency  
700  
70  
60  
50  
40  
30  
20  
10  
0
RRT = 16kΩ  
600  
500  
400  
300  
200  
100  
0
0
10  
20  
30  
40  
50  
60  
70  
0.5  
1
1.5  
2
2.5  
3
3.5  
R
RT (kΩ)  
VCOMP (V)  
Relationship Between Inductor  
Current and VADJ  
Power-Off @ IOUT = 60A  
CH1:(5V/Div)  
CH2:(5V/Div)  
PWM  
PWM  
CH1:(5V/Div)  
CH2:(20V/Div)  
VSS  
UGATE  
CH3:(10V/Div)  
CH4:(1V/Div)  
VADJ  
LGATE  
VCOMP  
CH3:(50mV/Div)  
CH4:(20A/Div)  
IL  
Time (10μs/Div)  
Time (25ms/Div)  
Power-On @ IOUT = 60A  
Ripple  
CH1:(5V/Div)  
CH2:(5V/Div)  
VSS  
PWM  
VCORE  
(5mV/Div)  
UGATE  
LGATE  
CH3:(20V/Div)  
CH4:(10V/Div)  
L = 0.3μH, C = 5600μF  
Time (10ms/Div)  
Time (2.5μs/Div)  
DS9245C-02 March 2007  
www.richtek.com  
11  
RT9245C  
DVID at Rising  
DVID at Falling  
VCORE  
(500mV/Div)  
(500mV/Div)  
VCORE  
VID125  
VID125  
(2V/Div)  
(2V/Div)  
Time (50μs/Div)  
Time (50μs/Div)  
Transient Response  
Transient Falling  
(20mV/Div)  
VCORE  
VCORE  
(20mV/Div)  
Time (5ms/Div)  
Time (500ns/Div)  
www.richtek.com  
12  
DS9245C-02 March 2007  
RT9245C  
Application Information  
RT9245C is a multi-phaseDC/DC controller that precisely  
regulates CPU core voltage and balances the current of  
different power channels. The converter consisting of  
RT9245C and its companion MOSFET driver RT9619  
provides high quality CPU power and all protection  
functions to meet the requirement of modern VRM.  
VADJ = 8 x IX x RADJ  
VADJ is then subtracted from VID_DAC output as the real  
reference voltage at non-inverting input of the error amplifier  
as shown if Figure 1. Consequently, load line slope is  
calculated as :  
ΔVCORE 8 x RADJ x DCR  
LoadLine =  
=
ΔICORE  
N x RCSN  
Voltage Control  
RT9245C senses the CPU VCORE by SGND pin to sense  
the return of CPU to minimize the voltage drop on PCB  
trace at heavy load. OVP is sensed at FB pin. The internal  
high accuracy VIDDAC provides the reference voltage for  
VRD10.x compliance. Control loop consists of error  
amplifier, multi-phase pulse width modulator, driver and  
power components. As conventional voltage mode PWM  
controller, the output voltage is locked at the VREF of error  
amplifier and the error signal is used as the control signal  
of pulse width modulator. The PWM signals of different  
channels are generated by comparison of EA output and  
split-phase sawtooth wave. Power stage transforms VIN  
to output by PWM signal on-time ratio.  
where Nis the phase number of operation.  
I
/4  
VOSS  
R
CSN  
V
-
CORE  
EA  
+
V
ADJ  
DAC  
8I  
X
R
ADJ  
Figure 1. Load Line and Offset Function  
Fault Detection  
The chip detects FB for over voltage and power good  
detection. The hiccup modeoperation of over current  
protection is adopted to reduce the short circuit current.  
The in-rush current at the start up is suppressed by the  
soft start circuit through clamping the pulse width and  
output voltage.  
Current Balance  
RT9245C senses the inductor current via inductor'sDCR  
for channel current balance and droop tuning. The  
differential sensing GM amplifier converts the voltage on  
the sense component (can be a sense resistor or the  
DCR of the inductor) to current signal into internal balance  
circuit.  
Phase Setting and Converter Start Up  
The current balance circuit sums and averages the current  
signals and then produces the balancing signals injected  
to pulse width modulator. If the current of some power  
channel is larger than average, the balancing signal  
reduces that channels pulse width to keep current balance.  
The use of singleGM amplifier via time sharing technique  
to sense all inductor currents can reduce the offset errors  
and linearity variation between GMs. Thus it can greatly  
improve signal processing especially when dealing with  
such small signal as voltage drop across DCR.  
RT9245C interfaces with companion MOSFET drivers (like  
RT9619, RT9607 series) for correct converter initialization.  
The tri-state PWM output (high, low and high impedance)  
senses its interface voltage when IC POR acts (both VCC  
andDVDtrip). The channel is enabled if the pin voltage is  
1.2V less than VCC. Tie the PWM to VCC and the  
corresponding current sense pins to GND or left float if  
the channel is unused. For example, for 3-Channel  
application, connect PWM4 high.  
Current Sensing Setting  
Droop & Load Line Setting  
RT9245C senses the current flowing through inductor via  
itsDCR for channel current balance and droop tuning.  
RT9245C injects averaged current IX into the resistor RADJ  
connected to ADJ pin to generate a load-current-  
dependent voltage RADJ for droop setting :  
DS9245C-02 March 2007  
www.richtek.com  
13  
RT9245C  
The differential sensingGM amplifier converts the voltage  
on the sense component (can be a sense resistor or the  
DCR of the inductor) to current signal into internal circuit  
(see Figure 2).  
Figure 5 shows the time sharing technique ofGM amplifier.  
We apply test signal at phase 4 and observe the waveforms  
at both pins of GM amplifier. The waveforms show time  
sharing mechanism and the perfomance of GM to hold  
both input pins equal when the shared time is on.  
L
V
C
= R×C V = DCR×I  
I =  
X
C
L
DCR  
R
CSN  
Time Sharing of GM  
L
DCR  
CH1:(2V/Div)  
+V -  
C
CH2:(50mV/Div)  
CH3:(50mV/Div)  
R
C
+
-
PWM3  
R
CSN  
GMx  
VCSP4  
I
x
Figure 2. Current Sense Circuit  
VCSP4  
and  
VCSN  
VCSN  
Figure 3 is the test circuit for GM. We apply test signal at  
GM inputs and observe its signal process output at ADJ  
pin. Figure 4 shows the variation of signal processing of  
all channels. We observe zero offsets and good linearity  
between phases.  
Time (1μs/Div)  
Figure 5  
Over Current Protection  
CSPX  
RT9245C uses an external resistor RIMAX to set a  
programmable over current trip point. OCP comparator  
compares each inductor current with this reference current.  
RT9245C uses hiccup mode to eliminate fault detection  
of OCP or reduce output current when output is shorted  
to ground.  
V
C
+
ADJ  
SUM/M  
ADJ  
MUX  
GM  
-
CSN  
+
R
CSN  
1k  
R
1k  
V
ADJ  
-
I
x
Figure 3. The Test Circuit of GM  
1
2
VIMAX  
1
3
IL x DCR  
x
x
RIMAX  
RCSN  
GM  
300  
250  
200  
150  
100  
50  
OCP Comparator  
1/3 I  
1/2 I  
+
-
X
IMAX  
OCP  
Setting  
V
IMX  
R
IMX  
0
0
25  
50  
75  
100  
125  
150  
Figure 6. Over Current Comparator  
VC (mV)  
Figure 4. The Linearity of GMx  
www.richtek.com  
14  
DS9245C-02 March 2007  
RT9245C  
Over Current Protection  
For some case with preferable current ratio instead of  
current balance, the corresponding technique is provided.  
Due to different physical environment of each channel, it  
is necessary to slightly adjust current loading between  
channels. Figure 9 shows the application circuit ofGM for  
current ratio requirement. Applying KVL along L+DCR  
branch and R1+C//R2 branch :  
CH1:(5V/Div)  
CH2:(5V/Div)  
PWM  
dIL  
dt  
VC  
R2  
dVC  
dt  
L
+DCR×IL = R1(  
dVC R1 +R2  
+ C  
)+ VC  
VSS  
= R1C  
+
VC  
dt  
R2  
R2  
R1 +R2  
For VC  
=
DCR×IL  
Time (25ms/Div)  
Figure 7. The Over Current Protection in the soft start  
interval  
Look for its corresponding conditions :  
dI  
dI  
L
L
L
+DCR×I = (R1//R2)×C×DCR×  
+DCR×I  
L
L
dt  
dt  
L
Over Current Protection  
Let  
= (R1//R2)×C  
DCR  
CH1:(5V/Div)  
CH2:(5V/Div)  
L
= (R1//R2)×C  
Thus if  
Then  
DCR  
PWM  
R2  
VC  
=
×DCR×IL  
R1+R2  
With internal current balance function, this phase would  
share (R1+R2)/R2 times current than other phases.  
Figure 10 & 11 show different settings for the power stages.  
Figure 12 shows the performance of current ratio compared  
with conventional current balance function in Figure 13.  
VSS  
Time (25ms/Div)  
I
L
Figure 8. Over Current Protection at steady state  
0.3uH  
0.6m  
Current Ratio Setting  
470  
1uF  
470  
I
L
L
DCR  
Figure 10. GM4 Setting for current ratio function  
+V -  
C
I
R1  
L
C
0.3uH  
0.6m  
R2  
Figure 9. Application circuit for current ratio setting  
DS9245C-02 March 2007  
470  
1uF  
Figure 11. GM1~3 Setting for current ratio function  
www.richtek.com  
15  
RT9245C  
Load Line without dead zone at light loads  
Current Ratio Function  
35  
30  
25  
20  
15  
10  
5
1.31  
IL4  
1.3  
1.29  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
w/o Dead Zone Compensation  
RCSN open  
IL3  
IL2  
IL1  
RCSN = 82k  
w/i Dead Zone Compensation  
0
0
15  
30  
45  
60  
75  
90  
0
5
10  
15  
20  
25  
IOUT (A)  
IOUT (A)  
Figure 14  
Figure 12  
LX  
R
LX  
I
LX  
Current Balance Function  
30  
25  
20  
15  
10  
5
R
X
C
X
IL3  
V
OUT  
+
-
V
IL4  
X
+
-
IL1  
R
CSN  
GMx  
Ix  
IL2  
R
CSN2  
Figure 15. Application circuit of GM  
Referring to Figure 15, IX is expressed as :  
0
0
20  
40  
60  
80  
100  
VOUT  
ILX_50% x RLX ILX_50% x RLX  
(1)  
IX =  
+
+
IOUT (A)  
Figure 13  
Dead Zone Elimination  
RCSN2  
RCSN2  
RCSN  
where ILX_50% is the of inductor current at 50% period. To  
make sure RT9245C could sense the inductor current,  
right hand side of Equation (1) should always be positive:  
RT9245C samples and holds inductor current at 50%  
period by time-sharing sourcing a current IX to RCSN. At  
light load condition when inductor current is not balance,  
voltage VX across the sensing capacitor would be negative.  
It needs a negative IX to sense the voltage. However,  
RT9245C CANNOT provide a negative IX and consequently  
cannot sense negative inductor current. This results in  
dead zone of load line performance as shown in Figure  
14. Therefore a technique as shown in Figure 15 is required  
to eliminate the dead zone of load line at light load  
condition.  
VOUT  
ILX_50% x RLX ILX_50% x RLX  
(2)  
+
+
0  
RCSN2  
RCSN2  
RCSN  
Since RCSN2 >> RCSN in practical application, Equation (2)  
could be simplified as :  
VOUT  
ILX_50% x RLX  
RCSN2  
RCSN  
Figure 14 shows that dead zone of load line at light load  
is eliminated by applying this technique.  
www.richtek.com  
16  
DS9245C-02 March 2007  
RT9245C  
VID on the Fly  
Output Voltage Offset Function  
With external pull up resistors tied to VID pins, RT9245C  
converters different VID codes from CPU into output  
voltage. Figure 16 and Figure 17 show the waveforms of  
VID on the fly function.  
To meet Intel® requirement of initial offset of load line,  
RT9245C provides programmable initial offset function.  
External resistor RVOSS and voltage source at VOSS pin  
VVOSS  
generate offset current  
IVOSS  
=
RVOSS  
, where VVOSS is 1V typical. One quarter of IVOSS flows  
through RB1 as shown in Figure 18. Error amplifier would  
hold the inverting pin equal to VDAC - VADJ. Thus output  
voltage is subtracted from VDAC - VADJ for a constant offset  
VID on the Fly (Falling)  
PWM  
VCORE  
voltage.  
VCORE = VDAC - VADJ  
RFB1  
4×RVOSS  
VFB  
-
A positive output voltage offset is possible by connecting  
RVOSS to VDD instead of to GND. Please note that when  
RVOSS is connected to VDD, VVOSS is VDD 2V typically  
and half of IVOSS flows through RFB1. VCORE is rewritten as:  
CH3:(500mV/Div)  
CH4:(1V/Div)  
CH1:(5V/Div)  
CH2:(500mV/Div)  
VID125  
RFB1  
VCORE = VDAC - VADJ +  
RVOSS  
VDAC = 1.500, IOUT = 5A  
Time (25μs/Div)  
Voltage Offset Function  
Figure 16  
1.284  
1.282  
1.28  
VID on the Fly (Rising)  
1.278  
1.276  
1.274  
1.272  
1.27  
PWM  
VCORE  
VFB  
CH1:(5V/Div)  
CH2:(500mV/Div)  
CH3:(500mV/Div)  
CH4:(1V/Div)  
1.268  
50  
60  
70  
80  
90  
100  
110  
VID125  
R
OSS (kΩ)  
VDAC = 1.500, IOUT = 5A  
Figure 19  
Time (25μs/Div)  
Figure 17  
Load Line Setting and Thermal Compensation  
VADJ = 8 x AVG(IX) x RADJ  
1/4 I  
VOSS  
VOUT = VDAC - VADJ  
RB1  
AVG(IX) is a PTC current. By properly use anNTC resistor  
at ADJ. Load line can be thermally compensated.  
-
EA  
+
V
-V  
DAC ADJ  
Figure 18. Offset Setting  
DS9245C-02 March 2007  
www.richtek.com  
17  
RT9245C  
PGOOD Function  
If the fault condition is OV, V(SS) and PGOODwill be pulled  
low immediately also. RT9245C will try to turn on low  
side MOSFET and turn off high side MOSFET. VOUT will  
fall quickly to protect CPU from high voltage. The typical  
waveform is shown in Figure 23.  
During start-up, RT9245C will detect 5VCC and 12VIN  
(throughDVDpin). In Figure 21, 5VCC or 12VIN is not ready  
during T1. V(SS) (in Figure 20) is pulled toGNDby FAULT.  
V(EAP) is also equal to GND. V(FB) and VOUT will try to  
follow V(EAP) thus both V(FB) and VOUT are equal to GND  
during T1. During T2, both 5VCC and 12VIN are ready,  
FAULT = low, OPSS starts charging up CSS. In the design  
of RT9245C, ISS (the maximal current sink and source  
capability of OPSS) is limited and time-variant. During T2  
(V1 = 0.4V > V(SS) > 0), ISS(T2) is equal to about 10uA.  
Z2  
V
-
FB  
N1  
Z1  
OUT  
EA  
COMP  
+
5V  
CC  
OPSS  
EAP  
V
+
DAC  
-
V1  
T2 = CSS x  
4x104 x CSS  
ISS(T2)  
SS  
FAULT  
C
After V(SS) > V1, ISS changes to about 20uA. The rising  
speed of V(SS) becomes about 2 times faster than in T1.  
In Figure 20, MOSFETN1 will turn on only if V(SS) > VTH_N1  
(threshold voltage of N1) 0.7V = V2. Before N1 turns  
on, V(EAP) is still 0V.  
SS  
Figure 20. Soft Start Circuit  
5V _ready  
CC  
and DVD_ready  
(V2- V1)  
T3 = CSS x  
1.5x104 x CSS  
ISS(T3)  
PGOOD  
After V(SS) > V2, MOSFETN1 turns on, V(EAP) starts rising.  
ISS(T4) is still equal to about 20uA. V(SS,EAP) is equal to  
VTH_N1. Due to the body effect of MOSFET N1, VTH_N1  
increases with higher V(EAP). For example, if VOUT target  
is 1.4V, V(SS,EAP) will be equal to about 0.7V at the  
beginning of T4 and equal to about 1.1V at the end of T4.  
V4  
V3  
V
(SS)  
V
OUT  
V2  
V1  
(V4 - V2)  
T4 = CSS x  
9x104 x CSS  
ISS(T4)  
T2  
T3  
T4  
T5  
T6  
T1  
Figure 21. Soft Start Waveform  
At the end of T4, VOUT is very close to the target (within  
the range of 40mV). An internal 1ms timer starts. After  
about 1ms(T5), The open-drain output PGOODreleases.  
PGOOD  
After PGOODreleases, ISS(T6) becomes about 320uAto  
accelerate OPSS. RT9245C enters normal operation mode  
and is capable to follow VID on the fly.  
V
(SS)  
When any of the fault conditions happens, V(SS) and  
PGOODwill be pulled low immediately. If the fault condition  
is one of 5VCC low, DVD low, OC or VID_OFF, RT9245C  
will try to turn off both high side MOSFET and low side  
MOSFET. VOUT will fall slowly to avoid negative VOUT. The  
typical waveform is shown in Figure 22.  
V
OUT  
5V _Low + DVD_Low + OC + VID_OFF  
CC  
Figure 22. Waveform for 5VCC_Low, DVD_Low, OC or  
VID_OFF  
www.richtek.com  
18  
DS9245C-02 March 2007  
RT9245C  
EA Rising Slew Rate  
PGOOD  
VFB  
V
(SS)  
V
OUT  
OV  
CH1:(500mV/Div)  
CH2:(2V/Div)  
Figure 23. Waveform for OV  
VCOMP  
Error Amplifier Characteristic  
Time (250ns/Div)  
For fast response of converter to meet stringent output  
current transient response, RT9245C provides large slew  
rate capability and high gain-bandwidth performance.  
Figure 25. EA Falling Transient with 10pF Loading;  
Slew Rate = 8V/us  
4.7k  
4.7k  
B
EA Falling Slew Rate  
-
A
EA  
+
V
DAC  
VFB  
Figure 26. Gain-Bandwidth Measurement by signalA  
divided by signal B  
CH1:(500mV/Div)  
CH2:(2V/Div)  
VCOMP  
Time (250ns/Div)  
Figure 24. EA Rising Transient with 10pF Loading; Slew  
Rate = 8V/us  
DS9245C-02 March 2007  
www.richtek.com  
19  
RT9245C  
0dB  
180°  
Figure 27. EA Frequency Response with closed loop gain set at 0db to observe gain-bandwidth product; -3dB at  
10.86MHz  
Design Procedure Suggestion  
PCB Layout  
a.Output filter pole and zero (Inductor, output capacitor  
value & ESR).  
a.Kelvin sense for current sense GM amplifier input.  
b.Refer to layout guide for other items.  
b.Error amplifier compensation & sawtooth wave amp-  
litude (compensation network).  
Voltage Loop Setting  
Design Example  
c.Kelvin sense for VCORE  
.
Given :  
Current Loop Setting  
Apply for four phase converter  
a.GM amplifier S/H current (current sense component  
DCR, CSN pin external resistor value).  
VIN = 12V  
b.Over-current protection trip point (RIMAX resistor).  
VCORE = 1.4V  
ILOAD = 30A to 125A  
VRM Load Line Setting  
VDROOP = 95mV with load (1mΩ Load Line)  
OCP trip point set at 40A for each channel (S/H)  
DCR = 1mΩ of inductor at 25°C  
L = 0.3μH  
a.Droop amplitude (ADJ pin resistor).  
b.No load offset (RCSN2  
)
c.DAC offset voltage setting (VOSS pin & compen- sation  
network resistor RB1).  
COUT = 5600μF with 1mΩ equivalent ESR.  
Power Sequence & SS  
DVD pin external resistor and SS pin capacitor.  
www.richtek.com  
20  
DS9245C-02 March 2007  
RT9245C  
C2 5.6pF  
1. Compensation Setting  
C3 680pF  
a. ModulatorGain, Pole and Zero :  
C1  
RB2  
From the following formula :  
15k  
-
2.7nF  
RB1  
1.5k  
EA  
Modulator Gain = VIN/VRAMP = 12/1.9 = 6.3 (i.e 16dB)  
where VRAMP : Ramp amplitude of saw-tooth wave  
LC Filter Pole = 3.88kHz and  
+
Figure 28. Type 3 compensation network of EA  
The over all loop gain with load is shown in Figure 29 to  
Figure 31.  
ESR Zero = 28kHz  
b. EA CompensationNetwork :  
2. Over-Current Protection Setting  
Select RB1 = 1.5k, RB2 = 15k, C1 = 2.7nF, C2 = 5.6pF,  
C3 = 680pF and use the Type 3 compensation scheme  
shown in Figure 28. By calculation.  
Consider the temperature coefficient of copper  
3900ppm/°C,  
V
I ´ DCR  
1
2
IMAX  
1
3
L
´
´
Û
Û
´
´
1
R
R
FZ1 =  
FZ2 =  
FP =  
=156kHz  
= 3.9kHz  
IMAX  
CSN  
2p xRB1x C3  
40A ´ 1.39mW  
330W  
1
2
1V  
IMAX  
1
3
1
R
2p x RB2 x C1  
Þ
RIMAX = 8.9kW  
1
= 5.8kHz  
2p x RB2 x (C2//C1)  
3. Soft-Start Capacitor Selection  
MiddleBand Gain =10 (i.e.20dB)  
For most application cases, 0.1mF is a good engineering  
value.  
Figure 29. The Frequency Response withNo Load  
DS9245C-02 March 2007  
www.richtek.com  
21  
RT9245C  
Figure 30. The Frequency Response with Middle Load  
Figure 31. The Frequency Response with Heavy Load  
www.richtek.com  
22  
DS9245C-02 March 2007  
RT9245C  
Layout Guide  
Place the high-power switching components first, and separate them from sensitive nodes.  
1. Most critical path: the current sense circuit is the most sensitive part of the converter. The current sense  
resistors tied to CSP1,2,3,4 and CSN should be located not more than 0.5 inch from the IC and away from  
the noise switching nodes. The PCB trace of sense nodes should be parallel and as short as possible.  
2. Switching ripple current path:  
a. Input capacitor to high side MOSFET.  
b. Low side MOSFET to output capacitor.  
c. The return path of input and output capacitor.  
d. Separate the power and signalGND.  
e. The switching nodes (the connection node of high/low side MOSFET and inductor) is the most noisy points.  
Keep them away from sensitive small-signal node.  
f. Reduce parasitic R, L by minimum length, enough copper thickness and avoiding of via.  
3. MOSFET driver should be closed to MOSFET.  
4. The compensation, bypass and other function setting components should be near the IC and away from the noisy  
power path.  
L1  
SW1  
VOUT  
VIN  
RIN  
COUT  
RL  
CIN  
V
L2  
SW2  
Figure 32. Power Stage Ripple Current Path  
DS9245C-02 March 2007  
www.richtek.com  
23  
RT9245C  
Next to IC  
C
+12V or +5V  
+12V  
VCC  
PWM  
PWM  
+5V  
VCC  
IN  
0.1uF  
C
C
BP  
RT  
BOOT  
BOOT  
UGATE  
PHASE  
VOSS  
Next to IC  
COMP  
L
O1  
VCORE  
C
C
R
RT9245C  
OUT  
CSN  
RT9619  
LGATE  
PGND  
C
IN  
R
C
CSN  
Locate next  
to FB Pin  
FB  
R
FB  
CSPx  
ADJ  
SGND  
Locate near MOSFETs  
For Thermal Couple  
GND  
Figure 33. Layout Consideration  
Figure 34. Layout of power stage  
www.richtek.com  
24  
DS9245C-02 March 2007  
RT9245C  
Outline Dimension  
D
L
E
E1  
e
A2  
A
A1  
b
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A2  
b
0.850  
0.050  
0.800  
0.178  
9.601  
1.200  
0.152  
1.050  
0.305  
9.804  
0.033  
0.002  
0.031  
0.007  
0.378  
0.047  
0.006  
0.041  
0.012  
0.386  
D
e
0.650  
0.026  
E
6.300  
4.293  
0.450  
6.500  
4.496  
0.762  
0.248  
0.169  
0.018  
0.256  
0.177  
0.030  
E1  
L
28-Lead TSSOP Plastic Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
DS9245C-02 March 2007  
www.richtek.com  
25  

相关型号:

RT9245GC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9245PC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9246

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9246A

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9246AGC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9246APC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9246GC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9246PC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9247

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9247GC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9247PC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK