RT9245PC [RICHTEK]

Multi-Phase PWM Controller for CPU Core Power Supply; 多相PWM控制器,用于CPU核心供电
RT9245PC
型号: RT9245PC
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

Multi-Phase PWM Controller for CPU Core Power Supply
多相PWM控制器,用于CPU核心供电

多相元件 控制器
文件: 总22页 (文件大小:421K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RT9245  
Multi-Phase PWM Controller for CPU Core Power Supply  
General Description  
Features  
z Multi-Phase Power Conversion with Automatic  
RT9245 is a multi-phase buckDC/DC controller integrated  
with all control functions for Intel® GHz CPU which is  
VRD10.X-compliant. The RT9245 could be operated with  
2, 3 or 4 buck switching stages operating in interleaved  
phase set automatically. The multiphase architecture  
provides high output current while maintaining low power  
dissipation on power devices and low stress on input and  
output capacitors. The high equivalent operating frequency  
also reduces the component dimension and the output  
voltage ripple in load transient.  
Phase Selection  
z 6-bits VRD10.x DAC Output with Active Droop  
Compensation for Fast Load Transient  
z Smooth VCORE Transition at VID Jump  
z Power Stage Thermal Balance by DCR Current  
Sense  
z Hiccup Mode Over-Current Protection  
z Programmable Switching Frequency (50kHz to  
400kHz per Phase), Under-Voltage Lockout and Soft-  
Start  
RT9245 implements both voltage and current loops to  
achieve good regulation, response and power stage  
thermal balance.  
z High Ripple Frequency Times Channel Number  
z 28-TSSOP Package  
z RoHS Compliant and 100% Lead (Pb)-Free  
RT9245 applies the DCR sensing technology newly. The  
RT9245 extracts the ESR of output inductor as sense  
component to deliver a precise load line regulation and  
good thermal balance for next generation processor  
application.  
Applications  
z Intel® Processors Voltage Regulator : VRD10.x  
z Low Output Voltage, High CurrentDC-DC Converters  
z Voltage Regulator Modules  
Current sense setting, droop tuning, VCORE initial offset  
and over current protection are independent on  
compensation circuit of voltage loop. The feature greatly  
facilitates the flexibility of CPU power supply design and  
tuning. TheDAC output of RT9245 supports VRD10.x with  
6-bit VID input, precise offset value & smooth VCORE  
transient at VID jump. The IC monitors the VCORE voltage  
for PGOODand over-voltage protection. Soft-start, over-  
current protection and programmable under-voltage lockout  
are also provided to assure the safety of microprocessor  
and power system. The RT9245 comes to a small footprint  
package TSSOP-28.  
Pin Configurations  
(TOP VIEW)  
VID4  
VID3  
VID2  
VCC  
28  
27  
26  
25  
24  
23  
22  
21  
PWM1  
PWM2  
PWM3  
PWM4  
CSP4  
CSP2  
CSP3  
CSP1  
GND  
ADJ  
NC  
CSN  
IMAX  
2
3
4
5
6
7
8
VID1  
VID0  
VID125  
SGND  
FB  
COMP  
PGOOD  
DVD  
SS  
RT  
VOSS  
9
20  
19  
18  
17  
16  
15  
10  
11  
12  
13  
14  
Ordering Information  
RT9245  
TSSOP-28  
Note :  
RichTek Pb-free and Green products are :  
Package Type  
C : TSSOP-28  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
cial Standard)  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
`Suitable for use in SnPb or Pb-free soldering processes.  
`100% matte tin (Sn) plating.  
DS9245-06 March 2007  
www.richtek.com  
1
RT9245  
Typical Application Circuit  
+
+
+
+
+
+
+
+
+
www.richtek.com  
2
DS9245-06 March 2007  
RT9245  
Functional Pin Description  
VID4 (Pin 1), VID3 (Pin 2), VID2 (Pin 3), VID1 (Pin 4),  
VID0 (Pin 5) & VID125 (Pin 6)  
IMAX (Pin 15)  
Programmable over currert setting.  
DAC voltage identification inputs for VRD10.x. These pins  
are internally pulled to 1.2V if left open.  
CSN (Pin 16)  
Current sense negative input of all channels.  
SGND (Pin 7)  
NC (Pin 17)  
VCORE differential sense negative input.  
No Connection.  
FB (Pin 8)  
ADJ (Pin 18)  
Inverting input of the internal error amplifier.  
Current sense output for active droop adjust. Connect a  
resistor from this pin to GND to set the load droop.  
COMP (Pin 9)  
Output of the error amplifier and input of the PWM  
comparator.  
GND (Pin 19)  
Ground for the IC.  
PGOOD (Pin 10)  
CSP1 (Pin 20), CSP2 (Pin 22), CSP3 (Pin 21) & CSP4  
(Pin 23)  
Power good open-drain output.  
DVD (Pin 11)  
Current sense positive inputs for individual converter  
channel current sense.  
Programmable power UVLO detection input. Trip threshold  
= 1.2V at VDVD rising.  
PWM1 (Pin 27), PWM2 (Pin 26), PWM3 (Pin 25) &  
PWM4 (Pin 24)  
SS (Pin 12)  
Connect this SS pin to GND with a capacitor to set the  
soft-start time interval. Pulling this pin below 1V (ramp  
valley of sawtooth wave in pulse width modulator) would  
make all PWMs low, turn on low side MOSFETs, and turn  
off high side MOSFETs.  
PWM outputs for each driven channel. Connect these pins  
to the PWM input of the MOSFET driver. For systems  
which use 3 channels, connect PWM4 high. Two channel  
systems connect PWM3 high.  
VCC (Pin 28)  
RT (Pin 13)  
IC power supply. Connect this pin to a 5V supply.  
Switching frequency setting. Connect this pin toGNDwith  
a resistor to set the frequency.  
VOSS (Pin 14)  
VCORE initial value offset. Connect this pin to GND with a  
resistor to set the negative offset value. Connect this pin  
to VCC to set positive offset value.  
DS9245-06 March 2007  
www.richtek.com  
3
RT9245  
Function Block Diagram  
www.richtek.com  
4
DS9245-06 March 2007  
RT9245  
Table 1. Output Voltage Program  
Pin Name  
Nominal Output Voltage DACOUT  
VID4  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
VID3  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
VID2  
1
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
VID1  
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
0
0
1
1
1
1
VID0  
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
0
0
1
1
0
0
VID125  
X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
No CPU  
0.8375V  
0.850V  
0.8625V  
0.875V  
0.8875V  
0.900V  
0.9125V  
0.925V  
0.9375V  
0.950V  
0.9625V  
0.975V  
0.9875V  
1.000V  
1.0125V  
1.025V  
1.0375V  
1.050V  
1.0625V  
1.075V  
1.0875V  
1.100V  
1.1125V  
1.125V  
1.1375V  
1.150V  
1.1625V  
1.175V  
1.1875V  
1.200V  
1.2125V  
To be continued  
DS9245-06 March 2007  
www.richtek.com  
5
RT9245  
Table 1. Output Voltage Program  
Pin Name  
Nominal Output Voltage DACOUT  
VID4  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
VID3  
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
VID2  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
VID1  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
VID0  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
VID125  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.225V  
1.2375V  
1.250V  
1.2625V  
1.275V  
1.2875V  
1.300V  
1.3125V  
1.325V  
1.3375V  
1.350V  
1.3625V  
1.375V  
1.3875V  
1.400V  
1.4125V  
1.425V  
1.4375V  
1.450V  
1.4625V  
1.475V  
1.4875V  
1.500V  
1.5125V  
1.525V  
1.5375V  
1.550V  
1.5625V  
1.575V  
1.5875V  
1.600V  
Note: (1) 0 : Connected to GND  
(2) 1 : Open  
(3) X : Don't Care  
www.richtek.com  
6
DS9245-06 March 2007  
RT9245  
Absolute Maximum Ratings (Note 1)  
z Supply Voltage, VCC ------------------------------------------------------------------------------------------- 7V  
z Input, Output or I/O Voltage ---------------------------------------------------------------------------------- GND 0.3V to VCC + 0.3V  
z Package Thermal Resistance  
TSSOP-28, θJA -------------------------------------------------------------------------------------------------- 100°C/W  
z Junction Temperature ------------------------------------------------------------------------------------------ 150°C  
z Lead Temperature (Soldering, 10 sec.)-------------------------------------------------------------------- 260°C  
z Storage Temperature Range --------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ----------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions  
(Note 3)  
z Supply Voltage, VCC ------------------------------------------------------------------------------------------- 5V 10%  
z Ambient Temperature Range--------------------------------------------------------------------------------- 0°C to 70°C  
z Junction Temperature Range--------------------------------------------------------------------------------- 0°C to 125°C  
Electrical Characteristics  
(VCC = 5V, TA = 25°C, unless otherwise specified)  
Parameter  
Supply Current  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
V
CC  
Nominal Supply Current  
Power-On Reset  
POR Threshold  
Hysteresis  
PWM 1,2,3,4 Open  
--  
12  
16  
mA  
I
CC  
4.0  
0.2  
1.1  
--  
4.2  
0.5  
1.2  
50  
4.5  
--  
V
V
V
V
V
V
V
CC  
Rising  
CCRTH  
CCHYS  
DVDTP  
DVDHYS  
Trip (Low to High)  
Hysteresis  
Enable  
1.3  
--  
V
V
DVD  
Threshold  
mV  
Oscillator  
Free Running Frequency  
Frequency Adjustable Range  
Ramp Amplitude  
170  
50  
--  
200  
--  
230  
400  
--  
kHz  
kHz  
V
f
R
R
= 32kΩ  
OSC  
RT  
f
OSC_ADJ  
1.9  
1.0  
66  
ΔV  
= 32kΩ  
OSC  
RT  
Ramp Valley  
0.7  
62  
1.4  
--  
V
V
RV  
Maximum On-Time of Each Channel  
RT Pin Voltage  
75  
1.8  
%
1.60  
V
V
R
RT  
= 32kΩ  
1V  
RT  
Reference and DAC  
--  
--  
+1  
+10  
0.4  
--  
%
mV  
V
1  
10  
--  
V
V
DAC  
DACOUT Voltage Accuracy  
ΔV  
DAC  
< 1V  
DAC  
DAC (VID0-VID125) Input Low  
DAC (VID0-VID125) Input High  
DAC (VID0-VID125) Bias Current  
VOSS Pin Voltage  
--  
V
V
ILDAC  
0.8  
25  
--  
V
IHDAC  
50  
1.65  
75  
μA  
V
I
BIAS_DAC  
1.5  
1.8  
V
R
VOSS  
= 100kΩ  
VOSS  
To be continued  
DS9245-06 March 2007  
www.richtek.com  
7
RT9245  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
Error Amplifier  
DC Gain  
--  
--  
--  
85  
10  
3
--  
--  
--  
dB  
Gain-Bandwidth Product  
Slew Rate  
GBW  
SR  
MHz  
V/μs  
COMP = 10pF  
Current Sense GM Amplifier  
CSN Full Scale Source Current  
CSN Current for OCP  
Protection  
100  
150  
--  
--  
--  
--  
μA  
μA  
I
ISPFSS  
SS Current  
8
13  
18  
150  
1.8  
μA  
%
V
I
V
= 1V  
SS  
SS  
Over-Voltage Trip (VSEN/DACOUT)  
IMAX Voltage  
130  
1.4  
140  
1.60  
Δ
OVT  
V
R
= 32k  
IMAX  
IMAX  
Power Good  
Output Low Voltage  
--  
--  
0.2  
V
V
I
= 4mA  
PGOODL  
PG  
Note 1. Stresses listed as the above Absolute Maximum Ratingsmay cause permanent damage to the device. These are  
for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for  
extended periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
www.richtek.com  
8
DS9245-06 March 2007  
RT9245  
Typical Operating Characteristics  
GM1  
GM2  
300  
300  
250  
200  
150  
100  
50  
VADJ  
VADJ  
250  
200  
VP  
VP  
150  
100  
VN  
VN  
50  
0
0
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
Vx (mV)  
Vx (mV)  
GM3  
GM4  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
VADJ  
VADJ  
VP  
VP  
VN  
VN  
0
0
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
Vx (mV)  
Vx (mV)  
Adjustable Frequency  
Linearity of each PWM  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3
2.8  
2.6  
2.4  
2.2  
2
PWM2  
PWM3  
PWM1  
PWM4  
1.8  
1.6  
1.4  
1.2  
1
fOSC = 200k  
0
0
25  
50  
75  
R
100  
125  
150  
175  
0
500  
1000 1500 2000 2500 3000 3500  
Pulse Width (ns)  
RT (kΩ)  
DS9245-06 March 2007  
www.richtek.com  
9
RT9245  
Load Transient Response  
Load Transient Response  
VCORE  
VCORE  
Phase1  
Phase2  
Phase  
CH1: (500mV/Div)  
IOUT  
VADJ  
CH2: (10V/Div)  
CH3: (50A/Div)  
CH4: (100mV/Div)  
Phase3  
CH1: (500mV/Div), CH2: (10V/Div)  
CH3: (10V/Div), CH4: (10V/Div)  
Time (5μs/Div)  
Time (5μs/Div)  
Relationship Between Inductor  
Current and VADJ  
Power-Off @ IOUT = 60A  
CH1:(5V/Div)  
CH2:(5V/Div)  
PWM  
PWM  
CH1:(5V/Div)  
CH2:(20V/Div)  
VSS  
UGATE  
CH3:(10V/Div)  
CH4:(1V/Div)  
VADJ  
LGATE  
VCOMP  
CH3:(50mV/Div)  
CH4:(20A/Div)  
IL  
Time (10μs/Div)  
Time (25ms/Div)  
Power-On @ IOUT = 60A  
CH1:(5V/Div)  
CH2:(5V/Div)  
VSS  
PWM  
UGATE  
LGATE  
CH3:(20V/Div)  
CH4:(10V/Div)  
Time (10ms/Div)  
www.richtek.com  
10  
DS9245-06 March 2007  
RT9245  
Application Information  
Load Droop  
RT9245 is a multi-phase DC/DC controller that precisely  
regulates CPU core voltage and balances the current of  
different power channels. The converter consisting of  
RT9245 and its companion MOSFET driver RT9603/  
RT9603A provides high quality CPUpower and all  
protection functions to meet the requirement of modern  
VRM.  
The sensed power channel current signals regulate the  
reference of DAC to form an output voltage droop  
proportional to the load current. The droop or so call active  
voltage positioningcan reduce the output voltage ripple  
at load transient and the LC filter size.  
Fault Detection  
The chip detects FB for over voltage and power good  
detection. The hiccup modeoperation of over current  
protection is adopted to reduce the short circuit current.  
The in-rush current at the start up is suppressed by the  
soft start circuit through clamping the pulse width and  
output voltage.  
Voltage Control  
RT9245 senses the CPU VCORE by SGND pin to sense  
the return of CPU to minimize the voltage drop on PCB  
trace at heavy load. OVP is sensed at FB pin. The internal  
high accuracy VIDDAC provides the reference voltage for  
VRD10.X compliance. Control loop consists of error  
amplifier, multi-phase pulse width modulator, driver and  
power components. As conventional voltage mode PWM  
controller, the output voltage is locked at the VREF of  
error amplifier and the error signal is used as the control  
signal of pulse width modulator. The PWM signals of  
different channels are generated by comparison of EA  
output and split-phase sawtooth wave. Power stage  
transforms VIN to output by PWM signal on-time ratio.  
Phase Setting and Converter Start Up  
RT9245 interfaces with companion MOSFET drivers (like  
RT9603, RT9602 series) for correct converter initialization.  
The tri-state PWM output (high, low and high impedance)  
senses its interface voltage when IC POR acts (both VCC  
andDVDtrip). The channel is enabled if the pin voltage is  
1.2V less than VCC. Tie the PWM to VCC and the  
corresponding current sense pins to GND or left float if  
the channel is unused. For example, for 3-Channel  
application, connect PWM4 high.  
Current Balance  
RT9245 senses the inductor current via inductor's DCR  
for channel current balance and droop tuning. The  
differential sensing GM amplifier converts the voltage on  
the sense component (can be a sense resistor or the  
DCR of the inductor) to current signal into internal balance  
circuit.  
Current Sensing Setting  
RT9245 senses the current flowing through inductor via  
itsDCR for channel current balance and droop tuning. The  
differential sensing GM amplifier converts the voltage on  
the sense component (can be a sense resistor or the  
DCR of the inductor) to current signal into internal circuit  
(see Figure 1).  
The current balance circuit sums and averages the current  
signals and then produces the balancing signals injected  
to pulse width modulator. If the current of some power  
channel is larger than average, the balancing signal  
reduces that channels pulse width to keep current balance.  
The use of singleGM amplifier via time sharing technique  
to sense all inductor currents can reduce the offset errors  
and linearity variation between GMs. Thus it can greatly  
improve signal processing especially when dealing with  
such small signal as voltage drop across DCR.  
L
V
C
= R×C V = DCR×I  
I =  
X
C
L
DCR  
R
CSN  
DCR  
L
R
C
+
-
R
CSN  
GMx  
I
x
Figure 1. Current Sense Circuit  
DS9245-06 March 2007  
www.richtek.com  
11  
RT9245  
Figure 2 is the test circuit for GM. We apply test signal at  
GM inputs and observe its signal process output at ADJ  
pin. Figure 3 shows the variation of signal processing of  
all channels. We observe zero offsets and good linearity  
between phases.  
Time Sharing of GM  
CH1:(2V/Div)  
CH2:(50mV/Div)  
CH3:(50mV/Div)  
PWM3  
L
DCR  
VCSP4  
VCSP4  
and  
VCSN  
VCSN  
ESR  
R
V
X
V
V
CSP  
+
-
CSN  
CSN  
GMx  
Time (1μs/Div)  
1k  
I
Figure 4  
x
Figure 2. The Test Circuit of GM  
Over Current Protection  
RT9245 uses an external resistor RIMAX to set a  
programmable over current trip point. OCP comparator  
compares each inductor current with this reference current.  
RT9245 uses hiccup mode to eliminate fault detection of  
OCP or reduce output current when output is shorted to  
ground.  
GM  
300  
250  
200  
150  
100  
50  
1
V
1
I ×DCR  
L
IMAX  
×
×
2 R  
3 R  
COMMON  
IMAX  
OCP Comparator  
1/3 I  
1/2 I  
+
-
X
IMAX  
0
0
25  
50  
75  
100  
125  
150  
Figure 5. Over Current Comparator  
Vx (mV)  
Over Current Protection  
Figure 3. The Linearity of GMx  
CH1:(5V/Div)  
CH2:(5V/Div)  
Figure 4 shows the time sharing technique ofGM amplifier.  
We apply test signal at phase 4 and observe the waveforms  
at both pins of GM amplifier. The waveforms show time  
sharing mechanism and the perfomance of GM to hold  
both input pins equal when the shared time is on.  
PWM  
VSS  
Time (25ms/Div)  
Figure 6. The Over Current Protection in the soft start  
interval  
www.richtek.com  
12  
DS9245-06 March 2007  
RT9245  
L
= (R1//R2)×C  
Thus if  
Then  
Over Current Protection  
DCR  
CH1:(5V/Div)  
CH2:(5V/Div)  
R2  
R1+R2  
VC  
=
×DCR×IL  
PWM  
With internal current balance function, this phase would  
share (R1+R2)/R2 times current than other phases.  
Figure 9 &10 show different settings for the power stages.  
Figure 11 shows the performance of current ratio compared  
with conventional current balance function in Figure 12.  
VSS  
Time (25ms/Div)  
Figure 7. Over Current Protection at steady state  
Current Ratio Setting  
Figure 9. GM4 Setting for current ratio function  
Figure 8. Application circuit for current ratio setting  
Figure 10. GM1~3 Setting for current ratio function  
For some case with preferable current ratio instead of  
current balance, the corresponding technique is provided.  
Due to different physical environment of each channel, it  
is necessary to slightly adjust current loading between  
channels. Figure 8 shows the application circuit ofGM for  
current ratio requirement. Applying KVL along L+DCR  
branch and R1+C//R2 branch :  
Current Ratio Function  
35  
IL4  
30  
25  
20  
IL3  
dIL  
dt  
VC  
R2  
dVC  
dt  
IL2  
IL1  
L
+DCR×IL = R1(  
dVC R1 +R2  
+ C  
)+ VC  
15  
10  
5
= R1C  
+
VC  
dt  
R2  
R2  
R1 +R2  
For VC  
=
DCR×IL  
0
0
15  
30  
45  
60  
75  
90  
Look for its corresponding conditions :  
IOUT (A)  
dI  
dI  
L
L
L
+DCR×I = (R1//R2)×C×DCR×  
+DCR×I  
L
L
dt  
dt  
Figure 11  
L
Let  
= (R1//R2)×C  
DCR  
DS9245-06 March 2007  
www.richtek.com  
13  
RT9245  
Current Balance Function  
Assume the negative inductor valley current is 5A at no  
load, then for  
30  
25  
20  
15  
10  
5
IL3  
IL4  
RCSN1 = 330Ω, RADJ = 160Ω, VOUT = 1.300  
1.3V  
5A ×1mΩ  
330Ω  
IL1  
RCSN2  
IL2  
RCSN2 85.8kΩ  
Choose RCSN2 = 82kΩ  
Load Line without dead zone at light loads  
1.31  
0
0
20  
40  
60  
80  
100  
1.3  
IOUT (A)  
1.29  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
Figure 12  
L
RCSN2 open  
RCSN2 = 82k  
DCR  
C
ESR  
V
V
CSP  
CSN  
R
+
-
0
5
10  
15  
20  
25  
CSN1  
GMx  
Ix  
IOUT (A)  
Figure 14  
R
CSN2  
VID on the Fly  
Figure13. Application circuit of GM  
With external pull up resistors tied to VID pins, RT9245  
converters different VID codes from CPU into output  
voltage. Figure 12 and Figure 13 show the waveforms of  
VID on the fly function.  
For load line design, with application circuit in Figure 13,  
it can eliminate the dead zone of load line at light loads.  
VCSP = VOUT +IL x DCR  
if GM holds input voltages equal, then  
VCSP = VCSN  
VID on the Fly (Falling)  
VCSN  
IL × DCR  
IX  
=
+
PWM  
VCORE  
RCSN2  
RCSN1  
VOUT + IL × DCR IL × DCR  
VFB  
=
+
RCSN2  
RCSN1  
CH3:(500mV/Div)  
CH4:(1V/Div)  
CH1:(5V/Div)  
CH2:(500mV/Div)  
VOUT  
IL × DCR IL × DCR  
=
+
+
RCSN2  
RCSN2  
RCSN1  
For the lack of sinking capability of GM, RCSN2 should be  
small enough to compensate the negative inductor valley  
current especially at light loads.  
VID125  
VDAC = 1.500, IOUT = 5A  
Time (25μs/Div)  
VCSN  
IL ×DCR  
RCSN1  
RCSN2  
Figure 15  
www.richtek.com  
14  
DS9245-06 March 2007  
RT9245  
Voltage Offset Function  
VID on the Fly (Rising)  
1.284  
1.282  
1.28  
PWM  
VCORE  
1.278  
1.276  
1.274  
1.272  
1.27  
VFB  
CH1:(5V/Div)  
CH2:(500mV/Div)  
CH3:(500mV/Div)  
CH4:(1V/Div)  
VID125  
VDAC = 1.500, IOUT = 5A  
1.268  
50  
60  
70  
80  
90  
100  
110  
Time (25μs/Div)  
ROSS (kΩ)  
Figure 16  
Figure 18  
PGOOD Waveform  
1/4 I  
VOSS  
CH1:(500mV/Div)  
CH2:(5V/Div)  
CH3:(5V/Div)  
RB1  
-
EA  
+
V
-V  
DAC ADJ  
VCORE  
Figure 17  
PGOOD  
Output Voltage Offset Function  
To meet Intel's requirement of initial offset of load line,  
RT9245 provides programmable initial offset function. With  
an external resistor RVOSS and voltage source at VOSS pin  
to set offset current IVOSS. One quart of IVOSS flows through  
RB1. Error amplifier would hold the inverting pin equal to  
VDAC-VADJ. Thus output voltage is subtracted from  
VDAL VADJ for a constant offset voltage.  
VSS  
Time (10ms/Div)  
Figure 19  
VDD  
PGOOD Function  
R
PGOOD  
To indicate the condition of multiphase converter, RT9245  
provides PGOODsignal through an open drain connection.  
The waveforms of PGOOD function are shown in Figure  
15.  
V
PGOOD  
Figure 20. PGOOD Test Circuit  
DS9245-06 March 2007  
www.richtek.com  
15  
RT9245  
ErrorAmplifier Characteristic  
EA Rising Slew Rate  
For fast response of converter to meet stringent output  
current transient response, RT9245 provides large slew  
rate capability and high gain-bandwidth performance.  
VFB  
EA Falling Slew Rate  
CH1:(500mV/Div)  
CH2:(2V/Div)  
VFB  
VCOMP  
Time (250ns/Div)  
Figure 22. EA Falling Transient with 10pF Loading;  
Slew Rate=8V/us  
CH1:(500mV/Div)  
VCOMP  
CH2:(2V/Div)  
4.7k  
Time (250ns/Div)  
4.7k  
B
-
A
EA  
Figure 21. EA Rising Transient with 10pF Loading; Slew  
Rate=10V/us  
+
V
REF  
Figure 23. Gain-Bandwidth Measurement by signalA  
divided by signal B  
0dB  
180°  
Figure 24. EA Frequency Response with closed loop gain set at 0db to observe gain-bandwidth product; -3dB at  
10.86MHz  
www.richtek.com  
16  
DS9245-06 March 2007  
RT9245  
Design Procedure Suggestion  
1. Compensation Setting  
a.Output filter pole and zero (Inductor, output capacitor  
value & ESR).  
a. ModulatorGain, Pole and Zero:  
From the following formula:  
b.Error amplifier compensation & sawtooth wave amp-  
litude (compensation network).  
Modulator Gain =VIN/VRAMP =12/2.4=5 (i.e 14dB)  
where VRAMP : ramp amplitude of saw-tooth wave  
LC Filter Pole = = 1.45kHz and  
c.Kelvin sense for VCORE.  
Current Loop Setting  
ESR Zero =3.98kHz  
a.GM amplifier S/H current (current sense component  
DCR, CSN pin external resistor value).  
b. EA Compensation Network:  
Select R1 = 4.7k, R2 = 15k, C1 = 12nF, C2 = 68pF and  
use the Type 2 compensation scheme shown in Figure  
25. By calculation, the FZ = 0.88kHz, FP = 322kHz and  
Middle Band Gain is 3.19 (i.e 10.07dB).  
b.Over-current protection trip point (RIMAX resistor).  
VRM Load Line Setting  
a.Droop amplitude (ADJ pin resistor).  
b.No load offset (RCSN2  
)
C2 68pF  
c.DAC offset voltage setting (VOSS pin & compen- sation  
network resistor RB1).  
C1  
RB2  
15k  
12nF  
RB1  
4.7k  
-
Power Sequence & SS  
EA  
+
DVD pin external resistor and SS pin capacitor.  
Figure 25. Type 2 compensation network of EA  
PCB Layout  
a.Kelvin sense for current sense GM amplifier input.  
The bode plot of EA compensation is shown as Figure 26.  
b.Refer to layout guide for other items.  
The bode plot of power stage is shown as Figure 27. The  
total loop gain is in Figure 28.  
Voltage Loop Setting  
Design Example  
3. Over-Current Protection Setting  
Consider the temperature coefficient of copper  
Given:  
3900ppm/°C,  
Apply for four phase converter  
1
V
1
IL ×DCR  
IMAX  
VIN = 12V  
×
×
2 RIMAX  
3 RCOMMON  
VCORE = 1.5V  
1 1.690V  
1 40A×1.39mΩ  
3
×
×
ILOAD (MAX) = 100A  
2
RIMAX  
330Ω  
VDROOP = 100mV at full load (1mΩ Load Line)  
OCP trip point set at 40A for each channel (S/H)  
DCR = 1mΩ of inductor at 25°C  
L = 1.5μH  
Let RIMAX = 14kΩ  
4. Soft-Start Capacitor Selection  
For most application cases, 0.1μF is a good engineering  
value.  
COUT = 8000μF with 5mΩ equivalent ESR.  
DS9245-06 March 2007  
www.richtek.com  
17  
RT9245  
0dB  
-180°  
Figure 26. The Frequency Response of the CompensatorNetwork  
0dB  
-180°  
Figure 27. The Frequency Response of Power Stage  
www.richtek.com  
18  
DS9245-06 March 2007  
RT9245  
0dB  
-180°  
Figure 28. The LoopGain of Converter  
Layout Guide  
Place the high-power switching components first, and separate them from sensitive nodes.  
1. Most critical path: the current sense circuit is the most sensitive part of the converter. The current sense  
resistors tied to CSP1,2,3,4 and CSN should be located not more than 0.5 inch from the IC and away from  
the noise switching nodes. The PCB trace of sense nodes should be parallel and as short as possible.  
Kelvin connection of the sense component (additional sense resistor or Inductor DCR) ensures the accurate  
stable current sensing.  
Keep well Kelvin sense to ensure the stable operation!  
2. Switching ripple current path:  
a. Input capacitor to high side MOSFET.  
b. Low side MOSFET to output capacitor.  
c. The return path of input and output capacitor.  
d. Separate the power and signalGND.  
e. The switching nodes (the connection node of high/low side MOSFET and inductor) is the most noisy points.  
Keep them away from sensitive small-signal node.  
f. Reduce parasitic R, L by minimum length, enough copper thickness and avoiding of via.  
3. MOSFET driver should be closed to MOSFET.  
4. The compensation, bypass and other function setting components should be near the IC and away from the noisy  
power path.  
DS9245-06 March 2007  
www.richtek.com  
19  
RT9245  
L1  
SW1  
VOUT  
VIN  
RIN  
COUT  
RL  
CIN  
V
L2  
SW2  
Figure 29. Power Stage Ripple Current Path  
Next to IC  
C
+12V or +5V  
PWM  
+12V  
+5V  
VCC  
IN  
0.1uF  
C
BP  
RT  
BOOT  
VCC  
BST  
DRVH  
SW  
VOSS  
SGND  
Next to IC  
PVCC  
COMP  
L
O1  
VCORE  
C
C
IN  
C
OUT  
R
CSN  
RT9245  
CSN  
C
RT9603  
DRVL  
IN  
R
C
Kelvin  
Sense  
Locate next  
to FB Pin  
FB  
GND  
R
FB  
CSPx  
ADJ  
Locate near MOSFETs  
GND  
For Thermal Couple  
Figure 30. Layout Consideration  
www.richtek.com  
20  
DS9245-06 March 2007  
RT9245  
Figure 31. Layout of power stage  
Test Conditions :  
VIN : 12V  
VOUT : 1.300V  
FSW : 200kHz  
IOUT : 80A  
Phase Number : 4 Phases  
U-MOSFET : IR3707 x 1 (9.5mΩ x 9.6nC)  
L-MOSFET : IR8113 x 2 (6.0mΩ x 22nC)  
L : 1.5uH  
DCR : 1m  
CIN : 1000uF x 8  
COUT : 1000uF x 8  
Snubber : 2R2+3.3nF  
Air Speed : Using MAGIC MGA8012HS FAN with 5VDC drive.  
P1  
P1  
M1  
P1  
M2  
P1  
M3  
P2  
P2  
M4  
P2  
M5  
P2  
M6  
Driver  
55°C  
Driver  
56°C  
58°C  
58°C  
56°C  
60°C  
60°C  
60°C  
P3  
P3  
M7  
P3  
M8  
P3  
M9  
P4  
P4  
P4  
P4  
Driver  
55°C  
Driver  
59°C  
M10  
69°C  
M11  
66°C  
M12  
61°C  
64°C  
64°C  
65°C  
η
Note: VIN= 10.835V; IIN = 10.6A; VOUT = 1.2127V; IOUT = 80A; =84.47%  
DS9245-06 March 2007  
www.richtek.com  
21  
RT9245  
Outline Dimension  
D
L
E
E1  
e
A2  
A
A1  
b
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A2  
b
0.850  
0.050  
0.800  
0.178  
9.601  
1.200  
0.152  
1.050  
0.305  
9.804  
0.033  
0.002  
0.031  
0.007  
0.378  
0.047  
0.006  
0.041  
0.012  
0.386  
D
e
0.650  
0.026  
E
6.300  
4.293  
0.450  
6.500  
4.496  
0.762  
0.248  
0.169  
0.018  
0.256  
0.177  
0.030  
E1  
L
28-Lead TSSOP Plastic Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
www.richtek.com  
22  
DS9245-06 March 2007  

相关型号:

RT9246

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9246A

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9246AGC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9246APC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9246GC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9246PC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9247

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9247GC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9247PC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248A

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248AGC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK