FGB30N6S2T [ROCHESTER]

45A, 600V, N-CHANNEL IGBT, TO-263AB, PLASTIC, D2PAK-3;
FGB30N6S2T
型号: FGB30N6S2T
厂家: Rochester Electronics    Rochester Electronics
描述:

45A, 600V, N-CHANNEL IGBT, TO-263AB, PLASTIC, D2PAK-3

栅 瞄准线 双极性晶体管 功率控制
文件: 总9页 (文件大小:858K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
August 2003  
FGH30N6S2 / FGP30N6S2 / FGB30N6S2  
600V, SMPS II Series N-Channel IGBT  
General Description  
Features  
The FGH30N6S2, FGP30N6S2, and FGB30N6S2 are Low  
Gate Charge, Low Plateau Voltage SMPS II IGBTs combin-  
ing the fast switching speed of the SMPS IGBTs along with  
lower gate charge and plateau voltage and avalanche capa-  
bility (UIS). These LGC devices shorten delay times, and  
reduce the power requirement of the gate drive. These de-  
vices are ideally suited for high voltage switched mode pow-  
er supply applications where low conduction loss, fast  
switching times and UIS capability are essential. SMPS II  
LGC devices have been specially designed for:  
• 100kHz Operation at 390V, 14A  
• 200kHZ Operation at 390V, 9A  
• 600V Switching SOA Capability  
o
Typical Fall Time. . . . . . . . . . . 90ns at TJ = 125 C  
• Low Gate Charge . . . . . . . . . 23nC at V = 15V  
GE  
• Low Plateau Voltage . . . . . . . . . . . . .6.5V Typical  
• UIS Rated . . . . . . . . . . . . . . . . . . . . . . . . . 150mJ  
• Low Conduction Loss  
Power Factor Correction (PFC) circuits  
Full bridge topologies  
Half bridge topologies  
Push-Pull circuits  
Uninterruptible power supplies  
Zero voltage and zero current switching circuits  
Formerly Developmental Type TA49367.  
Symbol  
Package  
C
TO-247  
E
C
E
TO-220AB  
C
G
G
TO-263AB  
G
G
E
E
COLLECTOR  
(Back-Metal)  
COLLECTOR  
(Flange)  
Device Maximum Ratings T = 25°C unless otherwise noted  
C
Symbol  
BV  
Parameter  
Collector to Emitter Breakdown Voltage  
Collector Current Continuous, T = 25°C  
Ratings  
Units  
600  
45  
V
A
A
A
V
V
CES  
I
C25  
C
I
Collector Current Continuous, T = 110°C  
20  
C110  
C
I
Collector Current Pulsed (Note 1)  
Gate to Emitter Voltage Continuous  
Gate to Emitter Voltage Pulsed  
108  
CM  
V
±20  
GES  
GEM  
V
±30  
SSOA  
Switching Safe Operating Area at T = 150°C, Figure 2  
60A at 600V  
150  
J
E
Pulsed Avalanche Energy, I = 20A, L = 1.3mH, V = 50V  
mJ  
W
AS  
CE  
DD  
P
Power Dissipation Total T = 25°C  
167  
D
C
Power Dissipation Derating T > 25°C  
1.33  
W/°C  
°C  
C
T
Operating Junction Temperature Range  
Storage Junction Temperature Range  
-55 to 150  
-55 to 150  
J
T
°C  
STG  
CAUTION: Stresses above those listed in “Device Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and  
operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. Pulse width limited by maximum junction temperature.  
©2003 Fairchild Semiconductor Corporation  
FGH30N6S2 / FGP30N6S2 / FGB30N6S2 Rev. A1  
Package Marking and Ordering Information  
Device Marking  
30N6S2  
Device  
Package  
TO-247  
Reel Size  
Tube  
Tape Width  
N/A  
Quantity  
30 Units  
50 Units  
50 Units  
800 Units  
FGH30N6S2  
FGP30N6S2  
FGB30N6S2  
FGB30N6S2T  
30N6S2  
TO-220AB  
TO-263AB  
TO-263AB  
Tube  
N/A  
30N6S2  
Tube  
N/A  
30N6S2  
330mm  
24mm  
Electrical Characteristics T = 25°C unless otherwise noted  
J
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off State Characteristics  
BV  
BV  
Collector to Emitter Breakdown Voltage  
Emitter to Collector Breakdown Voltage  
Collector to Emitter Leakage Current  
I
I
= 250µA, V = 0  
600  
-
-
-
-
-
-
-
V
V
CES  
ECS  
C
GE  
= -10mA, V = 0  
20  
-
C
GE  
I
V
= 600V  
T = 25°C  
100  
2
µA  
mA  
nA  
CES  
CE  
GE  
J
T = 125°C  
-
J
I
Gate to Emitter Leakage Current  
V
= ± 20V  
-
±250  
GES  
On State Characteristics  
V
Collector to Emitter Saturation Voltage  
I
V
= 12A,  
T = 25°C  
-
-
2.0  
1.7  
2.5  
2.0  
V
V
CE(SAT)  
C
J
= 15V  
GE  
T = 125°C  
J
Dynamic Characteristics  
Q
Gate Charge  
I
V
= 12A,  
V
V
= 15V  
= 20V  
-
-
23  
26  
29  
33  
nC  
nC  
V
G(ON)  
C
GE  
= 300V  
CE  
GE  
V
Gate to Emitter Threshold Voltage  
Gate to Emitter Plateau Voltage  
I
I
= 250µA, V = 600V  
3.5  
-
4.3  
6.5  
5.0  
8.0  
GE(TH)  
C
C
CE  
V
= 12A, V = 300V  
V
GEP  
CE  
Switching Characteristics  
SSOA  
Switching SOA  
TJ = 150°C, RG = 10, VGE  
15V, L = 100µH, VCE = 600V  
=
60  
-
-
A
t
Current Turn-On Delay Time  
Current Rise Time  
IGBT and Diode at T = 25°C,  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
-
ns  
ns  
ns  
ns  
µJ  
µJ  
µJ  
ns  
ns  
ns  
ns  
µJ  
µJ  
µJ  
d(ON)I  
J
I
= 12A,  
t
CE  
10  
-
rI  
d(OFF)I  
V
V
= 390V,  
= 15V,  
CE  
t
Current Turn-Off Delay Time  
Current Fall Time  
40  
-
GE  
t
53  
-
-
fI  
R
= 10Ω  
G
E
E
E
Turn-On Energy (Note 2)  
Turn-On Energy (Note 2)  
Turn-Off Energy (Note 3)  
Current Turn-On Delay Time  
Current Rise Time  
55  
ON1  
ON2  
OFF  
L = 200µH  
Test Circuit - Figure 20  
110  
100  
11  
-
150  
-
t
IGBT and Diode at T = 125°C  
J
d(ON)I  
I
= 12A,  
t
CE  
17  
-
rI  
d(OFF)I  
V
V
= 390V,  
= 15V,  
CE  
t
Current Turn-Off Delay Time  
Current Fall Time  
73  
100  
100  
-
GE  
t
90  
fI  
R
= 10Ω  
G
E
E
E
Turn-On Energy (Note 2)  
Turn-On Energy (Note 2)  
Turn-Off Energy (Note 3)  
55  
ON1  
ON2  
OFF  
L = 200µH  
Test Circuit - Figure 20  
160  
250  
200  
350  
Thermal Characteristics  
R
Thermal Resistance Junction-Case  
-
-
0.75  
°C/W  
θJC  
NOTE:  
2. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E  
is the turn-on loss  
ON1  
of the IGBT only. E  
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T  
J
ON2  
as the IGBT. The diode type is specified in figure 20.  
3. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of  
OFF  
the input pulse and ending at the point where the collector current equals zero (I = 0A). All devices were tested per  
CE  
JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produc-  
es the true total Turn-Off Energy Loss.  
©2003 Fairchild Semiconductor Corporation  
FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A1  
Typical Performance Curves  
70  
60  
50  
40  
30  
20  
10  
0
50  
TJ = 150oC, RG = 10  
, VGE = 15V, L = 100µH  
40  
30  
20  
10  
0
25  
50  
75  
100  
125  
150  
0
100  
200  
300  
400  
500  
600  
700  
TC, CASE TEMPERATURE (oC)  
VCE, COLLECTOR TO EMITTER VOLTAGE (V)  
Figure 1. DC Collector Current vs Case  
Temperature  
Figure 2. Minimum Switching Safe Operating Area  
1000  
12  
10  
8
350  
300  
250  
200  
150  
100  
o
V
= 390V, R = 10, T = 125 C  
G J  
TC  
CE  
75oC  
VGE = 10V  
VGE = 15V  
I
SC  
t
fMAX1 = 0.05 / (td(OFF)I + td(ON)I  
)
SC  
100  
f
MAX2 = (PD - PC) / (EON2 + EOFF  
)
6
PC = CONDUCTION DISSIPATION  
(DUTY FACTOR = 50%)  
ØJC = 0.49oC/W, SEE NOTES  
R
4
TJ = 125oC, RG = 3  
, L = 200µH, VCE = 390V  
2
9
10  
11  
12  
13  
14  
15  
16  
10  
20  
30  
1
10  
ICE, COLLECTOR TO EMITTER CURRENT (A)  
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
Figure 3. Operating Frequency vs Collector to  
Emitter Current  
Figure 4. Short Circuit Withstand Time  
18  
18  
DUTY CYCLE < 0.5%, VGE = 10V  
16  
DUTY CYCLE < 0.5%, VGE =15V  
PULSE DURATION = 250  
16  
14  
12  
10  
8
PULSE DURATION = 250µs  
µs  
14  
12  
10  
8
6
6
TJ = 150oC  
TJ = 125oC  
TJ = 125oC  
TJ = 150oC  
4
4
TJ = 25oC  
1.75  
TJ = 25oC  
1.75  
2
2
0
0.50  
0
.5  
.75  
1
1.25  
1.50  
2.0  
2.25  
0.75  
1.00  
1.25  
1.50  
2.00  
2.25  
VCE, COLLECTOR TO EMITTER VOLTAGE (V)  
VCE, COLLECTOR TO EMITTER VOLTAGE (V)  
Figure 5. Collector to Emitter On-State Voltage  
Figure 6. Collector to Emitter On-State Voltage  
©2003 Fairchild Semiconductor Corporation  
FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A1  
Typical Performance Curves (Continued)  
600  
500  
400  
300  
200  
100  
0
400  
R
G = 10, L = 500µH, VCE = 390V  
RG = 10, L = 500µH, VCE = 390V  
350  
300  
250  
200  
150  
100  
50  
TJ = 125oC, VGE = 10V, VGE = 15V  
TJ = 125oC, VGE = 10V, VGE = 15V  
TJ = 25oC, VGE = 10V, VGE = 15V  
TJ = 25oC, VGE = 10V, VGE = 15V  
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
ICE, COLLECTOR TO EMITTER CURRENT (A)  
ICE, COLLECTOR TO EMITTER CURRENT (A)  
Figure 7. Turn-On Energy Loss vs Collector to  
Emitter Current  
Figure 8. Turn-Off Energy Loss vs Collector to  
Emitter Current  
16  
40  
RG = 10  
, L = 500  
µH, VCE = 390V  
RG = 10, L = 500µH, VCE = 390V  
14  
12  
10  
8
35  
30  
25  
20  
15  
10  
5
TJ = 25oC, TJ = 125oC, VGE = 10V  
TJ = 125oC, VGE = 15V, VGE = 10V  
6
4
TJ = 25oC, VGE = 10V, VGE =15V  
TJ = 25oC, TJ = 125oC, VGE = 15V  
2
0
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
ICE, COLLECTOR TO EMITTER CURRENT (A)  
ICE, COLLECTOR TO EMITTER CURRENT (A)  
Figure 9. Turn-On Delay Time vs Collector to  
Emitter Current  
Figure 10. Turn-On Rise Time vs Collector to  
Emitter Current  
90  
120  
RG = 10, L = 500µH, VCE = 390V  
RG = 10, L = 500µH, VCE = 390V  
80  
70  
60  
50  
40  
30  
20  
100  
80  
TJ = 125oC, VGE = 10V OR 15V  
60  
TJ = 25oC, VGE = 10V OR 15V  
40  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
ICE, COLLECTOR TO EMITTER CURRENT (A)  
ICE, COLLECTOR TO EMITTER CURRENT (A)  
Figure 11. Turn-Off Delay Time vs Collector to  
Emitter Current  
Figure 12. Fall Time vs Collector to Emitter  
Current  
©2003 Fairchild Semiconductor Corporation  
FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A1  
Typical Performance Curves (Continued)  
16  
14  
12  
10  
8
175  
o
I
= 1mA, R = 25, T = 25 C  
DUTY CYCLE < 0.5%, V = 10V  
CE  
G(REF)  
L
J
PULSE DURATION = 250µs  
150  
125  
V
= 600V  
CE  
TJ = 25oC  
100  
75  
50  
6
V
= 400V  
CE  
4
V
= 200V  
CE  
6
TJ = 125o  
C
7
25  
0
2
TJ = -55oC  
0
0
2
4
8
10 12 14 16 18 20 22 24  
, GATE CHARGE (nC)  
5
6
8
9
10  
11  
12  
13  
14  
15  
16  
Q
VGE , GATE TO EMITTER VOLTAGE (V)  
G
Figure 13. Transfer Characteristic  
Figure 14. Gate Charge  
10  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
o
R
= 10, L = 500µH, V = 390V, V = 15V  
CE GE  
T
= 125 C, L = 500µH, V = 390V, V = 15V  
G
J
CE  
GE  
E
= E  
+ E  
TOTAL  
ON2 OFF  
E
= E  
+ E  
ON2 OFF  
TOTAL  
I
= 24A  
CE  
ICE = 24A  
1
I
= 12A  
= 6A  
CE  
I
= 12A  
CE  
I
CE  
I
= 6A  
CE  
0.1  
1.0  
10  
100  
, GATE RESISTANCE ()  
1000  
150  
25  
50  
75  
100  
125  
o
R
T
, CASE TEMPERATURE ( C)  
G
C
Figure 15. Total Switching Loss vs Case  
Temperature  
Figure 16. Total Switching Loss vs Gate  
Resistance  
3.5  
1.4  
DUTY CYCLE < 0.5%, V = 10V  
CE  
FREQUENCY = 1MHz  
PULSE DURATION = 250µs  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3.0  
2.5  
2.0  
1.5  
CIES  
ICE = 24A  
ICE = 12A  
ICE = 6A  
COES  
CRES  
10  
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
VCE, COLLECTOR TO EMITTER VOLTAGE (V)  
VGE, GATE TO EMITTER VOLTAGE (V)  
Figure 17. Capacitance vs Collector to Emitter  
Voltage  
Figure 18. Collector to Emitter On-State Voltage vs  
Gate to Emitter Voltage  
©2003 Fairchild Semiconductor Corporation  
FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A1  
Typical Performance Curves (Continued)  
0
10  
0.50  
0.20  
0.10  
t
1
P
D
-1  
10  
t
2
0.05  
DUTY FACTOR, D = t / t  
1
2
0.02  
0.01  
PEAK T = (P X Z  
X R ) + T  
J
D
θ
JC  
θJC C  
SINGLE PULSE  
-2  
10  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
Figure 19. IGBT Normalized Transient Thermal Impedance, Junction to Case  
Test Circuit and Waveforms  
FGP30N6S2D  
DIODE TA49390  
90%  
OFF  
10%  
V
GE  
E
ON2  
E
L = 200mH  
V
CE  
RG = 10  
90%  
10%  
+
-
I
CE  
t
t
FGP30N6S2  
d(OFF)I  
VDD = 390V  
rI  
t
fI  
t
d(ON)I  
Figure 20. Inductive Switching Test Circuit  
Figure 21. Switching Test Waveforms  
©2003 Fairchild Semiconductor Corporation  
FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A1  
Handling Precautions for IGBTs  
Operating Frequency Information  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating  
device performance for a specific application. Other  
typical frequency vs collector current (ICE) plots are  
possible using the information shown for a typical  
unit in Figures 5, 6, 7, 8, 9 and 11. The operating  
frequency plot (Figure 3) of a typical device shows  
fMAX1 or fMAX2; whichever is smaller at each point.  
The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
Insulated Gate Bipolar Transistors are susceptible to  
gate-insulation damage by the electrostatic  
discharge of energy through the devices. When  
handling these devices, care should be exercised to  
assure that the static charge built in the handlers  
body capacitance is not discharged through the  
device. With proper handling and application  
procedures, however, IGBTs are currently being  
extensively used in production by numerous  
equipment manufacturers in military, industrial and  
consumer applications, with virtually no damage  
problems due to electrostatic discharge. IGBTs can  
be handled safely if the following basic precautions  
are taken:  
fMAX1 is defined by fMAX1 = 0.05/(td(OFF)I+ td(ON)I).  
Deadtime (the denominator) has been arbitrarily held  
to 10% of the on-state time for a 50% duty factor.  
Other definitions are possible. td(OFF)I and td(ON)I are  
defined in Figure 21. Device turn-off delay can  
establish an additional frequency limiting condition  
for an application other than TJM. td(OFF)I is important  
when controlling output ripple under a lightly loaded  
condition.  
1. Prior to assembly into a circuit, all leads should be  
kept shorted together either by the use of metal  
shorting springs or by the insertion into conduc-  
tive material such as ECCOSORBDLD26or  
equivalent.  
2. When devices are removed by hand from their  
carriers, the hand being used should be  
grounded by any suitable means - for example,  
with a metallic wristband.  
fMAX2 is defined by fMAX2 = (PD - PC)/(EOFF + EON2).  
The allowable dissipation (PD) is defined by  
PD = (TJM - TC)/RθJC. The sum of device switching  
and conduction losses must not exceed PD. A 50%  
duty factor was used (Figure 3) and the conduction  
losses (PC) are approximated by PC = (VCE x ICE)/2.  
3. Tips of soldering irons should be grounded.  
4. Devices should never be inserted into or removed  
from circuits with power on.  
EON2 and EOFF are defined in the switching  
waveforms shown in Figure 21. EON2 is the integral  
of the instantaneous power loss (ICE x VCE) during  
turn-on and EOFF is the integral of the instantaneous  
power loss (ICE x VCE) during turn-off. All tail losses  
are included in the calculation for EOFF; i.e., the  
collector current equals zero (ICE = 0)  
5. Gate Voltage Rating - Never exceed the gate-  
voltage rating of VGEM. Exceeding the rated VGE  
can result in permanent damage to the oxide  
layer in the gate region.  
6. Gate Termination - The gates of these devices  
are essentially capacitors. Circuits that leave the  
gate open-circuited or floating should be avoided.  
These conditions can result in turn-on of the  
device due to voltage buildup on the input  
capacitor due to leakage currents or pickup.  
7. Gate Protection - These devices do not have an  
internal monolithic Zener diode from gate to  
emitter. If gate protection is required an external  
Zener is recommended.  
ECCOSORBD is a Trademark of Emerson and Cumming, Inc.  
©2003 Fairchild Semiconductor Corporation  
FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A1  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
Power247™  
PowerTrench  
QFET  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
TinyLogic  
LittleFET™  
MICROCOUPLER™  
MicroFET™  
MicroPak™  
MICROWIRE™  
MSX™  
MSXPro™  
OCX™  
OCXPro™  
OPTOLOGIC  
OPTOPLANAR™  
PACMAN™  
POP™  
FACT Quiet Series™  
FAST  
FASTr™  
FRFET™  
GlobalOptoisolator™  
GTO™  
ActiveArray™  
Bottomless™  
CoolFET™  
CROSSVOLT™  
DOME™  
EcoSPARK™  
E2CMOSTM  
EnSignaTM  
FACT™  
QS™  
QT Optoelectronics™ TINYOPTO™  
Quiet Series™  
RapidConfigure™  
RapidConnect™  
TruTranslation™  
UHC™  
UltraFET  
HiSeC™  
I2C™  
SILENT SWITCHER VCX™  
SMART START™  
SPM™  
ImpliedDisconnect™  
ISOPLANAR™  
Across the board. Around the world.™  
The Power Franchise™  
ProgrammableActive Droop™  
Stealth™  
SuperSOT™-3  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVESTHE RIGHTTO MAKE CHANGES WITHOUTFURTHER NOTICETOANY  
PRODUCTS HEREINTO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOTASSUMEANYLIABILITY  
ARISING OUTOFTHEAPPLICATION OR USE OFANYPRODUCTOR CIRCUITDESCRIBED HEREIN; NEITHER DOES IT  
CONVEYANYLICENSE UNDER ITS PATENTRIGHTS, NORTHE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTENAPPROVALOF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. I5  

相关型号:

FGB3236

FGB3236_F085 / FGI3236_F085 EcoSPARKTM 320mJ, 360V, N-Channel Ignition IGBT
FAIRCHILD

FGB3236-F085

IGBT,360V,27A,1.32V,320mJ,EcoSPARK® II,N 沟道点火
ONSEMI

FGB3236-F085C

IGBT, 360V, 27A, 1.32V, 320mJ, EcoSPARK®, N-Channel Ignition
ONSEMI

FGB3245G2-F085

IGBT,450V,23A,1.3V,320mJ,EcoSPARK® II,N 沟道点火
ONSEMI

FGB3440G2-F085

IGBT,400V,25A,1.30V,335mJ,EcoSPARK® II,N 沟道点火
ONSEMI

FGB40N60SM

600V, 40A Field Stop IGBT
FAIRCHILD

FGB40N60SM

IGBT,600V,40A,场截止
ONSEMI

FGB40N6S2

600V, SMPS II Series N-Channel IGBT
FAIRCHILD

FGB40N6S2

75A, 600V, N-CHANNEL IGBT, TO-263AB, D2PAK-3
ROCHESTER

FGB40N6S2L99Z

Insulated Gate Bipolar Transistor, 75A I(C), 600V V(BR)CES, N-Channel, TO-263AB
FAIRCHILD

FGB40N6S2S62Z

Insulated Gate Bipolar Transistor, 75A I(C), 600V V(BR)CES, N-Channel, TO-263AB
FAIRCHILD

FGB40N6S2T

75A, 600V, N-CHANNEL IGBT, TO-263AB, D2PAK-3
ROCHESTER