BD60910GU-E2 [ROHM]

White backlight LED Drivers for Small to Medium LCD Panels (Switching Regulator Type); 白色背光LED驱动器适用于中小型液晶面板(开关稳压器型)
BD60910GU-E2
型号: BD60910GU-E2
厂家: ROHM    ROHM
描述:

White backlight LED Drivers for Small to Medium LCD Panels (Switching Regulator Type)
白色背光LED驱动器适用于中小型液晶面板(开关稳压器型)

显示驱动器 稳压器 驱动程序和接口 开关 接口集成电路 CD
文件: 总31页 (文件大小:475K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LED Drivers for LCD Backlights  
White backlight LED Drivers  
for Small to Medium LCD Panels  
(Switching Regulator Type)  
BD60910GU  
No.11040EBT30  
Description  
BD60910GU is maximum 8LED(minimum 4LED) serial LED driver with ALC (Auto Luminous Control) function.  
Best match for mobile application that needs long battery life.  
Features  
1) Boost DC/DC for LED back lighting  
Drives maximum 8 to minimum 4 serial LEDs.  
Integrated high voltage switching transistor  
Soft start function.  
Over voltage protection (Detect voltage is controllable)  
Over current protection (2nd side)  
VOUT short to GND protection  
VOUT open protection.  
2) Constant current driver for LED back lighting  
Current step can be set in 7bit(0.2mA 128steps), and 8bit(0.1mA 256steps) in sloping.  
Rise and fall time of sloping are set independently.  
Iout max = 25.6mA  
PWM brightness control by external input.  
3) Auto Luminous Control (ALC)  
Periodic ambient detection reduces sensor consumption current.  
LED brightness can be controlled by 16steps ambient brightness level.  
LED current for each ambient level is freely customizable.  
SBIAS for sensor bias is integrated. (3.0V or 2.6V)  
Photo Diode, Photo Transistor, Photo IC(Linear/ Logarithm) can be connected.  
Automatic gain control built-in, so BH1600FVC can be connected directly.  
4) Thermal shutdown (Auto-return type)  
5) I2C BUS FS modemax 400kHzWrite/Read  
6) VCSP85H3(3.00mm x 3.00mm) Small Size CSP package  
Absolute Maximum Ratings (Ta=25 )  
Parameter  
Symbol  
Ratings  
Unit  
Pins  
Maximum voltage 1  
VMAX1  
VMAX2  
VMAX3  
Pd  
7
15  
V
V
except for VLED VOUT, SW  
VLED  
Maximum voltage 2  
Maximum voltage 3  
40  
V
VOUT, SW  
Power Dissipation  
1250 *1  
-40 ~ +85  
-55 ~ +150  
mW  
Operating Temperature Range  
Storage Temperature Range  
Topr  
Tstg  
*1) Power dissipation deleting is 10mW/ , when it’s used in over 25 . It’s deleting is on the board that is ROHM’s standard.  
Dissipation by LSI should not exceed tolerance level of Pd.  
Operating conditions (VBATVIO, Ta=-40~85 )  
Parameter  
Symbol  
Ratings  
Unit  
VBAT input voltage  
VIO pin voltage  
VBAT  
VIO  
2.7~5.5  
V
V
1.65~3.3  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
1/30  
BD60910GU  
Technical Note  
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=1.8V)  
Limits  
Parameter  
Circuit Current】  
Symbol  
Unit  
Condition  
Min.  
Typ.  
Max.  
VBAT Circuit current 1  
VBAT Circuit current 2  
VBAT Circuit current 3  
IBAT1  
IBAT2  
IBAT3  
-
-
-
0.1  
0.5  
3.5  
1.0  
3.0  
5.0  
μA  
μA  
RESETB=0V, VIO=0V  
RESETB=0V, VIO=1.8V  
LED=ON, ILED=15mA setting  
Vo=24V  
mA  
Only ALC block ON  
ADCYC=0.52s setting  
Except sensor current  
VBAT Circuit current 4  
IBAT4  
-
0.4  
1.0  
mA  
LED Driver】  
LED current Step (Setup)  
LED current Step (At slope)  
LED Maximum current  
ILEDSTP1  
ILEDSTP2  
IMAXWLED  
IWLED  
128  
256  
25.6  
15  
Step  
Step  
mA  
-
-
LED current accuracy  
DC/DC】  
-7%  
+7%  
mA  
ILED=15mA setting  
VLED pin feedback voltage  
Vfb  
OCP  
fosc  
-
-
0.3  
650  
1.0  
-
-
V
Over current protection  
Oscillator frequency  
mA  
MHz  
0.8  
1.2  
OVP1  
OVP2  
OVP3  
OVP4  
OVP5  
30  
-
-
-
-
31  
27  
24  
21  
18  
32  
-
-
-
-
V
V
V
V
V
Over Voltage Protection detect  
voltage  
Maximum Duty  
Mduty  
OVO  
92.5  
-
-
-
%
V
VOUT open protection  
0.7  
1.4  
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=1.8V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min.  
Typ.  
Max.  
I2C Input (SDA, SCL)】  
0.25 ×  
VIO  
LOW level input voltage  
VIL  
VIH  
Vhys  
VOL  
lin  
-0.3  
-
-
-
-
-
V
V
0.75 ×  
VIO  
VBAT  
+0.3  
HIGH level input voltage  
Hysteresis of Schmitt trigger  
input  
0.05 ×  
VIO  
-
0.3  
3
V
LOW level output voltage  
(SDA) at 3mA sink current  
0
V
Input current each I/O pin  
RESETB】  
-3  
μA  
Input voltage = 0.1×VIO~0.9×VIO  
0.25 ×  
VIO  
LOW level input voltage  
VIL  
VIH  
Iin  
-0.3  
-
-
-
V
V
0.75 ×  
VIO  
VBAT  
+0.3  
HIGH level input voltage  
Input current each I/O pin  
-3  
3
μA  
Input voltage = 0.1×VIO~0.9×VIO  
2011.07 - Rev.B  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2/30  
BD60910GU  
Technical Note  
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=1.8V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min.  
Typ.  
Max.  
ALC】  
2.850  
2.470  
3.0  
2.6  
3.150  
2.730  
V
V
Io=200μA <Initial value>  
Io=200μA  
SBIAS Output voltage  
SBIAS Output current  
SSENS Input range  
VoS  
IoS  
-
0
-
-
-
30  
mA  
V
Vo=3.0V  
VoS x  
255/256  
VISS  
SBIAS Discharge resister at  
OFF  
ROFFS  
ADRES  
ADINL  
ADDNL  
RSSENS  
1.0  
8
-
1.5  
kΩ  
ADC resolution  
bit  
ADC non-linearity error  
-3  
-1  
1
+3  
+1  
-
LSB  
LSB  
MΩ  
ADC differential non-linearity  
error  
-
SSENS Input impedance  
WPWMIN】  
-
L level input voltage  
VILA  
VIHA  
-0.3  
1.4  
-
-
-
0.3  
V
V
VBAT  
+0.3  
H level input voltage  
Input current  
IinA  
3.6  
-
10  
-
μA  
μs  
Vin=1.8V  
PWM input minimum High  
pulse width  
PWpwm  
50  
GC1, GC2】  
L level output voltage  
VOLS  
VOHS  
-
-
-
0.2  
-
V
V
IOL=1mA  
IOH=1mA  
VoS  
-0.2  
H level output voltage  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
3/30  
BD60910GU  
Technical Note  
Block Diagram / Application Circuit example  
VBAT  
RB520S-40  
1μF(50V)  
22μH  
VBAT1  
VBAT2  
OCP  
10µF  
VIO  
DC/DC  
OVP  
(
)
(
)
)
(
RESETB  
SCL  
SDA  
Level  
Shift  
I2C interface  
Digital Control  
Feed Back  
VLED  
External PWM  
WPWMIN  
LEDGND  
SBIAS  
Photo IC  
TSD  
VDD  
GND  
IOUT  
1μF  
GC1  
GC2  
GND1  
GND2  
VREF  
IREF  
SSENS  
SGND  
Sensor  
I/F  
ALC  
BH1600FVC  
GC2  
GC1  
* The example when using BH1600FVC and assuming brightness range  
10(lx)-50000(lx) by the panel of 20% transmissivity  
Fig.1 Block Diagram / Application Circuit example  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
4/30  
BD60910GU  
Technical Note  
Pin Arrangement [Bottom View]  
T4  
VIO  
GND2  
SCL  
GNDP  
SW  
T3  
E
D
C
B
A
RESETB GNDPS VBAT2  
GND1  
WPWMIN  
SDA  
VOUT  
GC1  
GC2  
SGND  
index  
SBIAS SSENS  
T1  
VBAT1 LEDGND VLED  
T2  
1
2
3
4
5
Fig.2 Pin Arrangement  
Pin Functions  
ESD Diode  
Equivalent  
Circuit  
No  
Ball No.  
Pin Name  
VBAT1  
I/O  
Functions  
For Power  
For Ground  
1
2
A2  
D5  
D1  
C1  
E2  
A3  
E3  
D4  
C5  
D3  
C2  
-
-
-
GND  
Power supply  
Power supply  
A
A
C
B
B
B
B
B
B
H
I
VBAT2  
VIO  
-
GND  
3
-
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
GND  
Power supply for I/O  
Ground  
4
GND1  
GND2  
LEDGND  
GNDP  
GNDPS  
SGND  
RESETB  
SDA  
-
-
5
-
-
Ground  
6
-
-
Ground  
7
-
-
Ground  
8
-
-
-
Ground  
9
-
Ground  
10  
11  
I
GND  
GND  
Reset input (L: reset, H: reset cancel)  
I2C data input / output  
I/O  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
D2  
B1  
E4  
C3  
A4  
B4  
B5  
B3  
C4  
A1  
A5  
E5  
E1  
SCL  
I
I
VBAT  
VBAT  
-
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I2C clock input  
H
L
WPWMIN  
SW  
External PWM input  
O
O
I
DC/DC Switching port  
A
A
E
Q
N
X
X
S
M
N
S
VOUT  
VLED  
SBIAS  
SSENS  
GC1  
GC2  
T1  
-
DC/DC output voltage monitor  
LED cathode connection  
-
O
I
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
Bias output for the Ambient Light Sensor  
Ambient Light Sensor input  
Ambient Light Sensor gain control output 1  
Ambient Light Sensor gain control output 2  
Test Input Pin (short to Ground)  
Test Output Pin (Open)  
O
O
I
T2  
O
O
I
T3  
Test Output Pin (Open)  
T4  
Test Input Pin (short to Ground)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
5/30  
BD60910GU  
Technical Note  
Equivalent Circuit  
A
B
VBAT  
C
VBAT  
VBAT  
VBAT  
E
M
X
H
VBAT  
VIO  
I
VBAT  
VIO  
L
VBAT  
VBAT  
N
VBAT  
Q VBAT  
VBAT  
S
VBAT  
VoS  
VBAT  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
6/30  
BD60910GU  
Technical Note  
I2C BUS format  
The writing/reading operation is based on the I2C slave standard.  
Slave address  
A7  
1
A6  
1
A5  
1
A4  
0
A3  
1
A2  
1
A1  
0
R/W  
1/0  
Bit Transfer  
SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes  
while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal.  
SDA  
SCL  
SDA a state of stability  
Data are effective  
SDA  
It can change  
START and STOP condition  
When SDA and SCL are H, data is not transferred on the I2C- bus. This condition indicates, if SDA changes from H to L  
while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL  
has been H, it will become STOP (P) conditions and an access end.  
SDA  
SCL  
S
P
STOP condition  
START condition  
Acknowledge  
It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and  
a receiver returns the acknowledge signal by setting SDA to L.  
DATA OUTPUT  
BY TRANSMITTER  
not acknowledge  
DATA OUTPUT  
BY RECEIVER  
acknowledge  
1
2
8
9
SCL  
S
clock pulse for  
acknowledgement  
START condition  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
7/30  
BD60910GU  
Technical Note  
Writing protocol  
A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd  
byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address  
is carried out automatically. However, when a register address turns into the last address, it is set to 00h by the next  
transmission. After the transmission end, the increment of the address is carried out.  
*1  
*1  
0
A A7 A6 A5 A4 A3 A2 A1 A0 A D7D6D5D4D3D2D1D0 A  
register address  
DATA  
D7D6D5 D4D3D2D1D0 A  
DATA  
P
S
X
X
X
X
X
X
X
slave address  
register address  
increment  
register address  
increment  
R/W=0(write)  
A=acknowledge(SDA LOW)  
A=not acknowledge(SDA HIGH)  
S=START condition  
from master to slave  
from slave to master  
P=STOP condition  
*1: Write Timing  
Reading protocol  
It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following  
address accessed at the end, and the data of the address that carried out the increment is read after it. If an address  
turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is  
carried out.  
S
1
A D7 D6 D5 D4 D3 D2 D1 D0 A  
DATA  
D7 D6 D5 D4 D3 D2 D1 D0 A  
DATA  
P
X
X X X X X X  
slave address  
register address  
increment  
register address  
increment  
R/W=1(read)  
A=acknowledge(SDA LOW)  
A=not acknowledge(SDA HIGH)  
S=START condition  
from master to slave  
from slave to master  
P=STOP condition  
Multiple reading protocols  
After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The  
data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte  
will read out 00h. After the transmission end, the increment of the address is carried out.  
S
A
A Sr  
1 A  
X X X X X X X  
slave address  
0
A7A6A5A4A3A2A1A0  
register address  
X X X X X X X  
slave address  
R/W=0(write)  
R/W=1(read)  
A
P
D7D6D5D4D3D2D1D0 A  
DATA  
D7D6D5D4D3D2D1D0  
DATA  
register address  
increment  
register address  
increment  
A=acknowledge(SDA LOW)  
A=not acknowledge(SDA HIGH)  
S=START condition  
P=STOP condition  
Sr=repeated START condition  
from master to slave  
from slave to master  
As for reading protocol and multiple reading protocols, please do A (not acknowledge) after doing the final reading  
operation. It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the reading data  
of that time is 0. However, this state returns usually when SCL is moved, data is read, and A (not acknowledge) is done.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
8/30  
BD60910GU  
Technical Note  
Timing diagram  
SDA  
t BUF  
t SU;DAT  
t HD;STA  
t LOW  
SCL  
t SU;STO  
t SU;STA  
t HD;STA  
t HD;DAT  
S
Sr  
P
S
t HIGH  
Electrical Characteristics(Unless otherwise specified, Ta=25 , VBAT=3.6V, VIO=1.8V)  
Standard-mode  
Fast-mode  
Typ.  
Parameter  
I2C BUS format】  
Symbol  
Unit  
Min.  
Typ.  
Max.  
Min.  
Max.  
SCL clock frequency  
fSCL  
tLOW  
tHIGH  
0
-
-
-
-
100  
0
-
-
-
-
400  
kHz  
μs  
LOW period of the SCL clock  
HIGH period of the SCL clock  
4.7  
4.0  
4.0  
-
-
-
1.3  
0.6  
0.6  
-
-
-
μs  
Hold time (repeated) START condition  
After this period, the first clock is generated  
Set-up time for a repeated START  
condition  
tHD;STA  
tSU;STA  
μs  
4.7  
-
-
0.6  
-
-
μs  
Data hold time  
tHD;DAT  
tSU;DAT  
tSU;STO  
0
-
-
-
3.45  
0
-
-
-
0.9  
μs  
ns  
μs  
Data set-up time  
250  
4.0  
-
-
100  
0.6  
-
-
Set-up time for STOP condition  
Bus free time between a STOP  
and START condition  
tBUF  
4.7  
-
-
1.3  
-
-
μs  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
9/30  
BD60910GU  
Technical Note  
Register List  
Input "0” for "-".  
Register data  
D4  
Address  
W/R  
Function  
D7  
D6  
-
D5  
-
D3  
-
D2  
-
D1  
-
D0  
SFTRST  
LEDEN  
-
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
W
R/W  
-
-
-
VOVP(0)  
-
Software Reset  
-
VOVP(2)  
-
VOVP(1)  
-
WPWMEN  
-
ALCEN  
-
LEDMD  
-
LED, ALC, OVP Control  
-
-
LED Current Setting  
at non-ALC mode  
R/W  
-
-
ILED(6)  
-
ILED(5)  
-
ILED(4)  
-
ILED(3)  
-
ILED(2)  
-
ILED(1)  
-
ILED(0)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
W
-
THL(3)  
THL(2)  
-
THL(1)  
-
THL(0)  
-
TLH(3)  
-
TLH(2)  
-
TLH(1)  
-
TLH(0)  
-
LED Current transition  
-
-
-
-
-
-
-
-
-
-
-
-
R/W  
-
ADCYC(1)  
ADCYC(0)  
-
GAIN(1)  
-
GAIN(0)  
-
STYPE  
-
VSB  
-
MDCIR  
-
SBIASON  
-
ALC mode setting  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
R
-
-
-
AMB(3)  
IU0(3)  
IU1(3)  
IU2(3)  
IU3(3)  
IU4(3)  
IU5(3)  
IU6(3)  
IU7(3)  
IU8(3)  
IU9(3)  
IUA(3)  
IUB(3)  
IUC(3)  
IUD(3)  
IUE(3)  
IUF(3)  
AMB(2)  
IU0(2)  
IU1(2)  
IU2(2)  
IU3(2)  
IU4(2)  
IU5(2)  
IU6(2)  
IU7(2)  
IU8(2)  
IU9(2)  
IUA(2)  
IUB(2)  
IUC(2)  
IUD(2)  
IUE(2)  
IUF(2)  
AMB(1)  
IU0(1)  
IU1(1)  
IU2(1)  
IU3(1)  
IU4(1)  
IU5(1)  
IU6(1)  
IU7(1)  
IU8(1)  
IU9(1)  
IUA(1)  
IUB(1)  
IUC(1)  
IUD(1)  
IUE(1)  
IUF(1)  
AMB(0)  
IU0(0)  
IU1(0)  
IU2(0)  
IU3(0)  
IU4(0)  
IU5(0)  
IU6(0)  
IU7(0)  
IU8(0)  
IU9(0)  
IUA(0)  
IUB(0)  
IUC(0)  
IUD(0)  
IUE(0)  
IUF(0)  
Ambient level output  
LED Current at Ambient level 0h  
LED Current at Ambient level 1h  
LED Current at Ambient level 2h  
LED Current at Ambient level 3h  
LED Current at Ambient level 4h  
LED Current at Ambient level 5h  
LED Current at Ambient level 6h  
LED Current at Ambient level 7h  
LED Current at Ambient level 8h  
LED Current at Ambient level 9h  
LED Current at Ambient level Ah  
LED Current at Ambient level Bh  
LED Current at Ambient level Ch  
LED Current at Ambient level Dh  
LED Current at Ambient level Eh  
LED Current at Ambient level Fh  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
IU0(6)  
IU1(6)  
IU2(6)  
IU3(6)  
IU4(6)  
IU5(6)  
IU6(6)  
IU7(6)  
IU8(6)  
IU9(6)  
IUA(6)  
IUB(6)  
IUC(6)  
IUD(6)  
IUE(6)  
IUF(6)  
IU0(5)  
IU1(5)  
IU2(5)  
IU3(5)  
IU4(5)  
IU5(5)  
IU6(5)  
IU7(5)  
IU8(5)  
IU9(5)  
IUA(5)  
IUB(5)  
IUC(5)  
IUD(5)  
IUE(5)  
IUF(5)  
IU0(4)  
IU1(4)  
IU2(4)  
IU3(4)  
IU4(4)  
IU5(4)  
IU6(4)  
IU7(4)  
IU8(4)  
IU9(4)  
IUA(4)  
IUB(4)  
IUC(4)  
IUD(4)  
IUE(4)  
IUF(4)  
Prohibit to accessing the address that isn’t mentioned.  
The timing indicated by explanation of registers, is a value in case built-in OSC has Typ. frequency.(1MHz)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
10/30  
BD60910GU  
Technical Note  
Register Map  
Address 00h < Software Reset >  
Address  
00h  
R/W  
W
Bit7  
-
Bit6  
-
Bit5  
-
Bit4  
-
Bit3  
-
Bit2  
-
Bit1  
-
Bit0  
SFTRST  
Initial  
Value  
00h  
-
-
-
-
-
-
-
0
Bit [7:1] : (Not used)  
Bit0 : SFTRST Software Reset Command  
“0” :  
“1” :  
Reset cancel  
Reset (All register initializing)  
Refer to “Explanation 1” for detail.  
Address 01h < LED, ALC Control >  
Address  
01h  
R/W  
R/W  
Bit7  
-
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
VOVP(2)  
VOVP(1)  
VOVP(0) WPWMEN  
ALCEN  
LEDMD  
LEDEN  
Initial  
Value  
00h  
-
0
0
0
0
0
0
0
Bit7 :  
(Not used)  
Bit [6:4] : VOVP(2:0) Over Voltage Protection detect voltage  
“000” : OVP=31V(typ)  
“001” : OVP=27V(typ)  
“010” : OVP=24V(typ)  
“011” : OVP=21V(typ)  
“100” : OVP=18V(typ)  
“101” : Don’t use  
8LED connection  
7LED connection  
6LED connection  
5LED connection  
4LED connection  
“110” : Don’t use  
“111” : Don’t use  
Refer to “Explanation 4” for detail.  
WPWMEN External PWM Input “WPWMIN” terminal Enable Control (Valid/Invalid)  
Bit3 :  
Bit2 :  
Bit1 :  
Bit0 :  
“0” :  
“1” :  
WPWMIN input invalid  
WPWMIN input valid  
Refer to “Explanation 5-(10)” for detail.  
ALCEN  
“0” :  
ALC Function Control (ON/OFF)  
ALC function OFF  
“1” :  
ALC function ON  
Refer to “Explanation 5-(1)” for detail.  
LEDMD  
“0” :  
“1” :  
LED Mode Select (ALC mode/Register mode)  
Register mode  
ALC mode  
Refer to “Explanation 5-(1)” for detail.  
LEDEN  
“0” :  
LED Control (ON/OFF)  
LED OFF  
“1” :  
LED ON  
Refer to “Explanation 5-(1)” for detail.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
11/30  
BD60910GU  
Technical Note  
Address 03h < LED Current Setting at Register mode >  
Address  
03h  
R/W  
R/W  
Bit7  
-
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
ILED(6)  
ILED(5)  
ILED(4)  
ILED(3)  
ILED(2)  
ILED(1)  
ILED(0)  
Initial  
Value  
00h  
-
0
0
0
0
0
0
0
Bit7 :  
(Not used)  
Bit [6:0] : ILED(6:0) LED Current Setting at Register mode  
“0000000” :  
“0000001” :  
“0000010” :  
“0000011” :  
“0000100” :  
“0000101” :  
“0000110” :  
“0000111” :  
“0001000” :  
“0001001” :  
“0001010” :  
“0001011” :  
“0001100” :  
“0001101” :  
“0001110” :  
“0001111” :  
“0010000” :  
“0010001” :  
“0010010” :  
“0010011” :  
“0010100” :  
“0010101” :  
“0010110” :  
“0010111” :  
“0011000” :  
“0011001” :  
“0011010” :  
“0011011” :  
“0011100” :  
“0011101” :  
“0011110” :  
“0011111” :  
“0100000” :  
“0100001” :  
“0100010” :  
“0100011” :  
“0100100” :  
“0100101” :  
“0100110” :  
“0100111” :  
“0101000” :  
“0101001” :  
“0101010” :  
“0101011” :  
“0101100” :  
“0101101” :  
“0101110” :  
“0101111” :  
“0110000” :  
“0110001” :  
“0110010” :  
“0110011” :  
“0110100” :  
“0110101” :  
“0110110” :  
“0110111” :  
“0111000” :  
“0111001” :  
“0111010” :  
“0111011” :  
“0111100” :  
“0111101” :  
“0111110” :  
“0111111” :  
0.2 mA  
0.4 mA  
0.6 mA  
0.8 mA  
1.0 mA  
1.2 mA  
1.4 mA  
1.6 mA  
1.8 mA  
2.0 mA  
2.2 mA  
2.4 mA  
2.6 mA  
2.8 mA  
3.0 mA  
3.2 mA  
3.4 mA  
3.6 mA  
3.8 mA  
4.0 mA  
4.2 mA  
4.4 mA  
4.6 mA  
4.8 mA  
5.0 mA  
5.2 mA  
5.4 mA  
5.6 mA  
5.8 mA  
6.0 mA  
6.2 mA  
6.4 mA  
6.6 mA  
6.8 mA  
7.0 mA  
7.2 mA  
7.4 mA  
7.6 mA  
7.8 mA  
8.0 mA  
8.2 mA  
8.4 mA  
8.6 mA  
8.8 mA  
9.0 mA  
9.2 mA  
9.4 mA  
9.6 mA  
9.8 mA  
10.0 mA  
10.2 mA  
10.4 mA  
10.6 mA  
10.8 mA  
11.0 mA  
11.2 mA  
11.4 mA  
11.6 mA  
11.8 mA  
12.0 mA  
12.2 mA  
12.4 mA  
12.6 mA  
12.8 mA  
“1000000” : 13.0 mA  
“1000001” : 13.2 mA  
“1000010” : 13.4 mA  
“1000011” : 13.6 mA  
“1000100” : 13.8 mA  
“1000101” : 14.0 mA  
“1000110” : 14.2 mA  
“1000111” : 14.4 mA  
“1001000” : 14.6 mA  
“1001001” : 14.8 mA  
“1001010” : 15.0 mA  
“1001011” : 15.2 mA  
“1001100” : 15.4 mA  
“1001101” : 15.6 mA  
“1001110” : 15.8 mA  
“1001111” : 16.0 mA  
“1010000” : 16.2 mA  
“1010001” : 16.4 mA  
“1010010” : 16.6 mA  
“1010011” : 16.8 mA  
“1010100” : 17.0 mA  
“1010101” : 17.2 mA  
“1010110” : 17.4 mA  
“1010111” : 17.6 mA  
“1011000” : 17.8 mA  
“1011001” : 18.0 mA  
“1011010” : 18.2 mA  
“1011011” : 18.4 mA  
“1011100” : 18.6 mA  
“1011101” : 18.8 mA  
“1011110” : 19.0 mA  
“1011111” :  
19.2 mA  
“1100000” : 19.4 mA  
“1100001” : 19.6 mA  
“1100010” : 19.8 mA  
“1100011” : 20.0 mA  
“1100100” : 20.2 mA  
“1100101” : 20.4 mA  
“1100110” : 20.6 mA  
“1100111” : 20.8 mA  
“1101000” : 21.0 mA  
“1101001” : 21.2 mA  
“1101010” : 21.4 mA  
“1101011” : 21.6 mA  
“1101100” : 21.8 mA  
“1101101” : 22.0 mA  
“1101110” : 22.2 mA  
“1101111” :  
22.4 mA  
“1110000” : 22.6 mA  
“1110001” : 22.8 mA  
“1110010” : 23.0 mA  
“1110011” : 23.2 mA  
“1110100” : 23.4 mA  
“1110101” : 23.6 mA  
“1110110” : 23.8 mA  
“1110111” :  
24.0 mA  
“1111000” : 24.2 mA  
“1111001” : 24.4 mA  
“1111010” : 24.6 mA  
“1111011” :  
“1111100” :  
“1111101” :  
“1111110” :  
“1111111” :  
24.8 mA  
25.0 mA  
25.2 mA  
25.4 mA  
25.6 mA  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
12/30  
BD60910GU  
Technical Note  
Address 08h < LED Current transition >  
Address  
08h  
R/W  
W
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
THL(3)  
THL(2)  
THL(1)  
THL(0)  
TLH(3)  
TLH(2)  
TLH(1)  
TLH(0)  
Initial  
Value  
C7h  
1
1
0
0
0
1
1
1
Bit [7:4] : THL(3:0)  
“0000” :  
“0001” :  
“0010” :  
“0011” :  
LED current Down transition per 0.2mA step  
0.256 ms  
0.512 ms  
1.024 ms  
2.048 ms  
4.096 ms  
8.192 ms  
16.38 ms  
32.77 ms  
65.54 ms  
131.1 ms  
196.6 ms  
262.1 ms  
“0100” :  
“0101” :  
“0110” :  
“0111” :  
“1000” :  
“1001” :  
“1010” :  
“1011” :  
“1100” :  
“1101” :  
“1110” :  
327.7 ms  
393.2 ms  
458.8 ms  
524.3 ms  
(Initial value)  
“1111” :  
Refer to “Explanation 5-(8)” for detail.  
Bit [3:0] : TLH(3:0)  
“0000” :  
LED current Up transition per 0.2mA step  
0.256 ms  
“0001” :  
“0010” :  
“0011” :  
“0100” :  
“0101” :  
“0110” :  
“0111” :  
“1000” :  
“1001” :  
“1010” :  
“1011” :  
“1100” :  
“1101” :  
“1110” :  
“1111” :  
0.512 ms  
1.024 ms  
2.048 ms  
4.096 ms  
8.192 ms  
16.38 ms  
32.77 ms  
65.54 ms  
131.1 ms  
196.6 ms  
262.1 ms  
327.7 ms  
393.2 ms  
458.8 ms  
524.3 ms  
(Initial value)  
Refer to “Explanation 5-(8)” for detail.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
13/30  
BD60910GU  
Technical Note  
Address 0Bh < ALC mode setting >  
Address  
0Bh  
R/W  
R/W  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
ADCYC(1) ADCYC(0) GAIN(1)  
GAIN(0)  
STYPE  
VSB  
MDCIR  
SBIASON  
Initial  
Value  
81h  
1
0
0
0
0
0
0
1
Bit [7:6] : ADCYC(1:0)  
ADC Measurement Cycle  
0.52 s  
1.05 s  
“00” :  
“01” :  
“10” :  
“11” :  
1.57 s (Initial value)  
2.10 s  
Refer to “Explanation 5-(4)” for detail.  
Bit [5:4] : GAIN(1:0) Sensor Gain Switching Function Control  
“00” :  
“01” :  
“10” :  
“11” :  
Auto Change (Initial value)  
Manual High  
Manual Low  
Fixed  
Refer to “Explanation 5-(3),5-(6)” for detail.  
Bit3 :  
Bit2 :  
Bit1 :  
Bit0 :  
STYPE  
“0” :  
“1” :  
Ambient Light Sensor Type Select (Linear/Logarithm)  
For Linear Sensor  
For Log Sensor  
(Initial value)  
Refer to “Explanation 5-(6)” for detail.  
VSB  
“0” :  
“1” :  
SBIAS Output Voltage Control  
SBIAS output voltage 3.0V  
SBIAS output voltage 2.6V  
(Initial value)  
Refer to “Explanation 5-(2)” for detail.  
MDCIR  
“0” :  
“1” :  
LED Current Reset Select by Mode Change  
LED current non-reset at mode change (Initial value)  
LED current reset at mode change  
Refer to “Explanation 5-(9)” for detail.  
SBIASON  
“0” :  
“1” :  
SBIAS Control (ON/OFF)  
Measurement cycle synchronous  
Usually ON (at ALCEN=1) (Initial value)  
Refer to “Explanation 5-(4)” for detail.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
14/30  
BD60910GU  
Technical Note  
Address 0Dh < Ambient level (Read Only) >  
Address  
0Dh  
R/W  
R
Bit7  
-
Bit6  
-
Bit5  
-
Bit4  
-
Bit3  
Bit2  
Bit1  
Bit0  
AMB(3)  
AMB(2)  
AMB(1)  
AMB(0)  
Initial  
Value  
-
-
-
-
-
-
-
-
-
Bit [7:4] : (Not used)  
Bit [3:0] : AMB(3:0)  
“0000” :  
“0001” :  
“0010” :  
“0011” :  
Ambient Level  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
“0100” :  
“0101” :  
“0110” :  
“0111” :  
“1000” :  
“1001” :  
“1010” :  
“1011” :  
“1100” :  
“1101” :  
“1110” :  
“1111” :  
The data can be read through I2C.  
Refer to “Explanation 5-(6)” for detail.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
15/30  
BD60910GU  
Technical Note  
Address 0Eh~1Dh < LED Current at Ambient level 0h~Fh >  
Address  
R/W  
W
Bit7  
-
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0Eh~1Dh  
IU*(6)  
IU*(5)  
IU*(4)  
IU*(3)  
IU*(2)  
IU*(1)  
IU*(0)  
Initial  
Value  
-
Refer to “Explanation 5-(7)” for initial table  
*” means 0~F.  
Bit7 :  
(Not used)  
Bit [6:0] : IU*(6:0)  
LED Current at Ambient Level for 0h~Fh  
“0000000” :  
“0000001” :  
“0000010” :  
“0000011” :  
“0000100” :  
“0000101” :  
“0000110” :  
“0000111” :  
“0001000” :  
“0001001” :  
“0001010” :  
“0001011” :  
“0001100” :  
“0001101” :  
“0001110” :  
“0001111” :  
“0010000” :  
“0010001” :  
“0010010” :  
“0010011” :  
“0010100” :  
“0010101” :  
“0010110” :  
“0010111” :  
“0011000” :  
“0011001” :  
“0011010” :  
“0011011” :  
“0011100” :  
“0011101” :  
“0011110” :  
“0011111” :  
“0100000” :  
“0100001” :  
“0100010” :  
“0100011” :  
“0100100” :  
“0100101” :  
“0100110” :  
“0100111” :  
“0101000” :  
“0101001” :  
“0101010” :  
“0101011” :  
“0101100” :  
“0101101” :  
“0101110” :  
“0101111” :  
“0110000” :  
“0110001” :  
“0110010” :  
“0110011” :  
“0110100” :  
“0110101” :  
“0110110” :  
“0110111” :  
“0111000” :  
“0111001” :  
“0111010” :  
“0111011” :  
“0111100” :  
“0111101” :  
“0111110” :  
“0111111” :  
0.2 mA  
0.4 mA  
0.6 mA  
0.8 mA  
1.0 mA  
1.2 mA  
1.4 mA  
1.6 mA  
1.8 mA  
2.0 mA  
2.2 mA  
2.4 mA  
2.6 mA  
2.8 mA  
3.0 mA  
3.2 mA  
3.4 mA  
3.6 mA  
3.8 mA  
4.0 mA  
4.2 mA  
4.4 mA  
4.6 mA  
4.8 mA  
5.0 mA  
5.2 mA  
5.4 mA  
5.6 mA  
5.8 mA  
6.0 mA  
6.2 mA  
6.4 mA  
6.6 mA  
6.8 mA  
7.0 mA  
7.2 mA  
7.4 mA  
7.6 mA  
7.8 mA  
8.0 mA  
8.2 mA  
8.4 mA  
8.6 mA  
8.8 mA  
9.0 mA  
9.2 mA  
9.4 mA  
9.6 mA  
9.8 mA  
10.0 mA  
10.2 mA  
10.4 mA  
10.6 mA  
10.8 mA  
11.0 mA  
11.2 mA  
11.4 mA  
11.6 mA  
11.8 mA  
12.0 mA  
12.2 mA  
12.4 mA  
12.6 mA  
12.8 mA  
“1000000” : 13.0 mA  
“1000001” : 13.2 mA  
“1000010” : 13.4 mA  
“1000011” : 13.6 mA  
“1000100” : 13.8 mA  
“1000101” : 14.0 mA  
“1000110” : 14.2 mA  
“1000111” : 14.4 mA  
“1001000” : 14.6 mA  
“1001001” : 14.8 mA  
“1001010” : 15.0 mA  
“1001011” : 15.2 mA  
“1001100” : 15.4 mA  
“1001101” : 15.6 mA  
“1001110” : 15.8 mA  
“1001111” : 16.0 mA  
“1010000” : 16.2 mA  
“1010001” : 16.4 mA  
“1010010” : 16.6 mA  
“1010011” : 16.8 mA  
“1010100” : 17.0 mA  
“1010101” : 17.2 mA  
“1010110” : 17.4 mA  
“1010111” : 17.6 mA  
“1011000” : 17.8 mA  
“1011001” : 18.0 mA  
“1011010” : 18.2 mA  
“1011011” : 18.4 mA  
“1011100” : 18.6 mA  
“1011101” : 18.8 mA  
“1011110” : 19.0 mA  
“1011111” :  
19.2 mA  
“1100000” : 19.4 mA  
“1100001” : 19.6 mA  
“1100010” : 19.8 mA  
“1100011” : 20.0 mA  
“1100100” : 20.2 mA  
“1100101” : 20.4 mA  
“1100110” : 20.6 mA  
“1100111” : 20.8 mA  
“1101000” : 21.0 mA  
“1101001” : 21.2 mA  
“1101010” : 21.4 mA  
“1101011” : 21.6 mA  
“1101100” : 21.8 mA  
“1101101” : 22.0 mA  
“1101110” : 22.2 mA  
“1101111” :  
22.4 mA  
“1110000” : 22.6 mA  
“1110001” : 22.8 mA  
“1110010” : 23.0 mA  
“1110011” : 23.2 mA  
“1110100” : 23.4 mA  
“1110101” : 23.6 mA  
“1110110” : 23.8 mA  
“1110111” :  
24.0 mA  
“1111000” : 24.2 mA  
“1111001” : 24.4 mA  
“1111010” : 24.6 mA  
“1111011” :  
“1111100” :  
“1111101” :  
“1111110” :  
“1111111” :  
24.8 mA  
25.0 mA  
25.2 mA  
25.4 mA  
25.6 mA  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
16/30  
BD60910GU  
Technical Note  
Contents of “Explanation for operate”  
1. Reset  
(1) Software reset  
(2) Hardware reset  
(3) Reset sequence  
2. Thermal shutdown  
3. DC/DC for LED Driver  
4. Protection function  
(1) Over voltage protection  
(2) Over current protection  
(3) VOUT short to GND protection  
(4) VOUT open protection  
5. ALC (Auto Luminous Control) and LED Driver  
(1) ALC ON/OFF  
(2) I/V conversion  
(3) Sensor Gain control  
(4) A/D conversion  
(5) Average filter  
(6) Ambient level detection  
(7) LED current assignment  
(8) Slope process  
(9) LED current reset at mode change  
(10) Current adjustment (External PWM)  
6. I/O  
7. The unused terminal  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
17/30  
BD60910GU  
Technical Note  
Explanation for operate  
1. Reset  
There are two kinds of reset, software reset and hardware reset.  
(1) Software reset  
All the registers are initialized more than making a register (SFTRST) setup "1".  
The register of software resetting is an automatic return (Auto Return 0).  
(2) Hardware reset  
RESETB pin “H” “L” to shift hardware reset.  
Under hardware reset, all registers and output pins are initialized, and I2C access are stopped.  
RESETB pin “L” “H” to release from hardware reset  
RESETB pin has delay circuit. It doesn’t recognize as hardware reset in “L” period under 5μs.  
(3) Reset Sequence  
When hardware reset was done during software reset, software reset is canceled when  
hardware reset is canceled. (Because the initial value of software reset is “0”)  
2. Thermal shutdown  
Thermal shutdown function is effective in the following blocks.  
DC/DC  
LED Driver  
A thermal shutdown function works in about 190.  
Detection temperature has a hysteresis, and detection release temperature is about 170.  
(Design reference value)  
3. DC/DC for LED driver  
DC/DC block is designed for the power supply for LED driver.  
Start  
DC/DC circuit operates when LEDEN turns ON.  
Soft start  
Soft start function built-in to prevent rush current at start of the DC/DC.  
VBAT  
TVBATON  
TVBATOFF  
VIO  
TVIOON=min 0.1ms  
TVIOOFF=min ms  
RESETB  
LEDEN  
VOUT  
TRSTB=min 0.1ms  
TRST=min 0ms  
Soft start  
LED  
Current  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
18/30  
BD60910GU  
Technical Note  
4. Protection function  
(1) Over voltage protection  
Over Voltage Protection prevents the over-voltage of the VOUT terminal. If the VOUT voltage is over detect  
voltage, it stopping DC/DC switching. After stopping the switching, if VOUT is drop under un-detect voltage, the  
switching is re-start.  
The OVP voltage can be changed by the register.  
It is possible that an OVP voltage is set up suitably in accordance with the Vf and the number of LED that you  
use. Set it up toward an approximate goal of the following formula.  
OVP voltage (LED number) x (LED Vf max) +1 [V]  
(2) Over current protection  
Switching Overcurrent detection is done by the resistance arranged under the switching Tr. If it detect over  
current level, it is stopping DC/DC switching. Switching begins again when a state of over-current is canceled.  
(3) VOUT short to GND protection  
The detection of a state of ground short of the VOUT terminal.  
DC/DC switching does stop at the time of the detection. Switching begins again when a state of detection is  
canceled.  
(4) VOUT open protection  
The detection of a state of Open of the VOUT terminal.  
DC/DC switching does stop at the time of the detection. Switching begins again when a state of detection is  
canceled.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
19/30  
BD60910GU  
Technical Note  
5. The explanation of ALC (Auto Luminous Control)  
LCD backlight current adjustment is possible in the basis of ambient brightness by external sensor.  
• Extensive selection of the ambient light sensors (Photo Diode, Photo Transistor, Photo IC(linear)) is  
possible by built-in adjustment feature of Sensor bias, ADC with average filter and logarithm conversion.  
• Ambient brightness is changed into ambient level by digital data processing, and it can be read through I2C I/F.  
• Register setting can customize a conversion to LED current. (Initial value is pre-set.)  
• Natural dimming of LED driver is possible with the adjustment of the current transition speed.  
Usually ON / intermittent  
PWM enabling  
Output Voltage  
WPWMIN  
SBIAS  
ADC  
SBIAS  
Conversion  
Table  
Slope Timer  
Mode Select  
LCD  
BackLight  
LED*  
LIN/LOG  
Average  
Sensor  
Slope  
Data  
Current  
SSENS  
Logarithmic Conv.  
Ambient Level detect  
process  
Correction  
Conversion  
Main Group  
LED Driver  
GC1  
GC2  
Gain  
Control  
Main current setting  
Sensor Gain Control  
Ambient Level  
ALC  
LED control  
* Wave form in this explanation just shows operation image, not shows absolute value precisely.  
(1) Auto Luminous Control ON/OFF  
ALC block can be independent setting ON/OFF.  
It can use only to measure the Ambient level.  
Register : ALCEN  
Register : LEDEN  
Register : LEDMD  
Refer to under about the associate ALC mode and LED current.  
ALCEN  
LEDEN  
LEDMD  
ALC  
LED control  
OFF  
Mode  
OFF  
LED current  
0
0
0
1
1
1
0
1
1
0
1
1
0
OFF  
ILED(6:0)  
IU0(6:0) (*1)  
OFF  
OFF  
Resister  
mode  
( AMB(3:0)=0h )  
ON  
OFF  
ON  
1
0
ON  
ALC mode  
ILED(6:0)  
ALC mode (*2)  
1
(*1) LED current is selected IU0(6:0), because of ALC is OFF, AMB(3:0)=0h.  
(*2) LED current is selected IU0(6:0)~IUF(6:0) corresponding to each ambient level.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
20/30  
BD60910GU  
Technical Note  
(2) I/V conversion  
The bias voltage and external resistance for the I-V conversion (Rs)  
are adjusted with adaptation of sensor characteristic  
The bias voltage is selectable by register setup.  
Register : VSB  
“0” : SBIAS output voltage 3.0V  
“1” : SBIAS output voltage 2.6V  
Ambient  
SBIAS  
SBIAS  
SSENS voltage  
VCC  
VSSENS  
Rs is large  
Iout  
Sensor IC  
A/D  
IOUT  
SSENS  
SGND  
GND  
Rs  
Rs is small  
Rs : Sense resistance (A sensor output current is changed into the voltage value.)  
SBIAS : Bias power supply terminal for the sensor (3.0V / 2.6V by register setting)  
SSENS : Sense voltage input terminal  
Ambient  
SSENS Voltage = Iout x Rs  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
21/30  
BD60910GU  
Technical Note  
(3) Sensor Gain control  
Sensor gain switching function is built in to extend the dynamic range.  
It is controlled by register setup.  
When automatic gain control is off, the gain status can be set up  
in the manual.  
High Gain mode  
Register : GAIN(1:0)  
GC1 and GC2 are outputted corresponding to each gain status.  
Low Gain mode  
Ambient  
Auto Gain mode  
Ambient  
Example 1 (Use BH1600FVC)  
Example 2  
Example 3  
SBIAS  
SBIAS  
SBIAS  
SSENS  
VCC  
SSENS  
IOUT  
SSENS  
Application  
example  
BH1600  
GC1  
GC1  
GC1  
GC1  
GC2  
GC2  
GC2  
GC2  
GND  
SGND  
SGND  
SGND  
Resister values are relative  
Manual  
Manual  
Operating mode  
Auto  
00  
Auto  
Fixed  
High  
01  
Low  
10  
High  
01  
Low  
10  
GAIN(1:0) setting  
Gain status  
00  
11  
-
High Low High  
L
Low High Low High  
Low  
L
GC1 output  
L
L
GC2 output  
L
L
L
L
L
: This means that it becomes High with A/D measurement cycle synchronously.  
(*1) : Set up the relative ratio of the resistance in the difference in the brightness change of the High Gain mode and the Low Gain mode carefully.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
22/30  
BD60910GU  
Technical Note  
(4) A/D conversion  
The detection of ambient data is done periodically for the low power.  
SBIAS and ADC are turned off except for the ambient measurement.  
The sensor current may be shut in this function, it can possible to decrease the current consumption.  
SBIAS pin and SSENS pin are pull-down in internal when there are OFF.  
SBIAS circuit has the two modes. (Usually ON mode or intermittent mode)  
Register : ADCYC(1:0)  
Register : SBIASON  
16 times  
ALCEN  
ADCYC(1:0)  
ADC Cycle  
SBIAS Output  
(Wait time)  
Twait= 64ms(typ)  
When SBIASON=1  
ADC Movement  
GC1, GC2  
TAD= 16.4ms(typ)  
(A/D conversion time)  
AD start signal  
GC1, GC2=00  
TADone= 1.024ms(typ)  
16 times measurement  
AMB(3:0)  
AMB(3:0)  
Toprt= 80.4ms(typ)  
(Operate time)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
23/30  
BD60910GU  
Technical Note  
(5) Average filter  
Average filter is built in to rid noise or flicker.  
16 times averaging.  
(6) Ambient level detection  
Averaged A/D value is converted to Ambient level corresponding to Gain control and sensor type.  
Ambient level is judged to rank of 16 steps by ambient data.  
The type of ambient light sensor can be chosen by register.  
(Linear type sensor / Logarithm type sensor)  
Register : STYPE  
“0” : For Linear sensor  
“1” : For Log sensor  
Ambient level is output through I2C.  
Register : AMB(3:0)  
STYPE  
0
10  
1
GAIN(1:0)  
00  
01  
11  
XX  
Gain  
Status  
Auto Low  
Auto High  
Manual Low  
Manual High  
Fixed  
Fixed  
Ambient  
level  
SSENS voltage  
VoS×0256  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
VoS×0256  
VoS×1256  
VoS×2256  
VoS×0256  
VoS×1256  
VoS×2256  
VoS×0256  
VoS×1256  
VoS×2256  
VoS×17256  
VoS×18256  
VoS×26256  
VoS×27256  
VoS×36256  
VoS×37256  
VoS×47256  
VoS×48256  
VoS×59256  
VoS×60256  
VoS×71256  
VoS×72256  
VoS×83256  
VoS×84256  
VoS×95256  
VoS×96256  
VoS×107256  
VoS×108256  
VoS×119256  
VoS×120256  
VoS×131256  
VoS×132256  
VoS×143256  
VoS×144256  
VoS×155256  
VoS×156256  
VoS×168256  
VoS×169256  
VoS×181256  
VoS×182256  
VoS×255256  
This area is  
not assigned.  
This area is  
not assigned.  
VoS×3256  
VoS×4256  
VoS×5256  
VoS×7256  
VoS×8256  
VoS×12256  
VoS×13256  
VoS×21256  
VoS×22256  
VoS×37256  
VoS×38256  
VoS×65256  
VoS×66256  
VoS×113256  
VoS×114256  
VoS×199256  
VoS×200256  
VoS×255256  
VoS×3256  
VoS×4256  
VoS×5256  
VoS×7256  
VoS×8256  
VoS×12256  
VoS×13256  
VoS×21256  
VoS×22256  
VoS×37256  
VoS×38256  
VoS×65256  
VoS×66256  
VoS×113256  
VoS×114256  
VoS×199256  
VoS×200256  
VoS×255256  
VoS×3256  
VoS×4256  
VoS×5256  
VoS×6256  
VoS×7256  
VoS×9256  
VoS×10256  
VoS×13256  
VoS×14256  
VoS×19256  
VoS×20256  
VoS×27256  
VoS×28256  
VoS×38256  
VoS×39256  
VoS×53256  
VoS×54256  
VoS×74256  
VoS×75256  
VoS×104256  
VoS×105256  
VoS×144256  
VoS×145256  
VoS×199256  
VoS×200256  
VoS×255256  
VoS×0256  
VoS×1256  
VoS×0256  
VoS×1256  
VoS×2256  
VoS×3256  
VoS×4256  
VoS×6256  
VoS×7256  
VoS×11256  
VoS×12256  
VoS×20256  
VoS×21256  
VoS×36256  
VoS×37256  
VoS×64256  
VoS×65256  
VoS×114256  
VoS×115256  
VoS×199256  
VoS×200256  
VoS×255256  
VoS×2256  
VoS×3256  
VoS×4256  
VoS×6256  
VoS×7256  
VoS×11256  
VoS×12256  
VoS×20256  
VoS×21256  
VoS×36256  
VoS×37256  
VoS×64256  
VoS×65256  
VoS×114256  
VoS×115256  
VoS×199256  
VoS×200256  
VoS×255256  
This area is  
not assigned.  
This area is  
not assigned.  
In the Auto Gain control mode, sensor gain changes in gray-colored ambient level.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
24/30  
BD60910GU  
Technical Note  
(7) LED current assignment  
LED current can be assigned as each of 16 steps of the ambient level.  
Register setting can customize a conversion to LED current. (Initial  
value is pre-set.)  
Register : IU*(6:0)  
Conversion table  
can be changed  
Ambient Level  
Conversion Table (initial value)  
Ambient  
Level  
Ambient  
Level  
Setting data  
Current value  
Setting data  
Current value  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
11h  
13h  
15h  
18h  
1Eh  
25h  
2Fh  
3Bh  
3.6mA  
4.0mA  
4.4mA  
5.0mA  
6.2mA  
7.6mA  
9.6mA  
12.0mA  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
48h  
56h  
5Fh  
63h  
63h  
63h  
63h  
63h  
14.6mA  
17.4mA  
19.2mA  
20.0mA  
20.0mA  
20.0mA  
20.0mA  
20.0mA  
(8) Slope process  
Slope process is given to LED current to dim naturally.  
LED current changes in the 256Step gradation in sloping.  
LED setting data  
LED Current  
Up(darkbright),Down(brightdark) LED current transition speed  
are set individually.  
Register : THL(3:0)  
Register : TLH(3:0)  
THL  
(3:0)  
LED current changes as follows at the time as the slope.  
TLH (THL) is setup of time of the current step 2/256.  
TLH(3:0)  
Up/Down  
transition  
spe  
ed is set  
individually  
TLH  
time  
Zoom  
25.6mA  
256  
THL  
=0.1mA  
TLH(3:0)  
time  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
25/30  
BD60910GU  
Technical Note  
(9) LED current reset when mode change  
Selectable the way to sloping at mode change.  
(ALCResister)  
Resister  
mode  
Resister  
mode  
ALC  
mode  
Register : MDCIR  
ILED(6:0)  
ILED(6:0)  
“0” : LED current non-reset at mode change  
“1” : LED current reset at mode change  
IU*(6:0)  
MDCIR= “0”  
0mA  
time  
Resister  
mode  
ALC  
mode  
Resister  
mode  
ILED(6:0)  
ILED(6:0)  
IU*(6:0)  
MDCIR= “1”  
0mA  
time  
(10) Current adjustment (External PWM)  
PWM drive by the external terminal (WPWMIN) is possible with permission by the register setting.  
Register : WPWMEN  
It is suitable for the intensity correction by external control,  
because PWM based on LED current of register setup or ALC control.  
WPWMIN  
WPWMEN  
LED current  
PWM input invalid  
PWM input valid  
(External input)  
0
0
1
1
L
H
L
ON  
ON  
Forced OFF  
ON  
H
L E D E N  
S oft start  
V O U T  
W P W M IN  
W P W M E N  
L E D C urrent  
WPWMIN input before LEDEN=1 is enable.  
Setting PWMEN=1 before LEDEN=1 is enable.  
PWM control is effective at the LED current rises up.  
PWM “H” pulse width must be more than 50μs.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
26/30  
BD60910GU  
Technical Note  
6. The explanation of I/O  
When the RESETB pin ”L”, the input buffers (SDA and SCL) are disabling for the low consumption power.  
RESETB=L  
Output “H”  
SCL  
SDA  
LOGIC  
EN  
RESETB  
7. The unused terminal  
Set up of the unused terminal is follows.  
T1, T4 : Short to ground  
T2, T3 : Open  
GC1, GC2 : Open  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
27/30  
BD60910GU  
Technical Note  
Notes for use  
(1) Absolute Maximum Ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc.,  
can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If  
any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical  
safety measures including the use of fuses, etc.  
(2) Power supply and ground line  
Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay attention  
to the interference by common impedance of layout pattern when there are plural power supplies and ground lines.  
Especially, when there are ground pattern for small signal and ground pattern for large current included the external  
circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between  
the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the  
characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low  
temperature, thus determining the constant.  
(3) Ground voltage  
Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state.  
Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric  
transient.  
(4) Short circuit between pins and erroneous mounting  
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting  
can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between  
the pin and the power supply or the ground pin, the ICs can break down.  
(5) Operation in strong electromagnetic field  
Be noted that using ICs in the strong electromagnetic field can malfunction them.  
(6) Input pins  
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the  
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of  
the input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage  
lower than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to  
the input pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is  
applied, apply to the input pins a voltage lower than the power supply voltage or within the guaranteed value of  
electrical characteristics.  
(7) External capacitor  
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a  
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.  
(8) Thermal shutdown circuit (TSD)  
This LSI builds in a thermal shutdown (TSD) circuit. When junction temperatures become detection temperature or  
higher, the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at  
isolating the LSI from thermal runaway as much as possible, is not aimed at the protection or guarantee of the LSI.  
Therefore, do not continuously use the LSI with this circuit operating or use the LSI assuming its operation.  
(9) Thermal design  
Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in  
actual states of use.  
(10) About the pin for the test, the un-use pin  
Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a  
function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our  
company person in charge.  
(11) About the rush current  
For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal  
powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring,  
width of ground wiring, and routing of wiring.  
(12) About the function description or application note or more.  
The function description and the application notebook are the design materials to design a set. So, the contents of the  
materials aren't always guaranteed. Please design application by having fully examination and evaluation include the  
external elements.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
28/30  
BD60910GU  
Technical Note  
Power dissipation (On the ROHM’s Power dissipation measuring board)  
1.6  
1.4  
1250mW  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0
25  
50  
75  
100  
125  
150  
Ta(℃)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
29/30  
BD60910GU  
Ordering part number  
B D  
Technical Note  
6
0
9
1
0
G U  
-
E
2
Part No.  
Part No.  
Package  
Packaging and forming specification  
E2: Embossed tape and reel  
GU: VCSP85H3  
VCSP85H3 (BD60910GU)  
<Tape and Reel information>  
Tape  
Embossed carrier tape (heat sealing method)  
1PIN MARK  
Quantity  
2500pcs  
E2  
Direction  
of feed  
3.00 0.05  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
S
0.06  
S
φ
24- 0.30 0.05  
0.05  
A B  
A
E
D
C
B
B
φ
(
0.15)INDEX POST  
A
1
2 3 4 5  
Direction of feed  
1pin  
0.50 0.05  
P=0.5×4  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.07 - Rev.B  
30/30  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
R1120  
A

相关型号:

BD60910GU_11

White backlight LED Drivers for Small to Medium LCD Panels (Switching Regulator Type)
ROHM

BD6091GU

Silicon Monolithic Integrated Circuit
ROHM

BD6091GU_11

Silicon Monolithic Integrated Circuit
ROHM

BD6092GU

Silicon Monolithic Integrated Circuit
ROHM

BD6092GU-E2

Analog Circuit, 1 Func, PBGA24, 2.80 X 2.80 MM, 0.50 MM PITCH, ROHS COMPLIANT, VCSP85H2-24
ROHM

BD6095GU

Mulitifunction Backlight LED Driver for Small LCD Panels (Charge Pump Type)
ROHM

BD6095GUL

Silicon Monolithic Integrated Circuit
ROHM

BD6095GUL_11

Mulitifunction Backlight LED Driver for Small LCD Panels (Charge Pump Type)
ROHM

BD60A00NUX

White Backlight LED Drivers for Small to Medium LCD Panels (Switching Regulator Type)
ROHM

BD60A00NUX-TR

White Backlight LED Drivers for Small to Medium LCD Panels (Switching Regulator Type)
ROHM

BD60A00NUX_12

White LED Driver
ROHM

BD60A00NUX_13

White LED Driver With PWM Brightness Control
ROHM