BD91N01NUX [ROHM]

BD91N01NUX是一款Sink侧端口用IC,搭载了USB Type-C插头方向检测、插拔检测和USB Type-C电流判断功能。具有Pch-MOSFET开关控制功能,可保护后置系统侧电路免受VBUS过压和欠压影响。;
BD91N01NUX
型号: BD91N01NUX
厂家: ROHM    ROHM
描述:

BD91N01NUX是一款Sink侧端口用IC,搭载了USB Type-C插头方向检测、插拔检测和USB Type-C电流判断功能。具有Pch-MOSFET开关控制功能,可保护后置系统侧电路免受VBUS过压和欠压影响。

开关
文件: 总21页 (文件大小:1392K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
USB Type-C Sink Port Detection and  
Protection IC  
BD91N01NUX  
General Description  
Key Specifications  
BD91N01NUX integrates USB Type-C CC detection  
including plug attach, detach, orientation and current  
value for power sink side port.  
VBUS Voltage Range:  
VDDIO Voltage Range:  
VBUS, CC Pin Tolerance Voltage:  
Operation Temperature Range:  
4.0 V to 5.5 V  
1.7 V to 5.5 V  
28 V  
-30 °C to +85 °C  
The Pch-MOSFET switch control function protects next  
stage system side circuit from VBUS over voltage and  
under voltage.  
Package  
VSON010X3020  
W (Typ) x D (Typ) x H (Max)  
3.00 mm x 2.00 mm x 0.60 mm  
Features  
USB Type-C Specification 1.0 to 1.3 Support  
USB Type-C Plug Attach and Detach Detection  
USB Type-C Plug Orientation Detection  
USB Type-C Current Detection  
VBUS Over Voltage and Under Voltage Protection  
Direct VBUS Power Supply Operation Support  
Dead-battery Operation Support  
Integrated Rd Resistor  
Applications  
USB Type-C Power Sink/UFP Side Equipment:  
Printer, Scanner, Electric Cigarette, AI Speaker, Camera  
Typical Application Circuit  
VBUS  
VSRC  
VB  
SWDRV  
VDDIO  
IO Power  
HOST I/F  
USB  
Type-C  
SWMONI  
CC1  
CC2  
CC1  
CC2  
BD91N01NUX  
Receptacle  
ORIENT  
TCC0  
TCC1  
GND  
GND  
GND  
Product structure: Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
TSZ02201-0232AH500730-1-2  
07.Jun.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
1/18  
TSZ22111 14 001  
 
 
 
 
 
 
BD91N01NUX  
Contents  
General Description ................................................................................................................................................................1  
Features.................................................................................................................................................................................1  
Applications............................................................................................................................................................................1  
Key Specifications...................................................................................................................................................................1  
Package.................................................................................................................................................................................1  
Typical Application Circuit........................................................................................................................................................1  
Contents.................................................................................................................................................................................2  
Pin Configuration ....................................................................................................................................................................3  
Pin Descriptions......................................................................................................................................................................3  
Block Diagram ........................................................................................................................................................................3  
Description of Blocks...............................................................................................................................................................4  
Absolute Maximum Ratings.....................................................................................................................................................5  
Thermal Resistance................................................................................................................................................................5  
Recommended Operating Conditions ......................................................................................................................................6  
Electrical Characteristics.........................................................................................................................................................6  
Typical Performance Curves....................................................................................................................................................7  
Figure 1. Supply Current vs VDDIO Voltage .........................................................................................................................7  
Figure 2. TCC Detection Results vs CC Voltage....................................................................................................................7  
Figure 3. RD Resistance vs CC Voltage ................................................................................................................................7  
Timing Chart...........................................................................................................................................................................8  
Figure 4. Plug Attached Timing Chart ...................................................................................................................................8  
Figure 5. Plug Detached Timing Chart..................................................................................................................................9  
Figure 6. VBUS Over Voltage Detection Timing Chart.........................................................................................................10  
Figure 7. I/O Output Timing Chart....................................................................................................................................... 11  
Application Example..............................................................................................................................................................12  
Selection of Components Externally Connected .....................................................................................................................12  
I/O Equivalence Circuits........................................................................................................................................................13  
Operational Notes.................................................................................................................................................................14  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Reverse Connection of Power Supply ......................................................................................................................14  
Power Supply Lines.................................................................................................................................................14  
Ground Voltage.......................................................................................................................................................14  
Ground Wiring Pattern.............................................................................................................................................14  
Recommended Operating Conditions.......................................................................................................................14  
Inrush Current.........................................................................................................................................................14  
Testing on Application Boards..................................................................................................................................14  
Inter-pin Short and Mounting Errors .........................................................................................................................15  
Unused Input Pins...................................................................................................................................................15  
Regarding the Input Pin of the IC.............................................................................................................................15  
Ceramic Capacitor...................................................................................................................................................15  
9.  
10.  
11.  
Ordering Information.............................................................................................................................................................16  
Marking Diagram...................................................................................................................................................................16  
Physical Dimension and Packing Information.........................................................................................................................17  
Revision History....................................................................................................................................................................18  
www.rohm.com  
TSZ02201-0232AH500730-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
2/18  
TSZ22111 15 001  
07.Jun.2019 Rev.001  
 
BD91N01NUX  
Pin Configuration  
(TOP VIEW)  
VB  
1
10 VDDIO  
SWDRV 2  
9
8
7
6
SWMONI  
ORIENT  
TCC0  
CC1  
CC2  
GND  
3
4
5
EXP-PAD  
TCC1  
Pin Descriptions  
Pin No.  
Pin Name  
VB  
Description  
1
2
3
Power supply from VBUS  
Pch-MOSFET switch driver output  
USB Type-C configuration channel 1  
USB Type-C configuration channel 2  
Ground  
SWDRV  
CC1  
4
5
CC2  
GND  
6
TCC1  
USB Type-C current detection result data 1  
USB Type-C current detection result data 0  
USB Type-C plug orientation detection result  
Pch-MOSFET control state output  
Power supply for I/O  
7
TCC0  
8
ORIENT  
SWMONI  
VDDIO  
EXP-PAD  
9
10  
-
The EXP-PAD is connected to GND.  
Block Diagram  
VB  
SWDRV  
VDDIO  
VBUS  
SWMONI  
Over Voltage  
Under Voltage  
Protection  
POWER  
I/Os  
ORIENT  
TCC0  
CC1  
CC2  
CC  
Detection  
CONTROL  
TCC1  
GND  
www.rohm.com  
TSZ02201-0232AH500730-1-2  
07.Jun.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
3/18  
TSZ22111 15 001  
BD91N01NUX  
Description of Blocks  
(CC Detection)  
The CC pin has a built-in pull-down resistor Rd to connect to the USB Type-C Source device.  
When the Source side is connected to the CC pin, a divided voltage is generated at the CC pin by the pull-up resistor  
(current source) on the Source side. With this voltage, the IC detects plug insertion (USB Type-C Plug Attach state), plug  
orientation, and USB Type-C Source side current type (USB Default, USB Type-C 1.5 A, USB Type-C 3.0 A).  
CC1 Pin  
< 0.15 V  
CC2 Pin  
< 0.15 V  
Detection State  
Pch-MOSFET  
OFF  
ORIENT  
TCC1  
TCC0  
USB Type-C Plug Detach  
“L”  
“L”  
“L”  
CC1 connection,  
USB Default  
USB Default  
“L”  
“H”  
“H”  
“L”  
“H”  
“H”  
“H”  
“L”  
“H”  
“H”  
“L”  
“H”  
USB Type-C  
1.5 A  
USB Type-C  
3.0 A  
CC1 connection,  
USB Type-C 1.5 A  
CC1 connection,  
USB Type-C 3.0 A  
CC2 connection,  
USB Default  
CC2 connection,  
USB Type-C 1.5 A  
CC2 connection,  
USB Type-C 3.0 A  
< 0.15 V  
“L”  
ON  
USB Default  
USB Type-C  
1.5 A  
USB Type-C  
3.0 A  
< 0.15 V  
“H”  
When the CC pin voltage is following case, it detects as abnormal condition.  
CC1 Pin  
CC2 Pin  
Detection State  
Connection of a product breaking  
the USB Type-C standard  
Pch-MOSFET  
OFF  
ORIENT  
TCC1  
TCC0  
0.25 V to 2.18 V 0.25 V to 2.18 V  
“L”  
“L”  
“L”  
> 2.5 V  
-
-
Abnormality  
of  
the  
pull-up  
> 2.5 V  
resistance value at the DFP side  
(VBUS Over Voltage, Under Voltage Protection)  
When the IC detects a VBUS over voltage, the SWDRV pin outputs a high and turns off the external Pch-MOSFET switch.  
If the over voltage detection state continues for a fixed period of time, the switch off state is latched. The latch state lasts  
until the VBUS voltage falls below the UVLO detection voltage and IC is reset.  
If the over voltage detection state does not continue for a fixed period of time, the switch off state automatically recovers.  
The SWDRV pin is a driver output for external Pch-MOSFET switch. The SWMONI pin outputs the state of the driver.  
The SWDRV pin is decided in a state of the CC pin when the IC is booted up by supply of VB. It does not be OFF even if  
the condition becomes OFF condition once after it is turned on.  
SWDRV Pin Output  
“H” (VBUS Voltage)  
“L” (GND Voltage)  
Pch-MOSFET Switch State  
SWMONI Pin Data  
OFF  
ON  
“L”  
“H”  
www.rohm.com  
TSZ02201-0232AH500730-1-2  
07.Jun.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
4/18  
TSZ22111 15 001  
BD91N01NUX  
Absolute Maximum Ratings (Ta = 25 °C)  
Parameter  
Symbol  
Rating  
Unit  
VBUS Input Range (VB Pin)  
GND Input Range  
VB  
VG  
-0.3 to +28.0  
0
V
V
VDDIO Input Range  
VDDIO  
VSWD  
VCC  
-0.3 to +7.0  
-0.3 to +28.0  
-0.3 to +28.0  
-0.3 to +7.0  
150  
V
SWDRV Pin Voltage  
V
CC1/CC2 Pin voltage  
Others Pins  
V
VMAX  
Tjmax  
Tstg  
V
Maximum Junction Temperature  
°C  
Storage Temperature Range  
-55 to +150  
°C  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
Thermal Resistance(Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
VSON010X3020  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
274.8  
31  
39.4  
6
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A (Still-Air).  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70 μm  
Layer Number of  
Measurement Board  
Thermal Via(Note 5)  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
1.20 mm  
Φ0.30 mm  
Top  
Copper Pattern  
Bottom  
Thickness  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
Footprints and Traces  
70 μm  
74.2 mm x 74.2 mm  
35 μm  
74.2 mm x 74.2 mm  
70 μm  
(Note 5) This thermal via connects with the copper pattern of all layers.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0232AH500730-1-2  
07.Jun.2019 Rev.001  
5/18  
BD91N01NUX  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VBUS Input Voltage (VB Pin)  
VDDIO Input Voltage  
VB  
4.0  
1.7  
-30  
5.0  
3.3  
5.5  
5.5  
V
V
VDDIO  
Topr  
Operating Temperature  
+25  
+85  
°C  
Electrical Characteristics  
(Unless otherwise specified VB = 5.0 V, VDDIO = 3.3 V, Ta = 25 °C)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Condition  
ICC  
VDDIO ICC  
VB ICC  
IDDIO  
IB  
-
-
-
15  
-
μA  
μA  
-
-
125  
VBUS Voltage Detection (VB)  
VBUS Detection Voltage  
VUVREL  
VUVDET  
VOVDET  
-
-
-
3.67  
-
V
V
V
UVLO release  
UVLO detect  
VBUS UVLO Voltage  
2.95  
6.0  
VBUS Over Voltage Detection  
6.7  
7.0  
-
CC Pin Detection (CC1, CC2)  
Power Source Attached Detection  
Voltage Range  
VRPDET  
VCDEF  
VC15  
0.25  
0.25  
0.70  
-
-
-
2.18  
0.61  
1.16  
V
V
V
-
-
-
-
Type-C Current @USB Default  
Detection Voltage Range  
Type-C Current @1.5 A  
Detection Voltage Range  
Type-C Current @3.0 A  
Detection Voltage Range  
CC Pin Resistance Rd  
SWDRV Characteristic  
H Level Output Voltage  
L Level Output Voltage  
VC30  
RD  
1.31  
4.59  
-
2.04  
5.61  
V
5.10  
kΩ  
IL = 0.2 mA  
VOHSW  
VOLSW  
4.75  
-
-
-
-
V
V
IL = +1 mA  
IL = -1 mA  
0.12  
I/O Characteristic (SWMONI, ORIENT, TCC1, TCC0)  
H Level Output Voltage  
L Level Output Voltage  
VOH  
VOL  
2.805  
-
-
-
-
V
V
IL = +100 μA  
IL = -100 μA  
0.3  
TCC Detection Removal Pulse  
Width  
tF  
100  
-
500  
μs  
-
www.rohm.com  
TSZ02201-0232AH500730-1-2  
07.Jun.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
6/18  
TSZ22111 15 001  
BD91N01NUX  
Typical Performance Curves  
50  
Ta = 25 °C  
3
2
1
0
40  
30  
20  
10  
0
1
2
3
4
5
6
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
VDDIO Voltage [V]  
CC Voltage [V]  
Figure 1. Supply Current vs VDDIO Voltage  
Figure 2. TCC Detection Results vs CC Voltage  
(TCC Detection Results:  
0: Non-Connection, 1: Default, 2: 1.5 A, 3: 3.0 A)  
7
6
5
4
3
Ta = 25 °C  
0.2  
0.6  
1.0  
1.4  
1.8  
2.2  
2.6  
3.0  
CC Voltage [V]  
Figure 3. RD Resistance vs CC Voltage  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0232AH500730-1-2  
07.Jun.2019 Rev.001  
7/18  
BD91N01NUX  
Timing Chart  
Plug Attached  
CC1  
CC2  
VBUS  
5 V  
3.67 V  
0 V  
3.3 V  
VDDIO  
t1  
ORIENT  
TCC[1:0]  
SWDRV  
SWMONI  
VSRC  
“L”  
“L”  
USB Type-C Current  
00 b  
“OFF”  
“L”  
“OFF”  
“ON”  
“H”  
t2  
5 V  
0 V  
Figure 4. Plug Attached Timing Chart  
Parameter  
Symbol  
Min  
Typ  
Max  
12  
Unit  
ms  
Detection Data Invalid Time  
SWDRV Turn on Time  
t1  
t2  
-
-
-
-
10  
ms  
www.rohm.com  
TSZ02201-0232AH500730-1-2  
07.Jun.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
8/18  
TSZ22111 15 001  
BD91N01NUX  
Timing Chart continued  
Plug Detached  
CC1  
CC2  
5 V  
3.1 V  
VBUS  
VDDIO  
3.3 V  
ORIENT  
TCC[1:0]  
SWDRV  
SWMONI  
VSRC  
“L”  
“L”  
00 b  
“OFF”  
“ON”  
“H”  
“L”  
5 V  
Figure 5. Plug Detached Timing Chart  
www.rohm.com  
TSZ02201-0232AH500730-1-2  
07.Jun.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
9/18  
TSZ22111 15 001  
BD91N01NUX  
Timing Chart continued  
Plug Attached  
CC1  
CC2  
6.7 V  
5 V  
VBUS  
0 V  
t3  
3.3 V  
VDDIO  
ORIENT  
TCC[1:0]  
SWDRV  
SWMONI  
VSRC  
“L”  
USB Type-C Current  
00 b  
“OFF”  
“L”  
00 b  
“OFF”  
“OFF”  
“OFF”  
“ON”  
“H”  
“ON”  
“H”  
“L”  
“L”  
5 V  
0 V  
Figure 6. VBUS Over Voltage Detection Timing Chart  
Parameter  
Auto Recovery Pulse Width(Note 6)  
Symbol  
t3  
Min  
-
Typ  
-
Max  
10  
Unit  
μs  
(Note 6) When VBUS Over Voltage Detection period is shorter than this, the Pch-MOSFET switch is turned on again.  
www.rohm.com  
TSZ02201-0232AH500730-1-2  
07.Jun.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
10/18  
TSZ22111 15 001  
BD91N01NUX  
Timing Chart continued  
Plug Attached  
CC1  
CC2  
5 V  
VBUS  
0 V  
0 V  
3.3 V  
VDDIO  
ORIENT  
TCC[1:0]  
SWDRV  
SWMONI  
VSRC  
0.9 V  
“L”  
USB Type-C Current  
00 b  
“OFF”  
“L”  
“OFF”  
tF  
“ON”  
“H”  
5 V  
0 V  
Figure 7. I/O Output Timing Chart  
www.rohm.com  
TSZ02201-0232AH500730-1-2  
07.Jun.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
11/18  
TSZ22111 15 001  
BD91N01NUX  
Application Example  
VBUS  
VSRC  
C3  
C4  
Q1  
C1  
VB  
SWDRV  
VDDIO  
IO Power  
USB  
Type-C  
C2  
CC1  
CC2  
CC1  
CC2  
SWMONI  
ORIENT  
TCC0  
Receptacle  
BD91N01NUX  
HOST I/F  
TCC1  
GND  
GND  
GND  
Selection of Components Externally Connected  
(Q1)  
Use Pch-MOSFET having tolerance voltage between the source gate more than the expected maximum abnormal VBUS voltage.  
Connect the source pin to the USB Type-C receptacle VBUS side so that VBUS current does not pass through the parasitic diode.  
When backflow by parasitic diode from the VSRC side to VBUS is an issue, use two Q1 in a reverse direction each other.  
VBUS current of up to 3 A passes through Q1. Therefore, use Pch-MOSFET of the low ON-Resistance(RON).  
(C1, C2)  
Some sort of noise can occur and be a problem if the wiring between VBUS and the VB pin and between IO Power and the  
VDDIO pin become long. In this case, connect a power supply by-pass capacitor which has appropriate value of C1 and C2  
against to the noise.  
(C3)  
If the IC is connected to a Power Adapter corresponds to the USB Type-C Power Delivery (USBPD), capacitance of the sink port  
until connection complete (PD contract) is limited to 10 μF or less in the USBPD Adaptor stipulation. Therefore, be careful about  
the sum total of C1 and C3 value.  
(C4)  
If the IC is connected to a Power Adapter corresponds to the USB Type-C Power Delivery (USBPD), capacitance of the sink port  
until connection complete (PD contract) is limited to 100 μF or less in the USBPD Adaptor stipulation. Therefore, be careful about  
the sum total of C1, C3 and C4 value.  
www.rohm.com  
TSZ02201-0232AH500730-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
12/18  
TSZ22111 15 001  
07.Jun.2019 Rev.001  
BD91N01NUX  
I/O Equivalence Circuits  
Pin No.  
Pin Name  
Equivalent Circuit Diagram  
VB  
SWDRV  
1
2
VB  
SWDRV  
GND GND GND  
CC1  
CC2  
3
4
5
CC1  
CC2  
GND  
GND  
GND  
VDDIO  
TCC1  
TCC0  
ORIENT  
SWMONI  
6
7
8
9
10  
TCC1  
TCC0  
ORIENT  
SWMONI  
VDDIO  
GND GND  
www.rohm.com  
TSZ02201-0232AH500730-1-2  
07.Jun.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
13/18  
TSZ22111 15 001  
BD91N01NUX  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the  
electrical characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring,  
and routing of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions  
during transport and storage.  
www.rohm.com  
TSZ02201-0232AH500730-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
14/18  
TSZ22111 15 001  
07.Jun.2019 Rev.001  
BD91N01NUX  
Operational Notes continued  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result  
in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
www.rohm.com  
TSZ02201-0232AH500730-1-2  
07.Jun.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
15/18  
TSZ22111 15 001  
BD91N01NUX  
Ordering Information  
B D 9 1 N 0 1 N  
U X -  
E 2  
Part Number  
Package  
NUX: VSON010X3020  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
VSON010X3020 (TOP VIEW)  
Part Number Marking  
LOT Number  
B D 9 1  
N 0 1 1  
Pin 1 Mark  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0232AH500730-1-2  
07.Jun.2019 Rev.001  
16/18  
BD91N01NUX  
Physical Dimension and Packing Information  
Package Name  
VSON010X3020  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0232AH500730-1-2  
07.Jun.2019 Rev.001  
17/18  
BD91N01NUX  
Revision History  
Date  
Revision  
001  
Changes  
07.Jun.2019  
New Release  
www.rohm.com  
TSZ02201-0232AH500730-1-2  
07.Jun.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
18/18  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.) ; or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD9202EFS

White backlight LED drivers for medium to large LCD panels (SWREG type)
ROHM

BD9203EFV

Silicon Monolithic Integrated Circuit
ROHM

BD9204F

Silicon Monolithic Integrated Circuit
ROHM

BD9206EFV

Simple Structure Constant Current Backlight Driver for LCD panels (Non-step type)
ROHM

BD9206EFV-E2

Liquid Crystal Driver, 6-Segment, PDSO20, 6.50 X 6.40 MM, 0.85 MM HEIGHT, ROHS COMPLIANT, TSSOP-20
ROHM

BD9207FPS

Step-down type with 1.5A output
ROHM

BD92111F

BD92111F是PFC直接连接的电流共振型LED驱动器。LED电流通过频率控制。应用可直接连接PFC,可使用半桥结构。因此可减少外接部件的数量。BD92111F中内置了应对异常状态的几种保护功能。过电压保护 (OVP : over voltage protection), LED开路检测 (IS Low检测) 等。
ROHM

BD92111F-E2

LED Driver
ROHM

BD92111F-GE2

LED Driver,
ROHM

BD9211F

Silicon Monolithic Integrated Circuit
ROHM

BD9211F-GE2

Display Driver, PDSO18
ROHM

BD9215AFV

Silicon Monolithic Integrated Circuit
ROHM