BM60054FV-CE2 [ROHM]

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation;
BM60054FV-CE2
型号: BM60054FV-CE2
厂家: ROHM    ROHM
描述:

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation

文件: 总40页 (文件大小:3164K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Gate Driver Providing Galvanic isolation Series  
Isolation voltage 2500Vrms  
1ch Gate Driver Providing Galvanic Isolation  
BM60054FV-C  
General Description  
Key Specifications  
The BM60054FV-C is a gate driver with isolation voltage  
2500Vrms, I/O delay time of 110ns, and a minimum input  
pulse width of 90ns. Fault signal output function, ready  
signal output function, under voltage lockout (UVLO)  
function, short current protection (SCP) function, and  
switching controller function are all built-in.  
Isolation Voltage:  
Maximum Gate Drive Voltage:  
I/O Delay Time:  
2500Vrms  
20V(Max)  
110ns(Max)  
90ns(Max)  
Minimum Input Pulse Width:  
Package  
SSOP-B28W  
W(Typ) x D(Typ) x H(Max)  
9.2 mm x 10.4 mm x 2.4 mm  
Features  
Provides Galvanic Isolation  
Fault Signal Output Function  
Ready Signal Output Function  
Under Voltage Lockout Function  
Short Circuit Protection Function  
Soft Turn-Off Function for Short Circuit Protection  
(Adjustable Turn-OFF time)  
Thermal Protection Function  
Active Miller Clamping  
Switching Controller Function  
Output State Feedback Function  
UL1577 Recognized:File No. E356010  
AEC-Q100 Qualified(Note 1)  
(Note 1:Grade1)  
Applications  
Driving IGBT Gate  
Driving MOSFET Gate  
Typical Application Circuit  
Figure 1. Typical Application Circuit  
Product structureSilicon integrated circuit This product has no designed protection against radioactive rays  
.
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
1/36  
TSZ2211114001  
BM60054FV-C  
Contents  
General Description......................................................................................................................................................................1  
Features.........................................................................................................................................................................................1  
Applications ..................................................................................................................................................................................1  
Key Specifications........................................................................................................................................................................1  
Package  
W(Typ) x D(Typ) x H(Max) .......................................................................................................................................1  
Typical Application Circuit...........................................................................................................................................................1  
Contents ........................................................................................................................................................................................2  
Recommended Range of External Constants……………………………………………………………………………………………3  
Pin Configuration..........................................................................................................................................................................3  
Pin Descrlptions ...........................................................................................................................................................................3  
Absolute Maximum Ratings.........................................................................................................................................................4  
Recommended Operating Conditions ........................................................................................................................................4  
Insulation Related Characteristics..............................................................................................................................................4  
Electrical Characteristics.............................................................................................................................................................5  
Electrical Characteristics continued........................................................................................................................................6  
Typical Performance Curves........................................................................................................................................................7  
Figure 3. Main Power Supply Circuit Current…………………………………………………………………………………………7  
Figure 4. Output Side Circuit Current(MODE=H, VEE2=0V, OUT1=L)…………………………………………………………….7  
Figure 5. Output Side Circuit Current(MODE=H, VEE2=0V, OUT1=H)…………………………………………………………….7  
Figure 6. FET_G ON-Resistance(Source side/Sink side)…………………………….……………………..………………………7  
Figure 7. Oscillation Frequency………...……………………………………….………………………………………………………8  
Figure 8. Soft-start Time…………………………………………………………………………………….…………………….….......8  
Figure 9. FB Pin Threshold Voltage……………………………………………………………………….…………………………....8  
Figure 10. COMP Pin Sink Current………………………………………………………………………………...…………….……...8  
Figure 11. COMP Pin Source Current………………………………………………………………………......................................9  
Figure 12. Over-Current Detection Threshold…..……………………………………………………………………………...……..9  
Figure 13. Logic Input Filtering Time(L pulse)………………………………………………...……………………………………...9  
Figure 14. Logic Input Filtering Time(H pulse)…………………………………………………………………………………….….9  
Figure 15. ENA Input Filtering Time………………………………………………..……………………….....................................10  
Figure 16. MODE Input Voltage H/L…………………………………………………………….……………………………..……….10  
Figure 17. OUT1H ON-Resistance(IOUT1=40mA).………………………………….…………………………………….………...10  
Figure 18. OUT1L ON-Resistance(IOUT1=40mA)…………………………………………………...………………………………10  
Figure 19. PROOUT ON-Resistance(IPROOUT=40mA) ……………………………………………………………………………11  
Figure 20. Turn ON time……………………………………….………………………………………………..……….….…………...11  
Figure 21. Turn OFF time……………………………………………………………………………………………….……........…….11  
Figure 22. OUT2 ON-Resistance(IOUT2=40mA)…………………………………………………………………..……………...….11  
Figure 23. Short Current Detection Threshold Voltage……………………………………………………………..……………..12  
Figure 24. DESAT Leading Edge Blanking Time…………………………………………………………………………………....12  
Figure 25. Short Current Detection Filter Time………………..…………………………….………………….…………………..12  
Figure 26. Short Current Detection Delay Time…………………………………………….………………….…………………...12  
Figure 27. SCPIN Low Voltage………………….………………………………………………..……………….……..…………….13  
Figure 28. Output Delay Difference between PROOUT and FLT………………………………….……………………….….....13  
Figure 29. Thermal Detection Voltage…………………………………………………………………………..……...……………..13  
Application Information..............................................................................................................................................................15  
Description of Functions and Examples of Constant Setting…………………………………………………………………..…..16  
Selection of Components Externally Connected .....................................................................................................................27  
Power Dissipation.......................................................................................................................................................................27  
Thermal Design...........................................................................................................................................................................27  
I/O Equivalence Circuits.............................................................................................................................................................28  
Operational Notes…………………………………………………………………………………………………………………………...32  
Ordering Information…………………………………………………………………………………………………………………33  
Marking Diagram………….…………………………………………………………………………………………………………………33  
Physical Dimension, Tape and Reel Information .....................................................................................................................34  
Revision History .........................................................................................................................................................................35  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
2/36  
25.Dec.2015 Rev.002  
TSZ2211115001  
 
BM60054FV-C  
Recommended Range of External Constants  
Recommended Value  
Pin Name  
Symbol  
Unit  
Min  
1.0  
Typ  
3.3  
-
Max  
10.0  
-
VREG  
VCC2  
RT  
CVREG  
CVCC2  
RRT  
µF  
µF  
kΩ  
0.33  
24  
68  
150  
Pin Configuration  
(TOP VIEW)  
VEE2  
1
2
28 GND1  
SENSE  
FET_G  
27  
26  
PROOUT  
VTSIN  
SCPIN  
NC  
3
4
25 VREG  
5
V_BATT  
COMP  
FB  
24  
23  
22  
21  
20  
6
GND2  
MODE  
UVLOIN  
VCC2  
NC  
7
8
RT  
9
RDY  
10  
11  
12  
13  
19 INB  
18  
INA  
OUT1H  
OUT1L  
OUT2  
17  
16  
15  
ENA  
FLT  
14  
GND1  
VEE2  
Pin Descrlptions  
Pin Name  
Pin Function  
1
VEE2  
PROOUT  
VTSIN  
SCPIN  
NC  
Output-side negative power supply pin  
Soft turn-off pin / Gate voltage input pin  
Thermal detection pin  
2
3
4
Short circuit current detection pin  
No connection  
5
6
GND2  
MODE  
UVLOIN  
VCC2  
NC  
Output-side ground pin  
7
Mode selection pin of output-side UVLO  
Output-side UVLO setting pin  
Output-side positive power supply pin  
No connection  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
OUT1H  
OUT1L  
OUT2  
VEE2  
GND1  
FLT  
Source side output pin  
Sink side output pin  
Output pin for Miller Clamp  
Output-side negative power supply pin  
Input-side ground pin  
Fault output pin  
ENA  
Input enabling signal pin  
Control input pin A  
INA  
INB  
Control input pin B  
RDY  
Ready output pin  
RT  
Switching frequency setting pin for switching controller  
Error amplifier inverting input pin for switching controller  
Error amplifier output pin for switching controller  
Main power supply pin  
FB  
COMP  
V_BATT  
VREG  
FET_G  
SENSE  
GND1  
Input-side internal power supply pin  
MOS FET control pin for switching controller  
Current detection pin for switching controller  
Input-side ground pin  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
3/36  
TSZ2211115001  
BM60054FV-C  
Absolute Maximum Ratings  
Parameter  
Symbol  
VBATT  
VCC2  
Limit  
Unit  
V
-0.3 to +40.0(Note 2)  
-0.3 to +24.0(Note 3)  
-15.0 to +0.3(Note 3)  
Main Power Supply Voltage  
Output-Side Positive Supply Voltage  
Output-Side Negative Supply Voltage  
V
VEE2  
V
Maximum Difference  
VMAX2  
30.0  
V
Between Output-Side Positive and Negative Voltages  
INA, INB, ENA Pin Input Voltage  
MODE Pin Input Voltage  
VIN  
VMODE  
VSCPIN  
VVTS  
-0.3 to +7.0(Note 2)  
V
V
-0.3 to +VCC2+0.3 or +24.0(Note 3)  
SCPIN Pin Input Voltage  
-0.3 to +VCC2+0.3 or +24.0(Note 3)  
V
VTSIN Pin Input Voltage  
-0.3 to +VCC2+0.3 or +24.0(Note 3)  
V
UVLOIN Pin Input Voltage  
VUVLOIN  
IOUT1PEAK  
-0.3 to +VCC2+0.3 or +24.0(Note 3)  
V
OUT1H, OUT1L Pin Output Current (Peak 10μs)  
OUT2 Pin Output Current (Peak 10μs)  
PROOUT Pin Output Current (Peak 10μs)  
FLT, RDY Pin Output Current  
FET_G Pin Output Current (Peak 1μs)  
Power Dissipation  
5.0(Note 4)  
5.0(Note 4)  
2.5(Note 4)  
10  
A
IOUT2PEAK  
A
IPROOUTPEA  
A
IFLT  
IFET_GPEAK  
Pd  
mA  
A
1
1.12(Note 5)  
-40 to +125  
-55 to +150  
W
°C  
°C  
Operating Temperature Range  
Storage Temperature Range  
Topr  
Tstg  
Junction Temperature  
Tjmax  
+150  
°C  
(Note 2) Relative to GND1  
(Note 3) Relative to GND2  
(Note 4) Should not exceed Pd and Tj=150C  
(Note 5) Derate above Ta=25C at a rate of 9.5mW/C. Mounted on a glass epoxy of 70 mm 70 mm 1.6 mm  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over  
the absolute maximum ratings.  
Recommended Operating Conditions  
Parameter  
Main Power Supply Voltage(Note 6)  
Symbol  
VBATT  
VCC2  
Min  
4.0  
10  
Max  
32  
20  
0
Unit  
V
Output-Side Positive Supply Voltage(Note 7)  
Output-Side Negative Supply Voltage(Note 7)  
V
VEE2  
-12  
V
Maximum Difference  
VMAX2  
fSWR  
10  
28  
V
Between Output-Side Positive and Negative Voltages  
Switching frequency for switching controller  
100  
500  
kHz  
(Note 6) Relative to GND1  
(Note 7) Relative to GND2  
Insulation Related Characteristics (UL1577)  
Parameter  
Symbol  
RS  
Characteristic  
Unit  
Ω
Insulation Resistance (VIO=500V)  
Insulation Withstand Voltage / 1min  
Insulation Test Voltage / 1sec  
>109  
2500  
3000  
VISO  
Vrms  
Vrms  
VISO  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
4/36  
TSZ2211115001  
BM60054FV-C  
Electrical Characteristics  
(Unless otherwise specified Ta=-40°C to +125°C, VBATT=4.0V to 32V, VCC2=UVLO to 20V, VEE2=-12V to 0V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
General  
Main Power Supply  
1.1  
0.8  
0.8  
1.6  
1.3  
1.3  
2.1  
1.8  
1.8  
IBATT1  
IBATT2  
IBATT3  
mA  
mA  
mA  
V_BATT=4.0V  
Circuit Current 1  
Main Power Supply  
V_BATT=12.0V  
V_BATT=32.0V  
Circuit Current 2  
Main Power Supply  
Circuit Current 3  
0.7  
0.4  
0.8  
0.8  
1.4  
1.1  
1.5  
1.2  
2.1  
1.8  
2.2  
1.9  
Output Side Circuit Current 1  
Output Side Circuit Current 2  
Output Side Circuit Current 3  
Output Side Circuit Current 4  
ICC21  
ICC22  
ICC23  
ICC24  
mA  
mA  
mA  
mA  
VCC2=14V, OUT1=L  
VCC2=14V, OUT1=H  
VCC2=18V, OUT1=L  
VCC2=18V, OUT1=H  
VCC2=16V, VEE2=-8V,  
OUT1=L  
0.9  
0.6  
1.6  
1.3  
2.3  
2.0  
Output Side Circuit Current 5  
ICC25  
ICC26  
mA  
mA  
VCC2=16V, VEE2=-8V,  
OUT1=H  
Output Side Circuit Current 6  
Switching Power Supply Controller  
FET_G Output Voltage H1  
4.2V<V_BATT32V  
IFET_G=0A(open)  
V_BATT 4.2V  
IFET_G =0A(open)  
IFET_G =0A(open)  
VFETGH1  
3.8  
4.0  
4.2  
V
FET_G Output Voltage H2  
VFETGH2  
VFETGL  
RONGH  
-
V_BATT-0.2  
V_BATT  
0.3  
V
V
Ω
FET_G Output Voltage L  
FET_G ON-Resistance  
(Source-side)  
0
3
-
6
12  
10mA  
FET_G ON-Resistance  
(Sink-side)  
RONGL  
0.3  
0.6  
1.3  
Ω
10mA  
Oscillation Frequency  
Soft-start Time  
fSW  
tSS  
182  
-
200  
-
222  
50  
kHz  
ms  
V
RT=68kΩ  
FB Pin Threshold Voltage  
FB Pin Input Current  
COMP Pin Sink Current  
COMP Pin Source Current  
V_BATT UVLO ON Voltage  
V_BATT UVLO Hysteresis  
Maximum ON DUTY  
Over Voltage Detection Threshold  
VFB  
1.47  
-0.8  
-160  
40  
1.50  
0
1.53  
0.8  
IFB  
µA  
µA  
µA  
V
ICOMPSINK  
ICOMPSOURCE  
VUVLOBATTL  
VUVLOBATTHYS  
DONMAX  
VOVTH  
-80  
80  
-40  
160  
3.60  
0.13  
-
3.20  
0.07  
-
3.40  
0.1  
48  
V
%
1.60  
1.65  
1.70  
V
Under Voltage Detection  
Threshold  
VUVTH  
1.23  
1.30  
1.37  
V
Over-Current Detection Threshold  
Protection Holding Time  
VOCTH  
0.17  
20  
0.20  
40  
0.23  
60  
V
tDCDCRLS  
ms  
Logic Block  
Logic High Level Input Voltage  
Logic Low Level Input Voltage  
Logic Pull-Down Resistance  
Logic Input Filtering Time  
ENA Input Filtering Time  
VINH  
VINL  
2.0  
-
-
5.5  
0.8  
V
V
INA, INB, ENA  
INA, INB, ENA  
INA, INB, ENA  
INA, INB  
0
RIND  
25  
50  
-
100  
kΩ  
ns  
µs  
V
tINFIL  
-
90  
tENAFIL  
VMODEL  
VMODEH  
-
0
0.5  
-
0.8  
ENA  
MODE Low Level Input Voltage  
MODE High Level Input Voltage  
0.3×VCC2  
VCC2  
MODE, relative to GND2  
MODE,relative to GND2  
0.7×VCC2  
-
V
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
5/36  
TSZ2211115001  
BM60054FV-C  
Electrical Characteristics continued  
(Unless otherwise specified Ta=-40°C to +125°C, VBATT=4.0V to 32V, VCC2=UVLO to 20V, VEE2=-12V to 0V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
Output  
IOUT1H=40mA  
IOUT1L=40mA  
VCC2=15V  
Design assurance  
IPROOUT=40mA  
OUT1H ON-Resistance  
OUT1L ON-Resistance  
RONH  
RONL  
0.50  
0.25  
0.85  
0.45  
1.45  
0.80  
Ω
Ω
3.0  
4.5  
-
OUT1 Maximum Current  
PROOUT ON-Resistance  
IOUT1MAX  
A
0.45  
0.85  
1.55  
RONPRO  
tPONA  
Ω
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Ω
45  
50  
40  
35  
-25  
-35  
-
75  
80  
70  
65  
-5  
105  
110  
100  
95  
15  
5
INA=PWM, INB=L  
INA=H, INB=PWM  
INA=PWM, INB=L  
INA=H, INB=PWM  
tPOFFA tPONA  
Turn ON Time  
tPONB  
tPOFFA  
tPOFFB  
tPDISTA  
tPDISTB  
tRISE  
Turn OFF Time  
Propagation Distortion  
-15  
50  
50  
0.45  
2
tPOFFB tPONB  
Rise Time  
-
10nF between OUT1-VEE2  
Design assurance  
IOUT2=40mA  
Fall Time  
tFALL  
-
-
0.25  
1.8  
100  
0.80  
2.2  
-
OUT2 ON-Resistance  
OUT2 ON Threshold Voltage  
Common Mode Transient Immunity  
Protection Functions  
Output-side UVLO ON  
Threshold Voltage  
RON2  
VOUT2ON  
CM  
V
Relative to VEE2  
-
kV/μs Design assurance  
UVLOIN, MODE=L  
UVLOIN, MODE=L  
VUVLOINL  
0.85  
0.90  
0.95  
V
V
Output-side UVLO Threshold  
Hysteresis  
0.10×  
VUVLOINL  
10.9  
0.11×  
VUVLOINL  
11.5  
0.12×  
VUVLOINL  
12.1  
VUVLOINHYS  
VCC2, MODE=H  
VCC2, MODE=H  
Output-side UVLO ON Voltage  
Output-side UVLO Hysteresis  
Output-side UVLO Filtering Time  
DESAT Leading Edge  
Blanking Time  
VUVLO2L  
VUVLO2HYS  
tUVLO2FIL  
V
V
0.8  
1.2  
1.6  
0.25  
1.5  
3.7  
µs  
tDESATleb  
0.14  
0.20  
0.26  
µs  
Design assurance  
Relative to GND2  
Short Current Detection Voltage  
Short Current Detection Filter Time  
Short Current Detection Delay  
Time (PROOUT)  
VSCDET  
tSCPFIL  
V
0.47  
0.12  
0.50  
0.2  
0.53  
0.28  
µs  
tSCPPRO  
VSCPINL  
tPROFLT  
0.26  
-
0.38  
0.1  
0.50  
0.22  
0.7  
µs  
V
SCPIN Pin Low Voltage  
Output Delay Difference  
between PROOUT and FLT  
Thermal Detection Voltage  
Thermal Detection Filter Time  
Soft Turn Off Release Time  
FLT Output Low Voltage  
Gate State H Detection  
Threshold Voltage  
ISCPIN=1mA  
0.1  
0.4  
µs  
VTSDET  
tTSFIL  
tSTO  
1.61  
4
1.70  
10  
1.79  
30  
V
µs  
µs  
V
Relative to GND2  
30  
-
-
110  
0.40  
VFLTL  
0.18  
IFLT=5mA  
VOSFBH  
VOSFBL  
4.5  
4.0  
5.0  
4.5  
5.5  
5.0  
V
V
Relative to GND2  
Gate State L Detection  
Threshold Voltage  
Relative to GND2  
IRDY=5mA  
OSFB Output Filtering Time  
RDY Output Low Voltage  
tOSFBFIL  
VRDYL  
1.5  
-
2.0  
2.5  
µs  
V
0.18  
0.40  
50%  
50%  
90%  
tPON  
INA  
tPOFF  
90%  
50%  
50%  
10%  
OUT1H/L  
10%  
tFALL  
tRISE  
Figure 2. INA-OUT1H/L Timing Chart  
6/36  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
BM60054FV-C  
UL1577 Ratings Table  
Following values are described in UL Report.  
Parameter  
Side 1 (Input Side) Circuit Current  
Side 2 (Output Side) Circuit Current  
Side 1 (Input Side) Consumption Power  
Side 2 (Output Side) Consumption Power  
Isolation Voltage  
Values  
1.3  
Units  
mA  
mA  
mW  
mW  
Vrms  
Conditions  
V_BATT=12V, OUT1H/L=L  
1.6  
VCC2=18V, VEE2=-6V, OUT1H/L=L  
V_BATT=12V, OUT1H/L=L  
15.6  
38.4  
2500  
125  
150  
150  
5.5  
VCC2=18V, VEE2=-6V, OUT1H/L=L  
Maximum Operating (Ambient) Temperature  
Maximum Junction Temperature  
Maximum Strage Temperature  
MHz  
Maximum Data Transmission Rate  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
7/36  
TSZ2211115001  
BM60054FV-C  
Typical Performance Curves  
2.2  
2
2
1.8  
1.6  
25°C  
125°C  
1.8  
1.6  
1.4  
1.2  
1
1.4  
125°C  
25°C  
1.2  
1
-40°C  
0.8  
0.6  
0.4  
-40°C  
0.8  
10  
15  
20  
4
11  
18  
25  
32  
VCC2 [V]  
VBATT [V]  
Figure 4. Output Side Circuit Current  
(MODE=H, VEE2=0V, OUT1=L)  
Figure 3. Main Power Supply Circuit Current  
12  
9
2.2  
2
Source side  
1.8  
1.6  
1.4  
1.2  
1
25°C  
125°C  
6
3
0.8  
0.6  
0.4  
Sink side  
-40°C  
0
10  
15  
20  
-40  
0
40  
80  
120  
VCC2 [V]  
Ta [°C]  
Figure 5. Output Side Circuit Current  
(MODE=H, VEE2=0V, OUT1=H)  
Figure 6. FET_G ON-Resistance  
(Source side/Sink side)  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
8/36  
TSZ2211115001  
BM60054FV-C  
500  
400  
300  
200  
50  
40  
30  
20  
10  
0
100  
0
20 40 60 80 100 120 140  
-40  
0
40  
80  
120  
RRT [kΩ]  
Ta [°C]  
Figure 8. Soft-start Time  
Figure 7. Oscillation Frequency  
1.53  
1.52  
1.51  
1.5  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
1.49  
1.48  
1.47  
-40  
-40  
0
40  
80  
120  
0
40  
80  
120  
Ta [°C]  
Ta [°C]  
Figure 9. FB Pin Threshold Voltage  
Figure 10. COMP Pin Sink Current  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
9/36  
TSZ2211115001  
BM60054FV-C  
160  
140  
120  
100  
80  
0.23  
0.21  
0.19  
0.17  
60  
40  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Ta [°C]  
Ta [°C]  
Figure 11. COMP Pin Source Current  
Figure 12. Over-Current Detection  
Threshold  
75  
50  
25  
0
75  
50  
25  
0
-40  
0
40  
80  
120  
4
11  
18  
25  
32  
Ta [°C]  
Ta [°C]  
Figure 13. Logic Input Filtering Time  
(L pulse)  
Figure 14. Logic Input Filtering Time  
(H pulse)  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
10/36  
TSZ2211115001  
BM60054FV-C  
1
0.8  
0.6  
0.4  
0.2  
9
8.8  
8.6  
8.4  
8.2  
8
VMODEH  
VMODEL  
0
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Ta []  
Ta []  
Figure 15. ENA Input Filtering Time  
Figure 16. MODE Input Voltage H/L  
1.2  
1.2  
1
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Ta []  
Ta []  
Figure 17. OUT1H ON-Resistance  
(IOUT1=40mA)  
Figure 18. OUT1L ON-Resistance  
(IOUT1=40mA)  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
11/36  
TSZ2211115001  
BM60054FV-C  
105  
85  
1.45  
1.25  
1.05  
0.85  
0.65  
0.45  
65  
45  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Ta []  
Ta []  
Figure 19. PROOUT ON-Resistance  
(IPROOUT=40mA)  
Figure 20. Turn ON time  
100  
80  
0.65  
0.45  
0.25  
60  
40  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Ta [°C]  
Ta []  
Figure 21. Turn OFF time  
Figure 22. OUT2 ON-Resistance  
(IOUT2=40mA)  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
12/36  
TSZ2211115001  
BM60054FV-C  
0.53  
0.52  
0.51  
0.5  
0.26  
0.24  
0.22  
0.2  
0.49  
0.48  
0.47  
0.18  
0.16  
0.14  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Ta [°C]  
Ta [°C]  
Figure 23. Short Current Detection Voltage  
Figure 24. DESAT Leading Edge  
Blanking Time  
0.5  
0.44  
0.38  
0.32  
0.26  
0.28  
0.24  
0.2  
0.16  
0.12  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Ta [°C]  
Ta [°C]  
Figure 25. Short Current Detection  
Filter Time  
Figure 26. Short Current Detection  
Delay Time  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
13/36  
TSZ2211115001  
BM60054FV-C  
0.7  
0.5  
0.3  
0.1  
0.2  
0.15  
0.1  
0.05  
0
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Ta [°C]  
Ta [°C]  
Figure 28. Output Delay Difference  
between PROOUT and FLT  
Figure 27. SCPIN Pin Low Voltage  
1.77  
1.73  
1.69  
1.65  
1.61  
-40  
0
40  
80  
120  
Ta [°C]  
Figure 29. Thermal Detection Voltage  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
14/36  
TSZ2211115001  
BM60054FV-C  
Application Information  
1. Description of Pins and Cautions on Layout of Board  
(1) V_BATT (Main Power Supply Pin)  
This is the main power supply pin. Connect a bypass capacitor between V_BATT and GND1 in order to suppress  
voltage variations.  
(2) GND1 (Input-side Ground Pin)  
The GND1 pin is a ground pin on the input side.  
(3) VCC2 (Output-side Positive Power Supply Pin)  
The VCC2 pin is a positive power supply pin on the output side. To reduce voltage fluctuations due to OUT1H/L pin  
output current and due to the driving current of the internal transformers, connect a bypass capacitor between VCC2  
and GND2 pins.  
(4) VEE2 (Output-side Negative Power Supply Pin)  
The VEE2 pin is a power supply pin on the output side. To suppress voltage fluctuations due to OUT1H/L pin output  
current and due to the driving current of the internal transformers, connect a bypass capacitor between the VEE2 and  
the GND2 pins. Connect the VEE2 pin to the GND2 pin when no negative power supply is used,  
(5) GND2 (Output-side Ground Pin)  
The GND2 pin is a ground pin on the output side. Connect the GND2 pin to the emitter / source of a power device.  
(6) INA,INB,ENA (Control Input Terminal)  
The INA,INB,ENA are pins used to determine output logic.  
ENA  
L
H
H
H
INB  
X
H
L
L
INA  
X
X
L
H
OUT1H  
Hi-Z  
Hi-Z  
Hi-Z  
H
OUT1L  
L
L
L
Hi-Z  
Fault state(FLT=L output) is released in rising of ENA(LH).  
(7) FLT (Fault Output Pin)  
The FLT pin is an open drain pin used to output a fault signal when short circuit protection function (SCP) or thermal  
protection function is activated, and will be cleared at the rising edge of ENA.  
Status  
FLT  
While in normal operation  
Hi-Z  
When a fault occurs  
(When SCP or thermal protection is activated)  
L
(8) RDY (Ready Output Pin)  
The RDY pin shows the status of three internal protection features which are V_BATT UVLO, VCC2 UVLO, and  
output state feedback (OSFB). The term output state feedbackshows whether PROOUT pin voltage (High or Low)  
corresponds to input logic or not.  
Status  
RDY  
Hi-Z  
L
While in normal operation  
V_BATT UVLO or VCC2 UVLO or Output state feedback  
(9) MODE (Mode Selection Pin of Output-side UVLO)  
The MODE pin is a pin which selects internal threshold or external setting threshold for output-side UVLO.  
MODE  
Output-side UVLO threshold voltage  
Setting by external. (Use UVLOIN pin)  
L (=GND2)  
H (=VCC2)  
Fixed (=VUVLO2L). (Connect UVLOIN pin to VCC2 pin)  
(10) UVLOIN (Output-side UVLO Setting Input Pin)  
The UVLOIN pin is a pin for deciding UVLO setting value of VCC2. The threshold value of UVLO can be set by  
dividing the resistance voltage of VCC2 and inputting such value. UVLOIN activates only at MODE pin=L. When  
MODE pin=H, connect UVLOIN pin to VCC2 pin.  
(11) OUT1H, OUT1L(Output Pin)  
The OUT1H pin is a source side pin used to drive the gate of a power device, and the OUT1L pin is a sink side pin  
used to drive the gate of a power device.  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
15/36  
TSZ2211115001  
BM60054FV-C  
(12) OUT2 (Miller Clamp Pin)  
This is the miller clamp pin for preventing a rise of gate voltage due to miller current of output element connected to  
OUT1. It also functions as a pin for monitoring gate voltage for miller clamp and OUT2 pin voltage become not more  
than VOUT2ON(typ 2.0V), miller clamp function operates. OUT2 should be connect to VEE2 when miller clamp  
function is not used.  
(13) PROOUT (Soft Turn-OFF Pin)  
This is a pin for soft turn-OFF of output pin when short-circuit protection is in action. It also functions as a pin for  
monitoring gate voltage for output state feedback function.  
(14) SCPIN(Short Circuit Current Detection Pin)  
The SCPIN pin is a pin used to detect current for short circuit protection. When the SCPIN pin voltage exceeds  
VSCDET,SCP function will be activated. This may cause the IC to malfunction in an open state. To avoid such trouble,  
short-circuit the SCPIN pin to the GND2 pin when the short circuit protection is not used. In order to prevent the  
wrong detection due to noise, the noise filter time tSCPFIL is set.  
(15) VTSIN (Thermal Detection Pin)  
The VTSIN pin is a temperature sensor voltage input pin, which can be used for thermal protection of an output  
device. If VTSIN pin voltage becomes VTSDET or less, OUT1H/L pin is set to HiZ/L. IC may malfunction in the open  
status, so be sure to supply the VTSPIN more than VTSDET if the thermal protection function is not used. In order to  
prevent the wrong detection due to noise, the noise mask time tTSMSK is set. In addition, it can be used also as  
compulsive shutdown terminal other than a temperature sense by inputting a comparator output etc.  
(16) RT (Switching Frequency Setting Pin for Switching Controller)  
The RT pin is a pin used to make setting of switching frequency of switching controller. The switching frequency is  
determined by the resistance value connected between RT and GND1. The value of switching frequency is  
determined by the value of the resistor RRT.  
FSW  
kHz  
1/( 7.3108 RRT 2.2104 )  
(17) FB (Error Amplifier Inverting Input Pin for Switching Controller)  
This is a voltage feedback pin of the switching controller. This pin combine with voltage monitoring at overvoltage  
protection function and under voltage protection function for switching controller. When overvoltage or under voltage  
protection is activated, switching controller will be at OFF state (FET_G pin outputs Low). When the protection  
holding time (tDCDCRLS) is completed, the protection function will be released. Under voltage function is not activated  
during soft-start.  
(18) COMP (Error Amplifier Output Pin for Switching Controller)  
This is the gain control pin of the switching controller. Connect a phase compensation capacitor and resistor.  
(19) VREG (Input-side internal power supply pin)  
This is the input-side internal power supply pin. Be sure to connect a capacitor between VREG and GND1 even when  
the switching controller is not used, in order to prevent oscillation and suppress voltage variation due to FET_G  
output current.  
(20) FET_G (MOS FET Control Pin for Switching Controller)  
This is a MOSFET control pin for the switching controller transformer drive.  
(21) SENSE (Connection to the Current Feedback Resistor of the Switching Controller)  
This is a pin connected to the resistor of the switching controller current feedback. This pin combines with current  
monitoring at overcurrent protection function for switching controller. When overcurrent protection is activated,  
switching controller will be at OFF state (FET_G pin outputs Low). When the protection holding time (tDCDCRLS) is  
completed, the over-current function will be released.  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
16/36  
TSZ2211115001  
BM60054FV-C  
2. Description of Functions and Examples of Constant Setting  
(1) Miller Clamp Function  
When OUT1=L and OUT2 pin voltage < VOUT2ON, internal MOS of OUT2 pin is turned ON and miller clamp function  
operates.  
OUT2 pin  
IN  
OUT2  
input voltage  
Not more than  
VOUT2ON  
L
L
H
X
Hi-Z  
VCC2  
PREDRIVER  
OUT1H/L  
PROOUT  
PREDRIVER  
PREDRIVER  
PREDRIVER  
LOGIC  
OUT2  
GND2  
+
-
VEE2  
Figure 30. Block Diagram of Miller Clamp Function  
H
L
ENA  
INA  
H
L
VTSDET  
VTSIN  
VSCDET  
Hi-Z  
L
SCPIN  
FLT  
H
OUT1H/L  
OUT2  
Hi-Z  
L
VOUT2ON  
tPON  
tSTO  
tSTO  
Figure 31. Timing Chart of Miller Clamp Function  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
17/36  
TSZ2211115001  
BM60054FV-C  
(2) Under Voltage Lockout (UVLO) Function  
The BM60054FV-C incorporates the under voltage lockout (UVLO) function on V_BATT and VCC2. When the power  
supply voltage drops to the UVLO ON voltage, the OUT1H/L pin will output the "Hi-Z / L" and the FLT pin will output  
the Lsignal. When the power supply voltage rises to the UVLO OFF voltage, these pins will be reset. In addition, to  
prevent mis-triggers due to noise, mask time tUVLOBATTFIL and tUVLO2FIL are set on both voltage sides.  
H
L
INA  
UVLOBATTH  
V
V_BATT  
UVLOBATTL  
V
Hi-Z  
L
H
RDY  
OUT1H/L  
L
H
L
FET_G  
Figure 32. VBATT UVLO Function Operation Timing Chart  
H
L
INA  
UVLOINH  
V
UVLOIN  
UVLOINL  
V
Hi-Z  
L
H
L
H
L
RDY  
OUT1H/L  
FET_G  
Figure 33. VCC2 UVLO Function Operation Timing Chart (MODE=L)  
H
L
INA  
UVLO2H  
V
VCC2  
UVLO2L  
V
Hi-Z  
L
H
L
H
RDY  
OUT1H/L  
FET_G  
L
Figure 34. VCC2 UVLO Function Operation Timing Chart (MODE=H)  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
18/36  
TSZ2211115001  
BM60054FV-C  
(3) Short Circuit Protection Function (SCP)  
When the SCPIN pin voltage exceeds VSCDET, the SCP function will be activated. When the SCP function is activated,  
the OUT1H/L pin voltage will be set to the Hi-Z/Hi-Zlevel and the PROOUT pin voltage will go to the Llevel first  
(soft turn-OFF). Next, After tSTO has passed, OUT1H/L pin become Hi-Z/L (PROOUT pin hold L). In addition, when  
OUT2 pin voltage < VOUT2ON, miller clamp function operates.  
When the rising edge is put in the ENA pin, the SCP function will be released.  
When OUT1H/L=Hi-Z/L or Hi-Z/Hi-Z, internal MOSFET connected to SCPIN pin turns ON to discharge CBLANK for  
desaturation protection function. When OUT1H/L=H/Hi-Z, internal MOSFET connected to SCPIN pin turns OFF.  
R3R2  
VDESAT  
VCC2  
V
VSCDET  
VSCDET  
VF  
D1  
R3  
R3R2 R1  
R3  
V
MIN  
R2 R1  
R3R2 R1  
R3R2 R1 V  
tBLANKouternal  
s
   
R3CBLANK ln(1  
SCDET ) tDESATleb  
R3  
VCC2  
設定参考値  
R2  
VDESAT  
R1  
R3  
4.0V  
4.5V  
5.0V  
5.5V  
6.0V  
6.5V  
7.0V  
7.5V  
8.0V  
8.5V  
9.0V  
9.5V  
10.0V  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
39kΩ  
47kΩ  
51kΩ  
27kΩ  
33kΩ  
62kΩ  
47kΩ  
20kΩ  
82kΩ  
62kΩ  
33kΩ  
75kΩ  
68kΩ  
4.7kΩ  
5.1kΩ  
5.1kΩ  
2.4kΩ  
2.7kΩ  
4.7kΩ  
3.3kΩ  
1.3kΩ  
5.1kΩ  
3.6kΩ  
1.8kΩ  
3.9kΩ  
3.3kΩ  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
19/36  
TSZ2211115001  
BM60054FV-C  
VCC2  
OUT1H/L  
PROOUT  
LOGIC  
FLT  
FLT  
SCPIN  
+
SCPFIL  
-
VSCDET  
GND2  
VEE2  
GND1  
Figure 35. Block Diagram of Short Circuit Protection  
VCC2  
R1  
OUT1H/L  
PROOUT  
LOGIC  
FLT  
D1  
R2  
R3  
FLT  
SCPIN  
+
SCPFIL  
-
VSCDET  
GND2  
VEE2  
GND1  
Figure 36. Block Diagram of DESAT  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
20/36  
TSZ2211115001  
BM60054FV-C  
H
L
IN  
tSCPFIL  
tSCPRO  
tSCPFIL  
tSCPRO  
VSCDET  
SCPIN  
H
OUT1H/L  
Hi-Z  
L
Hi-Z  
L
Hi-Z  
PROOUT  
FLT  
L
tSTO  
tSTO  
H
L
ENA  
>tENAFIL  
>tENAFIL  
Figure 37. SCP Operation Timing Chart  
Start  
No  
VSCPIN>VSCDET  
Yes  
OUT1H/L=Hi-Z / L, PROOUT=L, OUT2=L  
No  
Exceed filter time  
Yes  
No  
ENA=LH  
OUT1H/L=Hi-Z / Hi-Z, PROOUT=L,  
FLT=L, OUT2=HiZ  
Yes  
FLT=Hi-Z  
No  
OUT2<VOUT2ON  
Yes  
No  
OUT2=L  
IN=H  
Yes  
No  
OUT1H/L=H / Hi-Z, PROOUT=Hi-Z,  
OUT2=HiZ  
Exceed tSTO  
Yes  
Figure 38. SCP Operation Status Transition Diagram  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
21/36  
TSZ2211115001  
BM60054FV-C  
(4) Thermal Protection Function  
When the VTSIN pin voltage becomes VTSDET or less, the thermal protection function will be activated. When the  
thermal protection function is activated, the OUT1H/L pin voltage will be set to the Hi-Z/Hi-Zlevel and the PROOUT  
pin voltage will go to the Llevel first (soft turn-OFF). Next, when the VTSIN pin voltage rises to the threshold value  
and after tSTO has passed, OUT1H/L pin become Hi-Z/L (PROOUT pin hold L). In addition, when OUT2 pin voltage <  
VOUT2ON, miller clamp function operates.  
When the rising edge is put in the ENA pin, the thermal protection function will be released.  
VCC2  
OUT1H/L  
LOGIC  
TSFIL  
FLT  
PROOUT  
VTSIN  
FLT  
SENSOR  
+
-
VTSDET  
GND2  
VEE2  
GND1  
Figure 39. Block Diagram of thermal protection function  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
22/36  
TSZ2211115001  
BM60054FV-C  
H
L
IN  
tTSFIL  
tTSFIL  
VTSIN  
VTSDET  
H
OUT1H/L  
Hi-Z  
L
Hi-Z  
L
Hi-Z  
PROOUT  
FLT  
L
tSTO  
tSTO  
H
L
ENA  
>tENAFIL  
>tENAFIL  
Figure 40. Thermal Protection Function Operation Timing Chart  
START  
No  
VTSIN>VTSDET  
Yes  
No  
OUT1H/L=Hi-Z / L, PROOUT=L, OUT2=L  
Exceed filter time  
Yes  
OUT1H/L=Hi-Z / Hi-Z, PROOUT=L,  
FLT=L, OUT2=HiZ  
No  
ENA=LH  
Yes  
No  
No  
OUT2<VOUT2ON  
Yes  
FLT=Hi-Z  
VTSIN<VTSDET  
Yes  
No  
IN=H  
Yes  
OUT2=L  
OUT1H/L=H / Hi-Z, PROOUT=Hi-Z,  
OUT2=HiZ  
No  
Exceed tSTO  
Figure 41. Thermal Protection Function Operation Status Transition Diagram  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
23/36  
TSZ2211115001  
BM60054FV-C  
(5) Switching Controller  
(a) Basic action  
This IC has a built-in switching power supply controller which repeats ON/OFF synchronizing with internal clock  
set by RT pin. When VBATT voltage is supplied (VBATT > VUVLOBATTH), FET_G pin starts switching by soft-start.  
Output voltage is determined by the following equation by external resistance and winding ratio nof flyback  
transformer (n= VOUT2 side winding number/VOUT1 side winding number)  
VOUT2 VFB  
R1 R2  
/R2  
n  
V
   
(b) MAX DUTY  
When, for example, output load is large, and voltage level of SENSE pin does not reach current detection level,  
output is forcibly turned OFF by Maximum On Duty (DONMAX).  
(c) Protection function  
The switching controller has protection function as overvoltage protection (OVP), under voltage protection (UVP),  
and over-current protection (OCP). OVP and UVP monitor the voltage of FB pin, OCP monitor the voltage of  
SENSE pin.  
When the protection function is activated, switching controller will be OFF state (FET_G pin outputs Low). The  
protection holding time (tDCDCRLS) is completed, the protection function will be released. Under voltage function is  
not activated during soft-start.  
VOUT1  
RT  
OSC  
VFB  
R1  
R2  
-
FB  
UVLO_BATT  
+
OVP  
UVP  
COMP  
V_BATT  
VREG  
FET_G  
SENSE  
GND1  
Maxduty  
VOUT2  
VREG  
Slope  
COMP  
VFB  
+
-
R
Q
S
OSC  
OC  
Softstart  
Figure 42. Block Diagram of switching controller  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
24/36  
TSZ2211115001  
BM60054FV-C  
(d)The pin handling when not using switching controller  
When not using switching controller, please do pin handling as follows.  
pin no.  
21  
22  
23  
24  
25  
26  
27  
pin name  
RT  
processing method  
pull down in gnd1 by 68kΩ  
connect to VREG  
connect to VREG  
connect power supply  
connect capacitor  
open  
FB  
COMP  
V_BATT  
VREG  
FET_G  
SENSE  
connect to VREG  
RT  
FB  
OSC  
VFB  
-
UVLO_BATT  
+
OVP  
UVP  
COMP  
V_BATT  
VREG  
Maxduty  
VREG  
COMP  
+
-
R
Q
FET_G  
SENSE  
GND1  
S
OSC  
VFB  
Slope  
OC  
Softstart  
Figure 43. The pin handling when not using switching controller  
(6) Gate State Monitoring Function  
When gate logic and input logic of output device monitored with PROOUT pin are compared, a logic L is output from  
RDY pin when they disaccord. In order to prevent the detection error due to delay of input and output, OSFB filter  
time tOSFBFIL is provided.  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
25/36  
TSZ2211115001  
BM60054FV-C  
(7) I/O Condition Table  
Input  
Output  
P
R
O
O
U
T
P
V
B
A
T
T
S
C
P
I
V
T
S
I
O
U
T
1
H
O
U
T
1
V
C
C
2
O
U
T
2
O
U
T
2
R
O
O
U
T
E
N
A
I
N
B
I
N
A
F
L
T
R
D
Y
No.  
Status  
N
N
L
1
2
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
H
H
H
H
L
H
H
X
X
X
X
X
X
L
L
L
H
H
X
X
X
X
X
X
X
X
X
X
L
H
L
X
X
H
L
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z  
L
L
L
L
Hi-Z  
Hi-Z  
L
SCP  
L
3
UVLO  
UVLO  
X
X
X
X
X
X
X
X
H
H
L
H
L
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
L
L
L
L
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z  
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z  
UVLO_VBATT  
UVLO_VCC2  
4
L
L
5
UVLO  
UVLO  
H
L
H
L
L
6
L
L
7
H
L
X
X
H
L
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z  
L
L
L
L
Hi-Z  
Hi-Z  
L
Thermal  
protection  
8
L
L
9
H
H
H
H
H
H
H
H
H
L
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
H
L
L
L
L
L
L
Hi-Z Hi-Z Hi-Z  
Disable  
10  
11  
12  
13  
14  
15  
16  
L
L
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z Hi-Z  
H
H
H
H
H
H
H
L
H
L
L
INB active  
L
H
L
H
L
L
Normal Operation  
L Input  
L
L
L
L
H
H
H
L
H
L
Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z  
Hi-Z Hi-Z Hi-Z Hi-Z  
Normal Operation  
H Input  
L
H
L
: > UVLO, X:Don't care  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
26/36  
TSZ2211115001  
BM60054FV-C  
(8) Power Supply Startup / Shutoff Sequence  
H
L
IN  
V_BATT  
VCC2  
VUVLOBATTL  
VUVLOBATT  
L
VUVLOBATTL  
0V  
VUVLO2H  
VUVLO2H  
VUVLO2H  
0V  
0V  
VEE2  
H
OUT1H/L  
Hi-Z  
L
Hi-Z  
OUT2  
PROOUT  
RDY  
L
Hi-Z  
L
Hi-Z  
L
H
L
IN  
V_BATT  
VCC2  
VUVLOBATTL  
VUVLO2H  
VUVLOBATTH  
VUVLOBATTH  
0V  
VUVLO2L  
VUVLO2L  
0V  
0V  
VEE2  
H
Hi-Z  
OUT1H/L  
OUT2  
L
Hi-Z  
L
Hi-Z  
PROOUT  
RDY  
L
Hi-Z  
L
H
L
IN  
V_BATT  
VCC2  
VUVLOBATTL  
VUVLOBATTL  
VUVLOBATTH  
VUVLO2L  
0V  
VUVLO2H  
VUVLO2H  
0V  
0V  
VEE2  
H
Hi-Z  
OUT1H/L  
OUT2  
L
Hi-Z  
L
Hi-Z  
PROOUT  
RDY  
L
Hi-Z  
L
H
L
IN  
V_BATT  
VCC2  
VUVLOBATTH  
VUVLOBATTH  
VUVLOBATTH  
0V  
VUVLO2L  
VUVLO2L  
VUVLO2L  
0V  
0V  
VEE2  
H
OUT1H/L  
Hi-Z  
L
Hi-Z  
OUT2  
PROOUT  
RDY  
L
Hi-Z  
L
Hi-Z  
L
: Since the VCC2 to VEE2 pin voltage is low and the output MOS does not turn ON,  
the output pins become Hi-Z conditions.  
: Since the VCC1 to GND1 pin voltage is low and the RDY output MOS does not turn ON,  
the output pins become Hi-Z conditions.  
Figure 44. Power Supply Startup / Shutoff Sequence  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
27/36  
TSZ2211115001  
BM60054FV-C  
Selection of Components Externally Connected  
Recommended  
ROHM  
MCR100JZH  
LTR50UZP  
Recommended  
ROHM  
MCR03EZP  
Recommended  
ROHM  
MCR03EZP  
Recommended  
SUMIDA  
CEER117  
Recommended  
ROHM  
MCR100JZH  
LTR50UZP  
Recommended  
ROHM  
RB168M150  
Recommended  
ROHM  
LTR18EZP  
Recommended  
ROHM  
RSR025N05  
Figure 45. Recommended External Parts  
Power Dissipation  
1.5  
Measurement machine : TH156 (Kuwano Electric)  
Measurement condition : ROHM board  
Board size : 114.3×76.2×1.6mm3  
1.25  
1
1-layer board : θja=111.1°C /W  
0.75  
0.5  
0.25  
0
0
25  
50  
75  
100  
125  
150  
175  
Ambient Temperature : Ta []  
Figure 46. SSOP-B28W Derating Curve  
Thermal Design  
Please make sure that the ICs chip temperature Tj is not over 150°C, while considering the ICs power consumption (W),  
package power (Pd) and ambient temperature (Ta). When Tj=150°C is exceeded, the IC may malfunctions or some problems  
(ex. abnormal operation of various parasitic elements and increasing of leak current) may occur. Constant use under these  
circumstances leads to deterioration and eventually IC may destruct. Tjmax=150°C must be strictly obeyed under all  
circumstances.  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
28/36  
25.Dec.2015 Rev.002  
TSZ2211115001  
BM60054FV-C  
I/O Equivalence Circuits  
Pin No.  
Pin Name  
Input Output Equivalent Circuit Diagram  
Pin Function  
VCC2  
PROOUT  
2
PROOUT  
Soft turn-off pin / Gate voltage input  
pin  
VEE2  
VCC2  
VTSIN  
3
VTSIN  
GND2  
Thermal detection pin  
VCC2  
SCPIN  
Schort circuit current detection pin  
MODE  
4
SCPIN  
GND2  
VCC2  
MODE  
7
Mode selection pin of output-side  
UVLO  
GND2  
VEE2  
VCC2  
UVLOIN  
UVLOIN  
8
Output-side UVLO setting pin  
GND2  
VEE2  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
29/36  
TSZ2211115001  
BM60054FV-C  
Pin Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
Pin Function  
OUT1H  
Source side output pin  
OUT1L  
VCC2  
11  
OUT1H  
OUT1L  
VEE2  
12  
Sink side output pin  
VCC2  
OUT2  
OUT2  
13  
Output pin for Miller Clamp  
VEE2  
FLT  
FLT  
RDY  
16  
20  
Fault output pin  
RDY  
GND1  
Ready output pin  
VREG  
ENA  
ENA  
17  
Input enabling signal pin  
GND1  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
30/36  
TSZ2211115001  
BM60054FV-C  
Pin Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
Pin Function  
VREG  
INA  
Control input pin A  
INB  
INA  
18  
GND1  
VREG  
INB  
19  
Control input pin B  
GND1  
V_BATT  
RT  
21  
RT  
Switching frequency setting pin for  
switching controller  
VEE2  
Internal power  
supply  
V_BATT  
FB  
FB  
22  
GND1  
Error amplifier inverting input pin  
for switching controller  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
31/36  
TSZ2211115001  
BM60054FV-C  
Pin Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
Internal power  
Pin Function  
V_BATT  
supply  
COMP  
COMP  
GND1  
23  
Error amplifier output pin for  
switching controller  
VREG  
V_BATT  
Internal power  
supply  
25  
26  
Input-side internal power supply  
pin  
VREG  
FET_G  
FET_G  
MOS FET control pin for switching  
controller  
GND1  
Internal power  
supply  
V_BATT  
SENSE  
27  
SENSE  
GND1  
Current detection pin for switching  
controller  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
32/36  
TSZ2211115001  
BM60054FV-C  
Operational Notes  
1. Reverse Connection of Power Supply  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital  
and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block.  
Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the  
capacitance value when using electrolytic capacitors.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital  
and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block.  
Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the  
capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on  
the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Thermal Consideration  
Should by any chance the power dissipation rating be exceeded, the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when the  
IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating,  
increase the board size and copper area to prevent exceeding the Pd rating.  
6. Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
7. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of  
connections.  
8. Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
9. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always  
be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent  
damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.  
10.Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
11.Unused Input Terminals  
Input terminals of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input terminals should be connected to the power  
supply or ground line.  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
33/36  
25.Dec.2015 Rev.002  
TSZ2211115001  
BM60054FV-C  
Operational Notes continued  
12.Regarding Input Pins of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated.  
P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode  
or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 47. Example of Monolithic IC Structure  
13. Ceramic Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
Ordering Information  
F
V
B M 6  
0
0
5
4
-
C E 2  
Package  
FV: SSOP-B28W  
Rank  
C:Automotive  
Part Number  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
SSOP-B28W (TOP VIEW)  
Part Number Marking  
LOT Number  
B M 6 0 0 5 4  
1PIN MARK  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
34/36  
TSZ2211115001  
BM60054FV-C  
Physical Dimension, Tape and Reel Information  
Package Name  
SSOP-B28W  
(Max 9.55 (include.BURR))  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
25.Dec.2015 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
35/36  
TSZ2211115001  
BM60054FV-C  
Revision History  
Date  
Revision  
001  
Changes  
10.Apr.2015  
New Release  
Page 7 Adding UL1577 Rating Table  
Page15 Misprint correction of Description of Pins and Cautions on Layout of Board (7)FLT  
Page17 Misprint correction of Description of Functions and Examples of Constant Setting  
(1)Miller Clamp Function  
25.Dec.2015  
002  
www.rohm.co.jp  
TSZ02201-0818ABH00080-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
36/36  
25.Dec.2015 Rev.002  
TSZ2211115001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Datasheet  
BM60054FV-C - Web Page  
Part Number  
Package  
Unit Quantity  
BM60054FV-C  
SSOP-B28W  
1500  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
1500  
Taping  
inquiry  
Yes  

相关型号:

BM60055FV-C

1ch Gate Driver Providing Galvanic Isolation 2500Vrms Isolation Voltage
ROHM

BM60055FV-CE2

1ch Gate Driver Providing Galvanic Isolation 2500Vrms Isolation Voltage
ROHM

BM60059FV-C

内置绝缘电压2500Vrms、输入输出延迟时间450ns、最小输入脉冲宽度400ns的绝缘元件的栅极驱动器。内置故障信号输出功能、低电压时误动作防止功能(UVLO)、短路保护功能(SCP)、米勒钳位功能、温度监测功能、开关控制、栅极恒流驱动功能、栅极状态监视功能。
ROHM

BM60060FV-C

内置绝缘电压2500Vrms、输入输出延迟时间210ns、最小输入脉冲宽度90ns的绝缘元件的栅极驱动器。内置故障信号输出功能、防止低压故障功能(UVLO)、短路保护功能(SCP、内置检测电压温度特性校正功能)、检出短路时切断时间缩短功能、米勒钳位功能(MC)、温度监测功能、开关控制、栅极电阻切换功能、栅极状态监视功能。
ROHM

BM60210FV-C

High Voltage High & Low-side, Gate Driver
ROHM

BM60210FV-CE2

High Voltage High & Low-side, Gate Driver
ROHM

BM60212FV-C

BM60212FV-C是可驱动使用阴极负载方式的Nch-MOSFET及IGBT的1200V高耐压高边/低边驱动器。内置内置镜夹功能/低电压时误动作防止功能(UVLO)。
ROHM

BM60213FV-C

BM60213FV-C是可驱动使用阴极负载方式的Nch-MOSFET及IGBT的1200V高耐压高边/低边驱动器。内置低电压时误动作防止功能(UVLO)。
ROHM

BM60213FV-CE2

Buffer/Inverter Based MOSFET Driver,
ROHM

BM6031B

Supplementary Fuseblocks BM Series
COOPER

BM6031PQ

Supplementary Fuseblocks BM Series
COOPER

BM6031SQ

Supplementary Fuseblocks BM Series
COOPER