BM6109FV-C [ROHM]

内置绝缘电压2500Vrms、输入输出延迟时间700ns、最小输入脉冲宽度600ns的绝缘元件的栅极驱动器。内置故障信号输出功能、低电压时误动作防止功能(UVLO)、短路保护功能(SCP)、过电流保护功能(OCP)、过热保护功能(OT)、米勒钳位功能、温度监测功能。此产品不在网络代理商出售。请联系我们的销售人员进行咨询。;
BM6109FV-C
型号: BM6109FV-C
厂家: ROHM    ROHM
描述:

内置绝缘电压2500Vrms、输入输出延迟时间700ns、最小输入脉冲宽度600ns的绝缘元件的栅极驱动器。内置故障信号输出功能、低电压时误动作防止功能(UVLO)、短路保护功能(SCP)、过电流保护功能(OCP)、过热保护功能(OT)、米勒钳位功能、温度监测功能。此产品不在网络代理商出售。请联系我们的销售人员进行咨询。

栅极驱动 脉冲 过电流保护 驱动器
文件: 总43页 (文件大小:1668K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Gate Driver Providing Galvanic Isolation Series  
1ch Gate Driver Providing Galvanic Isolation  
2500 Vrms Isolation Voltage  
BM6109FV-C  
General Description  
Key Specifications  
BM6109FV-C is a gate driver with an isolation voltage of  
2500 Vrms. It has an I/O delay time of 700 ns, minimum  
input pulse width of 600 ns, and incorporates the fault  
signal output function, under voltage lockout (UVLO)  
function, Short circuit protection (SCP) function,  
overcurrent protection (OCP) function, overheat  
protection function, active miller clamping function and  
temperature monitoring function.  
Isolation Voltage:  
Maximum Gate Drive Voltage:  
I/O Delay Time:  
2500 Vrms  
18 V  
700 ns(Max)  
600 ns  
Minimum Input Pulse Width:  
Package  
SSOP-B28W  
W(Typ) x D(Typ) x H(Max)  
9.2 mm x 10.4 mm x 2.4 mm  
Features  
AEC-Q100 Qualified(Note 1)  
Fault Signal Output Function  
Under Voltage Lockout Protection Function  
Short Circuit Protection Function  
Overcurrent Protection Function  
Overheat Protection Function  
Soft Turn Off Function  
(Adjustable Turn OFF Time)  
Active Miller Clamping  
Temperature Monitor  
(Note 1) Grade1  
Applications  
Automotive Inverter  
Automotive DC-DC Converter  
Industrial Inverter System  
UPS System  
Typical Application Circuit  
GND1  
GND2  
PROOUT  
OUT1L  
NC  
OSC  
SYNC  
RT  
OSC  
S
R
Q
PRE  
DRI  
VER  
LOGIC  
DUTY  
GEN  
TOUT  
FLT2  
NC  
OUT1H  
VCC2  
OUT2  
VREG  
SCPIN2  
SCPIN1  
TC  
LOGIC  
UVLO  
FLT1  
INA  
VREG  
Q
S
R
ECU  
EDGE  
INB  
VCC1  
SSDIN  
FLTRLS  
GND1  
UVLO  
CURRENT  
SOURCE  
TO2  
FLT  
TO1  
HIGH  
SELECT  
GND2  
Pin 1  
OSC  
Figure 1. Basic Application Circuit  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays  
.
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
1/40  
TSZ22111 14 001  
 
 
 
 
 
 
BM6109FV-C  
Contents  
General Description......................................................................................................................................................................1  
Features.........................................................................................................................................................................................1  
Applications ..................................................................................................................................................................................1  
Key Specifications........................................................................................................................................................................1  
Package .........................................................................................................................................................................................1  
Typical Application Circuit...........................................................................................................................................................1  
Contents ........................................................................................................................................................................................2  
Pin Configurations........................................................................................................................................................................3  
Pin Description .............................................................................................................................................................................3  
Description of Recommended Range Of External Constants...................................................................................................4  
Absolute Maximum Ratings.........................................................................................................................................................4  
Thermal Resistance(Note 5) .............................................................................................................................................................5  
Recommended Operating Condition ..........................................................................................................................................5  
Insulation Related Characteristics..............................................................................................................................................5  
Electrical Characteristics.............................................................................................................................................................6  
Typical Performance Curves........................................................................................................................................................9  
Description of Pins and Cautions on Layout of Board............................................................................................................25  
Description of Functions and Examples of Constant Setting.................................................................................................27  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Fault Status Output.........................................................................................................................................................27  
Under Voltage Lockout (UVLO) ......................................................................................................................................27  
Short Circuit Protection (SCP) Function .........................................................................................................................28  
Overcurrent Protection (OCP) Function..........................................................................................................................29  
Miller Clamp Function.....................................................................................................................................................30  
Temperature Monitor Function........................................................................................................................................31  
Overheat Protection (OT) Function.................................................................................................................................31  
Operation Truth Table.....................................................................................................................................................32  
I/O Equivalence Circuits.............................................................................................................................................................33  
Operational Notes.......................................................................................................................................................................36  
Ordering Information..................................................................................................................................................................38  
Marking Diagram.........................................................................................................................................................................38  
Physical Dimension and Packing Information .........................................................................................................................39  
Revision History .........................................................................................................................................................................40  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
2/40  
TSZ22111 15 001  
 
BM6109FV-C  
Pin Configurations  
(TOP VIEW)  
GND2  
TO1  
1
2
3
4
5
6
7
8
9
28 GND1  
27 FLTRLS  
26 SSDIN  
25 VCC1  
24 INB  
TO2  
TC  
SCPIN1  
SCPIN2  
VREG  
OUT2  
VCC2  
23 INA  
22 FLT1  
21 NC  
20 FLT2  
19 TOUT  
18 RT  
OUT1H 10  
NC 11  
OUT1L 12  
PROOUT 13  
GND2 14  
17 SYNC  
16 OSC  
15 GND1  
Figure2. Pin Configurations  
Pin Description  
Pin No.  
Pin Name  
Function  
1
GND2  
TO1  
Secondary side ground pin  
2
Constant current output / Sensor voltage input pin 1  
Constant current output / Sensor voltage input pin 2  
Constant current setting resistor connection pin  
Short circuit and overcurrent detection pin 1  
Short circuit and overcurrent detection pin 2  
Secondary side internal power supply pin  
Miller Clamp Control pin  
3
TO2  
4
TC  
5
SCPIN1  
SCPIN2  
VREG  
OUT2  
VCC2  
OUT1H  
NC  
6
7
8
9
Secondary side power supply  
Source side output / Gate voltage input pin  
No connection  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
OUT1L  
PROOUT  
GND2  
GND1  
OSC  
Sink side output pin  
Soft shutdown output pin  
Secondary side ground pin  
Primary side ground pin  
Output pin for oscillation frequency  
External clock input pin  
SYNC  
RT  
Oscillation frequency setup resistor connection pin  
Temperature information output pin  
Fault signal output pin  
TOUT  
FLT2  
NC  
No connection  
FLT1  
Fault signal output pin  
INA  
Control input pin  
INB  
Control input pin  
VCC1  
SSDIN  
FLTRLS  
GND1  
Primary side power supply pin  
Soft shutdown control input pin  
Fault output holding time setup pin  
Primary side ground pin  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
3/40  
TSZ22111 15 001  
BM6109FV-C  
Description of Recommended Range Of External Constants  
Recommended Value  
Pin Name  
Symbol  
Unit  
Min  
Typ  
Max  
TC  
RTC  
RTC  
0.5  
-
25  
kΩ  
(As Temperature monitor)  
TC  
0.1  
1
10  
MΩ  
(No Temperature monitor)  
RT  
RRT  
40.2  
-
100  
0.01  
200  
-
402  
1.50  
1000  
-
kΩ  
μF  
kΩ  
μF  
μF  
μF  
FLTRLS  
FLTRLS  
VCC1  
CFLTRLS  
RFLTRLS  
CVCC1  
CVCC2  
CVREG  
50  
0.2  
0.4  
0.1  
VCC2  
-
-
VREG  
1
10  
CVCC1 : Power supply for driving the internal transformer  
CVCC2 : Power supply for driving MOS FET/IGBT gate  
Absolute Maximum Ratings  
Parameter  
Symbol  
Rating  
Unit  
Primary Side Supply Voltage  
VCC1  
VCC2  
VIN  
-0.3 to +7.0 (Note 2)  
-0.3 to +20.0 (Note 3)  
-0.3 to VCC1+0.3 or 7.0 (Note 2)  
V
V
Secondary Side Supply Voltage  
Input Voltage for INA, INB, SSDIN and SYNC Pins  
Input Voltage for SCPIN1 and SCPIN2 Pins  
Input Voltage for TO1 and TO2 Pins  
Input Voltage for FLT Pin  
V
VSCPIN  
VTO  
-0.3 to +6.0 (Note 3)  
-0.3 to VCC2+0.3 (Note 3)  
-0.3 to +7.0 (Note 2)  
V
V
V
VFLT  
IFLT  
Output Current for FLT Pin  
10  
10  
mA  
mA  
mA  
A
Output Current for TOUT Pin  
ITOUT  
Output Current for OSC Pin  
IOSC  
10  
Output Current for OUT1H Pin (Peak10 μs)  
Output Current for OUT1L Pin (Peak10 μs)  
Output Current for PROOUT Pin (Peak10 μs)  
Output Current for OUT2 Pin (Peak10 μs)  
Output Current for VREG Pin  
IOUT1HPEAK  
IOUT1LPEAK  
IPROOUTPEAK  
ISOUTPEAK  
IVREG  
5 (Note 4)  
5 (Note 4)  
5 (Note 4)  
5 (Note 4)  
10  
A
A
A
mA  
C  
C  
Storage Temperature Range  
Tstg  
-55 to +150  
+150  
Maximum Junction Temperature  
Tjmax  
(Note 2) Relative to GND1  
(Note 3) Relative to GND2  
(Note 4) On the supposition that requirements for Tj=150C are satisfied  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing  
board size and copper area so as not to exceed the maximum junction temperature rating.  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
4/40  
TSZ22111 15 001  
BM6109FV-C  
Thermal Resistance(Note 5)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 7)  
2s2p(Note 8)  
SSOP-B28W  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 6)  
θJA  
112.9  
34  
64.4  
23  
°C/W  
°C/W  
ΨJT  
(Note 5) Based on JESD51-2A(Still-Air).  
(Note 6) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface  
of the component package.  
(Note 7) Using a PCB board based on JESD51-3.  
(Note 8) Using a PCB board based on JESD51-7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70 μm  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
4 Layers  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
Thickness  
Footprints and Traces  
70 μm  
74.2 mm x 74.2 mm  
35 μm  
74.2 mm x 74.2 mm  
70 μm  
Recommended Operating Condition  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
VCC1 Supply Voltage (Note 9)  
VCC2 Supply Voltage (Note 10)  
TO1 and TO2 Input Voltage (Note 10)  
SYNC Input Frequency  
VCC1  
VCC2  
VTO  
4.5  
14  
1.4  
5
5.0  
16  
-
5.5  
18  
V
V
3.5  
V
fSYNC  
Topr  
20  
-
50  
kHz  
C  
Operating Temperature  
-40  
+125  
(Note 9) Relative to GND1  
(Note 10) Relative to GND2  
Insulation Related Characteristics  
Parameter  
Symbol  
RS  
Characteristic  
>109  
Unit  
Ω
Insulation Resistance (VIO=500 V)  
Insulation Withstand Voltage / 1 min  
Insulation Test Voltage / 1 s  
VISO  
2500  
Vrms  
Vrms  
VISO  
3000  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
5/40  
BM6109FV-C  
Electrical Characteristics  
(Unless otherwise specified Ta=-40 °C to 125 °C, VCC1=4.5 V to 5.5 V, VCC2=14 V to 18 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
General  
Primary Side Circuit Current 1  
Primary Side Circuit Current 2  
Primary Side Circuit Current 3  
Primary Side Circuit Current 4  
Secondary Side Circuit Current  
VREG Output Voltage  
ICC11  
ICC12  
ICC13  
ICC14  
ICC2  
2.1  
2.1  
2.2  
2.3  
1.6  
4.8  
4.8  
4.8  
4.9  
5.0  
3.2  
5.0  
10.1  
10.1  
10.3  
10.4  
4.8  
mA  
mA  
mA  
mA  
mA  
V
OUT=L  
OUT=H  
INA=10 kHz, Duty=50 %  
INA=20 kHz, Duty=50 %  
RTC=4.7 kΩ  
5.2  
VREG  
Logic Input  
0.7 x  
VCC1  
Logic High Level Input Voltage  
Logic Low Level Input Voltage  
VINH  
VINL  
-
-
VCC1  
V
V
INA, INB, SSDIN, SYNC  
INA, INB, SSDIN, SYNC  
0.3 x  
VCC1  
1000  
0
Logic Pull Down Resistance  
Logic Pull Up Resistance  
Logic Input Filter Time  
RIND  
RINU  
250  
250  
5
500  
500  
35  
kΩ  
kΩ  
ns  
ns  
ns  
ns  
INA, SSDIN, SYNC  
INB  
1000  
65  
tINFIL  
INA, INB, SSDIN  
INA, INB  
70  
70  
50  
130  
130  
80  
190  
190  
110  
Minimum Input Pulse Width(High pulse)  
Minimum Input Pulse Width(Low pulse)  
Minimum Input Pulse Width (SSDIN)  
Output  
tINMINH  
tINMINL  
tSSDINMIN  
INA, INB  
SSDIN  
Turn ON Time  
tPON  
tPOFF  
110  
110  
-110  
50  
50  
-
220  
220  
0
440  
440  
ns  
ns  
ns  
ns  
ns  
Ω
Turn OFF Time  
Propagation Distortion  
tPDIST  
+110  
190  
OUT1H-OUT1L Deadtime H  
OUT1H-OUT1L Deadtime L  
OUT1H ON Resistance  
OUT1L ON Resistance  
tHLOFFH  
tHLOFFL  
RON1H  
RON1L  
120  
120  
0.45  
0.45  
For output L to H  
For output H to L  
IOUT1H=-100 mA  
IOUT1L=100 mA  
190  
1.00  
1.00  
-
Ω
Design guarantee,  
VCC2=16 V  
Design guarantee,  
VCC2=16 V  
OUT1H Maximum Current  
OUT1L Maximum Current  
IOUTHMAX1  
IOUTLMAX1  
4.5  
4.5  
-
-
-
-
A
A
Soft Shutdown Output Delay Time  
PROOUT ON Resistance  
OUT2 ON Threshold  
tSSD  
RONPRO  
VOUT2ON  
tOUT2  
100  
150  
0.9  
3.0  
-
200  
2.0  
3.3  
100  
4.5  
5.5  
ns  
Ω
-
IPROOUT=100 mA  
2.7  
V
OUT2 Delay Time  
-
-
-
ns  
Ω
OUT2 ON Resistance (Source side)  
OUT2 ON Resistance (Sink side)  
RON2H  
RON2L  
2.0  
2.6  
IOUT2=-100 mA  
IOUT2=100 mA  
Ω
VREG  
0.45  
-
VREG  
0.2  
-
OUT2 H Voltage  
VOUT2H  
CM  
VREG  
-
V
IOUT2=-100 mA  
Common Mode Transient Immunity  
100  
-
kV/μs Design guarantee  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
6/40  
TSZ22111 15 001  
BM6109FV-C  
Electrical Characteristics-continued  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
Temperature Monitor  
TC Output Voltage  
VTC  
ITO  
0.916  
194  
0.940  
200  
0.964  
206  
V
TOx Constant Current  
μA  
TOx=TO1, TO2, RTC=4.7 kΩ  
TO1=TO2=1.40 V (Duty=10.00 %),  
SYNC=20 kHz  
TOUT Duty Accuracy 1  
TOUT Duty Accuracy 2  
TOUT Duty Accuracy 3  
TOUT Duty Accuracy 4  
DTOUT1  
DTOUT2  
DTOUT3  
DTOUT4  
-2.35  
-2.85  
-3.58  
-4.27  
0.00  
0.00  
0.00  
0.00  
+2.35  
+2.85  
+3.58  
+4.27  
%
%
%
%
TO1=TO2=1.95 V (Duty=30.95 %),  
SYNC=20 kHz  
TO1=TO2=2.75 V (Duty=61.43 %),  
SYNC=20 kHz  
TO1=TO2=3.50 V (Duty=90.00 %),  
SYNC=20 kHz  
High Selector Accuracy  
VHS  
fTRI  
-7  
8
0
+7  
14  
mV  
Design guarantee  
Design guarantee  
Internal Triangular Wave Frequency  
10  
kHz  
Design guarantee fSYNC=20  
kHz  
TOUT Delay Time  
tTOUT  
RONTH  
RONTL  
-
-
-
-
15  
ms  
Ω
TOUT ON Resistance (Source side)  
TOUT ON Resistance  
(Sink side)  
60  
60  
160  
160  
ITOUT=-1 mA  
Ω
ITOUT=1 mA  
TOx Disconnected Detection Voltage  
OSC Oscillation Frequency  
VTOH  
fOSC  
7
8
20.0  
60  
60  
20  
-
9
V
kHz  
Ω
TOx=TO1, TO2  
RRT=100 kΩ  
IOSC=-1 mA  
17.5  
22.5  
160  
160  
-
OSC ON Resistance (Source side)  
OSC ON Resistance (Sink side)  
External Synchronization Frequency  
External Synchronization Delay Time  
RONOSCH  
RONOSCL  
fSYNC  
-
-
Ω
IOSC=1 mA  
-
kHz  
ns  
SYNC=20 kHz  
tSYNC  
60  
350  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
7/40  
BM6109FV-C  
Electrical Characteristics-continued  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
Protective Function  
Primary Side UVLO OFF Voltage  
Primary Side UVLO ON Voltage  
Primary Side UVLO Hysteresis  
4.05  
3.95  
0.05  
4.25  
4.15  
0.1  
4.45  
4.35  
0.15  
V
V
V
VUV1H  
VUV1L  
VHYSUV1  
Primary Side UVLO Delay Time  
(OUT1H, OUT1L)  
Primary Side UVLO Delay Time  
(FLT1, FLT2)  
tUV1OUT  
tUV1FLT  
2
2
10  
10  
30  
30  
μs  
μs  
Secondary Side UVLO OFF Voltage  
Secondary Side UVLO ON Voltage  
Secondary Side UVLO Hysteresis  
11.9  
11.4  
0.25  
12.5  
12.0  
0.50  
13.1  
12.6  
0.75  
V
V
V
VUV2H  
VUV2L  
VHYSUV2  
Secondary Side UVLO Delay Time  
(OUT1H, OUT1L)  
tUV2OUT  
2
10  
30  
μs  
Secondary Side UVLO Delay Time  
(FLT1, FLT2)  
tUV2FLT  
VSCDET  
tSCOUT  
3
-
65  
0.660  
500  
μs  
V
Short Circuit Detection Voltage  
Short Circuit Detection Delay Time  
(OUT1H, OUT1L)  
0.540  
160  
0.600  
330  
ns  
Short Circuit Detection Delay Time  
(FLT1, FLT2)  
Overcurrent Detection Voltage  
tSCFLT  
VOCDET  
tOCOUT  
1
0.282  
7
-
35  
0.318  
13  
μs  
V
0.300  
10  
Overcurrent Detection Delay Time  
(OUT1H, OUT1L)  
μs  
Overcurrent Detection Delay Time  
(FLT1, FLT2)  
tOCFLT  
VTO  
8
-
48  
μs  
V
Overheat Detection Voltage  
Overheat Detection Delay Time  
(OUT1H, OUT1L)  
1.25  
160  
1.32  
330  
1.39  
500  
tTOOUT  
ns  
Overheat Detection Delay Time  
(FLT1, FLT2)  
tTOFLT  
1
-
35  
μs  
FLT ON Resistance  
RONFLT  
tRLS  
-
3.7  
-
10  
Ω
IFLT =10 mA  
Fault Release Delay Time  
100  
330  
μs  
0.64 x VCC1  
-0.1  
0.64 x VCC1  
+0.1  
FLTRLS Threshold  
VFLTRLS  
0.64 x VCC1  
V
FLTRLS Discharge Switch ON  
Resistance  
RONFLTRLS  
ILFLTRLS  
-
3.7  
0
10  
+1  
Ω
IFLTRLS =10 mA  
FLTRLS Leak Current  
-1  
μA  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
8/40  
BM6109FV-C  
Typical Performance Curves  
(Reference data)  
10.1  
9.1  
8.1  
7.1  
10.1  
9.1  
8.1  
7.1  
6.1  
5.1  
4.1  
3.1  
2.1  
Ta=-40 °C  
Ta=+25 °C  
Ta=+125 °C  
6.1  
5.1  
4.1  
3.1  
2.1  
VCC1=5.5 V  
VCC1=5.0 V  
VCC1=4.5 V  
4.5  
4.8  
5.0  
5.3  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Primary Side Supply Voltage : VCC1 [V]  
Figure 3. Primary Side Circuit current 1 vs Primary Side  
Figure 4. Primary Side Circuit Current 1 vs Temperature  
(OUT=L)  
Supply Voltage  
(OUT=L)  
10.1  
10.1  
9.1  
8.1  
7.1  
6.1  
5.1  
4.1  
3.1  
2.1  
9.1  
8.1  
7.1  
6.1  
5.1  
4.1  
3.1  
2.1  
Ta=-40 °C  
Ta=+25 °C  
Ta=+125 °C  
VCC1=5.5 V  
VCC1=5.0 V  
VCC1=4.5 V  
4.5  
4.8  
5.0  
5.3  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Primary Side Supply Voltage : VCC1 [V]  
Figure 5. Primary Side Circuit Current 2 vs Primary Side  
Figure 6. Primary Side Circuit Current 2 vs Temperature  
(OUT=H)  
Supply Voltage  
(OUT=H)  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
9/40  
BM6109FV-C  
Typical Performance Curves - continued  
(Reference data)  
10.3  
9.5  
8.7  
7.9  
7.1  
6.3  
5.4  
4.6  
3.8  
3.0  
2.2  
10.3  
9.5  
8.7  
7.9  
7.1  
6.3  
5.4  
4.6  
3.8  
3.0  
2.2  
Ta=-40 °C  
Ta=+25 °C  
Ta=+125 °C  
VCC1=5.0 V  
VCC1=5.5 V  
VCC1=4.5 V  
4.5  
4.8  
5.0  
5.3  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Primary Side Supply Voltage : VCC1 [V]  
Figure 8. Primary Side Circuit Current 3 vs Temperature  
(INA=10 kHz, Duty=50 %)  
Figure 7. Primary Side Circuit Current 3 vs Primary Side  
Supply Voltage  
(INA=10 kHz, Duty=50 %)  
10.4  
9.6  
8.8  
8.0  
7.2  
6.4  
5.5  
4.7  
3.9  
3.1  
2.3  
10.4  
9.6  
8.8  
8.0  
7.2  
6.4  
5.5  
4.7  
3.9  
3.1  
2.3  
Ta=-40 °C  
Ta=+25 °C  
Ta=+125 °C  
VCC1=5.5 V  
VCC1=5.0 V  
VCC1=4.5 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
4.5  
4.8  
5.0  
5.3  
5.5  
Primary Side Supply Voltage : VCC1 [V]  
Figure 9. Primary Side Circuit Current 4 vs Primary Side Figure 10. Primary Side Circuit Current 4 vs Temperature  
(INA=20 kHz, Duty=50 %)  
Supply Voltage  
(INA=20 kHz, Duty=50 %)  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
10/40  
TSZ22111 15 001  
BM6109FV-C  
Typical Performance Curves - continued  
(Reference data)  
4.8  
4.4  
4.0  
3.6  
4.8  
4.4  
4.0  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
VCC2=16 V  
Ta=+25 °C  
Ta=+125 °C  
VCC2=18 V  
3.2  
2.8  
2.4  
2.0  
1.6  
VCC2=14 V  
Ta=-40 °C  
14.0  
15.0  
16.0  
17.0  
18.0  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Secondary Side Supply Voltage : VCC2 [V]  
Figure 11. Secondary Side Circuit Current vs Secondary  
Side Supply Voltage  
Figure 12. Secondary Side Circuit Current vs Temperature  
5.20  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
Ta=-40 °C  
Ta=+25 °C  
Ta=+125 °C  
Ta=-40 °C  
Ta=+25 °C  
Ta=+125 °C  
H Level  
L Level  
Ta=-40 °C  
Ta=+25 °C  
Ta=+125 °C  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
14.0  
15.0  
16.0  
17.0  
18.0  
Secondary Side Supply Voltage : VCC2 [V]  
Primary Side Supply Voltage : VCC1 [V]  
Figure 13. VREG Output Voltage vs Secondary Side  
Supply Voltage  
Figure 14. Logic H/L Level Input Voltage vs Primary Side  
Supply Voltage  
(INA, INB, SSDIN, SYNC)  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
11/40  
BM6109FV-C  
Typical Performance Curves - continued  
(Reference data)  
1000  
850  
700  
550  
400  
250  
1000  
850  
VCC1=4.5 V  
VCC1=5.0 V  
VCC1=5.5 V  
700  
VCC1=4.5 V  
VCC1=5.0 V  
VCC1=5.5 V  
550  
400  
250  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Figure 15. Logic Pull Down Resistance vs Temperature  
(INA, SSDIN, SYNC)  
Figure 16. Logic Pull Up Resistance vs Temperature  
(INB)  
65  
55  
45  
35  
25  
15  
5
190  
170  
150  
130  
110  
90  
VCC1=4.5 V  
VCC1=5.0 V  
VCC1=5.5 V  
VCC1=4.5 V  
VCC1=5.0 V  
VCC1=5.5 V  
70  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Figure 17. Logic Input Filter Time vs Temperature  
(INA, INB, SSDIN)  
Figure 18. Minimum Input Pulse Width H vs Temperature  
(INA, INB)  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
12/40  
BM6109FV-C  
Typical Performance Curves - continued  
(Reference data)  
110  
100  
90  
190  
VCC1=4.5 V  
VCC1=5.0 V  
VCC1=5.5 V  
170  
150  
130  
110  
90  
VCC1=4.5 V  
VCC1=5.0 V  
VCC1=5.5 V  
80  
70  
60  
50  
70  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Figure 19. Minimum Input Pulse Width L vs Temperature  
(INA, INB)  
Figure 20. Minimum Input Pulse Width vs Temperature  
(SSDIN)  
440  
410  
380  
350  
320  
290  
260  
230  
200  
170  
140  
110  
440  
410  
380  
350  
320  
290  
260  
230  
200  
170  
140  
110  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
-40 -25 -10 5 20 35 50 65 80 95 110125  
Temperature : Ta [°C]  
Figure 21. Turn ON Time vs Temperature  
Figure 22. Turn OFF Time vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
13/40  
TSZ22111 15 001  
BM6109FV-C  
Typical Performance Curves - continued  
(Reference data)  
190  
170  
150  
130  
110  
90  
190  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
170  
150  
130  
110  
90  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
70  
70  
-40 -25 -10 5 20 35 50 65 80 95 110125  
Temperature : Ta [°C]  
-40 -25 -10 5 20 35 50 65 80 95 110125  
Temperature : Ta [°C]  
Figure 23. OUT1H-OUT1L Deadtime H  
vs Temperature (Output L to H)  
Figure 24. OUT1H-OUT1L Deadtime L  
vs Temperature (Output H to L)  
1.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
-40 -25 -10 5 20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Figure 25. OUT1H ON Resistance vs Temperature  
Figure 26. OUT1L ON Resistance vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
14/40  
TSZ22111 15 001  
BM6109FV-C  
Typical Performance Curves - continued  
(Reference data)  
200  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
190  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
180  
170  
160  
150  
140  
130  
120  
110  
100  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
-40 -25 -10 5 20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Figure 27. Soft Shutdown Output Delay Time  
vs Temperature  
Figure 28. PROOUT ON Resistance  
vs Temperature  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
100  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Figure 29. OUT2 ON Threshold vs Temperature  
Temperature : Ta [°C]  
Figure 30. OUT2 Delay Time vs Temperature  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
15/40  
BM6109FV-C  
Typical Performance Curves - continued  
(Reference data)  
4.5  
4.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Figure 31. OUT2 ON Resistance vs Temperature  
(Source)  
Figure 32. OUT2 ON Resistance vs Temperature  
(Sink)  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
4.70  
4.65  
4.60  
4.55  
0.964  
0.958  
0.952  
0.946  
0.940  
0.934  
0.928  
0.922  
0.916  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
-40 -25 -10 5 20 35 50 65 80 95 110125  
Temperature : Ta [°C]  
-40 -25 -10 5 20 35 50 65 80 95 110125  
Temperature : Ta [°C]  
Figure 33. OUT2 H Voltage vs Temperature  
Figure 34. TC Output Voltage vs Temperature  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
16/40  
BM6109FV-C  
Typical Performance Curves - continued  
(Reference data)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
206  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
204  
202  
200  
198  
196  
194  
Ta=-40 °C  
Ta=+25 °C  
Ta=+125 °C  
1.40 1.70 2.00 2.30 2.60 2.90 3.20 3.50  
TO1, TO2 Input Voltage : VTO [V]  
-40 -25 -10 5 20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Figure 35. TO1, TO2 Constant Current vs Temperature  
Figure 36. TOUT Duty Accuracy vs TO1, TO2 Input Voltage  
14.0  
7.0  
6.0  
5.0  
Ta=-40 °C  
Ta=+25 °C  
Ta=+125 °C  
13.0  
12.0  
11.0  
10.0  
9.0  
4.0  
3.0  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
2.0  
1.0  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
-6.0  
-7.0  
8.0  
1.40 1.70 2.00 2.30 2.60 2.90 3.20 3.50  
TO1, TO2 Input Voltage : VTO [V]  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Figure 37. High Selector Accuracy vs TO1, TO2 Input Voltage  
Figure 38. Internal Triangular Wave Frequency  
vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
17/40  
TSZ22111 15 001  
BM6109FV-C  
Typical Performance Curves - continued  
(Reference data)  
160  
140  
120  
100  
80  
160  
140  
120  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
100  
80  
60  
40  
20  
0
60  
40  
20  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 39. TOUT ON Resistance vs Temperature  
(Source)  
Figure 40. TOUT ON Resistance vs Temperature  
(Sink)  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
22.5  
22.0  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
-40 -25 -10 5 20 35 50 65 80 95 110125  
Temperature : Ta [°C]  
-40 -25 -10 5 20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Figure 41. TO1, TO2 Disconnected Detection Voltage  
vs Temperature  
Figure 42. OSC Oscillation Frequency vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
18/40  
TSZ22111 15 001  
BM6109FV-C  
Typical Performance Curves - continued  
(Reference data)  
160  
140  
120  
100  
80  
160  
140  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
120  
100  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
80  
60  
40  
20  
0
60  
40  
20  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 43. OSC ON Resistance vs Temperature  
(Source)  
Figure 44. OSC ON Resistance vs Temperature  
(Sink)  
350  
321  
292  
263  
234  
205  
176  
147  
118  
89  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Ta=+125 °C  
Ta=-40 °C  
Ta=+25 °C  
Max  
Min  
60  
-40 -25 -10 5 20 35 50 65 80 95 110125  
Temperature : Ta [°C]  
4.00 4.05 4.10 4.15 4.20 4.25 4.30 4.35 4.40  
Primary Side Supply Voltage : VCC1 [V]  
Figure 45. External Synchronization Delay Time  
vs Temperature  
Figure 46. FLT Voltage vs Primary Side Supply Voltage  
(Primary Side UVLO ON/OFF Voltage)  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
19/40  
BM6109FV-C  
Typical Performance Curves - continued  
(Reference data)  
30.0  
26.0  
22.0  
18.0  
14.0  
10.0  
6.0  
30.0  
26.0  
22.0  
18.0  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
14.0  
10.0  
6.0  
2.0  
2.0  
-40 -25 -10 5 20 35 50 65 80 95 110125  
Temperature : Ta [°C]  
-40-25-10 5 20 35 50 65 80 95110125  
Temperature : Ta [°C]  
Figure 47. Primary Side UVLO Delay Time vs Temperature  
(OUT1H, OUT1L)  
Figure 48. Primary Side UVLO Delay Time vs Temperature  
(FLT1, FLT2)  
6.0  
5.0  
30.0  
26.0  
Ta=+125 °C  
4.0  
22.0  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
18.0  
Ta=-40 °C  
3.0  
14.0  
10.0  
6.0  
Ta=+25 °C  
2.0  
1.0  
0.0  
2.0  
11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0  
Secondary Side Supply Voltage : VCC2 [V]  
-40 -25 -10 5 20 35 50 65 80 95 110125  
Temperature : Ta [°C]  
Figure 49. FLT Voltage vs Secondary Side Supply Voltage Figure 50. Secondary Side UVLO Delay Time vs Temperature  
(Secondary Side UVLO ON/OFF Voltage)  
(OUT1H, OUT1L)  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
20/40  
TSZ22111 15 001  
BM6109FV-C  
Typical Performance Curves - continued  
(Reference data)  
0.66  
0.64  
0.62  
0.60  
0.58  
0.56  
0.54  
65  
59  
53  
46  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
Max  
40  
34  
28  
22  
Min  
15  
9
3
-40 -25 -10 5 20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
-40 -25 -10 5 20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Figure 52. Short Circuit Detection Voltage vs Temperature  
Figure 51. Secondary Side UVLO Delay Time vs Temperature  
(FLT1, FLT2)  
500.0  
35.0  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
31.6  
28.2  
24.8  
21.4  
18.0  
14.6  
11.2  
7.8  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
457.5  
415.0  
372.5  
330.0  
287.5  
245.0  
202.5  
160.0  
Max  
Min  
4.4  
1.0  
-40 -25 -10 5 20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
-40 -25 -10 5 20 35 50 65 80 95 110125  
Temperature : Ta [°C]  
Figure 53. Short Circuit Detection Delay Time vs Temperature  
(OUT1H, OUT1L)  
Figure 54. Short Circuit Detection Delay Time vs Temperature  
(FLT1, FLT2)  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
21/40  
TSZ22111 15 001  
BM6109FV-C  
Typical Performance Curves - continued  
(Reference data)  
13.0  
12.0  
11.0  
10.0  
9.0  
0.318  
0.314  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
0.310  
0.306  
0.302  
0.298  
0.294  
0.290  
0.286  
0.282  
8.0  
7.0  
-40 -25 -10 5 20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
-40 -25 -10 5 20 35 50 65 80 95 110125  
Temperature : Ta [°C]  
Figure 56. Overcurrent Detection Delay Time vs Temperature  
(OUT1H, OUT1L)  
Figure 55. Overcurrent Detection Voltage vs Temperature  
48.0  
44.0  
40.0  
1.39  
1.37  
1.35  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
Max  
36.0  
32.0  
28.0  
24.0  
1.33  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
1.31  
Min  
20.0  
1.29  
1.27  
16.0  
12.0  
8.0  
1.25  
-40 -25 -10 5 20 35 50 65 80 95 110125  
-40 -25 -10 5 20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 57. Overcurrent Detection Delay Time vs Temperature  
(FLT1, FLT2)  
Figure 58. Overheat Detection Voltage vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
22/40  
TSZ22111 15 001  
BM6109FV-C  
Typical Performance Curves - continued  
(Reference data)  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
500.0  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
457.5  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
Max  
415.0  
372.5  
330.0  
287.5  
245.0  
202.5  
160.0  
Min  
0.0  
-40 -25 -10 5 20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
-40 -25 -10 5 20 35 50 65 80 95 110125  
Temperature : Ta [°C]  
Figure 60. Overheat Detection Delay Time vs Temperature  
(FLT1, FLT2)  
Figure 59. Overheat Detection Delay Time vs Temperature  
(OUT1H, OUT1L)  
330  
10.0  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
304  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
279  
253  
228  
202  
177  
151  
126  
100  
Output Side  
Input Side  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Figure 61. FLT ON Resistance vs Temperature  
Figure 62. Fault Release Delay Time vs Temperature  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
23/40  
BM6109FV-C  
Typical Performance Curves - continued  
(Reference data)  
10.0  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
3.30  
3.28  
3.26  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
3.24  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
3.22  
3.20  
3.18  
3.16  
3.14  
3.12  
3.10  
-40 -25 -10 5 20 35 50 65 80 95 110125  
Temperature : Ta [°C]  
-40 -25 -10 5 20 35 50 65 80 95 110125  
Temperature : Ta [°C]  
Figure 63. FLTRLS Threshold vs Temperature  
Figure 64. FLTRLS Discharge Switch ON Resistance vs  
Temperature  
1.0  
0.8  
0.6  
VCC2=14 V  
VCC2=16 V  
VCC2=18 V  
0.4  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature : Ta [°C]  
Figure 65. FLTRLS Leak Current vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
24/40  
TSZ22111 15 001  
BM6109FV-C  
Description of Pins and Cautions on Layout of Board  
1. VCC1 (Primary side power supply pin)  
This is the primary side power supply pin. Connect a bypass capacitor between the VCC1 and the GND1 pins in order to  
suppress voltage variations by the driving current flowing in the IC’s internal transformer.  
2. GND1 (Primary side ground pin)  
This is the primary side ground pin.  
3. VCC2 (Secondary side power supply pin)  
This is the secondary side power supply pin. Connect a bypass capacitor between the VCC2 and the GND2 pins in order to  
suppress voltage variations by the driving current and output current flowing in the IC’s internal transformer.  
4. GND2 (Secondary side ground pin)  
This is the secondary side ground pin. Connect the output device’s emitter/source to this pin.  
5. VREG (Secondary side internal power supply pin)  
This is the secondary side internal power supply pin. Connect a bypass capacitor between the VREG and the GND2 pins in  
order to prevent oscillation.  
6. INA, INB and SSDIN (Control input pins and soft shutdown control input pin)  
These are pins for determining the output logic. For SSDIN=H, OUT1L will be turned on after the miller clamp function is  
activated.  
SSDIN  
INB  
L
INA  
L
OUT1H  
OFF  
ON  
OUT1L  
ON  
PROOUT  
OFF  
L
L
L
L
H
L
H
OFF  
ON  
OFF  
H
L
OFF  
OFF  
OFF  
OFF  
H
H
ON  
OFF  
X
X
OFF  
ON  
X: Don't care  
7. OUT1H and OUT1L (Source side output / Gate voltage input pin and sink side output pin)  
These are gate driving pins. For output logic, see the truth table for IN and SSDIN pins shown in item 6 above. The OUT1H  
pin is used also as a gate voltage input pin for the miller clamp function.  
8. OUT2 (Control pin for Miller clamp)  
This is the miller clamp pin for controlling Nch MOSFET to prevent the gate voltage from rising due to the miller current  
flowing in the output element that is connected to the OUT1H and OUT1L pins. The OUT2 pin should be open when the  
miller clamp function is not used.  
9. PROOUT (Soft shutdown output pin)  
This pin is used for operation of soft shutdown of the output element during short circuit protection, overcurrent protection or  
overheat protection.  
10. SCPIN1 and SCPIN2 (Short circuit and overcurrent detection pins)  
These pins are current detection pins for short circuit and overcurrent protections. If the SCPIN1 or SCPIN2 pin voltage of  
VSCDET or more lasts tSCOUT or more, the short circuit protection function is activated. If the SCPIN1 or SCPIN2 pin voltage of  
VOCDET or more lasts tOCOUT or more, the overcircuit protection function is activated. In the open state, the IC may possibly  
malfunction. To avoid this risk, if the SCPIN1 pin or the SCPIN2 pin is not used, keep it connected to the GND2 pin.  
11. FLT1 and FLT2 (Fault signal output pin)  
These pins are used for outputting fault signals. In the event of a fault (leading to the operation of the protection against low  
primary/secondary voltage (UVLO), short circuit protection (SCP), overcurrent protection (OCP) or overheat protection (OT)),  
the Nch MOS FET inserted between FLT1 and FLT2 pins will be turned OFF.  
State  
FLT  
ON  
Normal  
Fault  
OFF  
(primary side UVLO, secondary side UVLO, SCP, OCP or OT)  
12. FLTRLS (Fault output holding time setup pin)  
This pin is used for specifying the holding time of a fault signal. Connect a capacitor between GND1 pin. Connect resistor  
between the VCC1 pin.  
A fault signal is retained until the FLTRLS pins voltage reaches VFLTRLS or higher. If set the holding time to 0 ms, do not insert  
a capacitor. When it shorts to the VCC1 pin, large current flows into the FLTRLS pin and could lead to malfunction in the  
open state. To avoid this risk, please insert a resistor between the VCC1 pin.  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
25/40  
TSZ22111 15 001  
BM6109FV-C  
Description of Pins and Cautions on Layout of Board-continued  
13. TC (Constant current setting resistor connection pin)  
The TC pin has a resistor connection for setting the constant current output. By inserting arbitrary resistance between the  
TC and the GND2 pins, the current from the TO1 pin and the TO2 pin are set to a constant value.  
14. TO1 and TO2 (Constant current output / Sensor voltage input pin)  
These are constant current output / voltage input pins. Insert impedance between the TO1 and the GND2 pins, and between  
the TO2 and the GND2 pins. They can be used as a sensor input. Furthermore, the TO1 pin and TO2 pin disconnect detection  
function is built-in.  
15. TOUT (Temperature information output pin)  
This is a pin which outputs the voltage either TO1 or TO2, whichever is lower, converted to Duty cycle, in phase with the  
clock signal input to the SYNC pin.  
16. SYNC (External clock input pin)  
This is an input pin for external clock signal. It can be connected also to the OSC pin. It contains a filter that is effective for  
removing noise that could lead to erroneous operation.  
17. OSC (Output pin for oscillation frequency)  
This is an output pin for clock signals. Oscillation frequency is calculated by substituting the value of the resistance connected  
to the RT pin to the following equation.  
fOSC [kHz] = 2000 / RRT [kΩ]  
18. RT (Oscillation frequency setup resistor connection pin)  
This pin is used for connecting a resistor that determines the oscillation frequency of the clock signal output from the OSC  
pin. Regardless of clock signal being used or not, insert a resistance between the RT and the GND1 pins.  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
26/40  
TSZ22111 15 001  
BM6109FV-C  
Description of Functions and Examples of Constant Setting  
1. Fault Status Output  
When a fault occurs (the primary side or secondary side under voltage lockout function (UVLO), short circuit protection (SCP),  
overcurrent protection (OCP) or overheat protection (OT) occurs), the Nch MOS FET between the FLT1 and FLT2 pins are  
turned OFF whereby a fault signal output. The signal retains until the elapse of fault output holding time tFLTRLS is cleared.  
The fault output holding time is determined by the following equation that consists of the capacitor CFLTRLS and resistor RFLTRLS  
connected to the FLTRSL pin, and the fault release delay time tRLS  
.
tFLTRLS=CFLTRLS x RFLTRLS + tRLS  
State  
Fault  
Nch MOS FET between  
the FLT1 and FLT2 pins  
State  
OFF  
Nch MOS FET  
between the FLT1  
and FLT2  
Normal  
Fault  
ON  
ON  
H
OFF  
OUT1H  
OUT1L  
Hi-Z  
Hi-Z  
L
Fault Output Holding Time (tFLTRLS)  
Figure 66. Fault Output Timing Chart  
2. Under Voltage Lockout (UVLO)  
Function both the primary side power supply (VCC1) and secondary side power supply (VCC2) have an under voltage  
lockout (UVLO) function. When the power supply voltage drops to the UVLO ON voltage, the OUT1H and OUT1L pins are  
turned OFF and ON respectively, and the interconnection between the FLT1 and FLT2 pins are turned OFF. When the power  
supply voltage rises to the UVLO OFF voltage, these pins will revert. However, during the fault output holding time as  
specified by item 1 above, the OUT1H and OUT1L pins remain OFF and ON respectively, and the interconnection between  
FLT1 and FLT2 pins remain OFF. During the operation of the under voltage lockout (UVLO) function, the miller clamp function  
as described by item 5 below remains effective. In addition, to remove noise that could lead to malfunction, both the primary  
side and secondary side power supplies have a filter.  
H
IN  
L
VUV1H  
VUV1L  
VCC1  
FLT1-FLT2  
OUT1H  
OFF  
Fault output holding  
time  
Fault output holding  
time  
ON  
ON  
OFF  
OFF  
OUT1L  
OUT1H voltage  
OUT2  
ON  
VOUT2ON  
H
L
H
TOUT  
L
(Note 11) Delay time is omitted for the purpose of readily understandable presentation  
Figure 67. Primary Side UVLO Operation Timing Chart  
H
L
IN  
VUV2H  
VUV2L  
VCC2  
FLT1-FLT2  
OUT1H  
OFF  
Fault output holding  
time  
Fault output holding  
time  
ON  
ON  
OFF  
OFF  
OUT1L  
OUT1H voltage  
OUT2  
ON  
VOUT2ON  
H
L
H
TOUT  
L
(Note 12) Delay time is omitted for the purpose of readily understandable presentation  
Figure 68. Secondary Side UVLO Operation Timing Chart  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
27/40  
TSZ22111 15 001  
BM6109FV-C  
Description of Functions and Examples of Constant Setting - continued  
3. Short Circuit Protection (SCP) Function  
When the SCPIN1 pin or the SCPIN2 pin voltage continues to exceed VSCDET for tSCOUT or more, the short circuit protection  
function is activated. Once the function is activated, both the OUT1H and the OUT1L pins turn OFF, the PROOUT pin turns  
ON, and the interconnection between the FLT1 and the FLT2 pins turn off. After the elapse of a specified fault output holding  
time since the voltage of both the SCPIN1 and the SCPIN2 pins decreases to VOCDET or below, the short circuit protection is  
deactivated. However, if the INA pin = L when the function is deactivated, the PROOUT pin will remain ON until the INA pin  
changes to H. Even if the short circuit protection function is active, the miller clamp function as described by the item 5 below  
is kept available.  
H
INA  
L
VSCDET  
SCPINx  
OUT1H  
VOCDET  
tSCOUT  
tSCOUT  
ON  
OFF  
OFF  
OUT1L  
ON  
OFF  
PROOUT  
ON  
H
L
OUT2  
FLT1-FLT2  
OFF  
tSCFLT  
tSCFLT  
ON  
tOUT2  
tOUT2  
OUT1H voltage  
VOUT2ON  
Fault Output Holding Time  
Fault Output Holding Time  
SCPINx : SCPIN1 or SCPIN2  
Figure 69. SCP Operation Timing Chart  
Start  
OUT1L=ON, OUT2=ON  
No  
No  
VSCPINx>VSCDET  
Yes  
No  
tFLTRLS elapse?  
Yes  
tSCOUT elapse?  
Yes  
OUT1H=OFF, OUT1L=OFF,  
PROOUT=ON, FLT1-FLT2=OFF  
FLT1-FLT2=ON  
No  
No  
No  
VSCPINx<VOCDET  
Yes  
INA=H, SSDIN=L  
Yes  
OUT1H=ON, OUT1L=OFF,  
OUT2=OFF, PROOUT=OFF  
VOUT1H<VOUT2ON  
Yes  
SCPINx : SCPIN1 or SCPIN2  
Figure 70. SCP Operation Flowchart  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
28/40  
BM6109FV-C  
Description of Functions and Examples of Constant Setting - continued  
4. Overcurrent Protection (OCP) Function  
If the SCPIN1 pin or the SCPIN2 pin voltage over VOCDET lasts for tOCOUT or more, the overcurrent protection function is  
activated. Once the function is activated, both the OUT1H and the OUT1L pins turn off, the PROOUT pin turn on, and the  
interconnection between the FLT1 and the FLT2 pins turn off. After the elapse of a specified fault output holding time since  
the voltage of both the SCPIN1 and the SCPIN2 pins decreases to VOCDET or below, the overcurrent protection is deactivated.  
However, if the INA pin = L when the function is deactivated, the PROOUT pin will remain ON until the INA pin changes to  
H. Even if the overcurrent protection is active, the miller clamp function as described by the item 5 below is kept available.  
H
L
INA  
SCPINx  
OUT1H  
VOCDET  
ON  
OFF  
OFF  
tOCOUT  
tOCOUT  
OUT1L  
ON  
OFF  
PROOUT  
ON  
H
L
OUT2  
FLT1-FLT2  
OFF  
tOCFLT  
tOCFLT  
ON  
tOUT2  
tOUT2  
OUT1Hvoltage  
VOUT2ON  
Fault Output Holding Time  
Fault Output Holding Time  
SCPINx : SCPIN1 or SCPIN2  
Figure 71. OCP Operation Timing Chart  
Start  
OUT1L=ON, OUT2=ON  
No  
No  
VSCPINx>VOCDET  
Yes  
No  
tFLTRLS elapse?  
Yes  
tOCOUT elapse?  
Yes  
OUT1H=OFF, OUT1L=OFF,  
PROOUT=ON, FLT1-FLT2=OFF  
FLT1-FLT2=ON  
No  
No  
No  
VSCPINx<VOCDET  
Yes  
INA=H, SSDIN=L  
Yes  
OUT1H=ON, OUT1L=OFF,  
OUT2=OFF, PROOUT=OFF  
VOUT1H<VOUT2ON  
Yes  
SCPINx : SCPIN1 or SCPIN2  
Figure 72. OCP Operation Flowchart  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
29/40  
BM6109FV-C  
Description of Functions and Examples of Constant Setting - continued  
5. Miller Clamp Function  
When the OUT1H pin=OFF and the OUT1H pin voltage < VOUT2ON, the OUT2 pin outputs H and miller clamp function is  
activated. After miller clamp function is activated, the OUT2 pin=H remains until the OUT1H pin=ON occurs. With the SSDIN  
pin=H, even while a fault protection (the primary side or secondary side under voltage lockout function (UVLO), short circuit  
protection (SCP), overcurrent protection (OCP) or overheat protection (OT) is active), the miller clamp function is kept  
available.  
State  
IN  
H
L
OUT1H voltage  
X
OUT2  
L
L
Normal  
VOUT2ON or larger  
Smaller than VOUT2ON  
VOUT2ON or larger  
Smaller than VOUT2ON  
VOUT2ON or larger  
Smaller than VOUT2ON  
L
H
L
X
X
X
X
SSDIN=H  
Fault  
H
L
H
X: Don't care  
H
L
IN  
H
SSDIN  
L
ON  
OUT1H  
OFF  
OFF  
OUT1L  
ON  
OUT1H voltage  
VOUT2ON  
H
OUT2  
L
OFF  
PROOUT  
ON  
(Note 13) Delay time is omitted for understandable presentation  
Figure 73. Miller Camp Function Operation Timing Chart  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
30/40  
BM6109FV-C  
Description of Functions and Examples of Constant Setting - continued  
6. Temperature Monitor Function  
This IC has a built-in constant current circuit in which a constant current is supplied from TO1 and TO2 pins. This current  
value can be adjusted in accordance to the resistance value connected between the TC pin and the GND2 pin. Furthermore,  
TO1 and TO2 pins have voltage input function, and outputs the TO1 pin or the TO2 pin voltage which is smaller, as converted  
to Duty, from the TOUT pin. The Duty ranging between 10% and 90% is output in phase with the clock signal input to the  
SYNC pin. The IC has a built-in clock signal generator that uses the OSC pin to output the clock signal. Oscillation frequency  
can be adjusted by using the resistance between RT pin and GND1 pin. To make the clock signal generator available,  
connect between OSC pin and SYNC pin. However, even if the generator is not used, connect a resistor between RT pin  
and GND1 pin to prevent erroneous operation.  
When the primary side or secondary side under voltage lockout function (UVLO) is active, or either of the TO1 pin or the  
TO2 pin measures a voltage over the “not connected” detection voltage VTOH, the TOUT pin outputs L. Therefore, if using  
one the TO1 pin or the TO2 pin only, connect a resistor between the other pin and the GND2 pin to keep the voltage VTOH or  
less.  
푇퐶  
Constant current value =  
푇퐶  
VTOH  
3.5 V  
TO1 or TO2 pin  
input voltage  
TO2 or TO1 pin  
input voltage  
1.4 V  
a%  
a%  
a%  
a%  
a%  
Internal Duty  
SYNC  
90%  
a%  
10%  
10%  
10%  
90%  
TOUT(Note 14)  
(Note 14) Delay time is omitted for a readily understandable presentation  
Figure 74. Temperature Monitor Timing Chart  
7. Overheat Protection (OT) Function  
If the TO1 pin or the TO2 pin voltage below VTO lasts for tTOOUT or more, the overheat protection function is activated. Once  
the function is activated, both OUT1H and OUT1L pins turn off, the PROOUT pin will turns on, and the interconnection  
between FLT1 and FLT2 pins turn off. After the elapse of the specified fault output holding time since the voltage of both TO1  
and TO2 pins increases to VTO or above, the overheat protection is deactivated. However, if the INA pin = L when the function  
is deactivated, the PROOUT pin will remain ON until the INA pin changes to H. Even if the overheat protection is active, the  
miller clamp function as described by the item 5 above is kept available.  
H
IN  
L
VTO  
ON  
TO1 or TO2  
OUT1H  
OUT1L  
OFF  
OFF  
ON  
OFF  
Fault holding time  
Fault holding time  
FLT1-FLT2  
ON  
VOUT2ON  
H
OUT1H voltage  
OUT2  
L
OFF  
PROOUT  
ON  
(Note 15) Delay time is omitted for the purpose of readily understandable presentation  
Figure 75. Overheat protection timing chart  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
31/40  
BM6109FV-C  
Description of Functions and Examples of Constant Setting - continued  
8. Operation Truth Table  
Input  
Output  
SCPIN1 TO1  
or or  
SCPIN2 TO2  
State  
VCC1  
VCC2  
1
2
UVLO  
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
L
X
X
X
X
H
H
H
H
X
X
X
X
X
X
L
X
X
X
X
L
H
L
OFF ON OFF  
OFF ON OFF  
OFF ON OFF  
OFF ON OFF  
OFF OFF ON  
L
H
L
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
VCC1 UVLO  
VCC2 UVLO  
UVLO  
X
X
3
X
X
UVLO  
X
H
L
4
UVLO  
X
H
L
5
OCP  
H
L
Overcurrent  
protection  
6
OCP  
L
L
OFF ON  
OFF OFF ON  
OFF ON ON  
OFF OFF ON  
OFF ON ON  
OFF OFF ON  
OFF ON ON  
ON  
H
L
7
SCP  
L
L
H
L
Short circuit  
protection  
8
SCP  
L
L
L
H
L
9
X
X
X
X
H
H
L
X
X
H
H
L
H
L
Overheat  
protection  
10  
11  
12  
13  
14  
15  
16  
17  
L
L
H
L
L
H
H
H
H
H
H
H
H
L
External SSD  
L
H
L
ON  
L
H
L
OFF ON OFF  
OFF ON OFF  
OFF ON OFF  
OFF ON OFF  
ON OFF OFF  
ON  
L
L
H
L
ON  
Normal operation  
L
L
H
L
ON  
L
L
L
L
H
L
ON  
L
L
H
L
X
ON  
: VCC1, VCC2 > UVLO, X: Don't care  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
32/40  
TSZ22111 15 001  
BM6109FV-C  
I/O Equivalence Circuits  
Pin Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
Pin Function  
TO1  
VCC2  
VREG  
2
Constant current output  
/ Sensor voltage input pin 1  
TO1  
TO2  
TO2  
3
4
Constant current output  
/ Sensor voltage input pin 2  
TC  
TC  
Constant current setting resistor  
connection pin  
GND2  
SCPIN1  
Internal  
power  
supply  
VCC2  
5
6
Short circuit and overcurrent detection  
pin 1  
SCPIN1  
SCPIN2  
SCPIN2  
Short circuit and overcurrent detection  
pin 2  
GND2  
VCC2  
VREG  
Internal power  
supply  
VREG  
7
Secondary side internal power supply  
pin  
GND2  
VCC2  
OUT2  
VREG  
8
OUT2  
GND2  
Miller Clamp Control pin  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
33/40  
TSZ22111 15 001  
BM6109FV-C  
I/O Equivalence Circuits - continued  
Pin Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
VCC2  
Pin Function  
OUT1H  
10  
Source side output  
/ Gate voltage input pin  
OUT1H  
OUT1L  
OUT1L  
12  
Sink side output pin  
GND2  
VCC2  
PROOUT  
13  
PROOUT  
Soft shutdown output pin  
GND2  
VCC1  
OSC  
16  
OSC  
Output pin for oscillation frequency  
GND2  
VCC1  
SYNC  
17  
SYNC  
External clock input pin  
GND1  
VCC1  
RT  
18  
RT  
Oscillation frequency setup resistor  
connection pin  
GND1  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
34/40  
BM6109FV-C  
I/O Equivalence Circuits - continued  
Pin Name  
Pin Function  
Pin No.  
Input Output Equivalent Circuit Diagram  
VREG1  
TOUT  
19  
TOUT  
Temperature information output pin  
GND2  
FLT2  
FLT2  
20  
Fault signal output pin  
FLT1  
FLT1  
22  
Fault signal output pin  
GND1  
VCC1  
INA  
23  
INA  
Control input pin  
GND1  
VCC1  
INB  
24  
INB  
Control input pin  
GND1  
VCC1  
SSDIN  
26  
SSDIN  
Soft shutdown control input pin  
GND1  
VCC1  
FLTRLS  
27  
FLTRLS  
GND1  
Fault output holding time setup pin  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
35/40  
BM6109FV-C  
Operational Notes  
1.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power supply  
pins.  
2.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
7.  
8.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
36/40  
BM6109FV-C  
Operational Notes continued  
9.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
10. Regarding the Input Pin of the IC  
This IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N  
junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode  
or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 76. Example of IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
37/40  
TSZ22111 15 001  
BM6109FV-C  
Ordering Information  
B M 6 1 0 9 F V  
-
CE 2  
part Number  
Package  
FV: SSOP-B28W  
Product class  
C : for Automotive applications  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
SSOP-B28W(TOP VIEW)  
Part Number Marking  
B M 6 1 0 9  
LOT Number  
Pin 1 Mark  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
38/40  
TSZ22111 15 001  
BM6109FV-C  
Physical Dimension and Packing Information  
Package Name  
SSOP-B28W  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
39/40  
BM6109FV-C  
Revision History  
Date  
Revision  
001  
Changes  
25.Oct.2018  
New Release  
www.rohm.com  
TSZ02201-0818ACH00020-1-2  
25.Oct.2018 Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
40/40  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BM6112FV-C

BM6112FV-C is a gate driver with isolation voltage of 3750Vrms, I/O delay time of 150ns, and incorporates fault signal output function, ready signal output function, under voltage lockout (UVLO) function, short circuit protection (SCP) function, active miller clamping function, output state feedback function and temperature monitor function.For sale of this product, please contact the specifications in our sales office. Currently, we don't sell this on the internet distributors now.
ROHM

BM61M22BFJ-C

本品为内置绝缘电压2500Vrms、最大输入输出延迟时间60ns、最小输入脉冲宽度60ns的绝缘元件的栅极驱动器。内置低电压时误动作防止功能(UVLO)。
ROHM

BM61M41RFV-C

BM61M41RFV-C是绝缘耐压3750Vrms、输入输出延迟时间65n、最小输入脉冲宽度60ns的栅极驱动器。搭载了UVLO功能、米勒钳位功能。
ROHM

BM61S40RFV-C

BM61S40RFV-C是绝缘耐压3750Vrms、输入输出延迟时间65n、最小输入脉冲宽度60ns的栅极驱动器。搭载了UVLO功能、米勒钳位功能、过电压保护功能。
ROHM

BM61S41RFV-C

BM61S41RFV-C是绝缘耐压3750Vrms、输入输出延迟时间65n、最小输入脉冲宽度60ns的栅极驱动器。搭载了UVLO功能、米勒钳位功能。
ROHM

BM6201FS

600V PrestoMOS™ built-in Three phase brushless fan motor driver
ROHM

BM6201FS-E2

600V PrestoMOS™ built-in Three phase brushless fan motor driver
ROHM

BM6202FS

3-Phase Brushless Fan Motor Driver
ROHM

BM6202FS-E2

3-Phase Brushless Fan Motor Driver
ROHM
BOOKLY

BM6203FS

3-Phase Brushless Fan Motor Driver
ROHM

BM6203FS-E2

3-Phase Brushless Fan Motor Driver
ROHM