LC822973 [SANYO]

CMOS LSI TV Image Viewer LSI; CMOS LSI电视图像浏览器LSI
LC822973
型号: LC822973
厂家: SANYO SEMICON DEVICE    SANYO SEMICON DEVICE
描述:

CMOS LSI TV Image Viewer LSI
CMOS LSI电视图像浏览器LSI

电视
文件: 总27页 (文件大小:214K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ordering number : ENA2131  
CMOS LSI  
LC822973  
TV Image Viewer LSI  
Overview  
This LSI is TV image viewer. A 16Mbit SDRAM is built-in as image frame buffers, on which an external CPU is  
able to draw the images, then another part of this LSI displays the SDRAM images on TV in NTSC/PAL after video  
data encoding. This LSI equips H/V scaling circuit to scale up QVGA size image to VGA to display on the TV screen,  
for instance.  
The main features of this LSI are specified as below.  
Features  
NTSC/PAL video encoder is integrated.  
Various format support  
ITU-R601 (13.5MHz/NTSC&PAL) SQ (12.27MHz/NTSC, 14.75MHz/PAL)  
NTSC-J, M/PAL-B, D, G, H, I/PAL-M, N  
Various image adjustment  
Y signal: brightness and contrast adjustment  
C signal:U gain, V gain, HUE and Burst amplitude adjustment  
Trap filter  
Trap filters locate on the Y signal pass to reduce cross color interference. The trap strength is adjustable by  
register setup.  
Built-in color bar  
This is for system test and level adjustment.  
10 bit DAC with 75Ω driver  
A high accuracy video DAC of 10bit is built-in. Its DAC output is able to be connected to TV input or any  
image devices, thanks for its 75Ω driver built-in.  
It mounts 16Mbit SDRAM to store multiple VGA size images. Since it has the arbitration function built-in, the  
access timing from CPU for drawing can be used without any care of real-time access condition for TV display.  
VGA 30fps performance can be achieved with appropriate setting of system clock, the burst size of SDRAM,  
scaling ratio etc.  
Continued to the next page.  
* I2C Bus is a trademark of Philips Corporation.  
Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to  
"standard application", intended for the use as general electronics equipment. The products mentioned herein  
shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life,  
aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system,  
safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives  
in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any  
guarantee thereof. If you should intend to use our products for new introduction or other application different  
from current conditions on the usage of automotive device, communication device, office equipment, industrial  
equipment etc. , please consult with us about usage condition (temperature, operation time etc.) prior to the  
intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely  
responsible for the use.  
Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate  
the performance, characteristics, and functions of the described products in the independent state, and are not  
guarantees of the performance, characteristics, and functions of the described products as mounted in the  
customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent  
device, the customer should always evaluate and test devices mounted in the customer  
's products or  
equipment.  
Ver.1.07  
O1012HKPC 20101028-S00001 No.A2131-1/27  
LC822973  
Continued from the previous page.  
The OSD function is installed. OSD images consist of binary pixel data to display over the original image. The  
Alfa-blend display is also available.  
Scaling from ×1 up to ×4 in two independent directions, horizontally and vertically, is available.  
256 step arbitrary enlargement is given by register settings. The image rotation is available when writing as well.  
The high-speed clock for SDRAM is generated internally by built-in PLL.  
CPU-IF with 8/9/16/18/24 bit width data transfer is available.  
Built-in VIDEO-IF supports receiving video rate image input with Hsync/Vsync/Dotclcok signals.  
It accepts various digital image formats of 18bit-RGB666, 16bit-RGB565, 16bit-YUV422, 8bit-YUV422,  
8bit-YUV422 (BT656) and so on. In addition, it accepts both interlace and non-interlace format.  
The Autoview function executes automatic writing/reading sequence. Once all the relevant commands are set, then  
this function properly updates the image banks to write and to read. This bank arbitration avoids well the tearing  
image (reading outruns writing).  
The FilckerFreeFilter effectively decreases the line flicker, a substantial phenomena of the interlace method.  
High performance C-signal band-limit filter is built-in. The thorny ‘dot crawl’ is thus decreased.  
CGMS-A/WSS data multiple functions are built-in.  
The I/O voltage of the CPU/Video interface is 1.6V-3.4V.  
Macrovision™ Encoding (Revision 7.1.L1 in NTSC and PAL standards for Composite video output applications)  
are built-in. (LC822973-04VM-E only)*  
* This device is Protected by U.S. patents 5, 583, 936; 6, 516, 132; 6, 836, 549; and 7, 050, 698; and other intellectual  
property rights. The use of Macrovision's copy protection technology in the device must be authorized by  
Macrovision and is intended for home and other limited pay-per-view uses only, unless otherwise authorized in  
writing by Macrovision. Reverse engineering or disassembly is prohibited. This Device can only be sold or  
distributed to Authorized Buyers.  
DC characteristics/AC characteristics  
Absolute Maximum Ratings at DV = 0V  
SS  
Ratings  
-0.3 to 1.8  
Parameter  
Supply voltage  
Symbol  
Conditions  
unit  
V
DV 15 max  
DD  
DV IO max  
DD  
-0.3 to 3.96  
V
Input voltage  
V IO  
I
-0.3 to 3.96 *1  
V
Output voltage  
V
IO  
-0.3 to DV IO+0.3  
DD  
V
O
Operation surrounding  
temperature  
Topg  
-30 to 85  
°C  
°C  
Storage temperature  
Tstg  
-55 to 125  
Soldering  
Hand  
For 3 seconds  
For 10 seconds  
350  
°C  
temperature  
soldering  
Reflow  
255  
°C  
In/Out current  
I 15, I 15  
20 *2  
mA  
I
O
I IO, I IO  
I
O
*1 Input voltage of I/O basic cell in case of without P-ch protection diode.  
*2 per 1 cell of I/O basic cell  
Permissible Operation Range at Ta = -30 to 85°C, DV = 0V  
SS  
min  
1.35  
typ  
max  
1.65  
Parameter  
Supply voltage  
Symbol  
Conditions  
unit  
V
DV 15  
1.5  
3.0  
1.8  
3.0  
3.0  
1.5  
DD  
DV IO *3  
DD  
2.5  
1.6  
2.7  
2.7  
1.35  
0
3.4  
2.0  
V
DV IO *4  
DD  
V
DV  
3
3.4  
V
DD  
AV  
3
3.4  
V
DD  
AV 15  
DD  
1.65  
V
Input range  
V
IO  
DV IO  
DD  
V
IN  
*3 at supply = 3.0V (Typical)  
*4 at supply = 1.8V (Typical)  
No.A2131-2/27  
LC822973  
I/O pin capacity at V 3 = DV IO = V 15 = V IO = DV = 0V, Ta = -30 to 85°C  
DD  
DD  
I
I
SS  
Parameter  
Input pin  
Symbol  
Conditions  
min  
typ  
max  
unit  
pF  
pF  
pF  
C
f = 1MHz  
10  
10  
10  
IN  
Output pin  
I/O pin  
C
OUT  
I/O  
C
DC characteristics  
I/O level / V = 0V, DV IO = 2.5 to 3.4V, Ta = -30 to 85°C  
SS  
DD  
Applied  
pin *5  
Parameter  
Symbol  
IO  
Conditions  
min  
typ  
max  
unit  
Input level  
H
L
V
V
V
V
V
V
CMOS  
2.0  
2.0  
V
V
IH  
(1) (2)  
(3)  
IO  
IO  
0.3DV IO  
DD  
IL  
H
L
CMOS schmit  
V
IH  
IO  
0.3DV IO  
DD  
V
IL  
Output level  
H
L
IO  
I
I
= -4mA  
= 4mA  
DV IO-0.4  
DD  
V
OH  
OH  
OL  
(2) (4)  
(5)  
IO  
0.4  
V
OL  
H
L
V
V
IO  
I
= 4mA  
0.4  
+10  
+10  
V
OL  
OL  
Input leak current  
Output leak current  
I
I
V = DV 3, DV  
DD SS  
(1) (2) (3)  
(4) (5)  
-10  
-10  
μA  
μA  
IL  
I
High impedance  
OZ  
*5 The applied pins correspond to the following names.  
I/O level / V = 0V, DV IO = 1.6 to 2.0V, Ta = -30 to 85°C  
SS  
DD  
Applied  
pin *6  
Parameter  
Symbol  
IO  
Conditions  
min  
typ  
max  
unit  
Input level  
H
L
V
V
V
V
V
V
CMOS  
0.7DV IO  
DD  
V
V
IH  
(1) (2)  
(3)  
IO  
IO  
0.25DV IO  
DD  
IL  
H
L
CMOS schmit  
0.75DV IO  
DD  
V
IH  
IO  
0.2DV IO  
DD  
V
IL  
Output level  
H
L
IO  
I
I
= -4mA  
= 4mA  
DV IO-0.4  
DD  
V
OH  
OH  
OL  
(2) (4)  
(5)  
IO  
0.4  
V
OL  
H
L
V
V
IO  
I
= 4mA  
0.4  
+10  
+10  
V
OL  
OL  
Input leak current  
Output leak current  
I
V = DV 3, DV  
DD SS  
(1) (2) (3)  
(4) (5)  
-10  
-10  
μA  
μA  
IL  
OZ  
I
I
High impedance  
*6 The applied pins correspond to the following names.  
(INPUT)  
(1)  
(2)  
(3)  
...  
...  
...  
CKI, A0, CS, CONF3-CONF0, MODE2-MODE0  
D15-D0, DB17, DB16  
XRST, CS, RD, WR, SCL, SDA  
(OUTPUT)  
D15-D0  
INT, MON  
(2)  
(4)  
(5)  
...  
...  
...  
SDA (Open Drain)  
No.A2131-3/27  
LC822973  
DAC characteristics  
The characteristics of DAC (10bitDAC) for video that features this LSI are illustrated.  
Zero scale output voltage  
Full scale output voltage  
Maximum conversion speed  
Linear line error  
within 0V 15mV  
within 1.00V 80mV  
30MHz  
within 4LSB (VQFN84 [-10B] : within 4.5LSB)  
Differential linear line error  
Voltage reference level  
within 1LSB  
1.20 20mV  
(Ta = +25°C)  
Current consumption  
*at the time of DV 3 = DV IO = 3V and DV 15 = 1.5V and AV 3 = 3V  
DD DD DD DD  
and AV 15 = 1.5V and MCLK50MHz  
DD  
* at the time of still picture (640×480) + OSD1 All screens + OSD2 All screens  
Parameter  
min  
typ  
max  
unit  
mA  
mA  
mA  
mA  
mA  
μA  
AV 15 (PLL operation current)  
DD  
0.5  
10  
35  
2
1
15  
DV 15 (core operation current)  
DD  
AV 3 (DAC operation current)*  
DD  
35  
DV IO (IO operation current)  
DD  
5
DV 3 (SDRAM operation current)  
DD  
8
13  
Standby current (clock input on)  
300  
100  
18  
Standby current (input clock off)**  
μA  
Standby current (input clock off + SDRAM/SRAM off)**  
6
μA  
* ‘typ’ here implies only that DACOUT always outputs its maximum current.  
** Under the condition of tying input pin levels to H or L.  
Standby current is at the condition of room temperature (+25°C)  
No.A2131-4/27  
LC822973  
Package Dimensions  
unit : mm (typ)  
3442  
TOP VIEW  
5.0  
SIDE VIEW  
BOTTOM VIEW  
0.5  
0.5  
J
H
G
F E  
D C B A  
0.28  
SIDE VIEW  
SANYO : ISB63(4.0X5.0)  
Package Dimensions  
unit : mm (typ)  
3443  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
10.2  
10.0  
2
0.6  
.2  
0
(5.00)  
1
2
(1.0)  
0.4  
0.18  
SIDE VIEW  
SANYO : VQFN84(10X10)  
No.A2131-5/27  
LC822973  
Structure  
Outline Specification  
Item  
NTSC/PAL video encoder  
DAC  
Outline  
Multi rate and multi format video encoder that supports NTSC/PAL and ITU-601/SQ (square pixel).  
10bit-1chD/A converter that integrates 7Ω driver.  
Can be connected to TV directly without OP-amp or buffer.  
Support 8/9/16/18/24bit bus (D, WR, RD, CS, A0) of I80 type.  
CPU I/F  
Video I/F  
It corresponds to 5 format of RGB565, RGB666, YUV422 (8bit), YUV422 (8bit_BT656mode), and YUV422  
(16bit). The writing operation is executed based on Sync signals.  
Memory controller  
Controls built-in (MCP) 16MbitSDRAM. Owns arbitration function and CPU access (drawing) is possible  
as needed.  
Matrix (CPU I/F)  
Matrix (Video I/F)  
PLL  
Performs RGB YUV conversion at the time of CPU memory writing.  
Performs RGB YUV conversion at the time of video port memory writing.  
Generates high-speed clock for SDRAM.  
OSD  
A reading binary image from SDRAM is displayed in TV. Because the Alfa blend function is installed, it is  
possible to select four stages by blend register.  
Scaling function  
×4 scaling processing at maximum is executed for reading image from SDRAM.  
Can be set to H and V direction independently.  
Autoview function  
The issue of the command of each screen is unnecessary. Writing/reading control in the image area (two  
bank or3 bank) set beforehand is executed automatically.  
V-blanking period.  
I/O  
Can insert CGMS-A/WSS code into V-blanking period.  
CMOS interface  
Operation temperature  
Package  
-30°C to 85°C  
ISB63 4mm × 5mm  
VQFN84 10mm × 10mm  
Power voltage (IO)  
DV IO (1.6V - 3.4V)  
DD  
for ex. : 1.8V (1.6V - 2.0V), 3.0V (2.5V - 3.4V)  
Power voltage  
(digital core)  
1.5V (1.35V - 1.65V)  
Power voltage (PLL)  
1.5V (1.35V - 1.65V)  
3.0V (2.7V - 3.4V)  
Power voltage  
(for stacked SDRAM)  
Power voltage  
3.0V (2.7V - 3.4V)  
(DAC analog part)  
No.A2131-6/27  
LC822973  
Structure Block  
DAC with 75Ω driver  
SEL  
Back Ground Display window gen.  
Phase Comp  
SEL  
(3)DRAM CONTROL BLOCK  
SDRAM controller  
SEL  
VIDEO I/F  
CONF  
No.A2131-7/27  
LC822973  
This LSI consists of 9 function blocks in the structure block above.  
(1) CPU interface (CPUIF BLOCK)  
The parameter setup such as mode setup/image area setup/video encoder characteristic of this LSI is possible via  
bus from CPU. The image data writing to SDRAM achieves image port writing command that is in the same  
command class as regular register and the same command class and keep writing continuously. This is a double  
bank buffer structure and is able to write drawing data for 1 line without WAIT control.  
(2) Host access (HOST ACCESS BLOCK)  
The image writing is fulfilled from CPU interface for SDRAM.  
This obtains line buffer in double bank buffer and the writing is carried out to SDRAM as accessing from CPU. It  
also mounts 90, 180, 270 degrees rotation writing and writing function with matrix conversion processing besides  
regular writing.  
(3) SDRAM control (DRAM CONTROL BLOCK)  
This LSI is MCP (multi chip) structure and has 16Mbit SDRAM built-in. This is the memory controller that controls  
writing from CPU, reading for real-time display to video encoder and refresh processing for this memory.  
(4) Reading control for display (DISPLAY ACCESS BLOCK)  
This is the SDRAM reading processing part that controls transferring real-time image data to NTSC/PAL video  
encoder.  
This consists of scaling part that performs enlargement processing for image data that was read from SDRAM and  
the buffer controlling part that provides video signal continuously to video encoder. The background processing  
circuit that inserts fixed level is mounted in the buffer control part besides display window (image from SDRAM).  
(5) Video encoder (VIDEO ENCODER BLOCK)  
This supports both NTSC/PAL methods. All timing signals that are necessary for video signal are generated in this  
block. This operates as a sync master and generates transfer request of real-time image data for DISPLAY ACCESS  
BLOCK.  
(6) Video interface (VIDEOIF BLOCK)  
It is an interface part for the video rate writing. It writes based on a video sync signal and the dot clock. In case of  
RGB format (RGB565, RGB666 etc.), the image is input to the host access part by processing the matrix at valid  
period. The BT656 decoding is done if necessary at the YUV format. it supports both non-interlace and interlace  
format. When the video interface is used, the data bus (D15 - D0) is treated as a dedicated image bus. The command  
issue and the register access are executed with the I2C bus. It has the I2C bus control part in CPU interface part.  
(7) Automatic image viewing (AUTOVIEW CONTROL BLOCK)  
Automatic writing/reading sequence is executed by alternating the pre-defined image banks. Thus clean images  
without the scan passing (tearing image) are displayed. Consecutive image data transfer follows after one time  
command and parameter setting.  
(8) VBI control (VBI CONTROL BLOCK)  
The CGMS-A/WSS data is inserted. It has AUX function for the copy protect control etc.  
(9) Others  
To combine drawing from CPU and real-time request (continuous video signal is provided to NTSC/PAL video  
encoder), SDRAM needs to be operated with high-speed clock. The high-speed master clock (MCLK) is created and  
supported by using PLL for input clock (CKI).  
No.A2131-8/27  
LC822973  
General Operation  
[Operation 1.]  
The rotation processing is performed at the time of SDRAM writing. As a result, a vertically long image of small size  
such as QQVGA, QVGA, etc. is rotated 90 degrees and it is possible to display on TV (VGA size image).  
NTSC  
encoder  
CPU I/F  
SDRAM  
QQVGA-QVGA  
VGA  
[Operation 2.]  
The enlargement processing can be realized by filter processing that utilized line memory for reading data from  
SDRAM. The small size image such as QQVGA and QVGA can be displayed on TV screen fully (VGA size). An  
enlargement ratio can be set optionally (2×(n+1)/256, n: 128 to 255). If the displayed image after enlargement is smaller  
than VGA size, other than target image can be set to background level (brightness/color setup possible).  
This operation can be combined with the above rotation function.  
Enlarge-  
NTSC  
CPU I/F  
ment  
SDRAM  
encoder  
circuit  
QQVGA-QVGA  
VGA  
[Operation 3.]  
The enlargement processing can be bypassed if writing image size from CPU fits VGA image size exactly. Degradation  
of broad area level due to filter processing can be prevented.  
NTSC  
encoder  
CPU I/F  
SDRAM  
VGA  
VGA  
[Moving image processing]  
This LSI is the system that supports moving image that made writing from CPU and competitive operation of TV  
display (real-time reading from SDRAM) possible by using high-speed clock operation.  
The moving image performance (supportable frame rate) improves by raising SDRAM clock frequency through PLL  
setup. However, the current consumption increases significantly.  
No.A2131-9/27  
LC822973  
Corresponding video format  
The video format that NTSC/PAL video encoder corresponds is described in the following tables.  
((NTSC))  
Mode  
Dot clock  
ITU-601  
13.500MHz  
858  
SQ  
12.2727MHz  
780  
Dot/line  
Horizontal valid period  
Vertical cycle  
720  
640  
525 lines/frames  
59.94Hz (field)  
Vertical frequency  
Vertical blanking period  
Burst mask period  
21 lines (line1-line21, line263-line284)  
9 lines (line1-line9, line264-line272)  
((PAL))  
Mode  
Dot clock  
ITU-601  
SQ  
14.750MHz  
944  
13.500MHz  
864  
Dot/ line  
Horizontal valid period  
Vertical cycle  
720  
768  
625 lines/frames  
50Hz (field)  
Vertical frequency  
Vertical blanking period  
Burst mask period  
25 lines (line623-line22, line311-line335)  
9 lines (line623-line6, line310-line318)  
*The video encoder is the component signal processing for Y and C of 8 bit each as an internal processing. The dot  
clock in the table above corresponds to the sampling clock at the time of 16bit processing of Y+C. To simplify post  
filter, the video encoder processing performs ×2 oversampling. Therefore, the operation clock in video encoder part is  
double of dot clock (27MHz, 24.54MHz, 29.5MHz, etc.).  
No.A2131-10/27  
LC822973  
Pin Description  
at  
Pin name  
Pol.  
Dir  
Description of function  
Pin  
reset  
CKI  
-
L
-
I
I
I
I
Master clock  
-
-
-
-
1
1
1
1
XRST  
DB17  
DB16  
Master reset, Low active  
(bit17) extended bit. use at 18bit mode.  
(bit16) extended bit. use at 18bit mode  
-
Data bus, needs pull-up resistance externally  
(unnecessary if either device always drives bus).  
This bus is sharing for the VIDEOIF.  
D[15:0]/  
-
I/O  
-
16  
VIFVD[15:0]  
A0/ (IDSEL)  
RD/ (VIFVS)  
WR/ (VIFHS)  
CS/ (VIFFI)  
INT  
-
I
I
Address/ (IDSEL at VIDEOIF).  
Read pulse/ (Vsync in at VIDEOIF).  
Write pulse/ (Hsync in at VIDEOIF).  
Chip select/ (Field index in at VIDEOIF).  
Interrupt  
-
-
1
1
1
1
1
1
L
L
L
L
H
I
-
I
-
O
O
"0"  
"0"  
MON  
Monitor  
Set "H" in case of VIDEOIF mode.  
The command issue is via I2C bus.  
USEVIF  
H
I
-
1
SDA  
-
I/O  
I
SDA for I2C bus.  
SCL for I2C bus.  
DAC output  
-
-
-
-
-
-
-
-
-
-
1
1
1
1
1
1
1
1
3
1
SCL  
-
DACOUT  
Ana  
Ana  
Ana  
Ana  
Ana  
Ana  
-
O
O
O
O
O
I
analog  
DAC  
IOB  
DAC_IOB pin  
DAC_COMP pin  
DAC_VREF pin  
DAC_IREF pin  
VCNT pin  
COMP  
VREF  
IREF  
VCNT  
analog  
PLL  
MODE[2:0]  
CONF3  
I
For test *  
-
I
To decide input format  
CONF2  
To decide input format  
-
-
-
I
I
I
-
-
-
1
1
1
/ (VIFDOT)  
CONF1  
/ (Dotclock in at VIDEOIF)  
To decide input format  
/ (VIFVACT)  
CONF0  
/ (V-valid period flag in at VIDEOIF)  
To decide input format  
/ (VIFHACT)  
/ (H-valid period flag in at VIDEOIF)  
DV 15  
DD  
Pow  
Pow  
Pow  
Pow  
Pow  
Pow  
Pow  
-
-
-
-
-
-
-
DV  
DV  
DV  
AV  
AV  
for digital core (1.5V part)  
-
-
-
-
-
-
-
4 (6)  
4 (7)  
3 (4)  
1
DD  
DD  
DD  
DD  
DD  
DV IO  
DD  
for digital I/O part  
DV  
3
for stacked SDRAM (it's controlled by internal switch cell)  
for DAC analog (analog 3V)  
DD  
AV  
3
DD  
AV 15  
DD  
for PLL analog (analog 1.5V)  
1
DV  
SS  
GND for digital part  
GND for analog part  
Total  
6 (13)  
2
AV  
SS  
63 (76)  
* MODE pins are for testing.  
They should be fixed to "L" normally.  
No.A2131-11/27  
LC822973  
Pin assignment (ISB63/VQFN84/[SQFP100] )  
Ball  
[ISB]  
-
Pin  
Reference  
[SQFP]  
1
Pin name  
I/O  
Application  
[VQFN]  
-
NC  
NC  
DV  
-
-
-
-
2
3
4
5
6
7
H5  
G6  
H7  
F4  
F6  
1
2
3
4
5
P
B
I
Digital GND  
SS  
SDA  
SCL  
I2C data / maintain open at CPUIF mode  
I2C clock / connect to GND at CPUIF mode.  
DV 15  
DD  
P
I
V
(digital core)  
DD  
CONF3  
For format setting at CPUIF (bit3). connect to GND at  
VIDEOIF mode.  
G7  
F5  
F7  
6
7
8
8
CONF2/ (VIFDOT)  
CONF1/ (VIFVACT)  
CONF0/ (VIFHACT)  
I
I
I
For format setting at CPUIF (bit2).  
/ Dotclock in at VIDEOIF mode.  
For format setting at CPUIF (bit1).  
/ V-valid flag in at VIDEOIF mode.  
For format setting at CPUIF (bit0).  
/ H-valid flag in at VIDEOIF mode.  
9
10  
E2  
H5  
E7  
E6  
E4  
D7  
E5  
H5  
C7  
9
11  
12  
13  
14  
15  
16  
17  
18  
19  
DV  
DV  
3
P
P
I
V
(for stacked SDRAM)  
DD  
DD  
10  
11  
12  
13  
14  
15  
16  
17  
Digital GND  
SS  
CKI  
System clock input  
DV IO  
DD  
P
I
V
(Digital IO)  
DD  
XRST  
INT  
System reset ("L"==reset)  
INT signal ("L"==interrupt generation)  
Monitor pin.  
O
O
P
I
MON  
DV  
SS  
Digital GND  
A0/ (IDSEL)  
Address/ID address select at VIDEOIF mode.  
(0 : 8'b0100_000_r, 1 : 8'b0100_001_r).  
/CS signal/field index at VIDEOIF mode.  
D6  
B7  
H5  
-
18  
19  
20  
-
20  
21  
22  
23  
|
CS/ (VIFFI)  
I
DV 15  
DD  
P
P
-
V
(digital core)  
DD  
DV  
SS  
Digital GND  
NC  
-
-
|
-
-
-
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
NC  
-
C6  
A7  
E6  
B6  
A6  
C5  
B5  
A5  
D5  
D4  
A4  
B4  
C4  
A3  
E3  
B3  
A2  
C3  
D3  
B2  
A1  
C2  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
DB17  
DB16  
I
bit17 for 18bit data transfer format.  
bit16 for 17bit data transfer format.  
I
DV IO  
DD  
P
B
B
B
B
B
B
B
B
B
I
V
(Digital IO)  
DD  
D15/ (VIFVD15)  
D14/ (VIFVD14)  
D13/ (VIFVD13)  
D12/ (VIFVD12)  
D11/ (VIFVD11)  
D10/ (VIFVD10)  
D9/ (VIFVD9)  
D8/ (VIFVD8)  
D7/ (VIFVD7)  
WR/ (VIFHS)  
CPU data bus/Video data bus. (MSB)  
|
|
|
|
|
|
|
|
/WR pulse/Hsync at VIDEOIF mode.  
/RD pulse/Vsync at VIDEOIF mode.  
RD/ (VIFVS)  
I
DV 15  
DD  
P
P
P
B
B
B
B
B
V
(digital core)  
DD  
Digital GND  
V (Digital IO)  
DD  
DV  
SS  
DV IO  
DD  
D6/ (VIFVD6)  
D5/ (VIFVD5)  
D4/ (VIFVD4)  
D3/ (VIFVD3)  
D2/ (VIFVD2)  
CPU data bus/Video data bus.  
|
|
|
CPU data bus/Video data bus.  
* The product version are ISB63 and VQFN84. SQFP100 is a package for our evaluation (reliability test).  
Continued to the next page.  
No.A2131-12/27  
LC822973  
Continued from the previous page.  
Ball  
[ISB]  
-
Pin  
Reference  
[SQFP]  
50  
Pin name  
I/O  
Application  
[VQFN]  
-
NC  
|
-
-
-
-
|
-
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
-
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
|
NC  
NC  
DV  
-
-
-
D2  
B1  
C1  
E3  
F1  
D1  
E1  
D1  
D1  
F1  
F2  
G1  
G2  
H1  
G1  
F2  
-
P
B
B
P
P
P
P
P
P
P
P
P
P
P
P
P
-
Digital GND  
SS  
D1/ (VIFVD1)  
D0/ (VIFVD0)  
CPU data bus/Video data bus.  
CPU data bus/Video data bus. (LSB)  
DV 15  
DD  
V
V
(digital core)  
(Digital IO)  
DD  
DV IO  
DD  
DD  
DV  
SS  
Digital GND  
V (for stacked SDRAM)  
DD  
DV  
DV  
DV  
3
DD  
SS  
SS  
Digital GND  
Digital GND  
DV IO  
DD  
V
(Digital IO)  
DD  
Digital GND  
V (for stacked SDRAM)  
DV  
SS  
DV  
DV  
3
DD  
SS  
DD  
Digital GND  
DV 15  
DD  
V
V
(digital core)  
DD  
DV  
DV  
NC  
|
3
(for stacked SDRAM)  
DD  
DD  
Digital GND  
SS  
-
-
-
-
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
-
76  
77  
78  
79  
80  
NC  
NC  
NC  
NC  
AV  
-
-
-
-
-
-
-
J1  
3
3
P
P
P
Ana  
Ana  
Ana  
Ana  
Ana  
P
I
AV  
AV  
(DAC analog : 3V part)  
DD  
DD  
AV  
AV  
(DAC analog : 3V part)  
DD  
DD  
H2  
G3  
J2  
H3  
F3  
J3  
F1  
J4  
H4  
G4  
J5  
F4  
H5  
J6  
G5  
H6  
J7  
-
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
1
GND (analog for DAC)  
DAC_VREF pin  
DAC_COMP pin  
DAC_IREF pin  
SS  
VREF  
COMP  
IREF  
IOB  
DAC_IOB pin  
DACOUT  
DAC_ video output  
DV IO  
DD  
V
(Digital IO)  
DD  
MODE2  
MODE1  
MODE0  
USEVIF  
mode setting (bit2), should be fixed "L"  
mode setting (bit1), should be fixed "L"  
mode setting (bit0), should be fixed "L"  
To use VIDEOIF mode ("H":select VIDEOIF)  
I
I
I
DV 15  
DD  
P
P
P
P
Ana  
P
-
V
(digital core)  
DD  
Digital GND  
AV (PLL analog : 1.5V part)  
DV  
SS  
AV 15  
DD  
DD  
AV  
2
GND(PLL analog)  
VCNT pin for PLL  
SS  
VCNT  
DV IO  
DD  
V
(Digital IO)  
DD  
NC  
NC  
NC  
-
-
-
-
-
* The product version are ISB63 and VQFN84. SQFP100 is a package for our evaluation (reliability test).  
No.A2131-13/27  
LC822973  
Pin Layout (ISB63)  
A1 marking  
A
B
C
D
D3  
D1  
D0  
DV  
RD  
D8  
D7  
D11  
D12  
D13  
D10  
D14  
D15  
DB17  
CS  
DB16  
DDIO  
D4  
D2  
DV  
DV 15  
DD  
SS  
D6  
D5  
WR  
D9  
A0  
INT  
DV  
DV  
SS  
SS  
E
F
G
H
J
DV  
3
DV  
3
DD  
DV 15  
DD  
XRST  
MON  
DV IO  
DD  
CKI  
DD  
DV IO  
DD  
DV  
DV  
IOB  
VREF  
IREF  
DV 15  
DD  
CONF1  
CONF3  
SDA  
CONF0  
CONF2  
SCL  
SS  
SS  
DV  
3
DD  
MODE0  
MODE1  
MODE2  
4
AV  
2
SS  
DV 15  
DD  
AV  
1
DV  
VCNT  
SS  
SS  
AV  
3
COMP  
DACOUT  
USEVIF  
AV 15  
DD  
DV IO  
DD  
DD  
1
2
3
5
6
7
Top View  
No.A2131-14/27  
LC822973  
Peripheral Circuit Example  
An example of LPF  
3.3μH  
L
DB17  
DB16  
use at 18bit mode.  
"0"-command  
330pF  
LPF  
330pF  
"AV "  
SS  
"AV  
SS  
"
D15-0  
A0  
DACOUT  
IOB  
CVBS  
100μF--220μF  
Recommendation:  
CS  
WR  
RD  
INT  
220μF  
monitor pin  
open  
DAC Analog  
1μF AV  
DD  
LC822973  
MON  
COMP  
VREF  
SDA  
SCL  
0.1μF  
560Ω  
AV  
SS  
MODE2-0  
CONF3-0  
IREF  
setting  
OSC  
100--150Ω  
CKI  
PLL Analog  
VCNT  
System  
Reset  
0.1μF--0.22μF  
XRST  
via CPUIF  
An example of LPF  
3.3μH  
L
DB17  
DB16  
use at 18bit mode.  
330pF  
330pF  
"AV "  
SS  
"AV  
SS  
"
VIFVD  
VIFFI  
D15-0  
CS  
LPF  
DACOUT  
IOB  
CVBS  
VIFHS  
VIFVS  
WR  
RD  
100μF--220μF  
Recommendation:  
CONF3  
CONF2  
CONF1  
CONF0  
220μF  
VIFDOT  
VIFVACT  
VIFHACT  
DAC Analog  
1μF AV  
DD  
COMP  
VREF  
LC822973  
0.1μF  
560Ω  
IDSEL(choose ID)  
A0  
I2C  
needed  
pullup  
SDA  
AV  
SS  
SDA  
SCL  
SCL  
IREF  
INT  
monitor pin  
100--150Ω  
MON  
PLL Analog  
VCNT  
MODE2-0  
setting  
0.1μF--0.22μF  
CKI  
OSC  
System  
Reset  
XRST  
via VIDEOIF  
* The MODE2:0 pins are for test use, so please tie them "L".  
* Please do not leave input pins OPEN.  
* Above figure shows in case of 27MHz (24.54MHz) clock input.  
When the dot clock is generated with PLL (.e.g.: CKI==26MHz), it is necessary to change in PLL loop filter's  
constant. Please refer to " 7.12. Consideration of 26.0MHz clock input" paragraph for details.  
No.A2131-15/27  
LC822973  
Writing image format (via CPU I/F)  
The hardware adopts 24/18/16/9/8bit RGB format and YUV422 format of 24/18/16/9/8 as a CPU writing via CPU-I/F.  
Input format is determined by CONF[3:0] pins.  
The RGB YUV matrix processing operates automatically when RGB input is formatted.  
CONF[3:0]  
0
1
2
3
4
5
6
7
8
Data  
RGB565  
YUV422  
16bit  
RGB666  
RGB565  
Transfer  
Format  
16bit  
18bit  
(×1)  
1
18bit  
18bit  
18bit  
18bit  
16bit  
16bit  
(×1)  
(×1)  
(×2)  
(×2)  
(×2)  
(×2)  
(×2)  
(×2)  
trans num  
1
-
1
-
2
1
-
2
-
1
-
1
-
2
-
2
-
1
-
-
-
-
-
-
-
-
-
2
-
1
-
2
-
1
2
-
-
-
-
-
-
-
-
-
-
DB17  
DB16  
D[15]  
D[14]  
D[13]  
D[12]  
D[11]  
D[10]  
D[9]  
17  
-
R5  
-
-
16  
15  
14  
13  
12  
11  
10  
9
-
-
-
R4  
-
-
-
-
-
-
-
-
-
R5  
R4  
R3  
R2  
R1  
G5  
G4  
G3  
G2  
G1  
G0  
B5  
B4  
B3  
B2  
B1  
Ya7  
Ya6  
Ya5  
Ya4  
Ya3  
Ya2  
Ya1  
Ya0  
U7  
Yb7  
Yb6  
Yb5  
Yb4  
Yb3  
Yb2  
Yb1  
Yb0  
V7  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
G0  
B5  
B4  
B3  
B2  
B1  
B0  
R5  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
G0  
B5  
B4  
B3  
B2  
B1  
B0  
-
R5  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
G0  
B5  
B4  
B3  
B2  
B1  
B0  
R5  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
-
G2  
G1  
G0  
B5  
B4  
B3  
B2  
B1  
B0  
-
-
R5  
R4  
R3  
R2  
R1  
G5  
G4  
G3  
-
G2  
G1  
G0  
B5  
B4  
B3  
B2  
B1  
-
-
R4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
D[8]  
8
-
-
R5  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
G0  
B5  
B4  
B3  
B2  
B1  
B0  
-
D[7]  
7
-
-
R5  
R4  
R3  
R2  
R1  
G5  
G4  
G3  
G2  
G1  
G0  
B5  
B4  
B3  
B2  
B1  
D[6]  
6
U6  
V6  
-
-
-
-
D[5]  
5
U5  
V5  
-
-
-
-
-
-
D[4]  
4
U4  
V4  
-
-
-
-
-
-
D[3]  
3
U3  
V3  
-
-
-
-
-
-
D[2]  
2
U2  
V2  
-
-
-
-
-
-
D[1]  
1
U1  
V1  
-
-
-
-
-
-
D[0]  
0
U0  
V0  
-
-
-
-
-
-
For CONF==2:RGB666_18bit mode, R5 and R4 correspond DB17 and DB16 pins, respectively.  
Otherwise, please connect DB17, 16 pins to GND.  
CONF[3:0]  
Data  
9
10  
11  
12  
13  
14  
15  
RGB888  
RGB666  
RGB888  
Transfer Format  
24bit  
24bit  
18bit  
18bit  
24bit  
24bit  
24bit  
(×2)  
(×2)  
(×3)  
(×3)  
(×3)  
(×3)  
(×3)  
trans num  
1
-
2
-
1
-
2
1
2
-
3
-
1
2
-
3
-
1
2
-
3
1
-
2
-
3
1
-
-
-
-
-
-
-
-
-
-
2
-
3
-
DB17  
DB16  
D[15]  
D[14]  
D[13]  
D[12]  
D[11]  
D[10]  
D[9]  
17  
16  
15  
14  
13  
12  
11  
10  
9
-
-
-
-
-
-
-
-
-
-
-
R5  
R4  
R3  
R2  
R1  
R0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
-
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
-
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
G5  
B5  
B4  
B3  
B2  
B1  
B0  
-
-
-
-
Ra7  
Ra6  
Ra5  
Ra4  
Ra3  
Ra2  
Ra1  
Ra0  
Ga7  
Ga6  
Ga5  
Ga4  
Ga3  
Ga2  
Ga1  
Ga0  
Ba7  
Ba6  
Ba5  
Ba4  
Ba3  
Ba2  
Ba1  
Ba0  
Rb7  
Rb6  
Rb5  
Rb4  
Rb3  
Rb2  
Rb1  
Rb0  
Gb7  
Gb6  
Gb5  
Gb4  
Gb3  
Gb2  
Gb1  
Gb0  
Bb7  
Bb6  
Bb5  
Bb4  
Bb3  
Bb2  
Bb1  
Bb0  
Ra7  
Ra6  
Ra5  
Ra4  
Ra3  
Ra2  
Ra1  
Ra0  
Rb7  
Rb6  
Rb5  
Rb4  
Rb3  
R2  
Ga7  
Ga6  
Ga5  
Ga4  
Ga3  
Ga2  
Ga1  
Ga0  
Gb7  
Gb6  
Gb5  
Gb4  
Gb3  
Gb2  
Gb1  
Gb0  
Ba7  
Ba6  
Ba5  
Ba4  
Ba3  
Ba2  
Ba1  
Ba0  
Bb7  
Bb6  
Bb5  
Bb4  
Bb3  
Bb2  
Bb1  
Bb0  
-
-
-
G4  
-
-
-
G3  
-
-
-
-
-
G2  
-
-
-
-
-
G1  
-
-
-
-
-
G0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
D[8]  
8
-
-
-
-
-
-
-
D[7]  
7
-
-
-
-
-
R7  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
D[6]  
6
-
-
-
-
-
-
-
R6  
R5  
R4  
R3  
R2  
R1  
R0  
D[5]  
5
-
-
-
-
R5  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
G0  
B5  
B4  
B3  
B2  
B1  
B0  
D[4]  
4
-
-
-
-
D[3]  
3
-
-
-
-
D[2]  
2
-
-
-
-
D[1]  
1
-
-
-
-
Rb1  
Rb0  
D[0]  
0
-
-
-
-
* 16bit or 8bit command area is to be sent within heavy-lined area. CONF==5, 6, 7, 8, 11, 12, and 15 correspond 8bit  
command data, and the 16bit parameter register needs double transfer.  
* Hatched area shows unused pins. "L" level is always output, so please keep them open.  
* For CONF==14:24bit (×3) format, a dummy write of 0×0 data is required every time after sending all the frame data.  
* For CONF==1:16bit-YUV422 format, RGB to YUV matrix conversion can be enabled by register setting, SYSCTL1  
(bit5) MTXON, which is useful for the mixed format system of RGB565 and YUV422.  
No.A2131-16/27  
LC822973  
Writing image format (via VIDEO I/F)  
Writing from video IF corresponds to various entry formats such as YUV422 (8bit), YUV422 (8bitBT656decode),  
YUV422 (16bit), RGB565 (16bit), and RGB666 (18bit).  
When video IF is used, the USEVIF pin is set to "H". The VIFFMT register is set and a necessary input format is  
decided at the same time. In this LSI, internal processing is YUV system.  
The RGB YUV matrix processing operates automatically when RGB is input.  
USEVIF  
VIFFMT[3:0]  
Data Format  
BT656decode  
Transfer  
1
0
1
2
3
4
YUV422  
No  
5
6
YUV422  
RGB565  
RGB565  
RGB666  
No  
16bit  
(×2)  
Yes  
16bit  
(×2)  
16bit  
16bit  
16bit  
(×1)  
1
16bit  
(×1)  
1
18bit  
(×1)  
1
Format  
(×2)  
(×2)  
Trans num  
DB17  
1
2
-
1
-
-
-
-
-
-
-
-
-
-
2
-
1
-
2
1
-
2
-
17  
16  
15  
14  
13  
12  
11  
10  
9
-
-
-
-
-
R5  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
G0  
B5  
B4  
B3  
B2  
B1  
B0  
DB16  
-
-
-
-
-
-
-
-
D15/VIFVD15  
D14/VIFVD14  
D13/VIFVD13  
D12/VIFVD12  
D11/VIFVD11  
D10/VIFVD10  
D9/VIFVD9  
D8/VIFVD8  
D7/VIFVD7  
D6/VIFVD6  
D5/VIFVD5  
D4/VIFVD4  
D3/VIFVD3  
D2/VIFVD2  
D1/VIFVD1  
D0/VIFVD0  
-
-
-
-
-
-
-
Y7  
R5  
R4  
R3  
R2  
R1  
G5  
G4  
G3  
G2  
G1  
G0  
B5  
B4  
B3  
B2  
B1  
-
-
-
-
-
-
-
Y6  
-
-
-
-
-
-
-
Y5  
-
-
-
-
-
-
-
Y4  
-
-
-
-
-
-
-
Y3  
-
-
-
-
-
-
-
Y2  
-
-
-
-
-
-
-
Y1  
8
-
-
-
-
-
-
-
Y0  
7
U7/V7  
U6/V6  
U5/V5  
U4/V4  
U3/V3  
U2/V2  
U1/V1  
U0/V0  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
U7/V7  
U6/V6  
U5/V5  
U4/V4  
U3/V3  
U2/V2  
U1/V1  
U0/V0  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
R5  
R4  
R3  
R2  
R1  
G5  
G4  
G3  
G2  
G1  
G0  
B5  
B4  
B3  
B2  
B1  
G2  
G1  
G0  
B5  
B4  
B3  
B2  
B1  
R5  
R4  
R3  
R2  
R1  
G5  
G4  
G3  
U7/V7  
U6/V6  
U5/V5  
U4/V4  
U3/V3  
U2/V2  
U1/V1  
U0/V0  
6
5
4
3
2
1
0
USEVIF  
VIFFMT[3:0]  
Data Format  
BT656decode  
Transfer  
1
7
8
9
10  
RGB666  
RGB888  
No  
18bit  
18bit  
(×2)  
18bit  
24bit  
Format  
(×2)  
(×3)  
(×3)  
2
Trans num  
DB17  
1
2
-
1
2
1
2
3
-
1
-
3
-
17  
16  
15  
14  
13  
12  
11  
10  
9
-
-
-
-
-
-
DB16  
-
-
-
-
-
-
-
-
-
-
-
D15/VIFVD15  
D14/VIFVD14  
D13/VIFVD13  
D12/VIFVD12  
D11/VIFVD11  
D10/VIFVD10  
D9/VIFVD9  
D8/VIFVD8  
D7/VIFVD7  
D6/VIFVD6  
D5/VIFVD5  
D4/VIFVD4  
D3/VIFVD3  
D2/VIFVD2  
D1/VIFVD1  
D0/VIFVD0  
R5  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
G0  
B5  
B4  
B3  
B2  
B1  
B0  
-
R5  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
G0  
B5  
B4  
B3  
B2  
B1  
B0  
-
-
-
-
-
-
R4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
8
-
-
-
-
-
-
-
-
7
-
-
-
-
-
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
6
-
-
-
-
-
5
-
-
R5  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
G0  
B5  
B4  
B3  
B2  
B1  
B0  
4
-
-
3
-
-
2
-
-
1
-
-
0
-
-
* The width of the bus at video IF is decided by the register setting. (USEVIF=="H").  
All the image ports are set to the input at video IF. Please connect an unused bit with GND (It shows "-" in the table).  
No.A2131-17/27  
LC822973  
Command  
Command Type/Register Map  
There are two types of command. One is to be able to operate by a command itself and the other needs a parameter.  
In case of writing a command, A0 should be set to 0 and A0 should be set to 1 in case of writing or reading a parameter.  
If other command is executed before setting a parameter, the command that is in the middle of setting is cancelled.  
Other than 9bit interface  
How to set command  
Command that doesn’t need a parameter〉  
A[0]  
0
D[15:0]  
command  
command setting  
command is valid  
Command that needs a parameter〉  
A[0]  
0
D[15:0]  
command  
command setting  
parameter setting  
1
parameter  
command is valid  
8bit/9bit interface  
How to set command  
Command that doesn’t need a parameter〉  
A[0]  
D[7:0]  
0
command  
command setting  
parameter setting  
1
parameter  
command is valid  
Command that needs a parameter〉  
A[0]  
0
D[7:0]  
command  
command setting  
parameter setting  
parameter setting  
A[0]  
1
D[15:8]  
parameter  
A[0]  
1
D[7:0]  
parameter  
command is valid  
* 9bit transfer CONF="5", 8bit transfer CONF="7"/CONF="11" : data bus[15:8] should be used.  
* 9bit transfer CONF="6", 8bit transfer CONF="8"/CONF="12"/CONF="15" : data bus[7:0] should be used.  
No.A2131-18/27  
LC822973  
I2C access  
When video I/F is used (USEVIF==1), the register access from the host uses the I2C bus.  
One sending data size of the I2C bus is 8bit.  
Additionally, I2C is not applicable the concept of the address (A0==0: the command and A0==1: parameter) used with  
parallel CPUIF.  
Therefore, a special access way is necessary as follows respectively.  
Stand-alone command : not need parameter--IMGWRITE,IMGREADGO etc.)  
write "00" into the target address  
target address+"00"  
(normal write : need 1word parameter)  
write sequentially "upper byte" "lower byte" into target address.  
address is "upper : normal address×2" , "lower : normal address×2+1" in case of I2C.  
target address(upper)+"writing data for upper byte"  
target address(lower)+"writing data for lower byte"  
*Please keep the order "upper byte lower byte".  
When the host accessing is finished, internal transfer with word align will start.  
(normal read : need 1word parameter)  
read sequentially "upper byte" "lower byte" from target address.  
address is "upper : normal address×2" , "lower : normal address×2+1" in case of I2C.  
target address(upper)+"reading data for upper byte"  
target address(lower)+"reading data for lower byte"  
The read order from upper byte or lower byte doesn't especially have regulations.  
Only one byte accessing is also possible.  
(image writing command : AUTOVIEWON,IMGWRITE,OSDWRITE etc.)  
write via special image port (IMGPORT : 0×FD).  
After issuing the image writing command, the data writing is necessary  
in accurate the order. (upper lower upper lower...)  
On the other hand, the data writing operation from the host is unnecessary  
because the automatic writing is done with a pin (image data/dot clock) at video IF.  
target address+"00" Issue AUTOVIEWON command etc.  
IMGPORT address+"data writing for upper byte : at 1st pixel"  
IMGPORT address+"data writing for lower byte : at 1st pixel"  
IMGPORT address+"data writing for upper byte : at 2nd pixel"  
|||||  
IMGPORT address+"data writing for upper byte : at Nth pixel"  
IMGPORT address+"data writing for lower byte : at Nth pixel"  
(image reading command : IMGREAD)  
read via special image port (IMGPORT : 0×FD).  
The access order is same as parallel CPU IF : IMGREADGO IMGREAD image reading.  
IMGREADGO+"00" Issue IMGREADGO command.  
IMGREAD+"00" Issue IMGREAD command.  
IMGPORT address+"reading target pixel's upper byte"  
IMGPORT address+"reading target pixel's lower byte"  
Please keep the order "upper byte lower byte".  
Because the I2C bus is low-speed, status read after IMGREADGO command is unnecessary.  
(status read :)  
Status and a usual register are distinguished referring to the A0 address at parallel IF.  
On the other hand, it corresponds in a special address in I2C.  
(STAT upper : STATUP : 0×FE, STAT lower : STATDN : 0×FF).  
STATUP address+"reading upper byte of STATUS register"  
STATDN address+"reading upper byte of STATUS register"  
The read order from upper byte or lower byte doesn't especially have regulations.  
Only one byte accessing is also possible.  
No.A2131-19/27  
LC822973  
List of Command (A0==0)  
The following tables are memory maps for 16bitCPU bus with 16bit width parameters.  
I2C takes Big ENDIAN system.  
upper byte : I2C_address = Add × 2  
lower byte : I2C_address = Add × 2 + 1  
No  
1
Add  
Command name  
CLKCONT  
Function  
Clock control  
length  
1word  
Description  
0×01  
VCLK_MODE, PLLON, DACON, DRAM sleep, Mode setting at  
VIDEOIF  
2
3
4
5
6
0×02  
0×03  
0×04  
0×05  
0×06  
DIV_M  
DIV_N  
DIV_P  
reserved  
INT  
PLL control  
PLL control  
PLL control  
-
1word  
1word  
1word  
-
1/M (12bit)  
1/N (12bit)  
1/P (8bit), S0--S3  
-
Interrupt  
1word  
INT factor  
*) this can be issued during memory writing  
INT factor clear  
7
8
0×07  
0×08  
INTEN  
Interrupt  
1word  
1word  
*) this can be issued during memory writing  
Scaler and Matrix ON/OFF, scan direction, display OFF, filter  
setup, enhancer setup, etc.  
SYSCTL1  
System setup  
9
0×09  
0×0a  
0×0b  
0×0c  
0×0d  
0×0e  
0×0f  
SYSCTL2  
System setup  
System setup  
MEMCTL setup  
MEMCTL setup  
MEMCTL setup  
CPU drawing  
Image reading  
Image reading  
Drawing end  
1word  
1word  
1word  
1word  
1word  
-
Transfer mode setup, V sync setup, etc.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
SYSCTL3  
Polarity, system control, etc. (others, spare)  
SDRAM burst length, latency, mode, etc.  
SDRAM refresh interval  
MEMSET1  
MEMSET2  
MEMSET3  
IMGWRITE  
IMGREADGO  
IMGREAD  
IMGABORT  
SCALE  
SDRAM initial sequence setup  
CPU SDRAM Writing  
-
SDRAM CPU Reading start  
SDRAM CPU Reading (acquiring data)  
CPU drawing forced termination  
Scaling image ratio setup  
0×10  
0×11  
0×12  
0×13  
0×14  
0×15  
0×16  
0×17  
0×18  
0×19  
0×1a  
0×1b  
0×1c  
0×1d  
0×1e  
0×1f  
1word  
-
Scale up  
1word  
-
reserved  
-
-
reserved  
-
-
-
WFBHLEN  
WFBVLEN  
WFBHSTART  
WFBVSTART  
RFBHOFST  
RFBVOFST  
DSPHOFST  
DSPVOFST  
DSPHLEN  
DSPVLEN  
BGCOLOR1  
BGCOLOR2  
ENCMODE  
ENCGAIN1  
ENCGAIN2  
ENCBST1  
ENCBST2  
ENCBBPLT  
ENCRHVAL  
Coordinate setup  
Coordinate setup  
Coordinate setup  
Coordinate setup  
Coordinate setup  
Coordinate setup  
Coordinate setup  
Coordinate setup  
Coordinate setup  
Coordinate setup  
Background color  
Background color  
VENC setup  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
SDRAM address length for CPU drawing (H)  
SDRAM address length for CPU drawing (V)  
horizontal start point for SDRAM writing  
vertical start point for SDRAM writing  
Real-time reading SDRAM address offset (H)  
Real-time reading SDRAM address offset (V)  
Real-time reading display position offset (H)  
Real-time reading display position offset (V)  
Real-time reading display position length (H)  
Real-time reading display position length (V)  
Background color Y signal (use only low 8bit)  
Background color UV signal (U: upper, V: lower)  
Operation mode, filter switch, interlace setup  
Level setup, bright, contrast  
0×20  
0×21  
0×22  
0×23  
0×24  
0×25  
0×26  
0×27  
VENC setup  
VENC setup  
Level setup, color gain  
VENC setup  
Burst gain setup  
VENC setup  
Burst phase setup  
VENC setup  
Blueback pallet setup  
Video timing  
Horizontal valid period signal to the memory controller  
adjustment  
40  
41  
42  
43  
44  
0×28  
0×29  
0×2a  
0×2b  
0×2c  
ENCHBLK  
ENCVBLK  
VERSION  
Video timing  
Video timing  
Other  
1word  
1word  
1word  
1word  
1word  
Horizontal Blanking period adjustment  
Vertical Blanking period adjustment  
Version register  
TESTMODE  
OSDCONT_1  
For test  
-
OSD1 setup  
SDRAM burst length,OSD1 ON/OFF, etc.  
Continued to the next page.  
No.A2131-20/27  
LC822973  
Continued from the previous page.  
No  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
|
Add  
0×2d  
0×2e  
0×2f  
Command name  
OSDWFBHSTART  
OSDWFBVSTART  
OSDWFBHLEN  
OSDWFBVLEN  
OSDRFBHOFST_1  
OSDRFBVOFST_1  
OSDHOFST_1  
OSDVOFST_1  
OSDHLEN_1  
Function  
OSD1, 2 setup  
OSD1, 2 setup  
OSD1, 2 setup  
OSD1, 2 setup  
OSD1 setup  
length  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
-
Description  
SDRAM address offset for OSD drawing (H)  
SDRAM address offset for OSD drawing (V)  
SDRAM address length for OSD drawing (H)  
SDRAM address length for OSD drawing (V)  
SDRAM reading address (H) offset for OSD1  
SDRAM reading address (V) offset for OSD1  
display position offset (H) for OSD1  
display position offset (V) for OSD1  
display position length (H) for OSD1  
display position length (V) for OSD1  
burst length (SDRAM), OSD2 ON/OFF, etc.  
SDRAM reading address offset (H) for OSD2  
SDRAM reading address offset (V) for OSD2  
display position offset (H) for OSD2  
display position offset (V) for OSD2  
display position length (H) for OSD2  
display position length (V) for OSD2  
OSD Y adjustment (Up: OSD1/Down: OSD2)  
OSD U adjustment (Up: OSD1/Down: OSD2)  
OSD V adjustment (Up: OSD1/Down: OSD2)  
CPUOSD SDRAM DRAW  
0×30  
0×31  
0×32  
0×33  
0×34  
0×35  
0×36  
0×37  
0×38  
0×39  
0×3a  
0×3b  
0×3c  
0×3d  
0×3e  
0×3f  
OSD1 setup  
OSD1 setup  
OSD1 setup  
OSD1 setup  
OSDVLEN_1  
OSD1 setup  
OSDCONT_2  
OSD2 setup  
OSDRFBHOFST_2  
OSDRFBVOFST_2  
OSDHOFST_2  
OSDVOFST_2  
OSDHLEN_2  
OSD2 setup  
OSD2 setup  
OSD2 setup  
OSD2 setup  
OSD2 setup  
OSDVLEN_1  
OSD2 setup  
OSDCOLOR_Y  
OSDCOLOR_U  
OSDCOLOR_V  
OSDWRITE  
OSD1,2 setup  
OSD1,2 setup  
OSD1,2 setup  
OSD drawing  
OSD drawing  
VIDEOIF setup  
VIDEOIF setup  
VIDEOIF setup  
VIDEOIF setup  
VIDEOIF setup  
A-VIEW setup  
A-VIEW start  
A-VIEW stop  
A-VIEW setup  
A-VIEW setup  
A-VIEW setup  
A-VIEW setup  
A-VIEW setup  
A-VIEW setup  
CGMSA setup  
CGMSA setup  
WSS setup  
0×40  
0×41  
0×42  
0×43  
0×44  
0×45  
0×46  
0×47  
0×48  
0×49  
0×4a  
0×4b  
0×4c  
0×4d  
0×4e  
0×4f  
OSDABORT  
-
CPUOSD DRAW ABORT  
VIFSYS  
1word  
1word  
1word  
1word  
1word  
1word  
-
Data ordering, sync polarity, internal valid flag on/off etc.  
Internal valid flag (start position of H-flag)  
Internal valid flag (end position of H-flag)  
Internal valid flag (start position of V-flag)  
Internal valid flag (end position of V-flag)  
Num of bank at AUTOVIEW mode  
Strat AUTOVIEWing  
VIFHACTSTA  
VIFHACTEND  
VIFVACTSTA  
VIFVACTEND  
AVIEWSYS  
AUTOVIEWON  
AUTOVIEWOFF  
AVWFBHSTART_0  
AVWFBVSTART_0  
AVWFBHSTART_1  
AVWFBVSTART_1  
AVWFBHSTART_2  
AVWFBVSTART_2  
CGMSA_CODE  
CGMSA_TRM  
WSS_CODE  
-
Stop AUTOVIEWing  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
1word  
Start position of bank#0 (H)  
Start position of bank#0 (V)  
Start position of bank#1 (H)  
Start position of bank#1 (V)  
Start position of bank#2 (H)  
0×50  
0×51  
0×52  
0×53  
0×54  
0×55  
|
Start position of bank#2 (V)  
CGMSA code setting  
CGMSA position setting  
WSS code setting  
WSS_TRM  
WSS setup  
WSS position setting  
reserved  
|
112  
0×70  
reserved  
for I2C  
113  
0×7E  
0×7F  
0×FC (I2C) : no use  
Image port  
0×FD (I2C) : IMGPORT  
0×FE (I2C) : status (upper)  
0×FF (I2C) : status (lower)  
114  
Status  
No.A2131-21/27  
LC822973  
AC characteristics (CPU bus timing)  
Parallel I/F (I80 like)  
twas twah  
twcs twch  
A
CPU WRITE  
CS  
twlw  
twhw  
/WR  
/RD  
tcycw  
high  
twds twdh  
Data  
tras trah  
trcs trch  
A
CPU READ  
CS  
/WR  
/RD  
high  
trlw  
trhw  
tcycr  
trdh  
tacc  
Data  
Item  
System cycle time (write) [×1 transfer]  
System cycle time (read) [×1 transfer]  
System cycle time (write) [×2, ×3 transfer]  
System cycle time (read) [×2, ×3 transfer]  
Address setup time (write)  
Address hold time (write)  
Address setup time (read)  
Address hold time (read)  
CS setup time (write)  
Symbol  
Condition  
min  
3T*  
typ  
max  
unit  
cyc  
cyc  
cyc  
cyc  
ns  
tcycw  
tcycr  
tcycw  
tcycr  
twas  
twah  
tras  
write  
read  
write  
read  
A
3T*  
2T*  
2T*  
15  
5
A
ns  
A
25  
5
ns  
trah  
A
ns  
twcs  
twch  
trcs  
/CS  
/CS  
/CS  
/CS  
/WR  
/WR  
/RD  
/RD  
15  
5
ns  
CS hold time (write)  
ns  
CS setup time (read)  
25  
5
ns  
CS hold time (read)  
trch  
ns  
/WR low side pulse width  
/WR high side pulse width  
/RD low side pulse width  
/RD high side pulse width  
Data setup time  
twlw  
twhw  
trlw  
20  
15  
25  
15  
15  
5
ns  
ns  
ns  
trhw  
twds  
twdh  
tacc*  
Trdh  
ns  
Data [15:0]  
Data [15:0]  
Data [15:0]  
Data [15:0]  
ns  
Data hold time  
ns  
Read access time  
20  
10  
ns  
Data hold time  
ns  
* T MCLK (master clock) 1 cycle .ex. MCLK: 50MHz 1T is 20ns.  
*tacc from (/RD) or (/CS)↓  
No.A2131-22/27  
LC822973  
I2C transfer sequence and AC characteristics  
I2C slave circuit is equipped to the LSI for the Video-I/F mode, which enables to read and to write  
command registers via SDA and SCL pins.  
IDSEL pin sets one of two pre-defined device ID's,  
IDSEL: 0 then device ID=0×40 (0100_000_r)  
IDSEL: 1 then device ID=0×42 (0100_001_r)  
The transfer sequence of I2C is explained below.  
No.A2131-23/27  
LC822973  
tR  
tHIGH  
tBUF  
tF  
tSU:STO  
tHD:STA  
SDA  
SCL  
tF  
tR  
tSU:STA  
S
P
S
tLOW  
START  
START  
STOP  
Condition  
Condition  
Condition  
I/O timing of I2C bus (at the time of SCL 400kHz cycle mode)  
Symbol  
Item  
Bus open period  
Hold time (Start)  
SCL_Lo period  
SCL_Hi period  
Data rising  
min  
max  
Unit  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
tBUF  
1.3  
0.6  
1.3  
1.3  
tHD: STA  
tLOW  
tHIGH  
tR  
300  
300  
tF  
Data falling  
tSU: STA  
tSU: STO  
Setup time (Start)  
Setup time (Stop)  
0.6  
0.6  
tHD:DAT  
SDA  
SCL  
tHIGH  
tSU:DAT  
I/O timing of I2C bus (at the time of high speed operation)  
Symbol  
tSU: DAT  
Item  
Setup time (Data)  
Hold time (Data)  
SCL_Hi period  
min  
max  
Unit  
ns  
100  
0
tHD: DAT  
tHIGH  
ns  
150  
ns  
No.A2131-24/27  
LC822973  
AC characteristics (VIDEO I/F timing)  
DB17,DB16  
VIFVD15-0  
VIFHS  
VIFVS  
VIFFI  
VIFHACT  
VIFVACT  
vifts tifth  
dotwl  
dotwh  
dotcyc  
VIFDOT  
(dotclock)  
SymbolItem  
Data/Flag  
Symbol  
vifts  
Condition  
DB17/16  
min  
typ  
max  
unit  
ns  
Setup time  
VIFVD, VIFHS,  
VIFVS, VIFFI  
VIFHACT  
10  
VIFVACT  
Data/Flag  
Hold time  
vifth  
DB17/16  
VIFVD, VIFHS,  
VIFVS, VIFFI  
VIFHACT  
5
ns  
VIFVACT  
Clock low side pulse width  
Clock high side pulse width  
Clock cycle time  
dotwl  
VIFDOT  
15  
15  
30  
ns  
ns  
ns  
dotwh  
dotcyc  
VIFDOT  
VIFDOT  
No.A2131-25/27  
LC822973  
AC characteristics (Reset condition)  
Fixing XRST pin to Lo level initializes the internal FF. The filter circuit that used delay device is embedded inside so  
that an error operation won’t be performed even if a noise is on XRST pin. The condition of Lo period is as follows.  
XRST  
20ns(min)  
Lo period restricyion of XRST pin  
Power turn-ON/turn OFF-conditions  
This LSI needs digital power (DV 15 [core], DV 3 [DRAM], DV IO), analog power for DAC (AV 3) and  
DD DD DD DD  
analog power for PLL (AV 15). Power turn ON/turn OFF conditions is shown in the following sequence diagram.  
DD  
It is desirable for DV 15 and DV IO/DV 3 to maintain  
DD DD DD  
DV 15 > = DV IO/DV 3/AV 3/AV 15 relation as below or at the same time.  
DD DD DD DD DD  
However, the condition is acceptable when the period, which is the reversed relation, is within 1ms.  
Simultaneous of power turn ON / turn OFF of DV IO/DV 3/AV 3/AV 15 is all preferable. However, there is  
DD DD DD DD  
no problem even if the time difference is mutually generated.  
However, please avoid keeping only a certain power supply in the state of power turn OFF.  
ON  
DV 15  
DD  
OFF  
same time or  
DV 15 ON early  
same time or  
DV 15 OFF later  
DD  
DD  
ON  
ON  
OFF  
DV IO  
DD  
OFF  
DV  
AV  
3
DD  
ON  
ON  
3
OFF  
OFF  
DD  
AV 15  
DD  
Simultaneous of power turn ON/turn OFF of DV IO/DV 3/  
DD DD  
AV 3/AV 15 is all preferable. However, there is no  
DD  
DD  
problem even if the time difference is mutually generated.  
Power turn-ON/turn-OFF sequence  
No.A2131-26/27  
LC822973  
SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using  
products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition  
ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd.  
products described or contained herein.  
Regarding monolithic semiconductors, if you should intend to use this IC continuously under high temperature,  
high current, high voltage, or drastic temperature change, even if it is used within the range of absolute  
maximum ratings or operating conditions, there is a possibility of decrease reliability. Please contact us for a  
confirmation.  
SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all  
semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or  
malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise  
to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt  
safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not  
limited to protective circuits and error prevention circuits for safe design, redundant design, and structural  
design.  
In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are  
controlled under any of applicable local export control laws and regulations, such products may require the  
export license from the authorities concerned in accordance with the above law.  
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or  
mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise,  
without the prior written consent of SANYO Semiconductor Co.,Ltd.  
Any and all information described or contained herein are subject to change without notice due to  
product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the  
SANYO Semiconductor Co.,Ltd. product that you intend to use.  
Upon using the technical information or products described herein, neither warranty nor license shall be granted  
with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third  
party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's  
intellectual property rights which has resulted from the use of the technical information and products mentioned  
above.  
This catalog provides information as of October, 2012. Specifications and information herein are subject  
to change without notice.  
PS No.A2131-27/27  

相关型号:

LC8230

MPEG Audio Decoder LSI
SANYO

LC823231

LC823231
SANYO

LC823331A

"GokLow"音频播放器系统LSI为核心
ETC

LC823410-10R

Ultra-Low Power Consumption 7.0mW Large-Scale System LSI, GokLow, for IC Recorders
SANYO

LC823425

Low Power Consumption 1 chip Audio LSI for Portable Sound Solution
ONSEMI

LC823425-12G1-H

Low Power Consumption 1 chip Audio LSI for Portable Sound Solution
ONSEMI

LC823425-13W1-E

Low Power Consumption 1 chip Audio LSI for Portable Sound Solution
ONSEMI

LC823430TA

Audio Processing System LSI
ONSEMI