SGM61012 [SGMICRO]

1.2A/2A High-Efficiency Buck Converter with AHP-COT Mode;
SGM61012
型号: SGM61012
厂家: Shengbang Microelectronics Co, Ltd    Shengbang Microelectronics Co, Ltd
描述:

1.2A/2A High-Efficiency Buck Converter with AHP-COT Mode

文件: 总19页 (文件大小:1326K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SGM61012/SGM61022  
1.2A/2A High-Efficiency  
Buck Converters with AHP-COT Mode  
GENERAL DESCRIPTION  
FEATURES  
Input Voltage Range: 2.3V to 5.5V  
Output Current:  
The SGM61012 and SGM61022 are efficient  
high-frequency synchronous Buck converters with an  
input voltage range of 2.3V to 5.5V and a wide output  
current range that is optimized for compact solutions. It  
operates in PWM mode at heavy loads and  
automatically enters power-save mode (PSM) at light  
loads to maintain its high efficiency.  
SGM61012: 1.2A  
SGM61022: 2A  
8.5μA (TYP) Ultra-Low Quiescent Current in DSM  
AHP-COT Architecture  
Fast Transient Regulation  
100% Duty Cycle Capability  
High-Efficiency DSM under Light Load  
Output Discharge  
Short-Circuit Protection  
Power Good Output  
Thermal Shutdown  
Setting the MODE pin can enable deep sleep mode  
(DSM). This device operates with an ultra-low  
quiescent current, and it can maintain high efficiency at  
very low load. This function keeps the standby current  
at its lowest level, and can increase the standby time of  
battery-powered application. To meet the requirements  
of system power rails, the output capacitors with values  
above 100μF can be used by the internal loop  
compensation.  
Available in a Green TDFN-2×2-8AL Package  
APPLICATIONS  
With its adaptive hysteresis and pseudo-constant  
on-time control (AHP-COT) architecture, the load  
transient performance is excellent and the output  
voltage regulation accuracy is achieved.  
General Purpose Point-of-Load Power Supplies  
Battery-Powered Applications  
The SGM61012 and SGM61022 are available in a  
Green TDFN-2×2-8AL package.  
TYPICAL APPLICATION  
Power Good  
PG  
VIN  
VIN  
R3  
180kΩ  
10kΩ  
1μH  
C1  
C2  
EN  
SW  
SENSE  
FB  
VOUT  
SGM61012/  
SGM61022  
C3  
R1  
C4  
MODE  
GND  
R2  
Figure 1. Typical Application Circuit  
SG Micro Corp  
JUNE 2022 – REV. A  
www.sg-micro.com  
1.2A/2A High-Efficiency,  
SGM61012/SGM61022  
Buck Converters with AHP-COT Mode  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESCRIPTION  
ORDERING  
NUMBER  
PACKAGE  
MARKING  
PACKING  
OPTION  
MODEL  
GKG  
XXXX  
SGM61012  
SGM61022  
TDFN-2×2-8AL  
TDFN-2×2-8AL  
SGM61012XTDE8G/TR  
SGM61022XTDE8G/TR  
Tape and Reel, 3000  
Tape and Reel, 3000  
-40to +125℃  
-40to +125℃  
GJZ  
XXXX  
MARKING INFORMATION  
NOTE: XXXX = Date Code, Trace Code and Vendor Code.  
Serial Number  
Y Y Y  
X X X X  
Vendor Code  
Trace Code  
Date Code - Year  
Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If  
you have additional comments or questions, please contact your SGMICRO representative directly.  
OVERSTRESS CAUTION  
ABSOLUTE MAXIMUM RATINGS  
Stresses beyond those listed in Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods  
may affect reliability. Functional operation of the device at any  
conditions beyond those indicated in the Recommended  
Operating Conditions section is not implied.  
VIN, PG and SENSE Voltages............................. -0.3V to 6V  
SW Voltage (DC) ......................................-0.3V to VIN + 0.3V  
SW Voltage (AC, Less than 10ns) while Switching  
............................................................................... .-2V to 9V  
FB Voltage........................................................ -0.3V to 3.6V  
EN and MODE Voltages...........................-0.3V to VIN + 0.3V  
Sink Current at PG...........................................0mA to 0.5mA  
Package Thermal Resistance  
ESD SENSITIVITY CAUTION  
This integrated circuit can be damaged by ESD if you don’t  
pay attention to ESD protection. SGMICRO recommends that  
all integrated circuits be handled with appropriate precautions.  
Failureto observe proper handlingand installation procedures  
can cause damage. ESD damage can range from subtle  
performance degradation tocomplete device failure. Precision  
integrated circuits may be more susceptible to damage  
because very small parametric changes could cause the  
device not to meet its published specifications.  
TDFN-2×2-8AL, θJA.................................................... 91/W  
Junction Temperature.................................................+150℃  
Storage Temperature Range.......................-65to +150℃  
Lead Temperature (Soldering, 10s)............................+260℃  
ESD Susceptibility  
HBM.............................................................................4000V  
CDM ............................................................................1000V  
RECOMMENDED OPERATING CONDITIONS  
Input Voltage Range...........................................2.3V to 5.5V  
Output Voltage Range ...........................................0.5V to 4V  
Operating Junction Temperature Range......-40to +125℃  
DISCLAIMER  
SG Micro Corp reserves the right to make any change in  
circuit design, or specifications without prior notice.  
SG Micro Corp  
JUNE 2022  
www.sg-micro.com  
2
1.2A/2A High-Efficiency,  
SGM61012/SGM61022  
PIN CONFIGURATION  
Buck Converters with AHP-COT Mode  
(TOP VIEW)  
EN  
GND  
MODE  
FB  
VIN  
1
2
3
4
8
7
6
5
SW  
GND  
PG  
SENSE  
TDFN-2×2-8AL  
PIN DESCRIPTION  
PIN  
1
NAME  
EN  
I/O (1)  
DESCRIPTION  
Logic high sets the device active, logic low disables it and turns it into shutdown mode. It can  
connect a 10kΩ resistor to VIN pin if it is needed. Do not leave this pin floating.  
I
G
I
2
GND  
MODE  
FB  
Power and Signal Ground.  
Enable Setting for Deep Sleep Mode. The device adaptively goes into deep sleep mode when  
logic high, and does not enter it when logic low. Do not leave this pin floating.  
3
4
I
Feedback Input. An external feedback divider is needed for setting the output voltage.  
5
SENSE  
PG  
I
Output Voltage Sense Pin. Must be connected to output voltage.  
Power Good Open-Drain Output. If the output voltage is less than the regulation limit, this pin is  
pulled low. Leave this pin floating when not in use.  
6
O
P
P
7
SW  
Switching Node.  
8
VIN  
Power Supply Voltage Input.  
Exposed  
Pad  
GND  
Connect it to GND. The thermal pad must be soldered to improve heat dissipation.  
NOTE: 1. I = input, O = output, P = power, G = ground.  
SG Micro Corp  
JUNE 2022  
www.sg-micro.com  
3
1.2A/2A High-Efficiency,  
SGM61012/SGM61022  
Buck Converters with AHP-COT Mode  
ELECTRICAL CHARACTERISTICS  
(VIN = 3.6V, MODE = Low, TJ = -40to +125, typical values are at TJ = +25, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply  
Input Voltage Range  
VIN  
IQ  
2.3  
5.5  
40  
V
Quiescent Current into VIN  
IOUT = 0mA, device no switching  
25  
8.5  
µA  
Quiescent Current into VIN (Deep Sleep  
Mode)  
IOUT = 0mA, device no switching, MODE = High  
17  
0.01  
1
EN = Low, TJ = -40to +85℃  
EN = Low  
Shutdown Current into VIN  
ISD  
µA  
3.5  
1.9  
Under-Voltage Lockout  
Under-Voltage Lockout Hysteresis  
Thermal Shutdown  
Input voltage falling  
Rising above VUVLO  
1.7  
1.8  
130  
V
VUVLO  
mV  
Temperature rising  
+155  
+25  
TJSD  
Thermal Shutdown Hysteresis  
Logic Interface (EN Mode)  
High Level Input Voltage  
Low Level Input Voltage  
Input Leakage Current  
Power Good  
Temperature falling below TJSD  
VIH  
VIL  
VIN = 2.3V to 5.5V  
VIN = 2.3V to 5.5V  
1
V
V
0.4  
0.5  
ILKG  
0.01  
µA  
Power Good Threshold  
Power Good Hysteresis  
Low Level Voltage  
VOUT falling referenced to VOUT nominal  
-15  
-10  
5
-4  
VPG  
%
VOL  
ISINK = 500µA  
VPG = 5.0V  
0.065  
0.001  
0.1  
0.4  
V
PG Leakage Current  
Output  
IPG,LKG  
µA  
Output Voltage Range  
VOUT  
0.5  
4
V
MODE = High, use VOUT at 1A load as reference,  
VIN = 2.8V to 5V, VOUT = 0.9V to 3.3V, ILOAD = 1mA  
DSM Output Voltage Accuracy  
2
%
Feedback Regulation Voltage  
Feedback Input Bias Current  
Output Discharge Resistor  
Line Regulation  
VFB  
IFB  
VIN ≥ 2.3V and VIN ≥ VOUT + 1V  
VFB = 0.45V  
0.438  
0.45  
1
0.462  
10  
V
nA  
RDIS  
EN = Low, VOUT = 1.8V  
0.95  
0.03  
120  
75  
kΩ  
%/V  
VOUT = 1.2V, VIN = 2.3V to 6V, ILOAD = 1A  
ISW = 500mA  
High-side MOSFET On-Resistance  
Low-side MOSFET On-Resistance  
RDSON  
mΩ  
ISW = 500mA  
Rising inductor current (SGM61012)  
Rising inductor current (SGM61022)  
1.7  
2.3  
2.8  
3.6  
3.8  
5.1  
A
A
High-side MOSFET Switch Current  
Limit  
ILIM  
SG Micro Corp  
JUNE 2022  
www.sg-micro.com  
4
1.2A/2A High-Efficiency,  
SGM61012/SGM61022  
Buck Converters with AHP-COT Mode  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = +25, unless otherwise noted.  
Efficiency vs. Load Current  
Output Voltage vs. Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
VIN = 4.2V, DSM  
IN = 5.0V, DSM  
V
V
V
IN = 4.2V, PSM  
IN = 5.0V, PSM  
VIN = 4.2V  
VOUT = 3.3V  
VOUT = 3.3V  
V
IN = 5.0V  
2
0.00001 0.0001 0.001  
0.01  
0.1  
1
0.00001 0.0001 0.001  
0.01  
0.1  
1
2
Load Current (A)  
Load Current (A)  
Output Voltage vs. Input Voltage  
Efficiency vs. Load Current  
3.33  
3.31  
3.29  
3.27  
3.25  
3.23  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.6V, DSM  
V
V
IN = 4.2V, DSM  
IN = 5.0V, DSM  
V
V
V
IN = 3.6V, PSM  
IN = 4.2V, PSM  
IN = 5.0V, PSM  
Load = 10mA  
Load = 1A  
VOUT = 3.3V  
VOUT = 2.5V  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
0.00001 0.0001 0.001  
0.01  
0.1  
1 2  
Input Voltage (V)  
Load Current (A)  
Output Voltage vs. Load Current  
Output Voltage vs. Input Voltage  
2.510  
2.505  
2.500  
2.495  
2.490  
2.485  
2.53  
2.51  
2.49  
2.47  
2.45  
2.43  
VIN = 3.6V  
V
V
IN = 4.2V  
IN = 5.0V  
Load = 10mA  
Load = 1A  
VOUT = 2.5V  
VOUT = 2.5V  
2
0.00001 0.0001 0.001  
0.01  
0.1  
1
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Load Current (A)  
Input Voltage (V)  
SG Micro Corp  
JUNE 2022  
www.sg-micro.com  
5
1.2A/2A High-Efficiency,  
SGM61012/SGM61022  
Buck Converters with AHP-COT Mode  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
TA = +25, unless otherwise noted.  
Efficiency vs. Load Current  
Output Voltage vs. Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
VIN = 2.8V, DSM  
V
V
IN = 3.6V, DSM  
IN = 4.2V, DSM  
V
V
V
IN = 2.8V, PSM  
IN = 3.6V, PSM  
IN = 4.2V, PSM  
VIN = 2.8V  
V
V
IN = 3.6V  
IN = 4.2V  
VOUT = 1.8V  
VOUT = 1.8V  
2
2
0.00001 0.0001 0.001  
0.01  
0.1  
1
0.00001 0.0001 0.001  
0.01  
0.1  
1
Load Current (A)  
Load Current (A)  
Output Voltage vs. Input Voltage  
Efficiency vs. Load Current  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 2.8V, DSM  
V
V
IN = 3.6V, DSM  
IN = 4.2V, DSM  
V
V
V
IN = 2.8V, PSM  
IN = 3.6V, PSM  
IN = 4.2V, PSM  
Load = 10mA  
Load = 1A  
VOUT = 1.8V  
VOUT = 1.2V  
2
1
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
0.00001 0.0001 0.001  
0.01  
0.1  
Input Voltage (V)  
Load Current (A)  
Output Voltage vs. Load Current  
Output Voltage vs. Input Voltage  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
VIN = 2.8V  
V
IN = 3.6V  
Load = 10mA  
Load = 1A  
VOUT = 1.2V  
VIN = 4.2V  
VOUT = 1.2V  
2
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
0.00001 0.0001 0.001  
0.01  
0.1  
1
Input Voltage (V)  
Load Current (A)  
SG Micro Corp  
JUNE 2022  
www.sg-micro.com  
6
1.2A/2A High-Efficiency,  
SGM61012/SGM61022  
Buck Converters with AHP-COT Mode  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
TA = +25, unless otherwise noted.  
Efficiency vs. Load Current  
Output Voltage vs. Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.915  
0.910  
0.905  
0.900  
0.895  
0.890  
0.885  
VIN = 2.8V, DSM  
V
V
IN = 3.6V, DSM  
IN = 4.2V, DSM  
VIN = 2.8V  
VIN = 3.6V  
VIN = 4.2V  
V
V
V
IN = 2.8V, PSM  
IN = 3.6V, PSM  
IN = 4.2V, PSM  
VOUT = 0.9V  
VOUT = 0.9V  
2
2
0.00001 0.0001 0.001  
0.01  
0.1  
1
0.00001 0.0001 0.001  
0.01  
0.1  
1
Load Current (A)  
Load Current (A)  
Output Voltage vs. Input Voltage  
Switching Frequency vs. Load Current  
0.915  
0.910  
0.905  
0.900  
0.895  
0.890  
0.885  
3,000  
2,500  
2,000  
1,500  
1,000  
500  
VIN = 2.3V  
V
V
V
IN = 3.3V  
IN = 4.2V  
IN = 5.0V  
Load = 10mA  
Load = 1A  
VOUT = 0.9V  
VOUT = 0.9V  
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
Input Voltage (V)  
Load Current (A)  
Switching Frequency vs. Load Current  
Quiescent Current vs. Input Voltage in PSM  
3,000  
2,500  
2,000  
1,500  
1,000  
500  
33  
30  
27  
24  
21  
18  
-40℃  
+25℃  
VIN = 3.3V  
+85℃  
V
V
IN = 4.2V  
IN = 5.0V  
+125℃  
VOUT = 2.5V  
0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
Load Current (A)  
Input Voltage (V)  
SG Micro Corp  
JUNE 2022  
www.sg-micro.com  
7
1.2A/2A High-Efficiency,  
SGM61012/SGM61022  
Buck Converters with AHP-COT Mode  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
TA = +25, unless otherwise noted.  
Quiescent Current vs. Input Voltage in DSM  
High-side FET RDSON vs. Input Voltage  
16  
14  
12  
10  
8
210  
190  
170  
150  
130  
110  
90  
-40℃  
+25℃  
+85℃  
+125℃  
6
-40℃  
+25℃  
+85℃  
+125℃  
4
70  
50  
2
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
2.3  
2.8  
3.3  
Input Voltage (V)  
Low-side FET RDSON vs. Input Voltage  
3.8  
4.3  
4.8  
5.3  
Input Voltage (V)  
170  
150  
130  
110  
90  
-40℃  
+25℃  
+85℃  
+125℃  
70  
50  
30  
10  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
Input Voltage (V)  
SG Micro Corp  
JUNE 2022  
www.sg-micro.com  
8
1.2A/2A High-Efficiency,  
SGM61012/SGM61022  
Buck Converters with AHP-COT Mode  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
TA = +25, VIN = 3.3V and VOUT = 1.2V, unless otherwise noted.  
DSM Operation  
PSM Operation  
VSW  
VSW  
AC Coupled  
AC Coupled  
VOUT  
VOUT  
IL  
IL  
ILOAD = 2mA  
ILOAD = 10mA  
Time (20μs/div)  
Time (5μs/div)  
PWM Operation  
PWM Operation  
VSW  
VSW  
AC Coupled  
AC Coupled  
VOUT  
IL  
VOUT  
IL  
ILOAD = 2A  
ILOAD = 1A  
Time (200ns/div)  
Load Transient  
Time (200ns/div)  
Load Transient  
ILOAD  
ILOAD  
AC Coupled  
AC Coupled  
VOUT  
VOUT  
IL  
IL  
ILOAD = 10mA to 1A  
ILOAD = 10mA to 2A  
Time (50μs/div)  
Time (50μs/div)  
SG Micro Corp  
JUNE 2022  
www.sg-micro.com  
9
1.2A/2A High-Efficiency,  
SGM61012/SGM61022  
Buck Converters with AHP-COT Mode  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
TA = +25, VIN = 3.3V and VOUT = 1.2V, unless otherwise noted.  
Start-up without Load  
Start-up with Load  
VEN  
VPG  
VEN  
VPG  
VOUT  
VOUT  
IL  
IL  
Time (100μs/div)  
Time (100μs/div)  
Line Transient  
Short-Circuit Entry & Exit  
VPG  
VIN  
VOUT  
AC Coupled  
VOUT  
IL  
VIN = 3.3V to 4.2V  
Time (50μs /div)  
Time (100μs/div)  
Shutdown  
VEN  
VPG  
VOUT  
IL  
Time (20ms/div)  
SG Micro Corp  
JUNE 2022  
www.sg-micro.com  
10  
1.2A/2A High-Efficiency,  
SGM61012/SGM61022  
Buck Converters with AHP-COT Mode  
FUNCTIONAL BLOCK DIAGRAM  
VIN  
EN_SD  
EN  
Shutdown  
Thermal  
Shutdown  
Under-Voltage  
Lockout  
EN  
VHCL  
HCL  
Mode Control  
Deep Sleep  
MODE  
High-side  
Current Limit  
MIN_OFF  
VIN  
Adaptive  
On-Time  
Control  
Logic  
Gate  
Driver  
SW  
GND  
PG  
SENSE  
Ripple  
SW  
Injection  
Comparator  
Output  
Discharge  
LCL  
0.45V  
VLCL  
Bandgap  
Soft-Start  
Low-side  
Current Limit  
SS  
EA  
ZCD  
VZCD  
FB  
VPG  
Figure 2. Block Diagram  
SG Micro Corp  
JUNE 2022  
www.sg-micro.com  
11  
1.2A/2A High-Efficiency,  
SGM61012/SGM61022  
Buck Converters with AHP-COT Mode  
DETAILED DESCRIPTION  
power good output is required. When the device is  
disabled or under-voltage lockout, the PG pin is driven  
to low (see Table 1). The PG signal connected to the  
EN pin of other converters can be used for multiple rails  
sequences. Leave the PG pin floating when not in use.  
Overview  
The SGM61012 and SGM61022 are high-efficient Buck  
converters with AHP-COT architecture and advanced  
regulation topology.  
At medium to heavy loads, the device works in pulse  
width modulation (PWM) mode. At light load, it  
automatically switches to power-save mode (PSM). In  
PWM mode, the device works with a nominal switching  
frequency of 2MHz. When the load current falls, the  
device goes into PSM to achieve high efficiency with  
reducing switching frequency and minimizing quiescent  
current.  
Table 1. Logic Table of PG Pin  
Logic Status  
Device Information  
High Z  
Low  
V
FB ≥ VPG  
Enable  
(EN = High)  
VFB ≤ VPG  
Shutdown  
(EN = Low)  
UVLO  
0.7V < VIN < VUVLO  
TJ > TJSD  
When pulling up the MODE pin, the device can enter  
deep sleep mode automatically at very light load to  
achieve high efficiency. If the circuit has no load current,  
8.5μA (TYP) low quiescent current is sufficient to  
maintain the output voltage. Deep sleep mode can  
reduce the standby energy consumption of system.  
During shutdown mode, the energy consumption falls  
below 1μA.  
Thermal  
Shutdown  
Power Supply  
Removal  
VIN < 0.7V  
100% Duty Cycle  
The device provides low input-to-output voltage drop by  
going into 100% duty cycle mode. In this mode, the  
high-side MOSFET is constantly turned on and the  
low-side MOSFET is turned off. This function can  
increase the operation time to the utmost extent for  
battery powered applications. To maintain an  
appropriate output voltage, the minimum input voltage  
is calculated by:  
Under-Voltage Lockout (UVLO)  
The device implements the under-voltage lockout  
(UVLO) with a 130mV (TYP) hysteresis. When the  
input voltage falls below the VUVLO, it shuts down the  
device.  
(1)  
V
= VOUT +IOUT_MAX × RDSON +RL  
(
)
IN_MIN  
Enable and Disable  
where:  
• VIN_MIN is the minimum input voltage.  
• IOUT_MAX is the maximum output current.  
• RDSON is the high-side MOSFET on-resistance.  
• RL is the inductor ohmic resistance.  
A logic high input to EN activates the device, and a  
logic low disables the device. A 10kΩ resistor is  
recommended to add between EN and VIN, and do not  
leave it floating.  
Power Good (PG)  
Output Discharge  
The power good output of SGM61012 and SGM61022  
will be low in the condition that the output voltage less  
than its nominal value. If the output exceeds 95% of the  
regulated voltage, the power good is in high-impedance  
state. If the output voltage is less than 90% of the  
regulated voltage, the power good is driven to low.  
Whenever the device is disabled by enable, thermal  
shutdown or under-voltage lockout, the output is  
discharged by the SW pin through a typical discharge  
resistor of RDIS  
.
The PG pin is an open-drain output with a maximum of  
0.5mA sink current. A pull-up resistor connecting to  
SG Micro Corp  
JUNE 2022  
www.sg-micro.com  
12  
 
1.2A/2A High-Efficiency,  
SGM61012/SGM61022  
Buck Converters with AHP-COT Mode  
DETAILED DESCRIPTION (continued)  
Soft-Start  
Deep Sleep Mode (DSM)  
When EN is set to logic high and after about 150μs  
delay, the device starts switching and VOUT increases  
with 600μs (TYP) internal soft-start circuit.  
The SGM61012 and SGM61022 provide a deep sleep  
mode function, which is enabled by setting MODE pin  
high. The device enters into this mode when load  
current decreases to about 6.5mA (1), and exits when  
load current is greater than 15mA (1). Once enters deep  
sleep mode, all other control blocks are shut down, and  
only a dedicated low power consuming block monitors  
the output voltage. In this mode, the quiescent current  
consumption of the device is about 8.5µA (TYP), and  
the output voltage is 2% higher than the setting voltage  
approximately.  
Inductor Current Limit  
The device implements an inductor current limit if there  
is over-current or short-circuit. Both the peak current of  
high-side and valley current of low-side power  
MOSFETs are limited to protect the device. The  
high-side MOSFET is turned off and the low-side  
MOSFET is turned on to reduce the inductor current  
when the high-side switch current limit is triggered. The  
low-side MOSFET is turned off and the high-side switch  
is turned on again when the inductor current drops to  
the low-side switch current limit. It repeats until the  
inductor current falls below the high-side switch current  
limit. The actual current limit value may larger than the  
static current limit due to internal propagation delays.  
Even in the deep sleep mode, the dynamic load  
regulation of SGM61012 or SGM61022 is excellent.  
NOTE: 1. Test condition: VIN = 3.6V, VOUT = 1.8V, L = 1µH.  
Thermal Shutdown  
To protect the device from overheating damage,  
thermal protection is included in the device. If the  
Power-Save Mode (PSM)  
junction temperature exceeds the typical TJSD (+155℃  
Once the load current decreases, setting MODE pin  
low, the SGM61012 and SGM61022 will enter  
power-save mode. Then, the device has a reduced  
switching frequency and works with the minimum  
quiescent current to keep high efficiency. In  
power-save mode, the inductor current is discontinuous.  
Then a fixed on-time architecture is activated and the  
typical on-time is tON = 500ns × (VOUT/VIN).  
TYP), the switching will stop. When the device  
temperature drops below the threshold minus  
hysteresis, the switching will resume automatically.  
SG Micro Corp  
JUNE 2022  
www.sg-micro.com  
13  
1.2A/2A High-Efficiency,  
SGM61012/SGM61022  
Buck Converters with AHP-COT Mode  
APPLICATION INFORMATION  
The SGM61012 and SGM61022 are synchronous Buck converters with output voltage adjusted by feedback  
dividers. Taking SGM61012 typical application as a reference, the following sections discuss the design of external  
components and how to achieve the application.  
VIN  
Power Good  
VIN  
PG  
2.3V to 5.5V  
R3  
180kΩ  
10kΩ  
1μH  
C1  
10μF  
C2  
0.1μF  
VOUT  
1.2V  
EN  
SW  
SENSE  
FB  
SGM61012  
R1  
C3  
20pF  
C4  
22μF  
MODE  
GND  
R2  
39.2kΩ  
Figure 3. SGM61012 Typical Application Circuit  
desired value. Calculate R1 and R2 with Equation 2.  
Requirements  
The design parameters given in Table 2 are used for  
this design example.  
R1  
R2  
R
1   
(2)  
VOUT = VFB × 1+  
= 0.45V× 1+  
R2  
Table 2. Design Parameters  
R2 should be less than 40kΩ for higher accuracy. Make  
sure that the current flowing through R2 is at least 100  
times greater than the current of FB pin. A lower value  
of R2 increases the robustness against noise injection,  
and higher values reduce the input current.  
Design Parameter  
Input Voltage  
Example Value  
2.3V to 5.5V  
1.2V  
Output Voltage  
Output Ripple Voltage  
Output Current (MAX)  
< 20mV  
1.2A  
A feed-forward capacitor is recommended to improve  
the performance of smooth transition into power-save  
mode and reduce undershoot during load transient.  
10pF to 20pF is enough for typical applications.  
Design Details  
Table 3 shows the components included in this  
example.  
Table 3. Components List  
Output Filter  
The output low pass filter is the combination of inductor  
and output capacitor. Table 4 shows the suggested  
value.  
Reference  
Description  
Manufacturer  
1µH, Power Inductor,  
SGM61012 3A or SGM61022 4.5A  
10μF, Ceramic Capacitor, 10V, X7R,  
Size 0805  
0.1μF, Ceramic Capacitor, 10V,  
X7R, Size 0603  
20pF, Ceramic Capacitor, 50V, C0G,  
Size 0603  
22μF, Ceramic Capacitor, 6.3V,  
X7R, Size 0805  
L1  
Std  
C1  
C2  
C3  
C4  
Std  
Std  
Std  
Std  
Table 4. Inductor and Capacitor Combinations  
COUT (µF) (2)  
L (µH)(1)  
10  
22  
47  
0.47  
1
(3) (4)  
Depending on the output voltage,  
Chip Resistor, 1/16W, 1%,  
Size 0603  
R1  
Std  
2.2  
39.2kΩ, Chip Resistor, 1/16W, 1%,  
Size 0603  
180kΩ, Chip Resistor, 1/16W, 1%,  
Size 0603  
R2  
R3  
Std  
Std  
NOTES:  
1. Expected inductor tolerance and current de-rating.  
Effective inductance has +20% and -30% variation.  
2. Expected capacitance tolerance and bias voltage de-rating.  
Effective capacitance has +20% and -50% variation.  
3. “√” means the recommended filter combinations.  
4. Filter combination in typical application.  
Adjustable Output Voltage  
An external resistor divider connected to FB pin is used  
for setting the output voltage. Through adjusting R1 and  
R2, the output voltage can be programmed to the  
SG Micro Corp  
JUNE 2022  
www.sg-micro.com  
14  
 
 
1.2A/2A High-Efficiency,  
SGM61012/SGM61022  
Buck Converters with AHP-COT Mode  
APPLICATION INFORMATION (continued)  
Inductor Design  
Capacitor Design  
Equation 3 is conventionally used to calculate the  
output inductance of a Buck converter. The inductor  
should be selected by its value and the saturation  
current. The saturation current of inductor should be  
higher than IL_MAX in Equation 3, and sufficient margin  
should be reserved. Typically, the current above  
high-side current limit is enough, and a 10% to 30%  
ripple current is selected to calculate the inductance.  
Larger inductor can reduce the ripple current, but with  
an increasing response time.  
For input capacitor design, a X5R/X7R dielectric  
ceramic capacitor should be selected for its low ESR  
and high-frequency performance. 10μF is enough for  
most applications. The voltage rating of input capacitor  
must be considered for its significant bias effect. The  
input ripple voltage can be calculated from Equation 4.  
I
OUT ×D× (1D)  
ΔVIN  
=
(4)  
CIN × fSW  
The ripple current rating of input capacitor should be  
greater than ICIN_RMS in Equation 5 and the maximum  
value occurs at 50% duty cycle. A 0.1μF capacitor is  
suggested to add for further input decoupling of device.  
ΔIL  
IL_MAX = IOUT_MAX  
+
2
VOUT  
1−  
V
(3)  
IN  
V
× V -V ꢁ  
IN OUT  
ΔIL = VOUT  
×
OUT  
ICIN_RMS = IOUT  
×
= IOUT× D×1-Dꢁ  
(5)  
L×fSW  
V
× V  
IN  
IN  
where:  
For output capacitor design, output ripple, transient  
response and loop stability should be considered.  
Minimum capacitance of output ripple criteria can be  
calculated from Equation 6.  
• IOUT_MAX is the maximum output current.  
ΔIL is the inductor current ripple.  
• fSW is the switching frequency.  
• L is the inductor value.  
I  
L
COUT  
>
(6)  
8 × f  
SW  
× V  
OUT_RIPPLE  
Both the input and output capacitors should be placed  
as close to VIN/Sense and GND pins as possible to  
reduce noise caused by PCB parasitic parameters.  
To simplify customer's design process, the inductor and  
output capacitor combinations are recommended in  
Table 4.  
SG Micro Corp  
JUNE 2022  
www.sg-micro.com  
15  
1.2A/2A High-Efficiency,  
SGM61012/SGM61022  
Buck Converters with AHP-COT Mode  
APPLICATION INFORMATION (continued)  
Layout Considerations  
Good PCB layout is the key factor for high performance  
operation of a device regarding the stability, regulation,  
efficiency and other performance measures.  
low-side of the capacitors must be connected to GND  
properly to avoid potential shift.  
Signal traces are connected to the FB and SENSE  
pins. Connect the inductor with a short trace. Keep  
the traces away from SW nodes.  
A list of guidelines for designing the PCB layout of  
SGM61012/SGM61022 is provided below:  
Place the power components close together and  
Typical suggested layout is provided in Figure 4.  
connect them with short and wide routes. The  
Top Layer  
Bottom Layer  
Figure 4. PCB Layout  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Original (JUNE 2022) to REV.A  
Page  
Changed from product preview to production data.............................................................................................................................................All  
SG Micro Corp  
JUNE 2022  
www.sg-micro.com  
16  
 
PACKAGE INFORMATION  
PACKAGE OUTLINE DIMENSIONS  
TDFN-2×2-8AL  
D
e
N8  
D1  
L
k
E1  
E
N1  
PIN 1#  
DETAIL A  
b
BOTTOM VIEW  
TOP VIEW  
SEATING PLANE  
eee C  
1.60  
0.50  
A
C
A2  
A1  
0.90 1.90  
SIDE VIEW  
ALTERNATE A-1 ALTERNATE A-2  
0.25  
0.50  
DETAIL A  
ALTERNATE TERMINAL  
CONSTRUCTION  
RECOMMENDED LAND PATTERN (Unit: mm)  
Dimensions In Millimeters  
Symbol  
MIN  
MOD  
0.750  
-
MAX  
0.800  
0.050  
A
A1  
A2  
b
0.700  
0.000  
0.203 REF  
0.250  
2.000  
1.600  
2.000  
0.900  
0.250  
0.500  
0.300  
0.080  
0.200  
1.900  
1.450  
1.900  
0.750  
0.150  
0.450  
0.200  
0.300  
2.100  
1.700  
2.100  
1.000  
0.350  
0.550  
0.400  
D
D1  
E
E1  
k
e
L
eee  
NOTE: This drawing is subject to change without notice.  
SG Micro Corp  
TX00184.003  
www.sg-micro.com  
PACKAGE INFORMATION  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
P2  
P0  
W
Q2  
Q4  
Q2  
Q4  
Q2  
Q4  
Q1  
Q3  
Q1  
Q3  
Q1  
Q3  
B0  
Reel Diameter  
P1  
A0  
K0  
Reel Width (W1)  
DIRECTION OF FEED  
NOTE: The picture is only for reference. Please make the object as the standard.  
KEY PARAMETER LIST OF TAPE AND REEL  
Reel Width  
Reel  
Diameter  
A0  
B0  
K0  
P0  
P1  
P2  
W
Pin1  
Package Type  
W1  
(mm)  
(mm) (mm) (mm) (mm) (mm) (mm) (mm) Quadrant  
TDFN-2×2-8AL  
7″  
9.5  
2.30  
2.30  
1.10  
4.0  
4.0  
2.0  
8.0  
Q1  
SG Micro Corp  
TX10000.000  
www.sg-micro.com  
PACKAGE INFORMATION  
CARTON BOX DIMENSIONS  
NOTE: The picture is only for reference. Please make the object as the standard.  
KEY PARAMETER LIST OF CARTON BOX  
Length  
(mm)  
Width  
(mm)  
Height  
(mm)  
Reel Type  
Pizza/Carton  
7″ (Option)  
7″  
368  
442  
227  
410  
224  
224  
8
18  
SG Micro Corp  
www.sg-micro.com  
TX20000.000  

相关型号:

SGM61013

10MHz, 1A Micro-Point-of-Load Buck Converter
SGMICRO

SGM61020/P

2A High Efficiency Synchronous Buck Converter
SGMICRO

SGM61022

1.2A/2A High-Efficiency Buck Converters with AHP-COT Mode
SGMICRO

SGM61030

3A High Efficiency Synchronous Buck Converter
SGMICRO

SGM61040

4A High Efficiency Synchronous Buck Converter
SGMICRO

SGM61130

4.5V to 18V Input, 4A, Synchronous Buck Converter
SGMICRO

SGM61163

4.5V to 18V Input, 6A, Synchronous Buck Converter
SGMICRO

SGM61164

4.5V to 18V Input, 6A, Synchronous Buck Converter
SGMICRO

SGM61220

4.5V to 28V Input, 2A Output, Synchronous Buck Converter
SGMICRO

SGM61230

4.5V to 28V Input, 3A Output, Synchronous Buck Converter
SGMICRO

SGM61232

28V, 3A, Buck DC/DC Converter
SGMICRO

SGM61234

28V, 2A, 5V Fixed Output, Non-Synchronous Buck Converter
SGMICRO