CXL1501M [SONY]

CMOS-CCD Signal Processor; CMOS , CCD信号处理器
CXL1501M
型号: CXL1501M
厂家: SONY CORPORATION    SONY CORPORATION
描述:

CMOS-CCD Signal Processor
CMOS , CCD信号处理器

消费电路 商用集成电路 光电二极管 CD
文件: 总12页 (文件大小:183K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CXL1501M  
CMOS-CCD Signal Processor  
For the availability of this product, please contact the sales office.  
Description  
30 pin SOP (Plastic)  
The CXL1501M is a CMOS-CCD signal processor  
designed for 8-mm VCR video signal processing. In  
combination with the 8-mm VCR video Y/C signal  
processing IC CXA1200Q, this IC configures a comb  
filter for Y/C separation in recording an image and  
elimination of crosstalk in playing back.  
Features  
Single power supply 5V  
Absolute Maximum Ratings (Ta = 25°C)  
Low power consumption 225mW (Typ.)  
Supply voltage  
VDD  
6
V
Built-in peripheral circuits  
Operating temperature  
Storage temperature  
Topr –10 to +60 °C  
Tstg –55 to +150 °C  
Completely adjustment free  
Built-in quadruple progression PLL circuit  
For NTSC signals  
Allowable power dissipation PD  
500  
mW  
Recommended Operating Conditions (Ta = 25°C)  
Supply voltage VDD 5 ± 5%  
Functions  
V
1H comb filter output  
Dropout compensation (D.O.C) output  
Delay time matching through output (THR)  
PLL circuit (quadruple progression)  
Clock driver  
Recommended Clock Conditions (Ta = 25°C)  
Input clock amplitude  
VCLK 0.4 to 1.0 Vp-p  
(0.5Vp-p Typ.)  
Clock frequency  
fCLK  
3.579545 MHz  
Autobias circuit  
Input clock waveform  
sine wave  
Sync tip clamp circuit  
Sample and hold circuit  
Input Signal Amplitude  
VSIG  
571 mVp-p  
(Max.)  
Structure  
CMOS-CCD  
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by  
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the  
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.  
– 1 –  
E71050-PS  
CXL1501M  
Y - Y D  
S S V  
S S V  
V G G B  
T H  
S S V  
D D V  
Y D  
A D J Y  
V G G A  
N C  
A B P  
V C O O U T  
N C  
N C  
S S V  
D D V  
S S V  
C L K  
N C  
D D V  
C C D 3  
P C O U T  
V C O I N  
A B N  
A D J C  
C C D 2  
S S V  
C C D 1  
S S V  
– 2 –  
CXL1501M  
Pin Description  
Symbol  
Pin No.  
1
Description  
I/O  
I
Impedance ()  
VSS  
GND  
CCD2  
ADJC  
ABN  
CCD3  
NC  
2
Signal input 2 (Reverse phase signal)  
Forward phase CCD bias DC output  
Reverse phase autobias DC output  
Signal input 3 (Forward phase signal)  
> 100k (at no clamp)  
600 to 2k  
3
O
O
I
4
2k to 20k  
5
> 100k (at no clamp)  
6
O
O
O
O
O
O
O
O
I
VDD  
7
5V power supply (For clock driver)  
GND  
VSS  
8
NC  
9
ABP  
VGGA  
YD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
Forward phase autobias DC output  
Gate bias (A) DC output  
D.O.C signal output (Reverse phase signal)  
GND  
2k to 20k  
2k to 10k  
40 to 500  
VSS  
VGGB  
Y-YD  
VSS  
2k to 10k  
40 to 500  
Gate bias (B) DC output  
Comb filter signal output  
GND  
VSS  
GND  
TH  
40 to 500  
600 to 2k  
THR signal output (Forward phase signal)  
5V power supply (For analog)  
Reverse phase CCD bias DC output  
VDD  
ADJY  
NC  
VCO OUT  
NC  
VCO output  
VSS  
GND  
CLK  
VDD  
4k to 40k  
Clock input  
5V power supply (For digital)  
Phase comparator output  
VCO input  
O
I
PC OUT  
VCO IN  
VSS  
2k to 5k  
> 100k  
GND  
I
CCD1  
> 100k (at no clamp)  
Signal input 1 (Reverse phase signal)  
– 3 –  
CXL1501M  
– 4 –  
CXL1501M  
– 5 –  
CXL1501M  
Notes)  
1
Adjust the output amplitude of the inversion and the non-inversion amplifiers in the signal input block to an  
equal value, as well as the phase difference to a precise 180°.  
Also set the clock and input signal frequency accurately.  
2
VIT, VIC and VID are defined as follows:  
VIT, VIC and VID are input signal clamp levels. They clamps the Video signal sync tip level. They are the  
pin voltages at no-input signal for pins 30, 2 and 5, respectively.  
VIT  
Input (CCD1)  
30  
L1501  
2
5
Input (CCD2)  
VIC  
VID  
Input (CCD3)  
Testing of VIT, VIC and VID is executed with a voltmeter under the following SW conditions:  
SW conditions  
Test  
point  
Item  
1
2
b
b
b
3
b
b
b
4
b
b
b
5
a
a
a
6
a
a
a
7
a
a
a
8
9
10 11  
VIT  
VIC  
VID  
V1  
V2  
V3  
As VIT, VIC and VID differ with each IC, they are to be tested respectively.  
This is the IC supply current value during clock and signal input.  
3
4
GLT, GLC and GLD are output gains of TH, Y-YD, and YD pins when a 500mVp-p, 196.678kHz sine wave  
is simultaneously fed to CCD1, CCD2, and CCD3 pins respectively.  
(Example of calculation)  
TH pin output voltage [mVp-p]  
GLT = 20 log  
[dB]  
500 [mVp-p]  
– 6 –  
CXL1501M  
5
GHT, GHC, and GHD are output gains of TH, Y-YD and YD pins when a 150mVp-p, 3.579545MHz sine  
wave is simultaneously fed to CCD1, CCD2, and CCD3 pins respectively.  
Bias at input (VBIAS1, VBIAS2 and VBIAS3) is tested respectively at VIT – 0.25V, VIC – 0.25V and VID + 0.25V.  
(Example of calculation)  
TH pin output voltage [mVp-p]  
GHT = 20 log  
[dB]  
150 [mVp-p]  
6
Indicates the dissipation at 3.579545MHz in relation to 196.678kHz. From the output voltage at TH, Y-YD  
and YD pins when a 150mVp-p, 196.678kHz sine wave is simultaneously fed to CCD1, CCD2 and CCD3  
pins, and from the output voltage at TH, Y-YD and YD pins when a 150mVp-p, 3.579545MHz sine wave is  
simultaneously fed to same, calculation is made according to the following formula. The input block bias for  
VBIAS1, VBIAS2 and VBIAS3 is tested at VIT – 0.25V, VIC – 0.25V and VID + 0.25V, respectively.  
(Example of calculation)  
TH pin output voltage (3.579545MHz) [mVp-p]  
fT = 20 log  
[dB]  
TH pin output voltage (196.678kHz) [mVp-p]  
7
The differential gain (DG) and the differential phase (DP), when the 5-staircase wave in the following figure  
is fed, are tested with a vector scope:  
143mV  
357mV  
500mV  
143mV  
1H 63.56µs  
CCD3 pin input waveform (the input waveform of CCD1 and CCD2 pins is the inverted waveform of the  
figure above.)  
8
The internal clock component to the output signal during no-signal input and the leakage of that high  
harmonic component are tested. The input block bias is tested at VITV, VICV, and VID + 0.5V.  
Test value [mVp-p]  
– 7 –  
CXL1501M  
9
The noise level of output signal at no-input signal is tested with a video noise meter in the Sub Carrier Trap  
mode at BPF 100kHz to 4MHz. Vn [Vrms]  
The signal component is determined either by testing the output voltage (the same test system as that of  
noise level) at input of 357mVp-p, 196.678kHz, or by performing calculation from the values of GLT, GLC,  
and GLD in accordance with the following formula. Vs [Vp-p]  
(Example of Vs calculation)  
GLT  
20  
VS-T = 0.357 × 10  
(VS-T: TH output voltage)  
(Example of S/N ratio calculation)  
Vn-T (noise component) [Vrms]  
SNT = 20 log  
[dB]  
VS-T (signal component) [Vp-p]  
10 C-CD is calculated in accordance with the following formula from the Y-YD pin output voltage when a  
200mVp-p, 3.579545MHz sine wave is simultaneously fed to CCD1, CCD2 and CCD3 pins and from the Y-  
CD pin output voltage when a 200mVp-p, 3.587412MHz sine wave is simultaneously fed to same. The  
input block bias is set to VIT – 0.3V, VIC – 0.3V and VID + 0.3V, respectively.  
Y-YD pin output voltage (3.587412MHz) [mVp-p]  
C-CD = 20 log  
[dB]  
Y-YD pin output voltage (3.579545MHz) [mVp-p]  
CLOCK  
fsc (3.579545MHz) sine wave  
0.4Vp-p to 1.0Vp-p  
(0.5Vp-p Typ.)  
– 8 –  
CXL1501M  
Electrical Characteristics Test Circuit  
9V  
1.2k  
CLK  
fSC (3.579545MHz) 0.5Vp-p  
–1  
a
b
SW2  
sine wave  
0.1µ  
1µ  
SW5  
2.2µ  
29  
4.7µ  
82k  
196.678kHz  
500mVp-p  
sine wave  
a
b
b
a
1M  
120  
1µ  
20  
3.3µ 0.01µ  
26 25  
3.3µ 0.01µ  
19 18  
196.678kHz  
150mVp-p  
sine wave  
30  
28  
27  
24  
23  
22  
21  
17  
16  
a
Oscilloscope  
3.579545MHz  
150mVp-p  
sine wave  
SW8  
a
SW9  
c
d
e
f
b
Spectrum  
analyzer  
b
–1  
a
b
1
×3  
SW3  
c
Vector  
scope  
3.579545MHz  
200mVp-p  
sine wave  
LPF  
c
SW6  
b
1µ  
1M  
×3  
SW1  
9V  
d
Noise  
meter  
BPF  
a
1.2k  
1.2k  
3.587412MHz  
200mVp-p  
sine wave  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
2
1µ  
1µ  
1µ  
1µ  
1µ  
5-staircase  
wave  
9V  
0.01µ 3.3µ  
–1  
a
b
SW4  
1µ  
SW7  
1M  
51k  
1
2
)
)
5V  
LPF frequency response  
BPF frequency response  
b
a
[dB]  
[dB]  
51k  
51k  
0
–3  
0
–3  
V1  
V2  
V3  
VBIAS1  
VBIAS3  
–50  
–50  
VBIAS2  
0
6M  
14.3M  
0 200  
6M  
14.3M  
Frequency [Hz]  
Frequency [Hz]  
Application Circuit  
fSC  
0.5Vp-p sine wave  
1.2k  
TH output  
(Forward  
phase signal)  
0.1µ  
1M  
2.2µ  
29  
4.7µ  
82k  
1µ  
120  
1µ  
20  
CCD1 input  
(Reverse  
phase signal)  
3.3µ 0.01µ  
3.3µ 0.01µ  
30  
28  
27  
26  
25  
24  
7
23  
22  
21  
19  
18  
17  
14  
16  
1µ  
CCD2 input  
(Reverse  
1.2k  
1
2
3
4
5
6
8
9
10  
11  
12  
13  
15  
phase signal)  
Y-YD output  
1µ  
1µ  
1M  
1µ  
1µ  
1µ  
0.01µ  
3.3µ  
9V  
1µ  
1.2k  
1M  
9V  
CCD3 input  
(Forward  
YD output  
(Reverse  
phase signal)  
Transistor used  
PNP : 2SA1175  
phase signal)  
1.8k  
5V  
2SC403  
22  
Composite video  
signal input  
Signal output  
4fsc  
1.8k  
When using pin 22 (4 × fsc output)  
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for  
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.  
– 9 –  
CXL1501M  
Low frequency gain vs. Supply voltage  
High frequency gain vs. Supply voltage  
–1  
–2  
–3  
–4  
–5  
–3  
–4  
–5  
–6  
4.75  
5.0  
5.25  
4.75  
5.0  
5.25  
VDD – Supply voltage [V]  
VDD – Supply voltage [V]  
Frequency response vs. Supply voltage  
Differential gain vs. Supply voltage  
10  
8
0
–1  
–2  
–3  
6
4
2
0
4.75  
5.0  
5.25  
4.75  
5.0  
5.25  
VDD – Supply voltage [V]  
VDD – Supply voltage [V]  
High frequency gain vs. Ambient temperature  
Low frequency gain vs. Ambient temperature  
–1  
–3  
–4  
–5  
–6  
–2  
–3  
–4  
–5  
0
20  
40  
60  
0
20  
40  
60  
Ta – Ambient temperature [°C]  
Ta – Ambient temperature [°C]  
– 10 –  
CXL1501M  
Frequency response vs. Ambient temperature  
Differential gain vs. Ambient temperature  
10  
0
–1  
–2  
8
6
4
2
0
–3  
0
20  
40  
60  
0
20  
40  
60  
Ta – Ambient temperature [°C]  
Ta – Ambient temperature [°C]  
Chroma comb depth min. gain vs.  
Ambient temperature  
Chroma comb depth min. gain vs.  
Supply voltage  
–10  
–20  
–30  
–40  
–50  
–10  
–20  
–30  
–40  
–50  
4.75  
5.00  
5.25  
0
20  
40  
60  
VDD – Supply voltage [V]  
Ta – Ambient temperature [°C]  
Frequency response (TH, YD Output)  
Chroma comb response (Y-YD Output)  
0
–2  
–4  
–6  
–8  
0
–10  
–20  
–30  
–40  
10k  
100k  
1M  
f – Frequency [Hz]  
3.57  
3.58  
3.59  
f – Frequency [MHz]  
– 11 –  
CXL1501M  
Package Outline  
Unit: mm  
30PIN SOP (PLASTIC)  
+ 0.4  
2.3 – 0.15  
+ 0.4  
18.8 – 0.1  
30  
16  
0.15  
+ 0.2  
0.1 – 0.05  
15  
1
+ 0.1  
0.15 – 0.05  
1.27  
0.45 ± 0.1  
0.24  
M
PACKAGE STRUCTURE  
PACKAGE MATERIAL  
LEAD TREATMENT  
LEAD MATERIAL  
EPOXY RESIN  
SONY CODE  
EIAJ CODE  
SOP-30P-L01  
SOLDER PLATING  
42 ALLOY  
SOP030-P-0375  
JEDEC CODE  
PACKAGE MASS  
0.7g  
– 12 –  

相关型号:

CXL1502M

CMOS-CCD Signal Processor
SONY

CXL1503M

CMOS-CCD Signal Processor
SONY

CXL1504M

CMOS-CCD 1H Delay Line for NTSC
SONY

CXL1505M

CMOS-CCD Signal Processor
SONY

CXL1506

CMOS-CCD 1H/2H Delay Line for PAL
SONY

CXL1506M

CMOS-CCD 1H/2H Delay Line for PAL
SONY

CXL1506M/N

CMOS-CCD 1H/2H Delay Line for PAL
ETC

CXL1506N

CMOS-CCD 1H/2H Delay Line for PAL
SONY

CXL1507M

Consumer Circuit, CMOS, PDSO20, 0.300 INCH, PLASTIC, SOP-20
SONY

CXL1508M

Consumer Circuit, CMOS, PDSO20, 0.300 INCH, PLASTIC, SOP-20
SONY

CXL1510M

CCD Delay Line for Multi System
SONY

CXL1511M

CCD Delay Line for PAL
SONY