M24LR64-RZ185/2 [STMICROELECTRONICS]

64-Kbit Dynamic NFC/RFID tag with password protection;
M24LR64-RZ185/2
型号: M24LR64-RZ185/2
厂家: ST    ST
描述:

64-Kbit Dynamic NFC/RFID tag with password protection

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟 内存集成电路
文件: 总121页 (文件大小:3182K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M24LR64-R  
Dynamic NFC/RFID tag IC with 64-Kbit EEPROM  
with I²C bus and ISO 15693 RF interface  
Datasheet - production data  
Contactless interface  
ISO 15693 and ISO 18000-3 mode 1  
compatible  
13.56 MHz ± 7 kHz carrier frequency  
SO8 (MN)  
150 mils width  
To tag:  
– 10% or 100% ASK modulation using 1/4  
(26 kbit/s) or 1/256 (1.6 kbit/s) pulse  
position coding  
From tag:  
UFDFPN8 (MC)  
2 × 3 mm  
– load modulation using Manchester coding  
with 423 kHz and 484 kHz subcarriers in  
low (6.6 kbit/s) or high (26 kbit/s) data rate  
mode.  
– Supports the 53 kbit/s data rate with Fast  
commands  
TSSOP8 (DW)  
Internal tuning capacitance:  
– 27.5 pF  
64-bit unique identifier (UID)  
Read Block & Write (32-bit Blocks)  
Memory  
64-Kbit EEPROM organized into:  
2
– 8192 bytes in I C mode  
Sawn wafer on UV tape  
– 2048 blocks of 32 bits in RF mode  
Write time:  
Features  
2
– I C: 5 ms (Max.)  
– RF: 5.75 ms including the internal Verify  
time  
I2C interface  
2
Two-wire I C serial interface supports 400 kHz  
More than 1 Million write cycles  
protocol  
Multiple password protection in RF mode  
Single supply voltage:  
2
Single password protection in I C mode  
– 1.8 V to 5.5 V  
More than 40-year data retention  
Package:  
Byte and Page Write (up to 4 bytes)  
Random and Sequential Read modes  
Self-timed programming cycle  
®
– ECOPACK2 (RoHS compliant and  
Halogen-free)  
Automatic address incrementing  
Enhanced ESD/latch-up protection  
July 2013  
DocID15170 Rev 16  
1/121  
This is information on a product in full production.  
www.st.com  
1
 
 
Contents  
M24LR64-R  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Chip Enable (E0, E1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Antenna coil (AC0, AC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
VSS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.6.1  
2.6.2  
2.6.3  
2.6.4  
Operating supply voltage V  
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3
4
User memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
System memory area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.1  
4.2  
4.3  
4.4  
4.5  
M24LR64-R RF block security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Example of the M24LR64-R security protection . . . . . . . . . . . . . . . . . . . . 25  
I2C_Write_Lock bit area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
System parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
M24LR64-R I2C password security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2
4.5.1  
4.5.2  
I C Present Password command description . . . . . . . . . . . . . . . . . . . . 27  
2
I C Write Password command description . . . . . . . . . . . . . . . . . . . . . . 28  
2
5
I C device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Acknowledge bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Memory addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
2/121  
DocID15170 Rev 16  
M24LR64-R  
Contents  
5.8  
5.9  
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Minimizing system delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . . 34  
5.10 Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
5.11 Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
5.12 Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
5.13 Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
5.14 Acknowledge in Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6
7
User memory initial state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
RF device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
7.1  
7.2  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Initial dialog for vicinity cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.2.1  
7.2.2  
7.2.3  
Power transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Operating field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
8
9
Communication signal from VCD to M24LR64-R . . . . . . . . . . . . . . . . . 40  
Data rate and data coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
9.1  
9.2  
9.3  
9.4  
Data coding mode: 1 out of 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Data coding mode: 1 out of 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
VCD to M24LR64-R frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Start of frame (SOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
10  
11  
Communications signal from M24LR64-R to VCD . . . . . . . . . . . . . . . . 47  
10.1 Load modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.2 Subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.3 Data rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Bit representation and coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
11.1 Bit coding using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
11.1.1  
11.1.2  
High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
11.2 Bit coding using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
11.3 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
DocID15170 Rev 16  
3/121  
Contents  
M24LR64-R  
11.4 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
12  
M24LR64-R to VCD frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
12.1 SOF when using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
12.2 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
12.3 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
12.4 SOF when using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
12.5 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
12.6 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
12.7 EOF when using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
12.8 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
12.9 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
12.10 EOF when using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
12.11 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
12.12 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13  
14  
15  
Unique identifier (UID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Application family identifier (AFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Data storage format identifier (DSFID) . . . . . . . . . . . . . . . . . . . . . . . . . 57  
15.1 CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
16  
17  
M24LR64-R protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
M24LR64-R states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
17.1 Power-off state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
17.2 Ready state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
17.3 Quiet state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
17.4 Selected state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
18  
Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
18.1 Addressed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
18.2 Non-addressed mode (general request) . . . . . . . . . . . . . . . . . . . . . . . . . 62  
18.3 Select mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
4/121  
DocID15170 Rev 16  
M24LR64-R  
Contents  
19  
Request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
19.1 Request flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
20  
21  
Response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
20.1 Response flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
20.2 Response error code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Anticollision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
21.1 Request parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
22  
23  
24  
25  
Request processing by the M24LR64-R . . . . . . . . . . . . . . . . . . . . . . . . 69  
Explanation of the possible cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Inventory Initiated command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Timing definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
25.1 t1: M24LR64-R response delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
25.2 t2: VCD new request delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
25.3 t3: VCD new request delay in the absence of a response from  
the M24LR64-R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
26  
Commands codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
26.1 Inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
26.2 Stay Quiet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
26.3 Read Single Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
26.4 Write Single Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
26.5 Read Multiple Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
26.6 Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
26.7 Reset to Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
26.8 Write AFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
26.9 Lock AFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
26.10 Write DSFID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
26.11 Lock DSFID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
26.12 Get System Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
26.13 Get Multiple Block Security Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
DocID15170 Rev 16  
5/121  
Contents  
M24LR64-R  
26.14 Write-sector Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
26.15 Lock-sector Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
26.16 Present-sector Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
26.17 Fast Read Single Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
26.18 Fast Inventory Initiated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
26.19 Fast Initiate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
26.20 Fast Read Multiple Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
26.21 Inventory Initiated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
26.22 Initiate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
27  
28  
29  
30  
31  
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
2
I C DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
RF electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Appendix A Anticollision algorithm (informative) . . . . . . . . . . . . . . . . . . . . . . . 116  
A.1  
Algorithm for pulsed slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
Appendix B CRC (informative) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
B.1  
B.2  
CRC error detection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
CRC calculation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
Appendix C Application family identifier (AFI) (informative) . . . . . . . . . . . . . . 119  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
6/121  
DocID15170 Rev 16  
M24LR64-R  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Address most significant byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Address least significant byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Sector details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Sector Security Status Byte area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Sector security status byte organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Read / Write protection bit setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Password Control bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Password system area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
M24LR64-R sector security protection after power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
M24LR64-R sector security protection after a valid presentation of password 1 . . . . . . . . 26  
I2C_Write_Lock bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
System parameter sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
10% modulation parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Response data rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
UID format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
CRC transmission rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
VCD request frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
M24LR64-R Response frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
M24LR64-R response depending on Request_flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
General request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Definition of request flags 1 to 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Request flags 5 to 8 when Bit 3 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Request flags 5 to 8 when Bit 3 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
General response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Definitions of response flags 1 to 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Response error code definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Inventory request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Example of the addition of 0 bits to an 11-bit mask value . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Command codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Inventory request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Inventory response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Stay Quiet request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Read Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Read Single Block response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . 76  
Sector security status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Read Single Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . 77  
Write Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Write Single Block response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . 78  
Write Single Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . 78  
Read Multiple Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Read Multiple Block response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . 79  
Sector security status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Read Multiple Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . 79  
Select request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
DocID15170 Rev 16  
7/121  
List of tables  
M24LR64-R  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
Table 89.  
Table 90.  
Table 91.  
Table 92.  
Table 93.  
Table 94.  
Table 95.  
Table 96.  
Table 97.  
Table 98.  
Table 99.  
Select Block response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . . . . . . . 80  
Select response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Reset to Ready request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Reset to Ready response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . 81  
Reset to ready response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Write AFI request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Write AFI response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Write AFI response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Lock AFI request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Lock AFI response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Lock AFI response format when Error_flag is set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Write DSFID request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Write DSFID response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . 85  
Write DSFID response format when Error_flag is set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Lock DSFID request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Lock DSFID response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Lock DSFID response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Get System Info request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Get System Info response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . . . . 88  
Get System Info response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Get Multiple Block Security Status request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Get Multiple Block Security Status response format when Error_flag is NOT set . . . . . . . 90  
Sector security status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Get Multiple Block Security Status response format when Error_flag is set. . . . . . . . . . . . 90  
Write-sector Password request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Write-sector Password response format when Error_flag is NOT set . . . . . . . . . . . . . . . . 91  
Write-sector Password response format when Error_flag is set. . . . . . . . . . . . . . . . . . . . . 91  
Lock-sector Password request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Sector security status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Lock-sector Password response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . 93  
Lock-sector Password response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . 93  
Present-sector Password request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Present-sector Password response format when Error_flag is NOT set . . . . . . . . . . . . . . 94  
Present-sector Password response format when Error_flag is set. . . . . . . . . . . . . . . . . . . 94  
Fast Read Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Fast Read Single Block response format when Error_flag is NOT set . . . . . . . . . . . . . . . . 95  
Sector security status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Fast Read Single Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . 96  
Fast Inventory Initiated request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Fast Inventory Initiated response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Fast Initiate request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Fast Initiate response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Fast Read Multiple Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Fast Read Multiple Block response format when Error_flag is NOT set. . . . . . . . . . . . . . . 99  
Sector security status if Option_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Fast Read Multiple Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . 100  
Inventory Initiated request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Inventory Initiated response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Initiate request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Initiate Initiated response format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
2
Table 100. I C operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
8/121  
DocID15170 Rev 16  
M24LR64-R  
List of tables  
Table 101. AC test measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Table 102. Input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
2
Table 103. I C DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
2
Table 104. I C AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Table 105. RF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Table 106. Operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Table 107. SO8N – 8-lead plastic small outline, 150 mils body width, package data. . . . . . . . . . . . . 111  
Table 108. UFDFPN8 (MLP8) – Ultra thin fine pitch dual flat package no lead 2 x 3 mm,  
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Table 109. TSSOP8 – 8-lead thin shrink small outline, package mechanical data. . . . . . . . . . . . . . . 113  
Table 110. Ordering information scheme for packaged devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Table 111. Ordering information scheme for bare die devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Table 112. CRC definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Table 113. AFI coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Table 114. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
DocID15170 Rev 16  
9/121  
List of figures  
M24LR64-R  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
8-pin package connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2
I C Fast mode (f = 400 kHz): maximum R  
value versus bus parasitic  
C
bus  
capacitance (C ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
bus  
2
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
I C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Memory sector organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2
I C Present Password command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2
I C Write Password command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 10. Write mode sequences with I2C_Write_Lock bit = 1 (data write inhibited). . . . . . . . . . . . . 31  
Figure 11. Write mode sequences with I2C_Write_Lock bit = 0 (data write enabled) . . . . . . . . . . . . . 33  
Figure 12. Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 13. Read mode sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 14. 100% modulation waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 15. 10% modulation waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 16. 1 out of 256 coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 17. Detail of a time period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 18. 1 out of 4 coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 19. 1 out of 4 coding example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 20. SOF to select 1 out of 256 data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 21. SOF to select 1 out of 4 data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 22. EOF for either data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 23. Logic 0, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 24. Logic 0, high data rate x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 25. Logic 1, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 26. Logic 1, high data rate x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 27. Logic 0, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 28. Logic 0, low data rate x2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 29. Logic 1, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 30. Logic 1, low data rate x2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 31. Logic 0, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 32. Logic 1, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 33. Logic 0, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 34. Logic 1, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 35. Start of frame, high data rate, one subcarrier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 36. Start of frame, high data rate, one subcarrier x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 37. Start of frame, low data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 38. Start of frame, low data rate, one subcarrier x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 39. Start of frame, high data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 40. Start of frame, low data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 41. End of frame, high data rate, one subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 42. End of frame, high data rate, one subcarriers x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 43. End of frame, low data rate, one subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 44. End of frame, low data rate, one subcarriers x2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 45. End of frame, high data rate, two subcarriers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 46. End of frame, low data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 47. M24LR64-R decision tree for AFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
10/121  
DocID15170 Rev 16  
M24LR64-R  
List of figures  
Figure 48. M24LR64-R protocol timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 49. M24LR64-R state transition diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 50. Principle of comparison between the mask, the slot number and the UID . . . . . . . . . . . . . 68  
Figure 51. Description of a possible anticollision sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 52. Stay Quiet frame exchange between VCD and M24LR64-R . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 53. Read Single Block frame exchange between VCD and M24LR64-R . . . . . . . . . . . . . . . . . 77  
Figure 54. Write Single Block frame exchange between VCD and M24LR64-R . . . . . . . . . . . . . . . . . 78  
Figure 55. Read Multiple Block frame exchange between VCD and M24LR64-R. . . . . . . . . . . . . . . . 80  
Figure 56. Select frame exchange between VCD and M24LR64-R . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 57. Reset to Ready frame exchange between VCD and M24LR64-R . . . . . . . . . . . . . . . . . . . 82  
Figure 58. Write AFI frame exchange between VCD and M24LR64-R . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 59. Lock AFI frame exchange between VCD and M24LR64-R . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 60. Write DSFID frame exchange between VCD and M24LR64-R . . . . . . . . . . . . . . . . . . . . . 86  
Figure 61. Lock DSFID frame exchange between VCD and M24LR64-R . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 62. Get System Info frame exchange between VCD and M24LR64-R. . . . . . . . . . . . . . . . . . . 89  
Figure 63. Get Multiple Block Security Status frame exchange between VCD and M24LR64-R . . . . 90  
Figure 64. Write-sector Password frame exchange between VCD and M24LR64-R . . . . . . . . . . . . . 92  
Figure 65. Lock-sector Password frame exchange between VCD and M24LR64-R . . . . . . . . . . . . . . 93  
Figure 66. Present-sector Password frame exchange between VCD and M24LR64-R . . . . . . . . . . . 95  
Figure 67. Fast Read Single Block frame exchange between VCD and M24LR64-R . . . . . . . . . . . . . 96  
Figure 68. Fast Initiate frame exchange between VCD and M24LR64-R . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 69. Fast Read Multiple Block frame exchange between VCD and M24LR64-R. . . . . . . . . . . 100  
Figure 70. Initiate frame exchange between VCD and M24LR64-R . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 71. AC test measurement I/O waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
2
Figure 72. I C AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Figure 73. M24LR64-R synchronous timing, transmit and receive . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 74. SO8N – 8-lead plastic small outline, 150 mils body width, package outline . . . . . . . . . . . 111  
Figure 75. UFDFPN8 (MLP8) – Ultra thin fine pitch dual flat package no lead 2 x 3 mm,  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 76. TSSOP8 – 8-lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . . . . 113  
DocID15170 Rev 16  
11/121  
Description  
M24LR64-R  
1
Description  
The M24LR64-R device is a Dynamic NFC/RFID tag IC with a dual-interface, electrically  
2
erasable programmable memory (EEPROM). It features an I C interface and can be  
operated from a V power supply. It is also a contactless memory powered by the received  
CC  
2
carrier electromagnetic wave. The M24LR64-R is organized as 8192 × 8 bits in the I C  
mode and as 2048 × 32 bits in the ISO 15693 and ISO 18000-3 mode 1 RF mode.  
Figure 1. Logic diagram  
V
CC  
2
E0-E1  
SCL  
SDA  
AC0  
AC1  
M24LR64-R  
V
SS  
AI15106b  
2
I C uses a two-wire serial interface, comprising a bidirectional data line and a clock line. The  
2
devices carry a built-in 4-bit device type identifier code (1010) in accordance with the I C  
bus definition.  
2
The device behaves as a slave in the I C protocol, with all memory operations synchronized  
by the serial clock. Read and Write operations are initiated by a Start condition, generated  
by the bus master. The Start condition is followed by a device select code and Read/Write  
bit (RW) (as described in Table 2), terminated by an acknowledge bit.  
th  
When writing data to the memory, the device inserts an acknowledge bit during the 9 bit  
time, following the bus master’s 8-bit transmission. When data is read by the bus master,  
the bus master acknowledges the receipt of the data byte in the same way. Data transfers  
are terminated by a Stop condition after an Ack for Write, and after a NoAck for Read.  
In the ISO15693/ISO18000-3 mode 1 RF mode, the M24LR64-R is accessed via the  
13.56 MHz carrier electromagnetic wave on which incoming data are demodulated from the  
received signal amplitude modulation (ASK: amplitude shift keying). The received ASK  
wave is 10% or 100% modulated with a data rate of 1.6 kbits/s using the 1/256 pulse coding  
mode or a data rate of 26 kbit/s using the 1/4 pulse coding mode.  
Outgoing data are generated by the M24LR64-R load variation using Manchester coding  
with one or two subcarrier frequencies at 423 kHz and 484 kHz. Data are transferred from  
the M24LR64-R at 6.6 kbit/s in low data rate mode and 26 kbit/s high data rate mode. The  
M24LR64-R supports the 53 kbit/s in high data rate mode in one subcarrier frequency at 423  
kHz.  
The M24LR64-R follows the ISO 15693 and ISO 18000-3 mode 1 recommendation for  
radio-frequency power and signal interface.  
12/121  
DocID15170 Rev 16  
 
M24LR64-R  
Description  
Table 1. Signal names  
Function  
Signal name  
Direction  
E0, E1  
SDA  
Chip Enable  
Serial Data  
Serial Clock  
Antenna coils  
Supply voltage  
Ground  
Input  
I/O  
Input  
I/O  
-
SCL  
AC0, AC1  
VCC  
VSS  
-
Figure 2. 8-pin package connections  
E0  
AC0  
AC1  
1
2
3
4
8
7
6
5
V
E1  
SCL  
SDA  
CC  
V
SS  
AI15107  
1. See Package mechanical data section for package dimensions, and how to identify pin-1.  
DocID15170 Rev 16  
13/121  
Signal description  
M24LR64-R  
2
Signal description  
2.1  
Serial Clock (SCL)  
This input signal is used to strobe all data in and out of the device. In applications where this  
signal is used by slave devices to synchronize the bus to a slower clock, the bus master  
must have an open drain output, and a pull-up resistor must be connected from Serial Clock  
(SCL) to V . (Figure 4 indicates how the value of the pull-up resistor can be calculated). In  
CC  
most applications, though, this method of synchronization is not employed, and so the pull-  
up resistor is not necessary, provided that the bus master has a push-pull (rather than open  
drain) output.  
2.2  
2.3  
Serial Data (SDA)  
This bidirectional signal is used to transfer data in or out of the device. It is an open drain  
output that may be wire-OR’ed with other open drain or open collector signals on the bus. A  
pull up resistor must be connected from Serial Data (SDA) to V . (Figure 4 indicates how  
CC  
the value of the pull-up resistor can be calculated).  
Chip Enable (E0, E1)  
These input signals are used to set the value that is to be looked for on the two least  
significant bits (b2, b1) of the 7-bit device select code. These inputs must be tied to V or  
CC  
V
, to establish the device select code as shown in Figure 3. When not connected (left  
SS  
floating), these inputs are read as low (0,0).  
Figure 3. Device select code  
V
V
CC  
CC  
M24xxx  
M24xxx  
E
E
i
i
V
V
SS  
SS  
Ai12806  
2.4  
Antenna coil (AC0, AC1)  
These inputs are used to connect the device to an external coil exclusively. It is advised to  
not connect any other DC or AC path to AC0 and AC1 pads. When correctly tuned, the coil  
is used to power and access the device using the ISO 15693 and ISO 18000-3 mode 1  
protocols.  
14/121  
DocID15170 Rev 16  
 
 
M24LR64-R  
Signal description  
2.5  
VSS ground  
V
is the reference for the V supply voltage.  
CC  
SS  
2.6  
Supply voltage (VCC)  
This pin can be connected to an external DC supply voltage.  
Note:  
An internal voltage regulator allows the external voltage applied on V to supply the  
CC  
M24LR64-R, while preventing the internal power supply (rectified RF waveforms) to output a  
DC voltage on the V pin.  
CC  
2.6.1  
Operating supply voltage V  
CC  
Prior to selecting the memory and issuing instructions to it, a valid and stable V voltage  
CC  
within the specified [V (min), V (max)] range must be applied (see Table 100). To  
CC  
CC  
maintain a stable DC supply voltage, it is recommended to decouple the V line with a  
CC  
suitable capacitor (usually of the order of 10 nF) close to the V /V package pins.  
CC SS  
This voltage must remain stable and valid until the end of the transmission of the instruction  
and, for a Write instruction, until the completion of the internal I²C write cycle (t ).  
W
2.6.2  
2.6.3  
Power-up conditions  
When the power supply is turned on, V rises from V to V . The V rise time must not  
vary faster than 1V/µs.  
CC  
SS  
CC  
CC  
Device reset  
In order to prevent inadvertent write operations during power-up, a power-on reset (POR)  
circuit is included. At power-up (continuous rise of V ), the device does not respond to any  
CC  
instruction until V has reached the power-on reset threshold voltage (this threshold is  
CC  
lower than the minimum V operating voltage defined in Table 100). When V passes  
CC  
CC  
over the POR threshold, the device is reset and enters the Standby Power mode, however,  
the device must not be accessed until V has reached a valid and stable V voltage  
CC  
CC  
within the specified [V (min), V (max)] range.  
CC  
CC  
In a similar way, during power-down (continuous decrease in V ), as soon as V drops  
CC  
CC  
below the power-on reset threshold voltage, the device stops responding to any instruction  
sent to it.  
2.6.4  
Power-down conditions  
During power-down (continuous decay of V ), the device must be in Standby Power mode  
CC  
(mode reached after decoding a Stop condition, assuming that there is no internal write  
cycle in progress).  
DocID15170 Rev 16  
15/121  
 
Signal description  
M24LR64-R  
2
Figure 4. I C Fast mode (f = 400 kHz): maximum R  
value versus bus parasitic  
C
bus  
capacitance (C  
)
bus  
100  
The R  
x C time constant  
bus  
bus  
must be below the 400 ns  
time constant line represented  
on the left.  
V
CC  
10  
R
bus  
Here R  
bus  
× C = 120 ns  
bus  
4 k  
SCL  
SDA  
I²C bus  
master  
M24xxx  
1
30 pF  
C
bus  
10  
100  
Bus line capacitor (pF)  
1000  
ai14796b  
2
Figure 5. I C bus protocol  
SCL  
SDA  
SDA  
Input  
SDA  
Change  
START  
Condition  
STOP  
Condition  
1
2
3
7
8
9
SCL  
SDA  
ACK  
MSB  
START  
Condition  
1
2
3
7
8
9
SCL  
SDA  
MSB  
ACK  
STOP  
Condition  
AI00792B  
16/121  
DocID15170 Rev 16  
 
 
M24LR64-R  
Signal description  
Table 2. Device select code  
Device type identifier(1)  
Chip Enable address(2)  
RW  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Device select code  
1
0
1
0
E2(3)  
E1  
E0  
RW  
1. The most significant bit, b7, is sent first.  
2. E0 and E1 are compared against the respective external pins on the memory device.  
3. E2 is not connected to any external pin. It is however used to address the M24LR64-R as described in  
Section 3 and Section 4.  
Table 3. Address most significant byte  
b15  
b7  
b14  
b6  
b13  
b12  
b11  
b10  
b9  
b1  
b8  
b0  
Table 4. Address least significant byte  
b5 b4 b3 b2  
DocID15170 Rev 16  
17/121  
 
 
 
User memory organization  
M24LR64-R  
3
User memory organization  
The M24LR64-R is divided into 64 sectors of 32 blocks of 32 bits as shown in Table 5.  
Figure 7 shows the memory sector organization. Each sector can be individually read-  
and/or write-protected using a specific password command. Read and write operations are  
possible if the addressed data are not in a protected sector.  
The M24LR64-R also has a 64-bit block that is used to store the 64-bit unique identifier  
(UID). The UID is compliant with the ISO 15963 description, and its value is used during the  
anticollision sequence (Inventory). This block is not accessible by the user and its value is  
written by ST on the production line.  
The M24LR64-R includes an AFI register that stores the application family identifier, and a  
DSFID register that stores the data storage family identifier used in the anticollision  
algorithm.  
2
The M24LR64-R has four additional 32-bit blocks that store an I C password plus three RF  
password codes.  
Figure 6. Block diagram  
EEPROM  
Latch  
AC0  
SCL  
SDA  
2
Logic  
RF  
I C  
AC1  
V
V
CC  
SS  
Power management  
Contact V  
RF V  
CC  
CC  
ai15123  
18/121  
DocID15170 Rev 16  
M24LR64-R  
User memory organization  
Figure 7. Memory sector organization  
Sector  
Area  
Sector security  
status  
0
1
2
3
1 Kbit EEPROM sector  
1 Kbit EEPROM sector  
1 Kbit EEPROM sector  
1 Kbit EEPROM sector  
5 bits  
5 bits  
5 bits  
5 bits  
60  
61  
62  
63  
1 Kbit EEPROM sector  
1 Kbit EEPROM sector  
1 Kbit EEPROM sector  
1 Kbit EEPROM sector  
5 bits  
5 bits  
5 bits  
5 bits  
I2C Password  
RF Password 1  
RF Password 2  
RF Password 3  
8 bit DSFID  
System  
System  
System  
System  
System  
System  
System  
8 bit AFI  
64 bit UID  
ai15124  
Sector details  
The M24LR64-R user memory is divided into 64 sectors. Each sector contains 1024 bits.  
The protection scheme is described in Section 4: System memory area.  
In RF mode, a sector provides 32 blocks of 32 bits. Each read and write access are done by  
block. Read and write block accesses are controlled by a Sector Security Status byte that  
defines the access rights to all the 32 blocks contained in the sector. If the sector is not  
protected, a Write command updates the complete 32 bits of the selected block.  
2
In I C mode, a sector provides 128 bytes that can be individually accessed in read and write  
modes. When protected by the corresponding I2C_Write_Lock bit, the entire sector is write-  
2
protected. To access the user memory, the device select code used for any I C command  
must have the E2 Chip Enable address at 0.  
DocID15170 Rev 16  
19/121  
User memory organization  
M24LR64-R  
Bits [7:0]  
Table 5. Sector details  
I2C byte  
Sector  
RF block  
Bits [31:24] Bits [23:16]  
Bits [15:8]  
number  
address  
address  
0
0
4
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
1
2
8
3
12  
16  
20  
24  
28  
32  
36  
40  
44  
48  
52  
56  
60  
64  
68  
72  
76  
80  
84  
88  
92  
96  
100  
104  
108  
112  
116  
120  
124  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
20/121  
DocID15170 Rev 16  
 
M24LR64-R  
User memory organization  
Table 5. Sector details (continued)  
Sector  
number  
RF block  
address  
I2C byte  
Bits [31:24] Bits [23:16]  
address  
Bits [15:8]  
Bits [7:0]  
32  
33  
34  
35  
36  
37  
38  
39  
...  
128  
132  
136  
140  
144  
148  
152  
156  
...  
user  
user  
user  
user  
user  
user  
user  
user  
...  
user  
user  
user  
user  
user  
user  
user  
user  
...  
user  
user  
user  
user  
user  
user  
user  
user  
...  
user  
user  
user  
user  
user  
user  
user  
user  
...  
1
...  
...  
...  
...  
...  
...  
...  
DocID15170 Rev 16  
21/121  
User memory organization  
M24LR64-R  
Bits [7:0]  
Table 5. Sector details (continued)  
Sector  
RF block  
I2C byte  
Bits [31:24] Bits [23:16]  
address  
Bits [15:8]  
number  
address  
2016  
2017  
2018  
2019  
2020  
2021  
2022  
2023  
2024  
2025  
2026  
2027  
2028  
2029  
2030  
2031  
2032  
2033  
2034  
2035  
2036  
2037  
2038  
2039  
2040  
2041  
2042  
2043  
2044  
2045  
2046  
2047  
8064  
8068  
8072  
8076  
8080  
8084  
8088  
8092  
8096  
8100  
8104  
8108  
8112  
8116  
8120  
8124  
8128  
8132  
8136  
8140  
8144  
8148  
8152  
8156  
8160  
8164  
8168  
8172  
8176  
8180  
8184  
8188  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
user  
63  
22/121  
DocID15170 Rev 16  
M24LR64-R  
System memory area  
4
System memory area  
4.1  
M24LR64-R RF block security  
The M24LR64-R provides a special protection mechanism based on passwords. Each  
memory sector of the M24LR64-R can be individually protected by one out of three available  
passwords, and each sector can also have Read/Write access conditions set.  
Each memory sector of the M24LR64-R is assigned with a Sector security status byte  
including a Sector Lock bit, two Password Control bits and two Read/Write protection bits as  
shown in Table 7. Table 6 describes the organization of the Sector security status byte  
which can be read using the Read Single Block and Read Multiple Block commands with  
the Option_flag set to ‘1’.  
On delivery, the default value of the SSS bytes is reset to 00h.  
Table 6. Sector Security Status Byte area  
I2C byte address  
Bits [31:24]  
Bits [23:16]  
Bits [15:8]  
Bits [7:0]  
E2 = 1  
E2 = 1  
E2 = 1  
E2 = 1  
E2 = 1  
E2 = 1  
E2 = 1  
E2 = 1  
E2 = 1  
E2 = 1  
E2 = 1  
E2 = 1  
E2 = 1  
E2 = 1  
E2 = 1  
E2 = 1  
0
SSS 3  
SSS 7  
SSS 2  
SSS 6  
SSS 1  
SSS 5  
SSS 0  
SSS 4  
4
8
SSS 11  
SSS 15  
SSS 19  
SSS 23  
SSS 27  
SSS 31  
SSS 35  
SSS 39  
SSS 43  
SSS 47  
SSS 51  
SSS 55  
SSS 59  
SSS 63  
SSS 10  
SSS 14  
SSS 18  
SSS 22  
SSS 26  
SSS 30  
SSS 34  
SSS 38  
SSS 42  
SSS 46  
SSS 50  
SSS 54  
SSS 58  
SSS 62  
SSS 9  
SSS 8  
12  
16  
20  
24  
28  
32  
36  
40  
44  
48  
52  
56  
60  
SSS 13  
SSS 17  
SSS 21  
SSS 25  
SSS 29  
SSS 33  
SSS 37  
SSS 41  
SSS 45  
SSS 49  
SSS 53  
SSS 57  
SSS 61  
SSS 12  
SSS 16  
SSS 20  
SSS 24  
SSS 28  
SSS 32  
SSS 36  
SSS 40  
SSS 44  
SSS 48  
SSS 52  
SSS 56  
SSS 60  
Table 7. Sector security status byte organization  
b7  
0
b6  
0
b5  
b4  
b3  
b2  
b1  
b0  
Read / Write protection  
bits  
Sector  
Lock  
0
Password Control bits  
When the Sector Lock bit is set to ‘1’, for instance by issuing a Lock-sector Password  
command, the 2 Read/Write protection bits (b , b ) are used to set the Read/Write access of  
1
2
the sector as described in Table 8.  
DocID15170 Rev 16  
23/121  
 
 
 
System memory area  
M24LR64-R  
Table 8. Read / Write protection bit setting  
Sector  
Lock  
Sector access when password  
presented  
Sector access when password not  
presented  
b2, b1  
0
1
1
1
1
xx  
00  
01  
10  
11  
Read  
Read  
Read  
Read  
Read  
Write  
Write  
Read  
Read  
Write  
No Write  
Write  
Write  
Read  
Write  
No Read  
No Read  
No Write  
No Write  
No Write  
The next 2 bits of the Sector security status byte (b , b ) are the Password Control bits. The  
3
4
value these two bits is used to link a password to the sector as defined in Table 9.  
Table 9. Password Control bits  
b4, b3  
Password  
00  
01  
10  
11  
The sector is not protected by a Password  
The sector is protected by the Password 1  
The sector is protected by the Password 2  
The sector is protected by the Password 3  
The M24LR64-R password protection is organized around a dedicated set of commands  
plus a system area of three password blocks where the password values are stored. This  
system area is described in Table 10.  
Table 10. Password system area  
Block number  
32-bit password number  
1
2
3
Password 1  
Password 2  
Password 3  
The dedicated password commands are:  
Write-sector Password:  
The Write-sector Password command is used to write a 32-bit block into the password  
system area. This command must be used to update password values. After the write  
cycle, the new password value is automatically activated. It is possible to modify a  
password value after issuing a valid Present-sector Password command.  
On delivery, the three default password values are set to 0000 0000h and are  
activated.  
Lock-sector Password:  
The Lock-sector Password command is used to set the Sector security status byte of  
the selected sector. Bits b to b of the Sector security status byte are affected by the  
4
1
Lock-sector Password command. The Sector Lock bit, b , is set to ‘1’ automatically.  
0
After issuing a Lock-sector Password command, the protection settings of the selected  
24/121  
DocID15170 Rev 16  
 
 
 
M24LR64-R  
System memory area  
sector are activated. The protection of a locked block cannot be changed in RF mode.  
A Lock-sector Password command sent to a locked sector returns an error code.  
Present-sector Password:  
The Present-sector Password command is used to present one of the three passwords  
to the M24LR64-R in order to modify the access rights of all the memory sectors linked  
to that password (Table 8) including the password itself. If the presented password is  
correct, the access rights remain activated until the tag is powered off or until a new  
Present-sector Password command is issued. If the presented password value is not  
correct, all the access rights of all the memory sectors are deactivated.  
2
Sector security status byte area access conditions in I C mode:  
2
In I C mode, read access to the Sector security status byte area is always allowed.  
2
2
Write access depends on the correct presentation of the I C password (see I C  
Present Password command description on page 27).  
2
To access the Sector security status byte area, the device select code used for any I C  
command must have the E2 Chip Enable address at 1.  
2
An I C write access to a Sector security status byte re-initializes the RF access  
condition to the given memory sector.  
4.2  
Example of the M24LR64-R security protection  
Table 11 and Table 12 show the sector security protections before and after a valid Present-  
sector Password command. Table 11 shows the sector access rights of an M24LR64-R after  
power-up. After a valid Present-sector Password command with password 1, the memory  
sector access is changed as shown in Table 12.  
Table 11. M24LR64-R sector security protection after power-up  
Sector security status byte  
Sector  
address  
b7b6b5 b4 b3 b2 b1 b0  
0
1
2
3
4
Protection: Standard  
Protection: Pswd 1  
Protection: Pswd 1  
Protection: Pswd 1  
Protection: Pswd 1  
Read  
No Write  
No Write  
Write  
xxx  
xxx  
xxx  
xxx  
xxx  
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
0
1
1
1
1
1
1
Read  
Read  
No Read  
No Read  
No Write  
No Write  
DocID15170 Rev 16  
25/121  
 
System memory area  
M24LR64-R  
Table 12. M24LR64-R sector security protection after a valid presentation of password 1  
Sector security status byte  
Sector  
address  
b7b6b5 b4 b3 b2 b1 b0  
0
1
2
3
4
Protection: Standard  
Protection: Pswd 1  
Protection: Pswd 1  
Protection: Pswd 1  
Protection: Pswd 1  
Read  
Read  
Read  
Read  
Read  
No Write  
Write  
xxx  
xxx  
xxx  
xxx  
xxx  
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
0
1
1
1
1
1
1
Write  
Write  
No Write  
4.3  
I2C_Write_Lock bit area  
2
In the I C mode only, it is possible to protect individual sectors against Write operations.  
This feature is controlled by the I2C_Write_Lock bits stored in the 8 bytes of the  
I2C_Write_Lock bit area starting from the location 2048 (see Table 13). Using these 64 bits,  
it is possible to write-protect all the 64 sectors of the M24LR64-R memory.  
2
Each bit controls the I C write access to a specific sector as shown in Table 13. It is always  
2
possible to unprotect a sector in the I C mode. When an I2C_Write_Lock bit is reset to 0,  
the corresponding sector is unprotected. When the bit is set to 1, the corresponding sector  
is write-protected.  
2
In I C mode, read access to the I2C_Write_Lock bit area is always allowed. Write access  
2
depends on the correct presentation of the I C password.  
2
To access the I2C_Write_Lock bit area, the device select code used for any I C command  
must have the E2 Chip Enable address at 1.  
On delivery, the default value of the 8 bytes of the I2C_Write_Lock bit area is reset to 00h.  
Table 13. I2C_Write_Lock bit  
I2C byte address  
Bits [31:24]  
Bits [23:16]  
Bits [15:8]  
Bits [7:0]  
E2 = 1  
E2 = 1  
2048  
2052  
sectors 31-24  
sectors 63-56  
sectors 23-16  
sectors 55-48  
sectors 15-8  
sectors 7-0  
sectors 47-40  
sectors 39-32  
4.4  
System parameters  
The M24LR64-R provides the system area required by the ISO 15693 RF protocol, as  
shown in Table 14.  
2
2
The first 32-bit block starting from I C address 2304 stores the I C password. This  
2
password is used to activate/deactivate the write protection of the protected sector in I C  
mode. At power-on, all user memory sectors protected by the I2C_Write_Lock bits can be  
2
read but cannot be modified. To remove the write protection, it is necessary to use the I C  
Present Password described in Figure 8. When the password is correctly presented — that  
is, when all the presented bits correspond to the stored ones — it is also possible to modify  
2
2
the I C password using the I C Write Password command described in Figure 9.  
26/121  
DocID15170 Rev 16  
 
M24LR64-R  
System memory area  
The next three 32-bit blocks store the three RF passwords. These passwords are neither  
2
read- nor write- accessible in the I C mode.  
2
2
The next 2 bytes are used to store the AFI, at I C location 2322, and the DSFID, at I C  
location 2323. These 2 values are used during the RF Inventory sequence. They are read-  
only in the I C mode.  
2
The next 8 bytes, starting from location 2324, store the 64-bit UID programmed by ST on the  
2
production line. Bytes at I C locations 2332 to 2335 store the IC Ref and the Mem_Size data  
used by the RF Get_System_Info command. The UID, Mem_Size and IC Ref values are  
read-only data.  
Table 14. System parameter sector  
I2C byte address  
Bits [31:24]  
Bits [23:16]  
Bits [15:8]  
Bits [7:0]  
E2 = 1  
E2 = 1  
E2 = 1  
E2 = 1  
E2 = 1  
E2 = 1  
E2 = 1  
E2 = 1  
2304  
2308  
2312  
2316  
2320  
2324  
2328  
2332  
I2C password (1)  
RF password 1(1)  
RF password 2(1)  
RF password 3 (1)  
DSFID (FFh)  
UID  
AFI (00h)  
ST reserved  
UID  
ST reserved  
UID  
UID  
UID (E0h)  
UID (02h)  
UID  
UID  
Mem_Size (03 07FFh)  
IC Ref (2Ch)  
1. Delivery state: I2C password= 0000 0000h, RF password = 0000 0000h,  
4.5  
M24LR64-R I2C password security  
2
2
The M24LR64-R controls I C sector write access using the 32-bit-long I C password and  
2
2
the 64-bit I2C_Write_Lock bit area. The I C password value is managed using two I C  
commands: I C Present Password and I C Write Password.  
2
2
2
4.5.1  
I C Present Password command description  
2
2
The I C Present Password command is used in I C mode to present the password to the  
M24LR64-R in order to modify the write access rights of all the memory sectors protected by  
the I2C_Write_Lock bits, including the password itself. If the presented password is correct,  
2
the access rights remain activated until the M24LR64-R is powered off or until a new I C  
Present Password command is issued.  
Following a Start condition, the bus master sends a device select code with the Read/Write  
bit (RW) reset to 0 and the Chip Enable bit E2 at 1. The device acknowledges this, as shown  
2
in Figure 8, and waits for two I C password address bytes 09h and 00h. The device  
responds to each address byte with an acknowledge bit, and then waits for the 4 password  
data bytes, the validation code, 09h, and a resend of the 4 password data bytes. The most  
significant byte of the password is sent first, followed by the least significant bytes.  
It is necessary to send the 32-bit password twice to prevent any data corruption during the  
sequence. If the two 32-bit passwords sent are not exactly the same, the M24LR64-R does  
not start the internal comparison.  
DocID15170 Rev 16  
27/121  
 
System memory area  
M24LR64-R  
When the bus master generates a Stop condition immediately after the Ack bit (during the  
th  
“10 bit” time slot), an internal delay equivalent to the write cycle time is triggered. A Stop  
condition at any other time does not trigger the internal delay. During that delay, the  
2
M24LR64-R compares the 32 received data bits with the 32 bits of the stored I C password.  
If the values match, the write access rights to all protected sectors are modified after the  
internal delay. If the values do not match, the protected sectors remains protected.  
During the internal delay, Serial Data (SDA) is disabled internally, and the device does not  
respond to any requests.  
2
Figure 8. I C Present Password command  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
Device select  
code  
Password  
Password  
Password  
[31:24]  
Password  
[23:16]  
Password  
[15:8]  
Password  
[7:0]  
address 09h  
address 00h  
R/W  
Ack  
Ack  
Ack  
Ack  
Ack  
Password  
[31:24]  
Password  
[23:16]  
Password  
[15:8]  
Password  
[7:0]  
Validation  
code 09h  
Device select code = 1010 1 E1 E0  
th  
Ack generated during  
9
bit time slot.  
ai15125b  
2
4.5.2  
I C Write Password command description  
2
2
The I C Write Password command is used to write a 32-bit block into the M24LR64-R I C  
2
2
password system area. This command is used in I C mode to update the I C password  
value. It cannot be used to update any of the RF passwords. After the write cycle, the new  
I C password value is automatically activated. The I C password value can only be modified  
2
2
2
after issuing a valid I C Present Password command.  
2
On delivery, the I C default password value is set to 0000 0000h and is activated.  
Following a Start condition, the bus master sends a device select code with the Read/Write  
bit (RW) reset to 0 and the Chip Enable bit E2 at 1. The device acknowledges this, as shown  
2
in Figure 9, and waits for the two I C password address bytes, 09h and 00h. The device  
responds to each address byte with an acknowledge bit, and then waits for the 4 password  
data bytes, the validation code, 07h, and a resend of the 4 password data bytes. The most  
significant byte of the password is sent first, followed by the least significant bytes.  
It is necessary to send twice the 32-bit password to prevent any data corruption during the  
write sequence. If the two 32-bit passwords sent are not exactly the same, the M24LR64-R  
2
does not modify the I C password value.  
When the bus master generates a Stop condition immediately after the Ack bit (during the  
th  
10 bit time slot), the internal write cycle is triggered. A Stop condition at any other time  
does not trigger the internal write cycle.  
During the internal write cycle, Serial Data (SDA) is disabled internally, and the device does  
not respond to any requests.  
28/121  
DocID15170 Rev 16  
M24LR64-R  
System memory area  
2
Figure 9. I C Write Password command  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
Device select  
Password  
Password  
New password New password New password New password  
[31:24] [23:16] [15:8] [7:0]  
code  
address 09h  
address 00h  
R/W  
Ack  
Ack  
Ack  
Ack  
Ack  
New password New password New password New password  
Validation  
code 07h  
[31:24]  
[23:16]  
[15:8]  
[7:0]  
Device select code = 1010 1 E1 E0  
th  
Ack generated during  
9
bit time slot.  
ai15126  
DocID15170 Rev 16  
29/121  
2
I C device operation  
M24LR64-R  
2
5
I C device operation  
2
The device supports the I C protocol. This is summarized in Figure 5. Any device that sends  
data on to the bus is defined to be a transmitter, and any device that reads the data to be a  
receiver. The device that controls the data transfer is known as the bus master, and the  
other as the slave device. A data transfer can only be initiated by the bus master, which will  
also provide the serial clock for synchronization. The M24LR64-R device is always a slave  
in all communications.  
5.1  
5.2  
Start condition  
Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in  
the high state. A Start condition must precede any data transfer command. The device  
continuously monitors (except during a write cycle) Serial Data (SDA) and Serial Clock  
(SCL) for a Start condition, and will not respond unless one is given.  
Stop condition  
Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable and  
driven high. A Stop condition terminates communication between the device and the bus  
master. A Read command that is followed by NoAck can be followed by a Stop condition to  
force the device into the Standby mode. A Stop condition at the end of a Write command  
triggers the internal write cycle.  
5.3  
5.4  
5.5  
Acknowledge bit (ACK)  
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter,  
whether it be bus master or slave device, releases Serial Data (SDA) after sending eight bits  
th  
of data. During the 9 clock pulse period, the receiver pulls Serial Data (SDA) low to  
acknowledge the receipt of the eight data bits.  
Data Input  
During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock  
(SCL). For correct device operation, Serial Data (SDA) must be stable during the rising edge  
of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock  
(SCL) is driven low.  
Memory addressing  
To start communication between the bus master and the slave device, the bus master must  
initiate a Start condition. Following this, the bus master sends the device select code, shown  
in Table 2 (on Serial Data (SDA), most significant bit first).  
The device select code consists of a 4-bit device type identifier, and a 3-bit Chip Enable  
“Address” (E2, E1, E0). To address the memory array, the 4-bit device type identifier is  
1010b.  
30/121  
DocID15170 Rev 16  
2
M24LR64-R  
I C device operation  
2
Up to four memory devices can be connected on a single I C bus. Each one is given a  
unique 2-bit code on the Chip Enable (E0, E1) inputs. When the device select code is  
received, the device only responds if the Chip Enable Address is the same as the value on  
the Chip Enable (E0, E1) inputs.  
th  
The 8 bit is the Read/Write bit (RW). This bit is set to 1 for Read and 0 for Write operations.  
If a match occurs on the device select code, the corresponding device gives an  
th  
acknowledgment on Serial Data (SDA) during the 9 bit time. If the device does not match  
the device select code, it deselects itself from the bus, and goes into Standby mode.  
Table 15. Operating modes  
Mode  
RW bit  
Bytes  
Initial sequence  
Current Address Read  
1
0
1
1
0
0
1
Start, device select, RW = 1  
Start, device select, RW = 0, Address  
reStart, device select, RW = 1  
Similar to Current or Random Address Read  
Start, device select, RW = 0  
Random Address Read  
1
Sequential Read  
Byte Write  
1  
1
Page Write  
4 bytes  
Start, device select, RW = 0  
Figure 10. Write mode sequences with I2C_Write_Lock bit = 1 (data write inhibited)  
ACK  
ACK  
ACK  
NO ACK  
Byte Write  
Page Write  
Dev select  
Byte address  
Byte address  
Data in  
R/W  
ACK  
ACK  
Byte address  
ACK  
NO ACK  
Dev select  
NO ACK  
Byte address  
Data in 1  
Data in 2  
R/W  
NO ACK  
Data in N  
Page Write  
(cont'd)  
AI15115  
5.6  
Write operations  
Following a Start condition the bus master sends a device select code with the Read/Write  
bit (RW) reset to 0. The device acknowledges this, as shown in Figure 11, and waits for two  
address bytes. The device responds to each address byte with an acknowledge bit, and  
then waits for the data byte.  
DocID15170 Rev 16  
31/121  
 
2
I C device operation  
M24LR64-R  
Writing to the memory may be inhibited if the I2C_Write_Lock bit = 1. A Write instruction  
issued with the I2C_Write_Lock bit = 1 and with no I2C_Password presented, does not  
modify the memory contents, and the accompanying data bytes are not acknowledged, as  
shown in Figure 10.  
Each data byte in the memory has a 16-bit (two byte wide) address. The most significant  
byte (Table 3) is sent first, followed by the least significant byte (Table 4). Bits b15 to b0 form  
the address of the byte in memory.  
th  
When the bus master generates a Stop condition immediately after the Ack bit (in the “10  
bit” time slot), either at the end of a Byte Write or a Page Write, the internal write cycle is  
triggered. A Stop condition at any other time slot does not trigger the internal write cycle.  
After the Stop condition, the delay t , and the successful completion of a Write operation,  
W
the device’s internal address counter is incremented automatically, to point to the next byte  
address after the last one that was modified.  
During the internal write cycle, Serial Data (SDA) is disabled internally, and the device does  
not respond to any requests.  
5.7  
5.8  
Byte Write  
After the device select code and the address bytes, the bus master sends one data byte. If  
the addressed location is write-protected by the I2C_Write_Lock bit (= 1), the device replies  
with NoAck, and the location is not modified. If, instead, the addressed location is not Write-  
protected, the device replies with Ack. The bus master terminates the transfer by generating  
a Stop condition, as shown in Figure 11.  
Page Write  
The Page Write mode allows up to 4 bytes to be written in a single Write cycle, provided that  
they are all located in the same “row” in the memory: that is, the most significant memory  
address bits (b12-b2) are the same. If more bytes are sent than will fit up to the end of the  
row, a condition known as ‘roll-over’ occurs. This should be avoided, as data starts to  
become overwritten in an implementation dependent way.  
The bus master sends from 1 to 4 bytes of data, each of which is acknowledged by the  
device if the I2C_Write_Lock bit = 0 or the I2C_Password was correctly presented. If the  
I2C_Write_Lock_bit = 1 and the I2C_password is not presented, the contents of the  
addressed memory location are not modified, and each data byte is followed by a NoAck.  
After each byte is transferred, the internal byte address counter (inside the page) is  
incremented. The transfer is terminated by the bus master generating a Stop condition.  
32/121  
DocID15170 Rev 16  
2
M24LR64-R  
I C device operation  
Figure 11. Write mode sequences with I2C_Write_Lock bit = 0 (data write enabled)  
ACK  
ACK  
ACK  
ACK  
Byte Write  
Dev Select  
Byte address  
Byte address  
Data in  
R/W  
ACK  
ACK  
Byte address  
ACK  
ACK  
ACK  
ACK  
Page Write  
Dev Select  
Byte address  
Data in 1  
Data in 2  
Data in N  
R/W  
AI15116  
Figure 12. Write cycle polling flowchart using ACK  
Write cycle  
in progress  
Start condition  
Device select  
with RW = 0  
ACK  
NO  
returned  
First byte of instruction  
with RW = 0 already  
decoded by the device  
YES  
Next  
Operation is  
addressing the  
memory  
NO  
YES  
NO  
Send Address  
and Receive ACK  
ReStart  
StartCondition  
YES  
Stop  
Data for the  
Write cperation  
Ddevice select  
with RW = 1  
Continue the  
Random Read operation  
Continue the  
Write operation  
AI01847d  
DocID15170 Rev 16  
33/121  
 
2
I C device operation  
M24LR64-R  
5.9  
Minimizing system delays by polling on ACK  
During the internal write cycle, the device disconnects itself from the bus, and writes a copy  
of the data from its internal latches to the memory cells. The maximum I²C write time (tw) is  
shown in Table 104, but the typical time is shorter. To make use of this, a polling sequence  
can be used by the bus master.  
The sequence, as shown in Figure 12, is:  
1. Initial condition: a write cycle is in progress.  
2. Step 1: the bus master issues a Start condition followed by a device select code (the  
first byte of the new instruction).  
3. Step 2: if the device is busy with the internal Write cycle, no Ack will be returned and  
the bus master goes back to Step 1. If the device has terminated the internal write  
cycle, it responds with an Ack, indicating that the device is ready to receive the second  
part of the instruction (the first byte of this instruction having been sent during Step 1).  
34/121  
DocID15170 Rev 16  
2
M24LR64-R  
I C device operation  
Figure 13. Read mode sequences  
ACK  
NO ACK  
Current  
Address  
Read  
Dev sel  
Data out  
R/W  
ACK  
ACK  
ACK  
ACK  
NO ACK  
Random  
Address  
Read  
Dev sel *  
Byte addr  
Byte addr  
Dev sel *  
Data out  
R/W  
R/W  
ACK  
ACK  
ACK  
ACK  
ACK  
NO ACK  
Data out N  
Sequential  
Current  
Read  
Dev sel  
Data out 1  
R/W  
ACK  
R/W  
ACK  
R/W  
ACK  
Sequention  
Random  
Read  
Dev sel *  
ACK  
Byte addr  
Byte addr  
Dev sel *  
Data out1  
NO ACK  
Data out N  
AI01105d  
1. The seven most significant bits of the device select code of a Random Read (in the 1st and 4th bytes) must  
be identical.  
5.10  
5.11  
Read operations  
Read operations are performed independently of the state of the I2C_Write_Lock bit.  
After the successful completion of a Read operation, the device’s internal address counter is  
incremented by one, to point to the next byte address.  
Random Address Read  
A dummy Write is first performed to load the address into this address counter (as shown in  
Figure 13) but without sending a Stop condition. Then, the bus master sends another Start  
condition, and repeats the device select code, with the Read/Write bit (RW) set to 1. The  
DocID15170 Rev 16  
35/121  
 
2
I C device operation  
M24LR64-R  
device acknowledges this, and outputs the contents of the addressed byte. The bus master  
must not acknowledge the byte, and terminates the transfer with a Stop condition.  
5.12  
5.13  
Current Address Read  
For the Current Address Read operation, following a Start condition, the bus master only  
sends a device select code with the Read/Write bit (RW) set to 1. The device acknowledges  
this, and outputs the byte addressed by the internal address counter. The counter is then  
incremented. The bus master terminates the transfer with a Stop condition, as shown in  
Figure 13, without acknowledging the byte.  
Sequential Read  
This operation can be used after a Current Address Read or a Random Address Read. The  
bus master does acknowledge the data byte output, and sends additional clock pulses so  
that the device continues to output the next byte in sequence. To terminate the stream of  
bytes, the bus master must not acknowledge the last byte, and must generate a Stop  
condition, as shown in Figure 13.  
The output data comes from consecutive addresses, with the internal address counter  
automatically incremented after each byte output. After the last memory address, the  
address counter ‘rolls-over’, and the device continues to output data from memory address  
00h.  
5.14  
Acknowledge in Read mode  
For all Read commands, the device waits, after each byte read, for an acknowledgment  
th  
during the 9 bit time. If the bus master does not drive Serial Data (SDA) low during this  
time, the device terminates the data transfer and switches to its Standby mode.  
36/121  
DocID15170 Rev 16  
M24LR64-R  
User memory initial state  
6
User memory initial state  
The device is delivered with all bits in the user memory array set to 1 (each byte contains  
FFh).  
7
RF device operation  
The M24LR64-R is divided into 64 sectors of 32 blocks of 32 bits as shown in Table 5. Each  
sector can be individually read- and/or write-protected using a specific lock or password  
command.  
Read and Write operations are possible if the addressed block is not protected. During a  
Write, the 32 bits of the block are replaced by the new 32-bit value.  
The M24LR64-R also has a 64-bit block that is used to store the 64-bit unique identifier  
(UID). The UID is compliant with the ISO 15963 description, and its value is used during the  
anticollision sequence (Inventory). This block is not accessible by the user and its value is  
written by ST on the production line.  
The M24LR64-R also includes an AFI register in which the application family identifier is  
stored, and a DSFID register in which the data storage family identifier used in the  
anticollision algorithm is stored. The M24LR64-R has three additional 32-bit blocks in which  
the password codes are stored.  
DocID15170 Rev 16  
37/121  
RF device operation  
M24LR64-R  
7.1  
Commands  
The M24LR64-R supports the following commands:  
Inventory, used to perform the anticollision sequence.  
Stay Quiet, used to put the M24LR64-R in quiet mode, where it does not respond to  
any inventory command.  
Select, used to select the M24LR64-R. After this command, the M24LR64-R  
processes all Read/Write commands with Select_flag set.  
Reset To Ready, used to put the M24LR64-R in the ready state.  
Read Block, used to output the 32 bits of the selected block and its locking status.  
Write Block, used to write the 32-bit value in the selected block, provided that it is not  
locked.  
Read Multiple Blocks, used to read the selected blocks and send back their value.  
Write AFI, used to write the 8-bit value in the AFI register.  
Lock AFI, used to lock the AFI register.  
Write DSFID, used to write the 8-bit value in the DSFID register.  
Lock DSFID, used to lock the DSFID register.  
Get System Info, used to provide the system information value  
Get Multiple Block Security Status, used to send the security status of the selected  
block.  
Initiate, used to trigger the tag response to the Inventory Initiated sequence.  
Inventory Initiated, used to perform the anticollision sequence triggered by the Initiate  
command.  
Write-sector Password, used to write the 32 bits of the selected password.  
Lock-sector Password, used to write the Sector security status bits of the selected  
sector.  
Present-sector Password, enables the user to present a password to unprotect the  
user blocks linked to this password.  
Fast Initiate, used to trigger the tag response to the Inventory Initiated sequence.  
Fast Inventory Initiated, used to perform the anticollision sequence triggered by the  
Initiate command.  
Fast Read Single Block, used to output the 32 bits of the selected block and its  
locking status.  
Fast Read Multiple Blocks, used to read the selected blocks and send back their  
value.  
7.2  
Initial dialog for vicinity cards  
The dialog between the vicinity coupling device or VCD (commonly the “RF reader”) and the  
vicinity integrated circuit card or VICC (M24LR64-R) takes place as follows:  
activation of the M24LR64-R by the RF operating field of the VCD  
transmission of a command by the VCD  
transmission of a response by the M24LR64-R  
38/121  
DocID15170 Rev 16  
M24LR64-R  
RF device operation  
These operations use the RF power transfer and communication signal interface described  
below (see Power transfer, Frequency and Operating field). This technique is called RTF  
(Reader Talk First).  
7.2.1  
Power transfer  
Power is transferred to the M24LR64-R by radio frequency at 13.56 MHz via coupling  
antennas in the M24LR64-R and the VCD. The RF operating field of the VCD is transformed  
on the M24LR64-R antenna to an AC Voltage which is rectified, filtered and internally  
regulated. The amplitude modulation (ASK) on this received signal is demodulated by the  
ASK demodulator.  
7.2.2  
7.2.3  
Frequency  
The ISO 15693 standard defines the carrier frequency (f ) of the operating field as  
13.56 MHz ±7 kHz.  
C
Operating field  
The M24LR64-R operates continuously between the minimum and maximum values of the  
electromagnetic field H defined in Table 105. The VCD has to generate a field within these  
limits.  
DocID15170 Rev 16  
39/121  
 
 
 
Communication signal from VCD to M24LR64-R  
M24LR64-R  
8
Communication signal from VCD to M24LR64-R  
Communications between the VCD and the M24LR64-R takes place using the modulation  
principle of ASK (Amplitude Shift Keying). Two modulation indexes are used, 10% and  
100%. The M24LR64-R decodes both. The VCD determines which index is used.  
The modulation index is defined as [a – b]/[a + b] where a is the peak signal amplitude and  
b, the minimum signal amplitude of the carrier frequency.  
Depending on the choice made by the VCD, a “pause” will be created as described in  
Figure 14 and Figure 15.  
The M24LR64-R is operational for any degree of modulation index from between 10% and  
30%.  
Figure 14. 100% modulation waveform  
t1  
t3  
Carrier  
Amplitude  
t4  
105%  
a
95%  
60%  
t2  
5%  
b
t
Min (μs) Max (μs)  
9,44  
t1  
4,5  
0,8  
t1  
t2  
t3  
t4  
6,0  
2,1  
0
0
The clock recovery shall be operational after t4 max.  
ai15793  
Table 16. 10% modulation parameters  
Symbol  
Parameter definition  
Value  
hr  
hf  
0.1 x (a – b)  
0.1 x (a – b)  
max  
max  
40/121  
DocID15170 Rev 16  
 
M24LR64-R  
Communication signal from VCD to M24LR64-R  
Figure 15. 10% modulation waveform  
Carrier  
Amplitude  
t1  
t2  
t3  
y
hf  
a
b
hr  
y
t
Min  
Max  
9,44 μs  
t1  
t1  
t2  
t3  
6,0 μs  
3,0 μs  
0
4,5 μs  
y
0,05 (a-b)  
0,1 (a-b) max  
Modulation  
Index  
10%  
30%  
hf, hr  
The VICC shall be operational for any value of modulation index between 10 % and 30 %.  
ai15794  
DocID15170 Rev 16  
41/121  
Data rate and data coding  
M24LR64-R  
9
Data rate and data coding  
The data coding implemented in the M24LR64-R uses pulse position modulation. Both data  
coding modes that are described in the ISO15693 are supported by the M24LR64-R. The  
selection is made by the VCD and indicated to the M24LR64-R within the start of frame  
(SOF).  
9.1  
Data coding mode: 1 out of 256  
The value of one single byte is represented by the position of one pause. The position of the  
pause on 1 of 256 successive time periods of 18.88 µs (256/f ), determines the value of the  
C
byte. In this case the transmission of one byte takes 4.833 ms and the resulting data rate is  
1.65 kbit/s (f /8192).  
C
Figure 16 illustrates this pulse position modulation technique. In this figure, data E1h (225  
decimal) is sent by the VCD to the M24LR64-R.  
The pause occurs during the second half of the position of the time period that determines  
the value, as shown in Figure 17.  
A pause during the first period transmits the data value 00h. A pause during the last period  
transmit the data value FFh (255 decimal).  
Figure 16. 1 out of 256 coding mode  
9.44 μs  
Pulse  
Modulated  
Carrier  
18.88 μs  
0
1
2
3
.  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
2
5
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
5
2
2
5
3
2
5
4
2
5
5
.
.
.
.
4.833 ms  
AI06656  
42/121  
DocID15170 Rev 16  
 
M24LR64-R  
Data rate and data coding  
Figure 17. Detail of a time period  
9.44 μs  
18.88 μs  
Pulse  
Modulated  
Carrier  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
2
4
2
2
5
2
2
6
Time Period  
one of 256  
AI06657  
9.2  
Data coding mode: 1 out of 4  
The value of 2 bits is represented by the position of one pause. The position of the pause on  
1 of 4 successive time periods of 18.88 µs (256/f ), determines the value of the 2 bits. Four  
C
successive pairs of bits form a byte, where the least significant pair of bits is transmitted first.  
In this case the transmission of one byte takes 302.08 µs and the resulting data rate is  
26.48 kbit/s (f /512). Figure 18 illustrates the 1 out of 4 pulse position technique and coding.  
C
Figure 19 shows the transmission of E1h (225d - 1110 0001b) by the VCD.  
DocID15170 Rev 16  
43/121  
Data rate and data coding  
M24LR64-R  
Figure 18. 1 out of 4 coding mode  
Pulse position for "00"  
9.44 μs  
9.44 μs  
75.52 μs  
Pulse position for "01" (1=LSB)  
28.32 μs  
9.44 μs  
75.52 μs  
Pulse position for "10" (0=LSB)  
47.20μs  
75.52 μs  
9.44 μs  
Pulse position for "11"  
66.08 μs  
9.44 μs  
75.52 μs  
AI06658  
Figure 19. 1 out of 4 coding example  
ꢌꢂ  
ꢂꢂ  
ꢂꢌ  
ꢌꢌ  
ꢄ ꢉꢋ  
ꢄ ꢉꢋ  
ꢄ ꢉꢋ  
ꢄ ꢉꢋ  
ꢁꢂ  
44/121  
DocID15170 Rev 16  
M24LR64-R  
Data rate and data coding  
9.3  
VCD to M24LR64-R frames  
Frames are delimited by a start of frame (SOF) and an end of frame (EOF). They are  
implemented using code violation. Unused options are reserved for future use.  
The M24LR64-R is ready to receive a new command frame from the VCD 311.5 µs (t ) after  
2
sending a response frame to the VCD.  
The M24LR64-R takes a power-up time of 0.1 ms after being activated by the powering  
field. After this delay, the M24LR64-R is ready to receive a command frame from the VCD.  
9.4  
Start of frame (SOF)  
The SOF defines the data coding mode the VCD is to use for the following command frame.  
The SOF sequence described in Figure 20 selects the 1 out of 256 data coding mode. The  
SOF sequence described in Figure 21 selects the 1 out of 4 data coding mode. The EOF  
sequence for either coding mode is described in Figure 22.  
Figure 20. SOF to select 1 out of 256 data coding mode  
ꢋ  
ꢋ  
ꢆ ꢉꢋ  
ꢆ ꢉꢋ  
ꢁꢂ  
Figure 21. SOF to select 1 out of 4 data coding mode  
ꢄ ꢅꢄ  
ꢄ  
ꢁꢂꢄ  
ꢁꢂꢄ  
ꢂ  
DocID15170 Rev 16  
45/121  
 
 
Data rate and data coding  
M24LR64-R  
Figure 22. EOF for either data coding mode  
ꢋ  
ꢋ  
ꢆ ꢉꢋ  
ꢃꢃꢃ  
46/121  
DocID15170 Rev 16  
 
M24LR64-R  
Communications signal from M24LR64-R to VCD  
10  
Communications signal from M24LR64-R to VCD  
The M24LR64-R has several modes defined for some parameters, owing to which it can  
operate in different noise environments and meet different application requirements.  
10.1  
Load modulation  
The M24LR64-R is capable of communication to the VCD via an inductive coupling area  
whereby the carrier is loaded to generate a subcarrier with frequency f . The subcarrier is  
S
generated by switching a load in the M24LR64-R.  
The load-modulated amplitude received on the VCD antenna must be of at least 10mV  
when measured as described in the test methods defined in International Standard  
ISO10373-7.  
10.2  
10.3  
Subcarrier  
The M24LR64-R supports the one-subcarrier and two-subcarrier response formats. These  
formats are selected by the VCD using the first bit in the protocol header. When one  
subcarrier is used, the frequency f of the subcarrier load modulation is 423.75 kHz (f /32).  
S1  
C
When two subcarriers are used, the frequency f is 423.75 kHz (f /32), and frequency f  
S1  
C
S2  
is 484.28 kHz (f /28). When using the two-subcarrier mode, the M24LR64-R generates a  
C
continuous phase relationship between f and f  
.
S1  
S2  
Data rates  
The M24LR64-R can respond using the low or the high data rate format. The selection of  
the data rate is made by the VCD using the second bit in the protocol header. It also  
supports the x2 mode available on all the Fast commands. Table 17 shows the different data  
rates produced by the M24LR64-R using the different response format combinations.  
Table 17. Response data rates  
Data rate  
One subcarrier  
Two subcarriers  
Standard commands  
Fast commands  
6.62 kbit/s (fc/2048)  
13.24 kbit/s (fc/1024)  
26.48 kbit/s (fc/512)  
52.97 kbit/s (fc/256)  
6.67 kbit/s (fc/2032)  
not applicable  
Low  
Standard commands  
Fast commands  
26.69 kbit/s (fc/508)  
not applicable  
High  
DocID15170 Rev 16  
47/121  
 
Bit representation and coding  
M24LR64-R  
11  
Bit representation and coding  
Data bits are encoded using Manchester coding, according to the following schemes. For  
the low data rate, same subcarrier frequency or frequencies is/are used, in this case the  
number of pulses is multiplied by 4 and all times will increase by this factor. For the Fast  
commands using one subcarrier, all pulse numbers and times are divided by 2.  
11.1  
Bit coding using one subcarrier  
11.1.1  
High data rate  
A logic 0 starts with 8 pulses at 423.75 kHz (f /32) followed by an unmodulated time of  
C
18.88 µs as shown in Figure 23.  
Figure 23. Logic 0, high data rate  
ꢆ ꢉꢂ  
ꢈꢂꢆꢃ  
For the fast commands, a logic 0 starts with 4 pulses at 423.75 kHz (f /32) followed by an  
C
unmodulated time of 9.44 µs as shown in Figure 24.  
Figure 24. Logic 0, high data rate x2  
 
ꢈꢂꢀ  
A logic 1 starts with an unmodulated time of 18.88 µs followed by 8 pulses at 423.75 kHz  
(f /32) as shown in Figure 25.  
C
Figure 25. Logic 1, high data rate  
ꢀꢁꢂꢁꢃꢄꢅꢆ  
ꢇꢈꢉꢊꢋꢁꢁ  
For the Fast commands, a logic 1 starts with an unmodulated time of 9.44 µs followed by  
4 pulses of 423.75 kHz (f /32) as shown in Figure 26.  
C
Figure 26. Logic 1, high data rate x2  
ꢀꢀꢄꢅꢆ  
ꢇꢈꢉꢊꢋꢁꢂ  
48/121  
DocID15170 Rev 16  
 
 
 
 
M24LR64-R  
Bit representation and coding  
11.1.2  
Low data rate  
A logic 0 starts with 32 pulses at 423.75 kHz (f /32) followed by an unmodulated time of  
C
75.52 µs as shown in Figure 27.  
Figure 27. Logic 0, low data rate  
ꢋ  
ꢈꢂꢃ  
For the Fast commands, a logic 0 starts with 16 pulses at 423.75 kHz (f /32) followed by an  
C
unmodulated time of 37.76 µs as shown in Figure 28.  
Figure 28. Logic 0, low data rate x2  
ꢊꢄꢌꢁ  
ꢂꢃꢉꢊꢋꢃꢄ  
A logic 1 starts with an unmodulated time of 75.52 µs followed by 32 pulses at 423.75 kHz  
(f /32) as shown in Figure 29.  
C
Figure 29. Logic 1, low data rate  
ꢂ  
ꢈꢂꢆꢂ  
For the Fast commands, a logic 1 starts with an unmodulated time of 37.76 µs followed by  
16 pulses at 423.75 kHz (f /32) as shown in Figure 29.  
C
Figure 30. Logic 1, low data rate x2  
ꢄ ꢉꢇ  
ꢈꢂꢌ  
11.2  
11.3  
Bit coding using two subcarriers  
High data rate  
A logic 0 starts with 8 pulses at 423.75 kHz (f /32) followed by 9 pulses at 484.28 kHz  
C
(f /28) as shown in Figure 31. For the Fast commands, the x2 mode is not available.  
C
DocID15170 Rev 16  
49/121  
 
 
 
Bit representation and coding  
M24LR64-R  
Figure 31. Logic 0, high data rate  
ꢋ  
ꢈꢂꢁ  
A logic 1 starts with 9 pulses at 484.28 kHz (f /28) followed by 8 pulses at 423.75 kHz  
C
(f /32) as shown in Figure 32. For the Fast commands, the x2 mode is not available.  
C
Figure 32. Logic 1, high data rate  
ꢅꢀꢋ  
ꢈꢂꢅ  
11.4  
Low data rate  
A logic 0 starts with 32 pulses at 423.75 kHz (f /32) followed by 36 pulses at 484.28 kHz  
C
(f /28) as shown in Figure 33. For the Fast commands, the x2 mode is not available.  
C
Figure 33. Logic 0, low data rate  
ꢋ  
ꢈꢂꢈ  
A logic 1 starts with 36 pulses at 484.28 kHz (f /28) followed by 32 pulses at 423.75 kHz  
C
(f /32) as shown in Figure 34. For the Fast commands, the x2 mode is not available.  
C
Figure 34. Logic 1, low data rate  
ꢃ  
ꢈꢂꢆꢆ  
50/121  
DocID15170 Rev 16  
 
 
 
M24LR64-R  
M24LR64-R to VCD frames  
12  
M24LR64-R to VCD frames  
Frames are delimited by an SOF and an EOF. They are implemented using code violation.  
Unused options are reserved for future use. For the low data rate, the same subcarrier  
frequency or frequencies is/are used. In this case the number of pulses is multiplied by 4.  
For the Fast commands using one subcarrier, all pulse numbers and times are divided by 2.  
12.1  
12.2  
SOF when using one subcarrier  
High data rate  
The SOF includes an unmodulated time of 56.64 µs, followed by 24 pulses at 423.75 kHz  
(f /32), and a logic 1 that consists of an unmodulated time of 18.88 µs followed by 8 pulses  
C
at 423.75 kHz as shown in Figure 35.  
Figure 35. Start of frame, high data rate, one subcarrier  
ꢌꢌꢂ  
ꢅꢆꢆꢇ  
ꢈꢂꢇ  
For the Fast commands, the SOF comprises an unmodulated time of 28.32 µs, followed by  
12 pulses at 423.75 kHz (f /32), and a logic 1 that consists of an unmodulated time of  
C
9.44µs followed by 4 pulses at 423.75 kHz as shown in Figure 36.  
Figure 36. Start of frame, high data rate, one subcarrier x2  
ꢈ  
ꢂ  
ꢈꢂ  
12.3  
Low data rate  
The SOF comprises an unmodulated time of 226.56 µs, followed by 96 pulses at 423.75  
kHz (f /32), and a logic 1 that consists of an unmodulated time of 75.52 µs followed by 32  
C
pulses at 423.75 kHz as shown in Figure 37.  
Figure 37. Start of frame, low data rate, one subcarrier  
ꢁꢂꢀꢂꢉꢊꢄꢃꢄ  
ꢉꢂꢋꢃꢄ  
ꢄꢅ  
DocID15170 Rev 16  
51/121  
 
 
 
 
M24LR64-R to VCD frames  
M24LR64-R  
For the Fast commands, the SOF comprises an unmodulated time of 113.28 µs, followed by  
48 pulses at 423.75 kHz (f /32), and a logic 1 that includes an unmodulated time of 37.76  
C
µs followed by 16 pulses at 423.75 kHz as shown in Figure 38.  
Figure 38. Start of frame, low data rate, one subcarrier x2  
ꢈꢈ ꢄ ꢉꢋ  
ꢄ ꢉꢋ  
ꢈꢂꢌ  
12.4  
12.5  
SOF when using two subcarriers  
High data rate  
The SOF comprises 27 pulses at 484.28 kHz (f /28), followed by 24 pulses at 423.75 kHz  
C
(f /32), and a logic 1 that includes 9 pulses at 484.28 kHz followed by 8 pulses at  
C
423.75 kHz as shown in Figure 39.  
For the Fast commands, the x2 mode is not available.  
Figure 39. Start of frame, high data rate, two subcarriers  
ꢌꢌ ꢂ  
ꢅꢀꢂ  
ꢈꢂꢈ  
12.6  
Low data rate  
The SOF comprises 108 pulses at 484.28 kHz (f /28), followed by 96 pulses at 423.75 kHz  
C
(f /32), and a logic 1 that includes 36 pulses at 484.28 kHz followed by 32 pulses at  
C
423.75 kHz as shown in Figure 40.  
For the Fast commands, the x2 mode is not available.  
Figure 40. Start of frame, low data rate, two subcarriers  
ꢁꢁꢅꢄꢍꢎ  
ꢁꢅꢄꢍꢎ  
ꢆꢇꢉꢊꢋꢀ  
52/121  
DocID15170 Rev 16  
 
 
 
M24LR64-R  
M24LR64-R to VCD frames  
12.7  
EOF when using one subcarrier  
High data rate  
12.8  
The EOF comprises a logic 0 that includes 8 pulses at 423.75 kHz and an unmodulated time  
of 18.88 µs, followed by 24 pulses at 423.75 kHz (f /32), and by an unmodulated time of  
C
56.64 µs as shown in Figure 41.  
Figure 41. End of frame, high data rate, one subcarriers  
ꢅꢀꢃ  
ꢌꢌꢃ  
ꢈꢂꢌ  
For the Fast commands, the EOF comprises a logic 0 that includes 4 pulses at 423.75 kHz  
and an unmodulated time of 9.44 µs, followed by 12 pulses at 423.75 kHz (f /32) and an  
C
unmodulated time of 37.76 µs as shown in Figure 42.  
Figure 42. End of frame, high data rate, one subcarriers x2  
ꢀꢁꢁꢂꢄꢌꢃ  
ꢆꢆꢄꢌꢃ  
ꢄꢅꢉꢊꢋꢆꢀ  
12.9  
Low data rate  
The EOF comprises a logic 0 that includes 32 pulses at 423.75 kHz and an unmodulated  
time of 75.52 µs, followed by 96 pulses at 423.75 kHz (f /32) and an unmodulated time of  
C
226.56 µs as shown in Figure 43.  
Figure 43. End of frame, low data rate, one subcarriers  
ꢁꢂꢀꢂꢉꢊꢄꢇꢈ  
ꢉꢂꢋꢇꢈ  
ꢅꢆꢉꢊꢋꢄꢃ  
For the Fast commands, the EOF comprises a logic 0 that includes 16 pulses at 423.75 kHz  
and an unmodulated time of 37.76 µs, followed by 48 pulses at 423.75 kHz (f /32) and an  
C
unmodulated time of 113.28 µs as shown in Figure 44.  
Figure 44. End of frame, low data rate, one subcarriers x2  
ꢊꢄꢌꢃ  
ꢊꢊꢃꢂꢃꢄꢌꢃ  
ꢄꢅꢉꢊꢋꢁ  
DocID15170 Rev 16  
53/121  
 
 
 
 
M24LR64-R to VCD frames  
M24LR64-R  
12.10  
12.11  
EOF when using two subcarriers  
High data rate  
The EOF comprises a logic 0 that includes 8 pulses at 423.75 kHz and 9 pulses at  
484.28 kHz, followed by 24 pulses at 423.75 kHz (f /32) and 27 pulses at 484.28 kHz  
C
(f /28) as shown in Figure 45.  
C
For the Fast commands, the x2 mode is not available.  
Figure 45. End of frame, high data rate, two subcarriers  
ꢅꢀꢂ  
ꢌꢌ ꢂ  
ꢌ  
12.12  
Low data rate  
The EOF comprises a logic 0 that includes 32 pulses at 423.75 kHz and 36 pulses at  
484.28 kHz, followed by 96 pulses at 423.75 kHz (f /32) and 108 pulses at 484.28 kHz  
C
(f /28) as shown in Figure 46.  
C
For the Fast commands, the x2 mode is not available.  
Figure 46. End of frame, low data rate, two subcarriers  
ꢃ  
ꢂꢂꢀꢃ  
 
54/121  
DocID15170 Rev 16  
 
 
M24LR64-R  
Unique identifier (UID)  
13  
Unique identifier (UID)  
The M24LR64-R is uniquely identified by a 64-bit unique identifier (UID). This UID complies  
with ISO/IEC 15963 and ISO/IEC 7816-6. The UID is a read-only code and comprises:  
8 MSBs with a value of E0h  
The IC manufacturer code of ST 02h, on 8 bits (ISO/IEC 7816-6/AM1)  
a unique serial number on 48 bits  
Table 18. UID format  
MSB  
LSB  
63  
56 55  
48 47  
0
0xE0  
0x02  
Unique serial number  
With the UID each M24LR64-R can be addressed uniquely and individually during the  
anticollision loop and for one-to-one exchanges between a VCD and an M24LR64-R.  
DocID15170 Rev 16  
55/121  
Application family identifier (AFI)  
M24LR64-R  
14  
Application family identifier (AFI)  
The AFI (application family identifier) represents the type of application targeted by the VCD  
and is used to identify, among all the M24LR64-Rs present, only the M24LR64-Rs that meet  
the required application criteria.  
Figure 47. M24LR64-R decision tree for AFI  
Inventory request  
received  
No  
AFI flag  
set?  
Yes  
No  
AFI value  
= 0?  
Yes  
AFI value  
= Internal  
value?  
No  
Yes  
Answer given by the M24LR64  
to the Inventory request  
No answer  
AI15130V2  
The AFI is programmed by the M24LR64-R issuer (or purchaser) in the AFI register. Once  
programmed and Locked, it can no longer be modified.  
The most significant nibble of the AFI is used to code one specific or all application families.  
The least significant nibble of the AFI is used to code one specific or all application  
subfamilies. Subfamily codes different from 0 are proprietary.  
(See ISO 15693-3 documentation)  
56/121  
DocID15170 Rev 16  
M24LR64-R  
Data storage format identifier (DSFID)  
15  
Data storage format identifier (DSFID)  
The data storage format identifier indicates how the data is structured in the M24LR64-R  
memory. The logical organization of data can be known instantly using the DSFID. It can be  
programmed and locked using the Write DSFID and Lock DSFID commands.  
15.1  
CRC  
The CRC used in the M24LR64-R is calculated as per the definition in ISO/IEC 13239. The  
initial register contents are all ones: “FFFF”.  
The two-byte CRC are appended to each request and response, within each frame, before  
the EOF. The CRC is calculated on all the bytes after the SOF up to the CRC field.  
Upon reception of a request from the VCD, the M24LR64-R verifies that the CRC value is  
valid. If it is invalid, the M24LR64-R discards the frame and does not answer to the VCD.  
Upon reception of a Response from the M24LR64-R, it is recommended that the VCD  
verifies whether the CRC value is valid. If it is invalid, actions to be performed are left to the  
discretion of the VCD designer.  
The CRC is transmitted least significant byte first. Each byte is transmitted least significant  
bit first.  
Table 19. CRC transmission rules  
LSByte  
MSByte  
LSBit  
MSBit LSBit  
MSBit  
CRC 16 (8 bits)  
CRC 16 (8 bits)  
DocID15170 Rev 16  
57/121  
M24LR64-R protocol description  
M24LR64-R  
16  
M24LR64-R protocol description  
The transmission protocol (or simply protocol) defines the mechanism used to exchange  
instructions and data between the VCD and the M24LR64-R, in both directions. It is based  
on the concept of “VCD talks first”.  
This means that an M24LR64-R will not start transmitting unless it has received and  
properly decoded an instruction sent by the VCD. The protocol is based on an exchange of:  
a request from the VCD to the M24LR64-R  
a response from the M24LR64-R to the VCD  
Each request and each response are contained in a frame. The frame delimiters (SOF,  
EOF) are described in Section 12: M24LR64-R to VCD frames.  
Each request consists of:  
a request SOF (see Figure 20 and Figure 21)  
flags  
a command code  
parameters, depending on the command  
application data  
a 2-byte CRC  
a request EOF (see Figure 22)  
Each response consists of:  
an answer SOF (see Figure 35 to Figure 40)  
flags  
parameters, depending on the command  
application data  
a 2-byte CRC  
an answer EOF (see Figure 41 to Figure 46)  
The protocol is bit-oriented. The number of bits transmitted in a frame is a multiple of eight  
(8), that is an integer number of bytes.  
A single-byte field is transmitted least significant bit (LSBit) first. A multiple-byte field is  
transmitted least significant byte (LSByte) first, each byte is transmitted least significant bit  
(LSBit) first.  
The setting of the flags indicates the presence of the optional fields. When the flag is set (to  
one), the field is present. When the flag is reset (to zero), the field is absent.  
Table 20. VCD request frame format  
Command  
code  
Request  
EOF  
Request SOF Request_flags  
Parameters  
Data  
2-byte CRC  
Table 21. M24LR64-R Response frame format  
Response  
SOF  
Response  
EOF  
Response_flags  
Parameters  
Data  
2-byte CRC  
58/121  
DocID15170 Rev 16  
 
 
M24LR64-R  
M24LR64-R protocol description  
Figure 48. M24LR64-R protocol timing  
Request  
frame  
Request  
frame  
VCD  
(Table 20)  
(Table 20)  
Response  
frame  
Response  
frame  
M24LR64-R  
(Table 21)  
(Table 21)  
Timing  
<-t1->  
<-t2->  
<-t1->  
<-t2->  
DocID15170 Rev 16  
59/121  
 
M24LR64-R states  
M24LR64-R  
17  
M24LR64-R states  
An M24LR64-R can be in one of 4 states:  
Power-off  
Ready  
Quiet  
Selected  
Transitions between these states are specified in Figure 49: M24LR64-R state transition  
diagram and Table 22: M24LR64-R response depending on Request_flags.  
17.1  
17.2  
17.3  
17.4  
Power-off state  
The M24LR64-R is in the Power-off state when it does not receive enough energy from the  
VCD.  
Ready state  
The M24LR64-R is in the Ready state when it receives enough energy from the VCD. When  
in the Ready state, the M24LR64-R answers any request where the Select_flag is not set.  
Quiet state  
When in the Quiet state, the M24LR64-R answers any request except for Inventory requests  
with the Address_flag set.  
Selected state  
In the Selected state, the M24LR64-R answers any request in all modes (see Section 18:  
Modes):  
Request in Select mode with the Select_flag set  
Request in Addressed mode if the UID matches  
Request in Non-Addressed mode as it is the mode for general requests  
60/121  
DocID15170 Rev 16  
M24LR64-R  
M24LR64-R states  
Table 22. M24LR64-R response depending on Request_flags  
Address_flag Select_flag  
0
Flags  
1
0
1
Non  
selected  
Addressed Non addressed  
Selected  
M24LR64-R in Ready or Selected  
state (Devices in Quiet state do not  
answer)  
X
X
X
M24LR64-R in Selected state  
X
X
X
M24LR64-R in Ready, Quiet or  
Selected state (the device which  
matches the UID)  
X
X
Error (03h)  
Figure 49. M24LR64-R state transition diagram  
Power-off  
In field  
Out of field  
after tRF_OFF  
Any other Command  
Ready  
where Select_Flag  
is not set  
Out of RF field  
after tRF_OFF  
Out of RF field  
after tRF_OFF  
Select (UID)  
Quiet  
Selected  
Stay quiet(UID)  
Any other command where the  
Address_Flag is set AND  
where Inventory_Flag is not set  
Any other command  
AI06681b  
1. The M24LR64-R returns to the “Power Off” state only when both conditions are met: the VCC pin is not  
supplied (0 V or HiZ) and the tag is out of the RF field. Please refer to application note AN3057 for more  
information.  
2. The intention of the state transition method is that only one M24LR64-R should be in the selected state at a  
time.  
DocID15170 Rev 16  
61/121  
 
Modes  
M24LR64-R  
18  
Modes  
The term “mode” refers to the mechanism used in a request to specify the set of M24LR64-  
Rs that will answer the request.  
18.1  
Addressed mode  
When the Address_flag is set to 1 (Addressed mode), the request contains the Unique ID  
(UID) of the addressed M24LR64-R.  
Any M24LR64-R that receives a request with the Address_flag set to 1 compares the  
received Unique ID to its own. If it matches, then the M24LR64-R executes the request (if  
possible) and returns a response to the VCD as specified in the command description.  
If the UID does not match, then it remains silent.  
18.2  
18.3  
Non-addressed mode (general request)  
When the Address_flag is cleared to 0 (Non-Addressed mode), the request does not contain  
a Unique ID. Any M24LR64-R receiving a request with the Address_flag cleared to 0  
executes it and returns a response to the VCD as specified in the command description.  
Select mode  
When the Select_flag is set to 1 (Select mode), the request does not contain an M24LR64-  
R Unique ID. The M24LR64-R in the Selected state that receives a request with the  
Select_flag set to 1 executes it and returns a response to the VCD as specified in the  
command description.  
Only M24LR64-Rs in the Selected state answer a request where the Select_flag set to 1.  
The system design ensures in theory that only one M24LR64-R can be in the Select state at  
a time.  
62/121  
DocID15170 Rev 16  
M24LR64-R  
Request format  
19  
Request format  
The request consists of:  
an SOF  
flags  
a command code  
parameters and data  
a CRC  
an EOF  
Table 23. General request format  
Command code Parameters  
S
O
F
E
O
F
Request_flags  
Data  
CRC  
19.1  
Request flags  
In a request, the “flags” field specifies the actions to be performed by the M24LR64-R and  
whether corresponding fields are present or not.  
The flags field consists of eight bits. The bit 3 (Inventory_flag) of the request flag defines the  
contents of the 4 MSBs (bits 5 to 8). When bit 3 is reset (0), bits 5 to 8 define the M24LR64-  
R selection criteria. When bit 3 is set (1), bits 5 to 8 define the M24LR64-R Inventory  
parameters.  
Table 24. Definition of request flags 1 to 4  
Bit No  
Flag  
Level  
Description  
0
1
0
1
0
1
0
1
A single subcarrier frequency is used by the M24LR64-R  
Two subcarrier are used by the M24LR64-R  
Low data rate is used  
Bit 1  
Subcarrier_flag(1)  
Bit 2  
Bit 3  
Bit 4  
Data_rate_flag(2)  
Inventory_flag  
High data rate is used  
The meaning of flags 5 to 8 is described in Table 25  
The meaning of flags 5 to 8 is described in Table 26  
No Protocol format extension  
Protocol_extension_flag  
Protocol format extension  
1. Subcarrier_flag refers to the M24LR64-R-to-VCD communication.  
2. Data_rate_flag refers to the M24LR64-R-to-VCD communication  
DocID15170 Rev 16  
63/121  
Request format  
M24LR64-R  
.
Table 25. Request flags 5 to 8 when Bit 3 = 0  
Bit No  
Flag  
Level  
Description  
Request is executed by any M24LR64-R according to the setting of  
Address_flag  
0
1
0
Bit 5  
Select flag(1)  
Request is executed only by the M24LR64-R in Selected state  
Request is not addressed. UID field is not present. The request is  
executed by all M24LR64-Rs.  
Address  
flag(1)  
Bit 6  
Request is addressed. UID field is present. The request is executed  
only by the M24LR64-R whose UID matches the UID specified in  
the request.  
1
0
1
0
Option not activated.  
Bit 7  
Bit 8  
Option flag  
RFU  
Option activated.  
-
1. If the Select_flag is set to 1, the Address_flag is set to 0 and the UID field is not present in the request.  
Table 26. Request flags 5 to 8 when Bit 3 = 1  
Bit No  
Bit 5  
Flag  
Level  
Description  
0
1
0
1
0
0
AFI field is not present  
AFI flag  
AFI field is present  
16 slots  
Bit 6  
Nb_slots flag  
1 slot  
Bit 7  
Bit 8  
Option flag  
RFU  
-
-
64/121  
DocID15170 Rev 16  
 
M24LR64-R  
Response format  
20  
Response format  
The response consists of:  
an SOF  
flags  
parameters and data  
a CRC  
an EOF  
Table 27. General response format  
S
E
O
F
Response_flags  
Parameters  
Data  
CRC  
O
F
20.1  
Response flags  
In a response, the flags indicate how actions have been performed by the M24LR64-R and  
whether corresponding fields are present or not. The response flags consist of eight bits.  
Table 28. Definitions of response flags 1 to 8  
Bit No  
Flag  
Error_flag  
Level  
Description  
0
1
0
0
0
0
0
0
0
No error  
Bit 1  
Error detected. Error code is in the “Error” field.  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Bit 8  
RFU  
-
RFU  
-
Extension flag  
RFU  
No extension  
-
-
-
-
RFU  
RFU  
RFU  
DocID15170 Rev 16  
65/121  
Response format  
M24LR64-R  
20.2  
Response error code  
If the Error_flag is set by the M24LR64-R in the response, the Error code field is present and  
provides information about the error that occurred.  
Error codes not specified in Table 29 are reserved for future use.  
Table 29. Response error code definition  
Error code  
Meaning  
02h  
03h  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
The command is not recognized, for example a format error occurred  
The option is not supported  
Error with no information given  
The specified block is not available  
The specified block is already locked and thus cannot be locked again  
The specified block is locked and its contents cannot be changed.  
The specified block was not successfully programmed  
The specified block was not successfully locked  
The specified block is read-protected  
66/121  
DocID15170 Rev 16  
 
M24LR64-R  
Anticollision  
21  
Anticollision  
The purpose of the anticollision sequence is to inventory the M24LR64-Rs present in the  
VCD field using their unique ID (UID).  
The VCD is the master of communications with one or several M24LR64-Rs. It initiates  
M24LR64-R communication by issuing the Inventory request.  
The M24LR64-R sends its response in the determined slot or does not respond.  
21.1  
Request parameters  
When issuing the Inventory Command, the VCD:  
sets the Nb_slots_flag as desired  
adds the mask length and the mask value after the command field  
The mask length is the number of significant bits of the mask value.  
The mask value is contained in an integer number of bytes. The mask length indicates  
the number of significant bits. LSB is transmitted first  
If the mask length is not a multiple of 8 (bits), as many 0 bits as required will be added  
to the mask value MSB so that the mask value is contained in an integer number of  
bytes  
The next field starts at the next byte boundary.  
Table 30. Inventory request format  
MSB  
SOF  
LSB  
EOF  
Request_  
flags  
Optional  
AFI  
Mask  
length  
Command  
8 bits  
Mask value  
0 to 8 bytes  
CRC  
8 bits  
8 bits  
8 bits  
16 bits  
In the example of the Table 31 and Figure 50, the mask length is 11 bits. Five 0 bits are  
added to the mask value MSB. The 11-bit Mask and the current slot number are compared  
to the UID.  
Table 31. Example of the addition of 0 bits to an 11-bit mask value  
(b15) MSB  
LSB (b0)  
0000 0  
100 1100 1111  
0 bits added  
11-bit mask value  
DocID15170 Rev 16  
67/121  
 
Anticollision  
M24LR64-R  
Figure 50. Principle of comparison between the mask, the slot number and the UID  
MSB  
LSB  
Mask value received in the Inventory command  
0000 0100 1100 1111  
16 bits  
b
MSB  
LSB  
The Mask value less the padding 0s is loaded  
into the Tag comparator  
100 1100 1111 11 bits  
b
MSBLSB  
The Slot counter is calculated  
Nb_slots_flags = 0 (16 slots), Slot Counter is 4 bits  
xxxx  
4 bits  
The Slot counter is concatened to the Mask value  
Nb_slots_flags = 0  
MSB  
LSB  
xxxx 100 1100 1111 15 bits  
b
UID  
b63  
b0  
b
The concatenated result is compared with  
the least significant bits of the Tag UID.  
xxxx xxxx ..... xxxx xxxx x xxx xxxx xxxx xxxx  
64 bits  
Bits ignored  
Compare  
AI06682  
The AFI field is present if the AFI_flag is set.  
The pulse is generated according to the definition of the EOF in ISO/IEC 15693-2.  
The first slot starts immediately after the reception of the request EOF. To switch to the next  
slot, the VCD sends an EOF.  
The following rules and restrictions apply:  
if no M24LR64-R answer is detected, the VCD may switch to the next slot by sending  
an EOF,  
if one or more M24LR64-R answers are detected, the VCD waits until the complete  
frame has been received before sending an EOF for switching to the next slot.  
68/121  
DocID15170 Rev 16  
M24LR64-R  
Request processing by the M24LR64-R  
22  
Request processing by the M24LR64-R  
Upon reception of a valid request, the M24LR64-R performs the following algorithm:  
NbS is the total number of slots (1 or 16)  
SN is the current slot number (0 to 15)  
LSB (value, n) function returns the n Less Significant Bits of value  
MSB (value, n) function returns the n Most Significant Bits of value  
“&” is the concatenation operator  
Slot_Frame is either an SOF or an EOF  
SN = 0  
if (Nb_slots_flag)  
then NbS = 1  
SN_length = 0  
endif  
else NbS = 16  
SN_length = 4  
endif  
label1:  
if LSB(UID, SN_length + Mask_length) =  
LSB(SN,SN_length)&LSB(Mask,Mask_length)  
then answer to inventory request  
endif  
wait (Slot_Frame)  
if Slot_Frame = SOF  
then Stop Anticollision  
decode/process request  
exit  
endif  
if Slot_Frame = EOF  
if SN < NbS-1  
then SN = SN + 1  
goto label1  
exit  
endif  
endif  
DocID15170 Rev 16  
69/121  
Explanation of the possible cases  
M24LR64-R  
23  
Explanation of the possible cases  
Figure 51 summarizes the main possible cases that can occur during an anticollision  
sequence when the slot number is 16.  
The different steps are:  
The VCD sends an Inventory request, in a frame terminated by an EOF. The number of  
slots is 16.  
M24LR64-R_1 transmits its response in Slot 0. It is the only one to do so, therefore no  
collision occurs and its UID is received and registered by the VCD;  
The VCD sends an EOF in order to switch to the next slot.  
In slot 1, two M24LR64-Rs, M24LR64-R_2 and M24LR64-R_3 transmit a response,  
thus generating a collision. The VCD records the event and remembers that a collision  
was detected in Slot 1.  
The VCD sends an EOF in order to switch to the next slot.  
In Slot 2, no M24LR64-R transmits a response. Therefore the VCD does not detect any  
M24LR64-R SOF and decides to switch to the next slot by sending an EOF.  
In slot 3, there is another collision caused by responses from M24LR64-R_4 and  
M24LR64-R_5  
The VCD then decides to send a request (for instance a Read Block) to M24LR64-R_1  
whose UID has already been correctly received.  
All M24LR64-Rs detect an SOF and exit the anticollision sequence. They process this  
request and since the request is addressed to M24LR64-R_1, only M24LR64-R_1  
transmits a response.  
All M24LR64-Rs are ready to receive another request. If it is an Inventory command,  
the slot numbering sequence restarts from 0.  
Note:  
The decision to interrupt the anticollision sequence is made by the VCD. It could have  
continued to send EOFs until Slot 16 and only then sent the request to M24LR64-R_1.  
70/121  
DocID15170 Rev 16  
M24LR64-R  
Explanation of the possible cases  
Figure 51. Description of a possible anticollision sequence  
DocID15170 Rev 16  
71/121  
Inventory Initiated command  
M24LR64-R  
24  
Inventory Initiated command  
The M24LR64-R provides a special feature to improve the inventory time response of  
moving tags using the Initiate_flag value. This flag, controlled by the Initiate command,  
allows tags to answer to Inventory Initiated commands.  
For applications in which multiple tags are moving in front of a reader, it is possible to miss  
tags using the standard inventory command. The reason is that the inventory sequence has  
to be performed on a global tree search. For example, a tag with a particular UID value may  
have to wait the run of a long tree search before being inventoried. If the delay is too long,  
the tag may be out of the field before it has been detected.  
Using the Initiate command, the inventory sequence is optimized. When multiple tags are  
moving in front of a reader, the ones which are within the reader field will be initiated by the  
Initiate command. In this case, a small batch of tags will answer to the Inventory Initiated  
command which will optimize the time necessary to identify all the tags. When finished, the  
reader has to issue a new Initiate command in order to initiate a new small batch of tags  
which are new inside the reader field.  
It is also possible to reduce the inventory sequence time using the Fast Initiate and Fast  
Inventory Initiated commands. These commands allow the M24LR64-Rs to increase their  
response data rate by a factor of 2, up to 53 kbit/s.  
72/121  
DocID15170 Rev 16  
M24LR64-R  
Timing definition  
25  
Timing definition  
25.1  
25.2  
t1: M24LR64-R response delay  
Upon detection of the rising edge of the EOF received from the VCD, the M24LR64-R waits  
for a time t before transmitting its response to a VCD request or before switching to the  
1nom  
next slot during an inventory process. Values of t are given in Table 32. The EOF is defined  
in Figure 22 on page 46.  
1
t2: VCD new request delay  
t is the time after which the VCD may send an EOF to switch to the next slot when one or  
2
more M24LR64-R responses have been received during an Inventory command. It starts  
from the reception of the EOF from the M24LR64-Rs.  
The EOF sent by the VCD may be either 10% or 100% modulated regardless of the  
modulation index used for transmitting the VCD request to the M24LR64-R.  
t is also the time after which the VCD may send a new request to the M24LR64-R as  
2
described in Table 48: M24LR64-R protocol timing.  
Values of t are given in Table 32.  
2
25.3  
t3: VCD new request delay in the absence of a response from  
the M24LR64-R  
t is the time after which the VCD may send an EOF to switch to the next slot when no  
3
M24LR64-R response has been received.  
The EOF sent by the VCD may be either 10% or 100% modulated regardless of the  
modulation index used for transmitting the VCD request to the M24LR64-R.  
From the time the VCD has generated the rising edge of an EOF:  
If this EOF is 100% modulated, the VCD waits a time at least equal to t  
sending a new EOF.  
before  
3min  
If this EOF is 10% modulated, the VCD waits a time at least equal to the sum of t  
the M24LR64-R nominal response time (which depends on the M24LR64-R data rate  
and subcarrier modulation mode) before sending a new EOF.  
+
3min  
(1)  
Table 32. Timing values  
Minimum (min) values  
Nominal (nom) values  
Maximum (max) values  
t1  
t2  
t3  
318.6 µs  
309.2 µs  
320.9 µs  
No tnom  
No tnom  
323.3 µs  
No tmax  
No tmax  
t1max(2) + tSOF  
(3)  
1. The tolerance of specific timings is ± 32/fC.  
2. 1max does not apply for write alike requests. Timing conditions for write alike requests are defined in the  
t
command description.  
3. tSOF is the time taken by the M24LR64-R to transmit an SOF to the VCD. tSOF depends on the current data  
rate: High data rate or Low data rate.  
DocID15170 Rev 16  
73/121  
 
Commands codes  
M24LR64-R  
26  
Commands codes  
The M24LR64-R supports the commands described in this section. Their codes are given in  
Table 33.  
Table 33. Command codes  
Command code  
standard  
Command code  
custom  
Function  
Function  
Get Multiple Block Security  
Status  
01h  
Inventory  
2Ch  
02h  
20h  
21h  
23h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
Stay Quiet  
B1h  
B2h  
B3h  
C0h  
C1h  
C2h  
C3h  
D1h  
D2h  
Write-sector Password  
Lock-sector Password  
Present-sector Password  
Fast Read Single Block  
Fast Inventory Initiated  
Fast Initiate  
Read Single Block  
Write Single Block  
Read Multiple Block  
Select  
Reset to Ready  
Write AFI  
Fast Read Multiple Block  
Inventory Initiated  
Lock AFI  
Write DSFID  
Lock DSFID  
Initiate  
Get System Info  
26.1  
Inventory  
When receiving the Inventory request, the M24LR64-R runs the anticollision sequence. The  
Inventory_flag is set to 1. The meaning of flags 5 to 8 is shown in Table 26: Request flags 5  
to 8 when Bit 3 = 1.  
The request contains:  
the flags,  
the Inventory command code (see Table 33: Command codes)  
the AFI if the AFI flag is set  
the mask length  
the mask value  
the CRC  
The M24LR64-R does not generate any answer in case of error.  
Table 34. Inventory request format  
Request  
SOF  
Optional  
AFI  
Mask  
length  
Mask  
value  
Request  
EOF  
Request_flags Inventory  
8 bits 01h  
CRC16  
8 bits  
8 bits  
0 - 64 bits  
16 bits  
74/121  
DocID15170 Rev 16  
 
M24LR64-R  
Commands codes  
The response contains:  
the flags  
the Unique ID  
Table 35. Inventory response format  
Response Response_  
Response  
DSFID  
UID  
CRC16  
EOF  
SOF  
flags  
8 bits  
8 bits  
64 bits  
16 bits  
During an Inventory process, if the VCD does not receive an RF M24LR64-R response, it  
waits a time t before sending an EOF to switch to the next slot. t starts from the rising edge  
3
3
of the request EOF sent by the VCD.  
If the VCD sends a 100% modulated EOF, the minimum value of t is:  
3
t min = 4384/f (323.3 µs) + t  
3
C
SOF  
If the VCD sends a 10% modulated EOF, the minimum value of t is:  
3
t min = 4384/f (323.3 µs) + t  
3
C
NRT  
where:  
t
t
is the time required by the M24LR64-R to transmit an SOF to the VCD  
is the nominal response time of the M24LR64-R  
SOF  
NRT  
t
and t  
are dependent on the M24LR64-R-to-VCD data rate and subcarrier  
SOF  
NRT  
modulation mode.  
26.2  
Stay Quiet  
Command code = 0x02  
On receiving the Stay Quiet command, the M24LR64-R enters the Quiet State if no error  
occurs, and does NOT send back a response. There is NO response to the Stay Quiet  
command even if an error occurs.  
When in the Quiet state:  
the M24LR64-R does not process any request if the Inventory_flag is set,  
the M24LR64-R processes any Addressed request  
The M24LR64-R exits the Quiet State when:  
it is reset (power off),  
receiving a Select request. It then goes to the Selected state,  
receiving a Reset to Ready request. It then goes to the Ready state.  
Table 36. Stay Quiet request format  
Request  
SOF  
Request  
EOF  
Request flags  
Stay Quiet  
UID  
CRC16  
8 bits  
02h  
64 bits  
16 bits  
The Stay Quiet command must always be executed in Addressed mode (Select_flag is reset  
to 0 and Address_flag is set to 1).  
DocID15170 Rev 16  
75/121  
Commands codes  
M24LR64-R  
Figure 52. Stay Quiet frame exchange between VCD and M24LR64-R  
Stay Quiet  
request  
VCD  
SOF  
EOF  
M24LR64-R  
Timing  
26.3  
Read Single Block  
On receiving the Read Single Block command, the M24LR64-R reads the requested block  
and sends back its 32-bit value in the response. The Protocol_extention_flag should be set  
to 1 for the M24LR64-R to operate correctly. If the Protocol_extention_flag is at 0, the  
M24LR64-R answers with an error code. The Option_flag is supported.  
Table 37. Read Single Block request format  
Request Request_ Read Single  
Block  
number  
Request  
EOF  
UID(1)  
CRC16  
SOF  
flags  
Block  
8 bits  
20h  
64 bits  
16 bits  
16 bits  
1. Gray means that the field is optional.  
Request parameters:  
Option_flag  
UID (optional)  
Block number  
Table 38. Read Single Block response format when Error_flag is NOT set  
Sector  
Response  
SOF  
Response  
EOF  
Response_flags  
security  
Data  
CRC16  
status(1)  
8 bits  
8 bits  
32 bits  
16 bits  
1. Gray means that the field is optional.  
Response parameters:  
Sector security status if Option_flag is set (see Table 39: Sector security status)  
4 bytes of block data  
Table 39. Sector security status  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
0: Current sector not locked  
1: Current sector locked  
Reserved for future  
use. All at 0  
password  
control bits  
Read / Write  
protection bits  
76/121  
DocID15170 Rev 16  
 
M24LR64-R  
Commands codes  
Table 40. Read Single Block response format when Error_flag is set  
Response Response_  
Response  
EOF  
Error code  
CRC16  
SOF  
flags  
8 bits  
8 bits  
16 bits  
Response parameter:  
Error code as Error_flag is set  
03h: the option is not supported  
0Fh: error with no information given  
10h: the specified block is not available  
15h: the specified block is read-protected  
Figure 53. Read Single Block frame exchange between VCD and M24LR64-R  
Read Single Block  
VCD  
SOF  
EOF  
request  
Read Single Block  
response  
M24LR64-R  
<-t1-> SOF  
EOF  
26.4  
Write Single Block  
On receiving the Write Single Block command, the M24LR64-R writes the data contained in  
the request to the requested block and reports whether the write operation was successful  
in the response. The Protocol_extention_flag should be set to 1 for the M24LR64-R to  
operate correctly. If the Protocol_extention_flag is at 0, the M24LR64-R answers with an  
error code. The Option_flag is supported.  
During the RF write cycle W , there should be no modulation (neither 100% nor 10%).  
t
Otherwise, the M24LR64-R may not program correctly the data into the memory. The W  
t
time is equal to t  
+ 18 × 302 µs.  
1nom  
Table 41. Write Single Block request format  
Write  
Single  
Block  
Request Request_  
Block  
number  
Request  
EOF  
UID(1)  
Data  
CRC16  
SOF  
flags  
8 bits  
21h  
64 bits  
16 bits  
32 bits  
16 bits  
1. Gray means that the field is optional.  
Request parameters:  
UID (optional)  
Block number  
Data  
DocID15170 Rev 16  
77/121  
Commands codes  
M24LR64-R  
Table 42. Write Single Block response format when Error_flag is NOT set  
Response SOF Response_flags  
8 bits  
CRC16  
Response EOF  
16 bits  
Response parameter:  
No parameter. The response is send back after the writing cycle.  
Table 43. Write Single Block response format when Error_flag is set  
Response Response_  
Response  
EOF  
Error code  
CRC16  
SOF  
flags  
8 bits  
8 bits  
16 bits  
Response parameter:  
Error code as Error_flag is set:  
03h: the option is not supported  
0Fh: error with no information given  
10h: the specified block is not available  
12h: the specified block is locked and its contents cannot be changed.  
13h: the specified block was not successfully programmed  
Figure 54. Write Single Block frame exchange between VCD and M24LR64-R  
Write Single  
Block request  
VCD  
SOF  
EOF  
Write Single  
Block response  
Write sequence when  
error  
M24LR64-R  
<-t1-> SOF  
EOF  
Write Single  
EOF  
M24LR64-R  
<------------------- Wt ---------------> SOF  
Block response  
26.5  
Read Multiple Block  
When receiving the Read Multiple Block command, the M24LR64-R reads the selected  
blocks and sends back their value in multiples of 32 bits in the response. The blocks are  
numbered from '00h to '7FFh' in the request and the value is minus one (–1) in the field. For  
example, if the “number of blocks” field contains the value 06h, 7 blocks are read. The  
maximum number of blocks is fixed at 32 assuming that they are all located in the same  
sector. If the number of blocks overlaps sectors, the M24LR64-R returns an error code.  
The Protocol_extention_flag should be set to 1 for the M24LR64-R to operate correctly. If  
the Protocol_extention_flag is at 0, the M24LR64-R answers with an error code.  
The Option_flag is supported.  
78/121  
DocID15170 Rev 16  
M24LR64-R  
Commands codes  
Table 44. Read Multiple Block request format  
Read  
Multiple  
Block  
First  
block  
number  
Request Request_  
Number  
of blocks  
Request  
CRC16  
UID(1)  
SOF  
flags  
EOF  
8 bits  
23h  
64 bits  
16 bits  
8 bits  
16 bits  
1. Gray means that the field is optional.  
Request parameters:  
Option_flag  
UID (optional)  
First block number  
Number of blocks  
Table 45. Read Multiple Block response format when Error_flag is NOT set  
Sector  
Response Response_  
Response  
EOF  
security  
Data  
CRC16  
SOF  
flags  
status(1)  
8 bits  
8 bits(2)  
32 bits(2)  
16 bits  
1. Gray means that the field is optional.  
2. Repeated as needed.  
Response parameters:  
Sector security status if Option_flag is set (see Table 46: Sector security status)  
N blocks of data  
Table 46. Sector security status  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Reserved for future  
use. All at 0  
password  
control bits  
Read / Write  
protection bits  
0: Current sector not locked  
1: Current sector locked  
Table 47. Read Multiple Block response format when Error_flag is set  
Response SOF Response_flags  
Error code  
CRC16  
Response EOF  
8 bits  
8 bits  
16 bits  
Response parameter:  
Error code as Error_flag is set:  
03h: the option is not supported  
0Fh: error with no information given  
10h: the specified block is not available  
15h: the specified block is read-protected  
DocID15170 Rev 16  
79/121  
 
Commands codes  
M24LR64-R  
Figure 55. Read Multiple Block frame exchange between VCD and M24LR64-R  
Read Multiple  
Block request  
VCD  
SOF  
EOF  
Read Multiple  
Block response  
M24LR64-R  
<-t1-> SOF  
EOF  
26.6  
Select  
When receiving the Select command:  
if the UID is equal to its own UID, the M24LR64-R enters or stays in the Selected state  
and sends a response.  
if the UID does not match its own, the selected M24LR64-R returns to the Ready state  
and does not send a response.  
The M24LR64-R answers an error code only if the UID is equal to its own UID. If not, no  
response is generated. If an error occurs, the M24LR64-R remains in its current state.  
Table 48. Select request format  
Request Request_  
Request  
EOF  
Select  
UID  
CRC16  
SOF  
flags  
8 bits  
25h  
64 bits  
16 bits  
Request parameter:  
UID  
Table 49. Select Block response format when Error_flag is NOT set  
Response  
SOF  
Response  
EOF  
Response_flags  
CRC16  
8 bits  
16 bits  
Response parameter:  
No parameter.  
Table 50. Select response format when Error_flag is set  
Response Response_  
Response  
EOF  
Error code  
CRC16  
SOF  
flags  
8 bits  
8 bits  
16 bits  
80/121  
DocID15170 Rev 16  
M24LR64-R  
Commands codes  
Response parameter:  
Error code as Error_flag is set:  
03h: the option is not supported  
0Fh: error with no information given  
Figure 56. Select frame exchange between VCD and M24LR64-R  
Select  
request  
VCD  
SOF  
EOF  
Select  
response  
M24LR64-R  
<-t1-> SOF  
EOF  
26.7  
Reset to Ready  
On receiving a Reset to Ready command, the M24LR64-R returns to the Ready state if no  
error occurs. In the Addressed mode, the M24LR64-R answers an error code only if the UID  
is equal to its own UID. If not, no response is generated.  
Table 51. Reset to Ready request format  
Request Request_ Reset to  
Request  
EOF  
UID(1)  
CRC16  
SOF  
flags  
Ready  
8 bits  
26h  
64 bits  
16 bits  
1. Gray means that the field is optional.  
Request parameter:  
UID (optional)  
Table 52. Reset to Ready response format when Error_flag is NOT set  
Response  
SOF  
Response  
EOF  
Response_flags  
CRC16  
8 bits  
16 bits  
Response parameter:  
No parameter  
Table 53. Reset to ready response format when Error_flag is set  
Response  
Response  
EOF  
Response_flags  
Error code  
CRC16  
SOF  
8 bits  
8 bits  
16 bits  
DocID15170 Rev 16  
81/121  
Commands codes  
M24LR64-R  
Response parameter:  
Error code as Error_flag is set:  
03h: the option is not supported  
0Fh: error with no information given  
Figure 57. Reset to Ready frame exchange between VCD and M24LR64-R  
Reset to  
VCD  
SOF  
Ready  
EOF  
request  
Reset to  
Ready  
M24LR64-R  
<-t1-> SOF  
EOF  
response  
26.8  
Write AFI  
On receiving the Write AFI request, the M24LR64-R programs the 8-bit AFI value to its  
memory. The Option_flag is supported.  
During the RF write cycle W , there should be no modulation (neither 100% nor 10%).  
t
Otherwise, the M24LR64-R may not write correctly the AFI value into the memory. The W  
t
time is equal to t  
+ 18 × 302 µs.  
1nom  
Table 54. Write AFI request format  
UID(1)  
Request Request Write  
Request  
EOF  
AFI  
CRC16  
SOF  
_flags  
AFI  
8 bits  
27h  
64 bits  
8 bits  
16 bits  
1. Gray means that the field is optional.  
Request parameter:  
UID (optional)  
AFI  
Table 55. Write AFI response format when Error_flag is NOT set  
Response  
SOF  
Response  
EOF  
Response_flags  
CRC16  
8 bits  
16 bits  
Response parameter:  
No parameter.  
82/121  
DocID15170 Rev 16  
M24LR64-R  
Commands codes  
Table 56. Write AFI response format when Error_flag is set  
Response Response_  
Response  
EOF  
Error code  
CRC16  
SOF  
flags  
8 bits  
8 bits  
16 bits  
Response parameter:  
Error code as Error_flag is set  
03h: the option is not supported  
0Fh: error with no information given  
12h: the specified block is locked and its contents cannot be changed.  
13h: the specified block was not successfully programmed  
Figure 58. Write AFI frame exchange between VCD and M24LR64-R  
Write AFI  
request  
VCD  
SOF  
EOF  
Write AFI  
response  
Write sequence  
when error  
M24LR64-R  
<-t1-> SOF  
EOF  
Write AFI  
EOF  
M24LR64-R  
<------------------ Wt --------------> SOF  
response  
26.9  
Lock AFI  
On receiving the Lock AFI request, the M24LR64-R locks the AFI value permanently. The  
Option_flag is supported.  
During the RF write cycle W , there should be no modulation (neither 100% nor 10%).  
t
Otherwise, the M24LR64-R may not Lock correctly the AFI value in memory. The W time is  
t
equal to t  
+ 18 × 302 µs.  
1nom  
Table 57. Lock AFI request format  
UID(1)  
Request Request_ Lock  
Request  
EOF  
CRC16  
SOF  
flags  
AFI  
8 bits  
28h  
64 bits  
16 bits  
1. Gray means that the field is optional.  
Request parameter:  
UID (optional)  
DocID15170 Rev 16  
83/121  
Commands codes  
M24LR64-R  
Table 58. Lock AFI response format when Error_flag is NOT set  
Response  
SOF  
Response  
EOF  
Response_flags  
CRC16  
8 bits  
16 bits  
Response parameter:  
No parameter  
Table 59. Lock AFI response format when Error_flag is set  
Response Response_  
Response  
EOF  
Error code  
CRC16  
SOF  
flags  
8 bits  
8 bits  
16 bits  
Response parameter:  
Error code as Error_flag is set  
03h: the option is not supported  
0Fh: error with no information given  
11h: the specified block is already locked and thus cannot be locked again  
14h: the specified block was not successfully locked  
Figure 59. Lock AFI frame exchange between VCD and M24LR64-R  
LockAFI  
request  
VCD  
SOF  
EOF  
Lock AFI  
response  
Lock sequence  
when error  
M24LR64-R  
<-t1-> SOF  
EOF  
Lock AFI  
response  
M24LR64-R  
<----------------- Wt -------------> SOF  
EOF  
84/121  
DocID15170 Rev 16  
M24LR64-R  
Commands codes  
26.10  
Write DSFID  
On receiving the Write DSFID request, the M24LR64-R programs the 8-bit DSFID value to  
its memory. The Option_flag is supported.  
During the RF write cycle W , there should be no modulation (neither 100% nor 10%).  
t
Otherwise, the M24LR64-R may not write correctly the DSFID value in memory. The W time  
t
is equal to t  
+ 18 × 302 µs.  
1nom  
Table 60. Write DSFID request format  
Request Request_ Write  
Request  
EOF  
UID(1)  
DSFID  
CRC16  
SOF  
flags  
DSFID  
8 bits  
29h  
64 bits  
8 bits  
16 bits  
1. Gray means that the field is optional.  
Request parameter:  
UID (optional)  
DSFID  
Table 61. Write DSFID response format when Error_flag is NOT set  
Response  
SOF  
Response  
EOF  
Response_flags  
CRC16  
8 bits  
16 bits  
Response parameter:  
No parameter  
Table 62. Write DSFID response format when Error_flag is set  
Response  
Response  
EOF  
Response_flags  
Error code  
CRC16  
SOF  
8 bits  
8 bits  
16 bits  
Response parameter:  
Error code as Error_flag is set  
03h: the option is not supported  
0Fh: error with no information given  
12h: the specified block is locked and its contents cannot be changed.  
13h: the specified block was not successfully programmed  
DocID15170 Rev 16  
85/121  
Commands codes  
M24LR64-R  
Figure 60. Write DSFID frame exchange between VCD and M24LR64-R  
Write DSFID  
request  
VCD  
SOF  
EOF  
Write DSFID  
response  
Write sequence  
when error  
M24LR64-R  
<-t1-> SOF  
EOF  
Write DSFID  
EOF  
M24LR64-R  
<---------------- Wt ------------> SOF  
response  
86/121  
DocID15170 Rev 16  
M24LR64-R  
Commands codes  
26.11  
Lock DSFID  
On receiving the Lock DSFID request, the M24LR64-R locks the DSFID value permanently.  
The Option_flag is supported.  
During the RF write cycle W , there should be no modulation (neither 100% nor 10%).  
t
Otherwise, the M24LR64-R may not lock correctly the DSFID value in memory. The W time  
t
is equal to t  
+ 18 × 302 µs.  
1nom  
Table 63. Lock DSFID request format  
Request Request_ Lock  
Request  
EOF  
UID(1)  
CRC16  
SOF  
flags  
DSFID  
8 bits  
2Ah  
64 bits  
16 bits  
1. Gray means that the field is optional.  
Request parameter:  
UID (optional)  
Table 64. Lock DSFID response format when Error_flag is NOT set  
Response  
SOF  
Response  
EOF  
Response_flags  
CRC16  
8 bits  
16 bits  
Response parameter:  
No parameter.  
Table 65. Lock DSFID response format when Error_flag is set  
Response  
Response  
EOF  
Response_flags  
Error code  
CRC16  
SOF  
8 bits  
8 bits  
16 bits  
Response parameter:  
Error code as Error_flag is set:  
03h: the option is not supported  
0Fh: error with no information given  
11h: the specified block is already locked and thus cannot be locked again  
14h: the specified block was not successfully locked  
DocID15170 Rev 16  
87/121  
Commands codes  
M24LR64-R  
Figure 61. Lock DSFID frame exchange between VCD and M24LR64-R  
LockDSFID  
request  
VCD  
SOF  
EOF  
Lock DSFID  
response  
Lock sequence  
when error  
M24LR64-R  
<-t1-> SOF  
EOF  
Lock  
M24LR64-R  
<----------------- Wt -------------> SOF  
DSFID  
EOF  
response  
26.12  
Get System Info  
When receiving the Get System Info command, the M24LR64-R sends back its information  
data in the response.The Option_flag is supported and must be reset to 0. The Get System  
Info can be issued in both Addressed and Non Addressed modes.  
The Protocol_extention_flag should be set to 1 for the M24LR64-R to operate correctly. If  
the Protocol_extention_flag is at 0, the M24LR64-R answers with an error code.  
Table 66. Get System Info request format  
Request Request Get System  
Request  
EOF  
UID(1)  
CRC16  
SOF  
_flags  
Info  
8 bits  
2Bh  
64 bits  
16 bits  
1. Gray means that the field is optional.  
Request parameter:  
UID (optional)  
Table 67. Get System Info response format when Error_flag is NOT set  
Response Response Information  
Memory  
Size reference  
IC  
Response  
EOF  
UID DSFID AFI  
CRC16  
SOF  
_flags  
flags  
00h  
0Fh  
64 bits 8 bits 8 bits 0307FFh 2Ch  
16 bits  
Response parameters:  
Information flags set to 0Fh. DSFID, AFI, Memory Size and IC reference fields are  
present  
UID code on 64 bits  
DSFID value  
AFI value  
Memory size. The M24LR64-R provides 2048 blocks (07FFh) of 4 byte (03h)  
IC reference. Only the 6 MSB are significant.  
88/121  
DocID15170 Rev 16  
M24LR64-R  
Commands codes  
Table 68. Get System Info response format when Error_flag is set  
Response  
SOF  
Response  
EOF  
Response_flags Error code  
01h 8 bits  
CRC16  
16 bits  
Response parameter:  
Error code as Error_flag is set:  
03h: Option not supported  
0Fh: other error  
Figure 62. Get System Info frame exchange between VCD and M24LR64-R  
Get System Info  
VCD  
SOF  
EOF  
request  
M24LR64-R  
<-t1-> SOF Get System Info response EOF  
26.13  
Get Multiple Block Security Status  
When receiving the Get Multiple Block Security Status command, the M24LR64-R sends  
back the sector security status. The blocks are numbered from '00h to '07FFh' in the request  
and the value is minus one (–1) in the field. For example, a value of '06' in the “Number of  
blocks” field requests to return the security status of 7 blocks.  
The Protocol_extention_flag should be set to 1 for the M24LR64-R to operate correctly. If  
the Protocol_extention_flag is at 0, the M24LR64-R answers with an error code.  
During the M24LR64-R response, if the internal block address counter reaches 07FFh, it  
rolls over to 0000h and the Sector Security Status bytes for that location are sent back to the  
reader.  
Table 69. Get Multiple Block Security Status request format  
Get  
Multiple  
Block  
Security  
Status  
First  
block  
number blocks  
Number  
of CRC16  
Request Request  
Request  
EOF  
UID(1)  
SOF  
_flags  
8 bits  
2Ch  
64 bits  
16 bits  
16 bits 16 bits  
1. Gray means that the field is optional.  
Request parameter:  
UID (optional)  
First block number  
Number of blocks  
DocID15170 Rev 16  
89/121  
Commands codes  
M24LR64-R  
Table 70. Get Multiple Block Security Status response format when Error_flag is NOT  
set  
Response  
SOF  
Response_  
flags  
Sector security  
status  
Response  
EOF  
CRC16  
8 bits  
8 bits(1)  
16 bits  
1. Repeated as needed.  
Response parameters:  
Sector security status (see Table 71: Sector security status)  
Table 71. Sector security status  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
0: Current sector not locked  
1: Current sector locked  
Reserved for future use. All password control  
Read / Write  
protection bits  
at 0 bits  
Table 72. Get Multiple Block Security Status response format when Error_flag is set  
Response  
SOF  
Response_  
flags  
Response  
EOF  
Error code  
CRC16  
8 bits  
8 bits  
16 bits  
Response parameter:  
Error code as Error_flag is set:  
03h: the option is not supported  
0Fh: error with no information given  
10h: the specified block is not available  
Figure 63. Get Multiple Block Security Status frame exchange between VCD and  
M24LR64-R  
Get Multiple Block  
Security Status  
VCD  
SOF  
EOF  
Get Multiple Block  
Security Status  
M24LR64-R  
<-t1-> SOF  
EOF  
90/121  
DocID15170 Rev 16  
 
M24LR64-R  
Commands codes  
26.14  
Write-sector Password  
On receiving the Write-sector Password command, the M24LR64-R uses the data  
contained in the request to write the password and reports whether the operation was  
successful in the response. The Option_flag is supported.  
During the RF write cycle time, W , there must be no modulation at all (neither 100% nor  
t
10%). Otherwise, the M24LR64-R may not correctly program the data into the memory. The  
W time is equal to t  
+ 18 × 302 µs. After a successful write, the new value of the  
t
1nom  
selected password is automatically activated. It is not required to present the new password  
value until M24LR64-R power-down.  
Table 73. Write-sector Password request format  
Write-  
Request Request  
ICMfg  
code  
Passwor  
Request  
EOF  
sector  
UID(1)  
Data  
CRC16  
SOF  
_flags  
d number  
Password  
8 bits  
B1h  
02h  
64 bits  
8 bits  
32 bits  
16 bits  
1. Gray means that the field is optional.  
Request parameter:  
UID (optional)  
Password number (01h = Pswd1, 02h = Pswd2, 03h = Pswd3, other = Error)  
Data  
Table 74. Write-sector Password response format when Error_flag is NOT set  
Response  
SOF  
Response  
EOF  
Response_flags  
CRC16  
8 bits  
16 bits  
Response parameter:  
32-bit password value. The response is sent back after the write cycle.  
Table 75. Write-sector Password response format when Error_flag is set  
Response Response_  
Response  
EOF  
Error code  
CRC16  
SOF  
flags  
8 bits  
8 bits  
16 bits  
Response parameter:  
Error code as Error_flag is set:  
02h: the command is not recognized, for example: a format error occurred  
03h: the option is not supported  
0Fh: error with no information given  
10h: the specified block is not available  
12h: the specified block is locked and its contents cannot be changed.  
13h: the specified block was not successfully programmed  
DocID15170 Rev 16  
91/121  
Commands codes  
M24LR64-R  
Figure 64. Write-sector Password frame exchange between VCD and M24LR64-R  
Write-  
sector  
Password  
request  
VCD  
SOF  
EOF  
Write-sector  
Password  
response  
Write sequence  
when error  
M24LR64-R  
<-t1-> SOF  
EOF  
Write-  
sector  
Password  
M24LR64-R  
<----------------- Wt -------------> SOF  
EOF  
response  
26.15  
Lock-sector Password  
On receiving the Lock-sector Password command, the M24LR64-R sets the access rights  
and permanently locks the selected sector. The Option_flag is supported.  
A sector is selected by giving the address of one of its blocks in the Lock-sector Password  
request (Sector number field). For example, addresses 0 to 31 are used to select sector 0  
and addresses 32 to 63 are used to select sector 1. Care must be taken when issuing the  
Lock-sector Password command as all the blocks belonging to the same sector are  
automatically locked by a single command.  
The Protocol_extention_flag should be set to 1 for the M24LR64-R to operate correctly. If  
the Protocol_extention_flag is at 0, the M24LR64-R answers with an error code.  
During the RF write cycle W , there should be no modulation (neither 100% nor 10%)  
t
otherwise, the M24LR64-R may not correctly lock the memory block.  
The W time is equal to t  
+ 18 × 302 µs.  
t
1nom  
Table 76. Lock-sector Password request format  
Lock-  
sector  
Password code  
IC  
Mfg  
Sector  
security CRC16  
status  
Request Request  
Sector  
number  
Request  
EOF  
UID(1)  
SOF  
_flags  
8 bits  
B2h 02h  
64 bits  
16 bits  
8 bits  
16 bits  
1. Gray means that the field is optional.  
Request parameters:  
(optional) UID  
Sector number  
Sector security status (refer to Table 77)  
92/121  
DocID15170 Rev 16  
 
M24LR64-R  
Commands codes  
Table 77. Sector security status  
b7  
0
b6  
0
b5  
b4  
b3  
b2  
b1  
b0  
1
Read / Write protection  
bits  
0
password control bits  
Table 78. Lock-sector Password response format when Error_flag is NOT set  
Response  
SOF  
Response  
EOF  
Response_flags  
CRC16  
8 bits  
16 bits  
Response parameter:  
No parameter.  
Table 79. Lock-sector Password response format when Error_flag is set  
Response  
SOF  
Response_  
flags  
Response  
EOF  
Error code  
CRC16  
8 bits  
8 bits  
16 bits  
Response parameter:  
Error code as Error_flag is set:  
02h: the command is not recognized, for example: a format error occurred  
03h: the option is not supported  
0Fh: error with no information given  
10h: the specified block is not available  
11h: the specified block is already locked and thus cannot be locked again  
14h: the specified block was not successfully locked  
Figure 65. Lock-sector Password frame exchange between VCD and M24LR64-R  
Lock-sector  
VCD  
SOF Password EOF  
request  
Lock-sector  
Password  
response  
Lock sequence  
when error  
M24LR64-R  
<-t1-> SOF  
EOF  
Lock-sector  
M24LR64-R  
<---------------- Wt ------------> SOF Password EOF  
response  
DocID15170 Rev 16  
93/121  
Commands codes  
M24LR64-R  
26.16  
Present-sector Password  
On receiving the Present-sector Password command, the M24LR64-R compares the  
requested password with the data contained in the request and reports whether the  
operation has been successful in the response. The Option_flag is supported.  
During the comparison cycle equal to W , there should be no modulation (neither 100% nor  
t
10%) otherwise, the M24LR64-R the Password value may not be correctly compared.  
The W time is equal to t  
+ 18 × 302 µs.  
t
1nom  
After a successful command, the access to all the memory blocks linked to the password is  
changed as described in Section 4.1: M24LR64-R RF block security.  
Table 80. Present-sector Password request format  
Present-  
sector  
Password code  
IC  
Mfg  
Request Request  
Passwor  
d number  
Request  
EOF  
UID(1)  
Data  
CRC16  
SOF  
_flags  
8 bits  
B3h 02h  
64 bits  
8 bits  
32 bits  
16 bits  
1. Gray means that the field is optional.  
Request parameter:  
UID (optional)  
Password Number (0x01 = Pswd1, 0x02 = Pswd2, 0x03 = Pswd3, other = Error)  
Data  
Table 81. Present-sector Password response format when Error_flag is NOT set  
Response  
SOF  
Response  
EOF  
Response_flags  
CRC16  
8 bits  
16 bits  
Response parameter:  
No parameter. The response is send back after the write cycle.  
Table 82. Present-sector Password response format when Error_flag is set  
Response  
SOF  
Response_  
flags  
Response  
EOF  
Error code  
CRC16  
8 bits  
8 bits  
16 bits  
Response parameter:  
Error code as Error_flag is set:  
02h: the command is not recognized, for example: a format error occurred  
03h: the option is not supported  
0Fh: error with no information given  
10h: the specified block is not available  
94/121  
DocID15170 Rev 16  
M24LR64-R  
Commands codes  
Figure 66. Present-sector Password frame exchange between VCD and M24LR64-R  
Present-  
sector  
Password  
request  
VCD  
SOF  
EOF  
Present-  
sector  
Password  
response  
sequence when  
error  
M24LR64-R  
<-t1-> SOF  
EOF  
Present-  
sector  
Password  
M24LR64-R  
<---------------- Wt ------------> SOF  
EOF  
response  
26.17  
Fast Read Single Block  
On receiving the Fast Read Single Block command, the M24LR64-R reads the requested  
block and sends back its 32-bit value in the response. The Option_flag is supported. The  
data rate of the response is multiplied by 2.  
The Protocol_extention_flag should be set to 1 for the M24LR64-R to operate correctly. If  
the Protocol_extention_flag is at 0, the M24LR64-R answers with an error code.  
Table 83. Fast Read Single Block request format  
FastRead  
Request Request_  
ICMfg  
code  
Block  
Request  
EOF  
Single  
Block  
UID(1)  
CRC16  
SOF  
flags  
number  
8 bits  
C0h  
02h  
64 bits  
16 bits  
16 bits  
1. Gray means that the field is optional.  
Request parameters:  
Option_flag  
UID (optional)  
Block number  
Table 84. Fast Read Single Block response format when Error_flag is NOT set  
Sector  
Response Response  
Response  
EOF  
security  
Data  
CRC16  
SOF  
_flags  
status(1)  
8 bits  
8 bits  
32 bits  
16 bits  
1. Gray means that the field is optional.  
DocID15170 Rev 16  
95/121  
Commands codes  
M24LR64-R  
Response parameters:  
Sector security status if Option_flag is set (see Table 85)  
4 bytes of block data  
Table 85. Sector security status  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
0: Current sector not locked  
1: Current sector locked  
Reserved for future used. All password control  
Read / Write  
protection bits  
at 0 bits  
Table 86. Fast Read Single Block response format when Error_flag is set  
Response  
SOF  
Response_  
flags  
Response  
EOF  
Error code  
CRC16  
8 bits  
8 bits  
16 bits  
Response parameter:  
Error code as Error_flag is set:  
02h: the command is not recognized, for example: a format error occurred  
03h: the option is not supported  
0Fh: error with no information given  
10h: the specified block is not available  
15h: the specified block is read protected  
Figure 67. Fast Read Single Block frame exchange between VCD and M24LR64-R  
Fast Read Single  
Block request  
VCD  
SOF  
EOF  
Fast Read Single  
Block response  
M24LR64-R  
<-t1-> SOF  
EOF  
96/121  
DocID15170 Rev 16  
 
M24LR64-R  
Commands codes  
26.18  
Fast Inventory Initiated  
Before receiving the Fast Inventory Initiated command, the M24LR64-R must have received  
an Initiate or a Fast Initiate command in order to set the Initiate_ flag. If not, the M24LR64-R  
does not answer to the Fast Inventory Initiated command.  
On receiving the Fast Inventory Initiated request, the M24LR64-R runs the anticollision  
sequence. The Inventory_flag must be set to 1. The meaning of flags 5 to 8 is shown in  
Table 26: Request flags 5 to 8 when Bit 3 = 1. The data rate of the response is multiplied  
by 2.  
The request contains:  
the flags,  
the Inventory command code  
the AFI if the AFI flag is set  
the mask length  
the mask value  
the CRC  
The M24LR64-R does not generate any answer in case of error.  
Table 87. Fast Inventory Initiated request format  
Fast  
Request Request  
IC Mfg Optional Mask  
Request  
EOF  
Inventory  
Initiated  
Mask value  
CRC16  
SOF  
_flags  
code  
AFI  
length  
8 bits  
C1h  
02h  
8 bits 8 bits  
0 - 64 bits  
16 bits  
The Response contains:  
the flags  
the Unique ID  
Table 88. Fast Inventory Initiated response format  
Response Response  
Response  
EOF  
DSFID  
UID  
CRC16  
16 bits  
SOF  
_flags  
8 bits  
8 bits  
64 bits  
During an Inventory process, if the VCD does not receive an RF M24LR64-R response, it  
waits a time t before sending an EOF to switch to the next slot. t starts from the rising edge  
3
3
of the request EOF sent by the VCD.  
If the VCD sends a 100% modulated EOF, the minimum value of t is:  
3
t min = 4384/f (323.3 µs) + t  
3
C
SOF  
If the VCD sends a 10% modulated EOF, the minimum value of t is:  
3
t min = 4384/f (323.3 µs) + t  
3
C
NRT  
where:  
t
t
is the time required by the M24LR64-R to transmit an SOF to the VCD  
is the nominal response time of the M24LR64-R  
SOF  
NRT  
DocID15170 Rev 16  
97/121  
Commands codes  
M24LR64-R  
t
and t  
are dependent on the M24LR64-R-to-VCD data rate and subcarrier  
SOF  
NRT  
modulation mode.  
26.19  
Fast Initiate  
On receiving the Fast Initiate command, the M24LR64-R will set the internal Initiate_flag  
and send back a response only if it is in the Ready state. The command has to be issued in  
the Non Addressed mode only (Select_flag is reset to 0 and Address_flag is reset to 0). If an  
error occurs, the M24LR64-R does not generate any answer. The Initiate_flag is reset after  
a power off of the M24LR64-R. The data rate of the response is multiplied by 2.  
The request contains:  
No data  
Table 89. Fast Initiate request format  
Request  
SOF  
Fast  
Initiate  
IC Mfg  
Code  
Request  
EOF  
Request_flags  
CRC16  
8 bits  
C2h  
02h  
16 bits  
The response contains:  
the flags  
the Unique ID  
Table 90. Fast Initiate response format  
Response Response  
Response  
EOF  
DSFID  
UID  
CRC16  
SOF  
_flags  
8 bits  
8 bits  
64 bits  
16 bits  
Figure 68. Fast Initiate frame exchange between VCD and M24LR64-R  
VCD  
SOF Fast Initiate request EOF  
Fast Initiate  
response  
M24LR64-R  
<-t1-> SOF  
EOF  
98/121  
DocID15170 Rev 16  
M24LR64-R  
Commands codes  
26.20  
Fast Read Multiple Block  
On receiving the Fast Read Multiple Block command, the M24LR64-R reads the selected  
blocks and sends back their value in multiples of 32 bits in the response. The blocks are  
numbered from '00h to '7FFh' in the request and the value is minus one (–1) in the field. For  
example, if the “number of blocks” field contains the value 06h, 7 blocks are read. The  
maximum number of blocks is fixed to 32 assuming that they are all located in the same  
sector. If the number of blocks overlaps sectors, the M24LR64-R returns an error code.  
The Protocol_extention_flag should be set to 1 for the M24LR64-R to operate correctly. If  
the Protocol_extention_flag is at 0, the M24LR64-R answers with an error code.  
The Option_flag is supported. The data rate of the response is multiplied by 2.  
Table 91. Fast Read Multiple Block request format  
Fast  
First  
block  
number blocks  
Number  
of  
Request Request_  
Read  
Multiple code  
Block  
ICMfg  
Request  
EOF  
UID(1)  
CRC16  
SOF  
flags  
8 bits  
C3h  
02h  
64 bits  
16 bits 8 bits  
16 bits  
1. Gray means that the field is optional.  
Request parameters:  
Option_flag  
UID (Optional)  
First block number  
Number of blocks  
Table 92. Fast Read Multiple Block response format when Error_flag is NOT set  
Sector  
Response Response_  
Response  
EOF  
security  
Data  
CRC16  
SOF  
flags  
status(1)  
8 bits  
8 bits(2)  
32 bits(2)  
16 bits  
1. Gray means that the field is optional.  
2. Repeated as needed.  
Response parameters:  
Sector security status if Option_flag is set (see Table 93: Sector security status if  
Option_flag is set)  
N block of data  
Table 93. Sector security status if Option_flag is set  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Reserved for future use.  
All at 0  
password  
control bits  
Read / Write 0: Current sector not locked  
protection bits 1: Current sector locked  
DocID15170 Rev 16  
99/121  
 
Commands codes  
M24LR64-R  
Table 94. Fast Read Multiple Block response format when Error_flag is set  
Response SOF Response_flags  
8 bits  
Error code  
CRC16  
Response EOF  
8 bits  
16 bits  
Response parameter:  
Error code as Error_flag is set:  
0Fh: other error  
10h: block address not available  
Figure 69. Fast Read Multiple Block frame exchange between VCD and M24LR64-R  
Fast Read  
VCD  
SOF Multiple Block EOF  
request  
Fast Read  
<-t1-> SOF Multiple Block EOF  
response  
M24LR64-R  
100/121  
DocID15170 Rev 16  
M24LR64-R  
Commands codes  
26.21  
Inventory Initiated  
Before receiving the Inventory Initiated command, the M24LR64-R must have received an  
Initiate or a Fast Initiate command in order to set the Initiate_ flag. If not, the M24LR64-R  
does not answer to the Inventory Initiated command.  
On receiving the Inventory Initiated request, the M24LR64-R runs the anticollision  
sequence. The Inventory_flag must be set to 1. The meaning of flags 5 to 8 is given in  
Table 26: Request flags 5 to 8 when Bit 3 = 1.  
The request contains:  
the flags,  
the Inventory Command code  
the AFI if the AFI flag is set  
the mask length  
the mask value  
the CRC  
The M24LR64-R does not generate any answer in case of error.  
Table 95. Inventory Initiated request format  
IC  
Request Request Inventory  
Optional Mask  
Request  
EOF  
Mfg  
Mask value  
CRC16  
SOF  
_flags  
Initiated  
AFI  
length  
code  
8 bits  
D1h  
02h  
8 bits  
8 bits  
0 - 64 bits  
16 bits  
The response contains:  
the flags  
the Unique ID  
Table 96. Inventory Initiated response format  
Response Response  
Response  
EOF  
DSFID  
UID  
CRC16  
16 bits  
SOF  
_flags  
8 bits  
8 bits  
64 bits  
During an Inventory process, if the VCD does not receive an RF M24LR64-R response, it  
waits a time t before sending an EOF to switch to the next slot. t starts from the rising edge  
3
3
of the request EOF sent by the VCD.  
If the VCD sends a 100% modulated EOF, the minimum value of t is:  
3
t min = 4384/f (323.3 µs) + t  
3
C
SOF  
If the VCD sends a 10% modulated EOF, the minimum value of t is:  
3
t min = 4384/f (323.3 µs) + t  
3
C
NRT  
where:  
t
t
is the time required by the M24LR64-R to transmit an SOF to the VCD  
is the nominal response time of the M24LR64-R  
SOF  
NRT  
t
and t  
are dependent on the M24LR64-R-to-VCD data rate and subcarrier  
SOF  
NRT  
modulation mode.  
DocID15170 Rev 16  
101/121  
Commands codes  
M24LR64-R  
26.22  
Initiate  
On receiving the Initiate command, the M24LR64-R will set the internal Initiate_flag and  
send back a response only if it is in the ready state. The command has to be issued in the  
Non Addressed mode only (Select_flag is reset to 0 and Address_flag is reset to 0). If an  
error occurs, the M24LR64-R does not generate any answer. The Initiate_flag is reset after  
a power off of the M24LR64-R.  
The request contains:  
No data  
Table 97. Initiate request format  
IC Mfg  
Request  
SOF  
Request  
EOF  
Request_flags  
Initiate  
CRC16  
code  
8 bits  
D2h  
02h  
16 bits  
The response contains:  
the flags  
the Unique ID  
Table 98. Initiate Initiated response format  
Response Response  
Response  
EOF  
DSFID  
UID  
CRC16  
SOF  
_flags  
8 bits  
8 bits  
64 bits  
16 bits  
102/121  
DocID15170 Rev 16  
M24LR64-R  
Commands codes  
Figure 70. Initiate frame exchange between VCD and M24LR64-R  
Initiate  
request  
VCD  
SOF  
EOF  
Initiate  
response  
M24LR64-R  
<-t1-> SOF  
EOF  
DocID15170 Rev 16  
103/121  
Maximum rating  
M24LR64-R  
27  
Maximum rating  
Stressing the device above the rating listed in the absolute maximum ratings table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE  
Program and other relevant quality documents.  
Table 99. Absolute maximum ratings  
Symbol  
Parameter  
Min.  
Max.  
Unit  
TA  
Ambient operating temperature  
–40  
15  
85  
25  
°C  
°C  
TSTG  
hSTG, tSTG  
,
Sawn wafer on UV  
tape  
6(1)  
months  
Storage conditions  
kept in its original packing  
form  
UFDFPN8 (MLP8),  
SO8, TSSOP8  
TSTG  
Storage temperature  
–65  
150  
°C  
°C  
Lead temperature during  
soldering  
UFDFPN8 (MLP8),  
SO8, TSSOP8  
TLEAD  
see note (2)  
VIO  
I2C input or output range  
I2C supply voltage  
–0.50  
–0.50  
6.0  
6.0  
V
V
VCC  
RF input voltage between AC0  
and AC1  
VMAX  
–7  
7
V
AC0, AC1  
–800  
800  
Electrostatic discharge voltage  
(human body model)(3)  
Other pads  
–3000  
3000  
VESD  
V
Electrostatic discharge voltage on  
antenna(4)  
AC0, AC1  
–3000  
–100  
3000  
100  
Electrostatic discharge voltage (Machine model)  
1. Counted from ST shipment date.  
2. Compliant with JEDEC Std J-STD-020C (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®  
7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS)  
2002/95/EU.  
3. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1 = 100 pF, R1 = 1500 Ω, R2 = 500 Ω)  
4. Compliant with the IEC 61000-4-2 method. M24LR64-R is mounted on ST’s reference antenna ANT1-  
M24LR-A.  
104/121  
DocID15170 Rev 16  
 
2
M24LR64-R  
I C DC and AC parameters  
2
28  
I C DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
2
characteristics of the device in I C mode. The parameters in the DC and AC characteristic  
tables that follow are derived from tests performed under the measurement conditions  
summarized in the relevant tables. Designers should check that the operating conditions in  
their circuit match the measurement conditions when relying on the quoted parameters.  
2
Table 100. I C operating conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply voltage  
Ambient operating temperature  
1.8  
5.5  
85  
V
–40  
°C  
Table 101. AC test measurement conditions  
Parameter Min.  
Symbol  
Max.  
Unit  
CL  
Load capacitance  
100  
pF  
ns  
V
Input rise and fall times  
Input levels  
50  
-
-
-
0.2VCC to 0.8VCC  
0.3VCC to 0.7VCC  
Input and output timing reference levels  
V
Figure 71. AC test measurement I/O waveform  
Input Levels  
Input and Output  
Timing Reference Levels  
0.8V  
CC  
0.7V  
CC  
0.3V  
CC  
0.2V  
CC  
ai00825b  
Table 102. Input parameters  
Parameter  
Input capacitance (SDA)  
Symbol  
Min.  
Max.  
Unit  
CIN  
CIN  
-
-
-
8
6
pF  
pF  
ns  
Input capacitance (other pins)  
(1)  
tNS  
Pulse width ignored (Input filter on SCL and SDA)  
80  
1. Characterized only.  
DocID15170 Rev 16  
105/121  
 
 
 
2
I C DC and AC parameters  
M24LR64-R  
2
Table 103. I C DC characteristics  
Symbol  
Parameter  
Test condition  
Min.  
Max.  
Unit  
Input leakage current  
(SCL, SDA, E1, E0)  
VIN = VSS or VCC  
device in Standby mode  
ILI  
-
± 2  
± 2  
µA  
SDA in Hi-Z, external voltage  
applied on SDA: VSS or VCC  
ILO  
Output leakage current  
-
-
-
-
µA  
µA  
VCC = 1.8 V, fc = 400 kHz  
(rise/fall time < 50 ns)  
100  
200  
500  
V
CC = 2.5 V, fc = 400 kHz  
(rise/fall time < 50 ns)  
ICC  
Supply current (Read)(1)  
VCC = 5.5 V, fc = 400 kHz  
(rise/fall time < 50 ns)  
During tW, VCC = 1.8 V  
During tW, VCC = 2.5 V  
During tW, VCC = 5.5 V  
-
-
-
300(2)  
400(2)  
700(2)  
ICC0  
Supply current (Write)(1)  
Standby supply current  
µA  
µA  
V
VIN = VSS or VCC  
VCC = 1.8 V  
-
-
-
30  
30  
40  
VIN = VSS or VCC  
ICC1  
VCC = 2.5 V  
VIN = VSS or VCC  
VCC = 5.5 V  
VCC = 1.8 V  
VCC = 2.5 V  
VCC = 5.5 V  
VCC = 1.8 V  
–0.45 0.25VCC  
–0.45 0.25VCC  
Input low voltage (SDA,  
SCL)  
VIL  
–0.45  
0.3VCC  
0.75VCC VCC+1  
0.75VCC VCC+1  
0.7VCC VCC+1  
Input high voltage (SDA,  
SCL)  
VIH  
VCC = 2.5 V  
V
V
VCC = 5.5 V  
IOL = 2.1 mA, VCC = 1.8 V or  
IOL = 3 mA, VCC = 5.5 V  
VOL  
Output low voltage  
-
0.4  
1. SCL, SDA according to AC input waveform Figure 71. E0, E1 connected to Ground or VCC  
2. Characterized value, not tested in production.  
106/121  
DocID15170 Rev 16  
 
2
M24LR64-R  
I C DC and AC parameters  
2
Table 104. I C AC characteristics  
Test conditions specified in Table 100  
Symbol  
Alt.  
Parameter  
Min.  
Max.  
Unit  
fC  
fSCL Clock frequency  
-
400  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tCHCL  
tCLCH  
tHIGH Clock pulse width high  
tLOW Clock pulse width low  
600  
1300  
20  
-
-
(1)  
tXH1XH2  
tR  
tF  
tF  
Input signal rise time  
Input signal fall time  
SDA (out) fall time  
300  
(1)  
tXL1XL2  
tDL1DL2  
tDXCX  
20  
300  
20  
100  
tSU:DAT Data in set up time  
tHD:DAT Data in hold time  
100  
0
-
tCLDX  
-
tCLQX  
tDH  
tAA  
Data out hold time  
100  
100  
600  
600  
600  
-
(2)(3)  
tCLQV  
tCHDX  
tDLCL  
tCHDH  
tDHDL  
tW  
Clock low to next data valid (access time)  
900  
(4)  
tSU:STA Start condition set up time  
tHD:STA Start condition hold time  
tSU:STO Stop condition set up time  
-
-
-
tBUF Time between Stop condition and next Start condition 1300  
I²C write time  
-
5
1. Values recommended by the I²C-bus Fast-Mode specification.  
2. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or  
rising edge of SDA.  
3. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach 0.8VCC in a  
compatible way with the I2C specification (which specifies tSU:DAT (min) = 100 ns), assuming that the Rbus  
× Cbus time constant is less than 500 ns (as specified in Figure 4).  
4. For a reStart condition, or following a write cycle.  
DocID15170 Rev 16  
107/121  
 
2
I C DC and AC parameters  
M24LR64-R  
2
Figure 72. I C AC waveforms  
tXL1XL2  
tXH1XH2  
tCHCL  
tCLCH  
SCL  
tDLCL  
tXL1XL2  
SDA In  
tCHDX  
Start  
condition  
tCLDX  
tDXCX  
SDA  
Change  
tXH1XH2  
tCHDH tDHDL  
Start  
SDA  
Input  
Stop  
condition  
condition  
SCL  
SDA In  
tW  
Write cycle  
tCHDH  
tCHDX  
Stop  
condition  
Start  
condition  
tCHCL  
SCL  
tCLQV  
tCLQX  
Data valid  
tDL1DL2  
Data valid  
SDA Out  
AI00795e  
108/121  
DocID15170 Rev 16  
M24LR64-R  
RF electrical parameters  
29  
RF electrical parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device in RF mode. The parameters in the DC and AC Characteristic  
tables that follow are derived from tests performed under the Measurement Conditions  
summarized in the relevant tables. Designers should check that the operating conditions in  
their circuit match the measurement conditions when relying on the quoted parameters.  
(1) (2)  
Table 105. RF characteristics  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Unit  
fCC  
External RF signal frequency  
-
13.553 13.56 13.567 MHz  
Operating field according  
to ISO  
H_ISO  
TA = 0 °C to 50 °C  
150  
150  
-
-
5000  
3500  
mA/m  
mA/m  
Operating field in extended  
temperature range  
H_Extended  
TA = –40 °C to 85 °C  
10% carrier modulation  
index(3) (4)  
150 mA/m > H_ISO > 1000 mA/m  
15  
-
-
-
30  
30  
MICARRIER  
%
H_ISO > 1000 mA/m  
-
10  
MI=(A-B)/(A+B)  
t
RFR, tRFF 10% rise and fall time  
0.5  
3.0  
µs  
µs  
10% minimum pulse width  
for bit  
tRFSBL  
-
7.1  
-
9.44  
MICARRIER 100% carrier modulation index MI=(A-B)/(A+B)  
95  
-
-
100  
3.5  
%
tRFR, tRFF 100% rise and fall time  
-
0.5  
µs  
100% minimum pulse width  
tRFSBL  
for bit  
-
7.1  
-
-
9.44  
1
µs  
Minimum time from carrier  
tMIN CD  
From H-field min  
0.1  
ms  
generation to first data  
fSH  
fSL  
Subcarrier frequency high  
Subcarrier frequency low  
FCC/32  
FCC/28  
-
-
423.75  
484.28  
-
-
kHz  
kHz  
Time for M24LR64-R  
response  
t1  
t2  
4224/FS  
4224/FS  
-
318.6 320.9 323.3  
µs  
µs  
Time between commands  
309  
-
311.5  
5.75  
314  
-
RF write time (including  
internal Verify)  
Wt  
ms  
DocID15170 Rev 16  
109/121  
 
RF electrical parameters  
M24LR64-R  
(1) (2)  
Table 105. RF characteristics  
Condition  
(continued)  
Min.  
Symbol  
Parameter  
Typ.  
Max.  
Unit  
Internal tuning capacitor in  
CTUN  
f = 13.56 MHz  
ISO10373-7  
24.8  
10  
27.5  
30.2  
pF  
SO8(5)  
Backscattered level as defined  
by ISO test  
VBACK  
-
-
mV  
Inventory and Read operations  
Write operations  
-
-
1.9  
2.3  
2.3  
2.6  
Vpeak  
Vpeak  
Minimum operating voltage  
between AC0 and AC1(6)  
VMIN  
1. TA = –40 to 85 °C.  
2. All timing measurements were performed between 0 °C and 50 °C on a reference antenna with the following  
characteristics:  
External size: 75 mm x 48 mm  
Number of turns: 5  
Width of conductor: 0.5 mm  
Space between 2 conductors: 0.3 mm  
Value of the tuning capacitor in SO8: 27.5 pF (M24LR64-R)  
Value of the coil: 5 µH  
Tuning frequency: 13.56 MHz.  
3. Characterized only, not 100% tested  
4. 15% (or more) carrier modulation index offers a better signal/noise ratio and therefore a wider operating range with a better  
noise immunity  
5. Characterised only, at room temperature only, measured at VAC0-AC1 = 0.5 V peak.  
6. Characterized only, at room temperature only.  
Table 106. Operating conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
TA  
Ambient operating temperature  
–40  
85  
°C  
Figure 73 shows an ASK modulated signal, from the VCD to the M24LR64-R. The test  
condition for the AC/DC parameters are:  
Close coupling condition with tester antenna (1 mm)  
M24LR64-R performance measured at the tag antenna  
Figure 73. M24LR64-R synchronous timing, transmit and receive  
t
RFF  
A
B
t
RFR  
f
CC  
t
RFSBL  
t
MAX  
t
MIN CD  
AI06680  
110/121  
DocID15170 Rev 16  
 
M24LR64-R  
Package mechanical data  
30  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Figure 74. SO8N – 8-lead plastic small outline, 150 mils body width, package outline  
h x 45°  
A2  
A
c
ccc  
b
e
0.25 mm  
GAUGE PLANE  
D
k
8
E1  
E
L
1
A1  
L1  
SO-A  
1. Drawing is not to scale.  
Table 107. SO8N – 8-lead plastic small outline, 150 mils body width, package data  
millimeters  
Min.  
inches(1)  
Symbol  
Typ.  
Max.  
Typ.  
Min.  
Max.  
A
A1  
A2  
b
1.75  
0.25  
0.0689  
0.0098  
0.10  
1.25  
0.28  
0.17  
0.0039  
0.0492  
0.0110  
0.0067  
0.48  
0.23  
0.10  
5.00  
6.20  
4.00  
0.0189  
0.0091  
0.0039  
0.1969  
0.2441  
0.1575  
c
ccc  
D
4.90  
6.00  
3.90  
1.27  
4.80  
5.80  
3.80  
0.1929  
0.2362  
0.1535  
0.0500  
0.1890  
0.2283  
0.1496  
E
E1  
e
h
0.25  
0°  
0.50  
8°  
k
0°  
8°  
L
0.40  
1.27  
0.0157  
0.0500  
L1  
1.04  
0.0410  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DocID15170 Rev 16  
111/121  
Package mechanical data  
M24LR64-R  
Figure 75. UFDFPN8 (MLP8) – Ultra thin fine pitch dual flat package no lead 2 x 3 mm,  
package outline  
MB  
e
MC  
e
b
b
D
L1  
L1  
L3  
L3  
Pin 1  
E2  
K
E
E2  
K
L
L
A
D2  
D2  
eee  
A1  
ZW_MEe  
1. Drawing is not to scale.  
Table 108. UFDFPN8 (MLP8) – Ultra thin fine pitch dual flat package no lead 2 x 3 mm,  
package mechanical data  
Millimeters  
Min.  
Inches (1)  
Symbol  
Typ.  
Max.  
Typ.  
Min.  
Max.  
A
0.55  
0.02  
0.25  
2
0.45  
0
0.60  
0.05  
0.30  
2.10  
1.70  
1.60  
3.10  
0.30  
1.60  
0.0217  
0.0008  
0.0098  
0.0787  
0.0630  
0.0177  
0
0.0236  
0.0020  
0.0118  
0.0827  
0.0669  
0.0630  
0.1220  
0.0118  
0.0630  
A1  
b
0.20  
1.90  
1.50  
1.20  
2.90  
0.10  
1.20  
0.0079  
0.0748  
0.0591  
0.0472  
0.1142  
0.0039  
0.0472  
D
D2 (MB)  
1.60  
D2 (MC)  
E
3
0.1181  
0.0079  
E2 (MB)  
0.2  
E2 (MC)  
e
K
0.50  
0.0197  
0.30  
0.30  
0.0118  
0.0118  
L
0.50  
0.15  
0.0197  
0.0059  
L1  
L3  
0.30  
0.08  
0.0118  
0.0031  
eee (2)  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from  
measuring.  
112/121  
DocID15170 Rev 16  
 
 
M24LR64-R  
Package mechanical data  
Figure 76. TSSOP8 – 8-lead thin shrink small outline, package outline  
D
8
1
5
4
c
E1  
E
a
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8AM  
1. Drawing is not to scale.  
Table 109. TSSOP8 – 8-lead thin shrink small outline, package mechanical data  
millimeters  
Min.  
inches(1)  
Symbol  
Typ.  
Max.  
Typ.  
Min.  
Max.  
A
A1  
A2  
b
1.2  
0.15  
1.05  
0.3  
0.2  
0.1  
3.1  
-
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.122  
-
0.05  
0.8  
0.002  
0.0315  
0.0075  
0.0035  
1
0.0394  
0.19  
0.09  
c
CP  
D
3
0.65  
6.4  
4.4  
0.6  
1
2.9  
-
0.1181  
0.0256  
0.252  
0.1142  
-
e
E
6.2  
4.3  
0.45  
6.6  
4.5  
0.75  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
L
0.1732  
0.0236  
0.0394  
L1  
a
0°  
8°  
0°  
8°  
N
8
8
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DocID15170 Rev 16  
113/121  
Part numbering  
M24LR64-R  
31  
Part numbering  
Table 110. Ordering information scheme for packaged devices  
Example:  
M24LR64-R  
MN  
6
T
/2  
Device type  
M24LR = dynamic NFC/RFID tag IC  
64 = memory size in Kbit  
Operating voltage  
R = VCC = 1.8 to 5.5 V  
Package  
MN = SO8N (150 mils width)  
MC = UFDFPN8 (MLP8)  
DW = TSSOP8  
Device grade  
6 = industrial: device tested with standard  
test flow over –40 to 85 °C  
Option  
T = Tape and reel packing  
Capacitance  
/2 = 27.5 pF  
114/121  
DocID15170 Rev 16  
 
M24LR64-R  
Part numbering  
Table 111. Ordering information scheme for bare die devices  
M24LR64-R  
Example:  
S
1
8
5
/2  
Device type  
M24LR = dynamic NFC/RFID tag IC  
64 = memory size in Kbit  
Operating voltage  
R = VCC = 1.8 to 5.5 V  
Packing  
S = Sawn wafer (inkless) in UV tape  
Z = Sawn wafer (inked) in UV tape  
Wafer orientation  
1 = see Note:  
Wafer size in inches  
8 = 8-inch wafer (see Note:)  
Wafer thickness  
5 = 140 µm (see Note:)  
Capacitance  
/2 = 27.5 pF  
Note:  
Refer to technical note TN0185 for details on the die delivery form.  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
DocID15170 Rev 16  
115/121  
 
Anticollision algorithm (informative)  
M24LR64-R  
Appendix A Anticollision algorithm (informative)  
The following pseudocode describes how anticollision could be implemented on the VCD,  
using recursivity.  
A.1  
Algorithm for pulsed slots  
function push (mask, address); pushes on private stack  
function pop (mask, address); pops from private stack  
function pulse_next_pause; generates a power pulse  
function store(M24LR64-R_UID); stores M24LR64-R_UID  
function poll_loop (sub_address_size as integer)  
pop (mask, address)  
mask = address & mask; generates new mask  
; send the request  
mode = anticollision  
send_Request (Request_cmd, mode, mask length, mask value)  
for sub_address = 0 to (2^sub_address_size - 1)  
pulse_next_pause  
if no_collision_is_detected ; M24LR64-R is inventoried  
then  
store (M24LR64-R_UID)  
else ; remember a collision was detected  
push(mask,address)  
endif  
next sub_address  
if stack_not_empty ; if some collisions have been detected and  
then  
poll_loop (sub_address_size); recursively to process the  
last stored collision  
; not yet processed, the function calls itself  
endif  
end poll_loop  
main_cycle:  
mask = null  
address = null  
push (mask, address)  
poll_loop(sub_address_size)  
end_main_cycle  
116/121  
DocID15170 Rev 16  
M24LR64-R  
CRC (informative)  
Appendix B CRC (informative)  
B.1  
CRC error detection method  
The cyclic redundancy check (CRC) is calculated on all data contained in a message, from  
the start of the flags through to the end of Data. The CRC is used from VCD to M24LR64-R  
and from M24LR64-R to VCD.  
Table 112. CRC definition  
CRC definition  
CRC type  
Length  
Polynomial  
Direction  
Preset  
Residue  
ISO/IEC 13239 16 bits  
X
16 + X12 + X5 + 1 = 8408h  
Backward  
FFFFh  
F0B8h  
To add extra protection against shifting errors, a further transformation on the calculated  
CRC is made. The One’s Complement of the calculated CRC is the value attached to the  
message for transmission.  
To check received messages the 2 CRC bytes are often also included in the re-calculation,  
for ease of use. In this case, the expected value for the generated CRC is the residue  
F0B8h.  
B.2  
CRC calculation example  
This example in C language illustrates one method of calculating the CRC on a given set of  
bytes comprising a message.  
C-example to calculate or check the CRC16 according to ISO/IEC 13239  
#define POLYNOMIAL0x8408// x^16 + x^12 + x^5 + 1  
#define PRESET_VALUE0xFFFF  
#define CHECK_VALUE0xF0B8  
#define NUMBER_OF_BYTES4// Example: 4 data bytes  
#define CALC_CRC1  
#define CHECK_CRC0  
void main()  
{
unsigned int current_crc_value;  
unsigned char array_of_databytes[NUMBER_OF_BYTES + 2] = {1, 2, 3,  
4, 0x91, 0x39};  
int  
int  
int  
number_of_databytes = NUMBER_OF_BYTES;  
calculate_or_check_crc;  
i, j;  
calculate_or_check_crc = CALC_CRC;  
// calculate_or_check_crc = CHECK_CRC;// This could be an other  
example  
if (calculate_or_check_crc == CALC_CRC)  
{
DocID15170 Rev 16  
117/121  
CRC (informative)  
M24LR64-R  
number_of_databytes = NUMBER_OF_BYTES;  
// check CRC  
}
else  
{
}
number_of_databytes = NUMBER_OF_BYTES + 2;  
current_crc_value = PRESET_VALUE;  
for (i = 0; i < number_of_databytes; i++)  
{
current_crc_value = current_crc_value ^ ((unsigned  
int)array_of_databytes[i]);  
for (j = 0; j < 8; j++)  
{
if (current_crc_value & 0x0001)  
{
current_crc_value = (current_crc_value >> 1) ^  
POLYNOMIAL;  
}
else  
{
}
current_crc_value = (current_crc_value >> 1);  
}
}
if (calculate_or_check_crc == CALC_CRC)  
{
current_crc_value = ~current_crc_value;  
printf ("Generated CRC is 0x%04X\n", current_crc_value);  
// current_crc_value is now ready to be appended to the data  
stream  
// (first LSByte, then MSByte)  
}
else  
{
// check CRC  
if (current_crc_value == CHECK_VALUE)  
{
printf ("Checked CRC is ok (0x%04X)\n",  
current_crc_value);  
}
else  
{
printf ("Checked CRC is NOT ok (0x%04X)\n",  
current_crc_value);  
}
}
}
118/121  
DocID15170 Rev 16  
M24LR64-R  
Application family identifier (AFI) (informative)  
Appendix C Application family identifier (AFI)  
(informative)  
The AFI (application family identifier) represents the type of application targeted by the VCD  
and is used to extract from all the M24LR64-R present only the M24LR64-R meeting the  
required application criteria.  
It is programmed by the M24LR64-R issuer (the purchaser of the M24LR64-R). Once  
locked, it cannot be modified.  
The most significant nibble of the AFI is used to code one specific or all application families,  
as defined in Table 113.  
The least significant nibble of the AFI is used to code one specific or all application  
subfamilies. Subfamily codes different from 0 are proprietary.  
(1)  
Table 113. AFI coding  
AFI  
AFI  
Meaning  
Most  
significant  
nibble  
Least  
significant  
nibble  
Examples / Note  
VICCs respond from  
‘0’  
‘X’  
'X  
‘0’  
‘1  
‘0’  
All families and subfamilies  
'All subfamilies of family X  
Only the Yth subfamily of family X  
Proprietary subfamily Y only  
Transport  
No applicative preselection  
'0  
Wide applicative preselection  
'‘Y’  
-
‘Y’  
-
'‘0’, ‘Y’  
'‘0’, ‘Y’  
'‘0’, ‘Y’  
'‘0’, ‘Y’  
‘0’, ‘Y’  
'‘0’, ‘Y’  
'‘0’, ‘Y’  
'‘0’, ‘Y’  
'‘0’, ‘Y’  
'‘0’, ‘Y’  
'‘0’, ‘Y’  
'‘0’, ‘Y’  
'‘0’, ‘Y’  
'‘0’, ‘Y’  
‘0’, ‘Y’  
Mass transit, Bus, Airline,...  
'2  
Financial  
IEP, Banking, Retail,...  
'3  
Identification  
Access Control,...  
'4  
Telecommunication  
Medical  
Public Telephony, GSM,...  
‘5’  
'6  
-
Multimedia  
Internet services....  
'7  
Gaming  
-
8
Data Storage  
Portable Files,...  
'9  
Item Management  
Express Parcels  
Postal Services  
Airline Bags  
-
-
-
-
-
-
-
'A  
'B  
'C  
'D  
'E  
‘F’  
RFU  
RFU  
RFU  
1. X = '1' to 'F', Y = '1' to 'F'  
DocID15170 Rev 16  
119/121  
 
Revision history  
M24LR64-R  
Revision history  
.
Table 114. Document revision history  
Revision Changes  
Date  
Added 8” wafer delivery form and update endurance on cover page.  
Updated VCC overview and replaced diode by regulator in  
Section 2.6: Supply voltage (VCC).  
24-Jun-2010  
10  
Removed RF address column from Table 6: Sector Security Status  
Byte area and Table 14: System parameter sector.  
Updated hSTG in Table 99: Absolute maximum ratings.  
Added Table 111: Ordering information scheme for bare die devices.  
Updated Table 111: Ordering information scheme for bare die  
devices.  
09-Aug-2010  
02-Dec-2010  
11  
12  
Updated ISO references under Features.  
Updated Section 2.4: Antenna coil (AC0, AC1), Table 99: Absolute  
maximum ratings and Table 105: RF characteristics.  
Renamed Section 29 and Table 105.  
Deleted Table 106 RF DC Characteristics.  
27-Oct-2011  
05-Jan-2012  
13  
14  
Updated footnote (2) of Table 105: RF characteristics.  
Modified Table 10: Password system area on page 24.  
Added “Dynamic NFC/RFID tag IC” to the title, Section 1:  
Description, and the M24LR definition in Table 110 and Table 111.  
13-Jun-2013  
15  
Replaced UFDFPN8 (MB) drawing by UFDFPN8 (MC) drawing on  
page 1.  
Added MC drawing to Figure 75: UFDFPN8 (MLP8) – Ultra thin fine  
pitch dual flat package no lead 2 x 3 mm, package outline.  
25-Jul-2013  
16  
Added “D2 (MC)” and “E2 (MC)” rows to Table 108: UFDFPN8  
(MLP8) – Ultra thin fine pitch dual flat package no lead 2 x 3 mm,  
package mechanical data.  
120/121  
DocID15170 Rev 16  
M24LR64-R  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE  
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH  
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR  
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED  
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN  
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,  
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.  
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE  
CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2013 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
DocID15170 Rev 16  
121/121  

相关型号:

M24LR64-R_1004

64 Kbit EEPROM with password protection & dual interface: 400kHz I²C serial bus & ISO 18000-3 mode 1 RF protocol at 13.56MHz
STMICROELECTR

M24LR64-R_1006

64 Kbit EEPROM with password protection & dual interface: 400 kHz I²C serial bus & ISO 15693 RF protocol at 13.56 MHz
STMICROELECTR

M24LR64-R_12

64 Kbit EEPROM with password protection & dual interface: 400 kHz I²C serial bus & ISO 15693 RF protocol at 13.56 MHz
STMICROELECTR

M24LR64E-R

64-Kbit EEPROM with password protection, dual interface & energy harvesting: 400 kHz I²C bus & ISO 15693 RF protocol at 13.56 MHz
STMICROELECTR
STMICROELECTR

M24M01

1 Mbit Serial IC Bus EEPROM
STMICROELECTR

M24M01-A125

Automotive 1-Mbit serial IC bus EEPROM with 1 MHz clock
STMICROELECTR

M24M01-DF

1 Mbit串行I2C总线EEPROM
STMICROELECTR

M24M01-DFCS6TP/A

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DFCT6P/B

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DFCT6TP/B

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DFDW6P/B

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR