STE2002_06 [STMICROELECTRONICS]

81 x 128 single-chip LCD controller/driver; 81 ×128的单芯片LCD控制器/驱动器
STE2002_06
型号: STE2002_06
厂家: ST    ST
描述:

81 x 128 single-chip LCD controller/driver
81 ×128的单芯片LCD控制器/驱动器

驱动器 控制器 CD
文件: 总61页 (文件大小:509K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STE2002  
81 x 128 single-chip LCD controller/driver  
– Eight selectable temperature compensation  
coefficients  
Features  
104 x 128 bits Display Data RAM  
Programmable MUX rate  
Programmable frame rate  
X,Y Programmable carriage return  
Dual partial display mode  
Row by Row Scrolling  
Designed for chip-on-glass (COG) applications  
Low power consumption, suitable for battery  
operated systems  
Logic supply voltage range from 1.7 to 3.6V  
High voltage generator supply voltage range  
from 1.75 to 4.2V  
Display supply voltage range from 4.5 Vto  
Automatic data RAM Blanking procedure  
14.5V  
Selectable Input interface:  
Backward compatibility with STE2001  
– I2C Bus Fast and Hs-mode (read and write)  
– Parallel Interface (read and write)  
– Serial Interface (read and write)  
Description  
Fully Integrated oscillator requires no external  
The STE2002 is a low power CMOS LCD  
controller driver. Designed to drive a 81 rows by  
128 columns graphic display, provides all  
necessary functions in a single chip, including on-  
chip LCD supply and bias voltages generators,  
resulting in a minimum of externals components  
and in a very low power consumption. The  
STE2002 features three standard interfaces  
(Serial, Parallel & I2C) for ease of interfacing with  
the host microcontroller.  
components  
CMOS compatible inputs  
Fully integrated configurable LCD bias voltage  
generator with:  
– Selectable multiplication factor (up to 6 )  
X
– Effective sensing for High Precision Output  
Block diagram  
ICON  
CO to C127  
R0 to R80  
OSC_IN  
TIMING  
GENERATOR  
COLUMN  
DRIVERS  
ROW  
DRIVERS  
OSC  
OSC_OUT  
CLOCK  
BIAS VOLTAGE  
GENERATOR  
VLCDIN  
DATA  
SHIFT  
LATCHES  
REGISTER  
VLCDSENSE  
VLCDOUT  
HIGH VOLTAGE  
GENERATOR  
104 x 128  
RAM  
SCROLL  
LOGIC  
RES  
RESET  
TEST_1_14  
VSSAUX  
TEST  
VDD1,2  
VSS  
ICON_MODE  
EXT  
BSY_FLG  
DISPLAY  
CONTROL  
LOGIC  
DATA  
REGISTER  
INSTRUCTION  
REGISTER  
SEL1,2  
SOUT  
SA1  
2
I
CBUS  
PARALLEL  
SERIAL  
SAO  
SCL  
SDA_IN SDA_OUT DB0 to DB7 E  
PD/C SCE SDIN SCLK SD/C  
R/W  
December 2006  
Rev 3  
1/61  
www.st.com  
61  
Contents  
STE2002  
Contents  
1
2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
Supplies voltages and grounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Internal supply voltage generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Bias levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
LCD voltage generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Temperature coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3
4
Display data RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
Reset (RES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Power down (PD = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Memory blanking procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Checker board procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Scrolling function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Dual partial display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5
6
Bus interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.1  
I2C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.1.1 Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.2  
5.3  
Serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
6.1  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
DC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
AC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
7
Pad coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
2/61  
STE2002  
Contents  
Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
8
9
10  
3/61  
Pin description  
STE2002  
1
Pin description  
Table 1.  
N°  
Pin description  
Pad  
Type  
Function  
129-169  
282-322  
R0 to R80  
O
LCD Row Driver Output  
ICON  
C0 to C127  
VSS  
323  
O
O
ICON Row Driver  
1-128  
LCD Column Driver Output  
236-255  
GND Ground pads.  
VDD1  
188-199 Supply IC Positive Power Supply  
VDD2  
200-211 Supply Internal Generator Supply Voltages.  
261-270 Supply LCD Supply Voltages for the Column and Row Output Drivers.  
273-282 Supply Voltage Multiplier Output  
VLCDIN  
VLCDOUT  
Voltage Multiplier Regulation Input. VLCDOUT Sensing for Output Voltage Fine  
Tuning  
VLCDSENSE  
271-272 Supply  
180, 231,  
VSSAUX  
SEL1,2  
O
Ground Reference for Selection Pins Configuration  
218  
184,185  
183  
I
I
Interface Mode Selection  
Extended Instruction Set Selection  
Ext pad config  
Instruction set selected  
EXT  
VSS or VSSAUX  
VDD1  
BASIC  
EXTENDED  
ICON ROW Management  
Icon mode pad config  
Icon mode status  
ICON_MOD  
E
186  
I
VSS or VSSAUX  
VDD1  
DISABLED  
ENABLED  
SDA_IN  
SDA_OUT  
SCL  
234  
232  
235  
182  
181  
187  
260  
230  
I
O
I
I2C Bus Data In  
I2C Bus Data Out  
I2C bus Clock  
SA0  
I
I2C Slave Address BIT 0  
I2C Slave Address BIT 1  
External Oscillator Input  
Internal/External Oscillator Out  
Reset Input. Active Low.  
Parallel Interface 8 Bit Data Bus  
SA1  
I
OSCIN  
OSCOUT  
RES  
I
O
I
DB0 to DB7 220-227  
I/O  
4/61  
STE2002  
Pin description  
Table 1.  
N°  
Pin description (continued)  
Pad  
Type  
Function  
R/W  
E
219  
229  
228  
214  
217  
216  
215  
213  
I
I
Parallel Interface Read & Write Control Line  
Parallel Interface Data Latch Signal.  
Parallel Interface Data/Command Selector  
Serial Interface Data Input  
PD/C  
SDIN  
SCLK  
SCE  
SD/C  
SOUT  
I
I
I
Serial Interface Clock  
I
Serial Interface ENABLE. When Low the Incoming Data are Clocked In.  
Serial Interface Data/Command Selector  
Serial Out  
I
O
Active Procedure Flag. Notice if There is an ongoing Internal Operation or an  
active reset. Active Low.  
BSYFLG  
212  
O
Test Pads. - A 50kohm pull-down resistor is added on input pis.  
Test Num.  
Pin Configuration  
TEST_1  
TEST_2  
TEST_3  
TEST_4  
OPEN  
TEST_5  
TEST_6  
TEST_7  
TEST_8  
TEST_9  
170-179,  
256-259  
T1 to T14  
I/O  
VSS / VSSAUX  
VSS / VSSAUX  
TEST_10  
TEST_11  
TEST_12  
TEST_13  
TEST_14  
5/61  
Pin description  
Figure 1.  
STE2002  
Chip mechanical drawing  
MARK_1  
COL  
0
ROW 35  
ROW 39.  
STE2002  
VLCDOUT  
VLCDSENSE  
VLCDIN  
VLCDOUT  
VLCDSENSE  
VLCDIN  
MARK_3  
OSCOUT  
TEST_14  
TEST_13  
TEST_12  
TEST_11  
VSS  
SCL  
SDAIN  
SDAOUT  
VSSAUX  
COL 63  
COL 64  
RES  
(0,0)  
E
PD/C  
D0  
Y
D1  
D2  
D3  
D4  
D5  
D6  
X
D7  
R/W  
VSSAUX  
SCLK  
SCE  
SD/C  
SDIN  
SDOUT  
BSY_FLG  
MARK_4  
VDD2  
VDD1  
VDD2  
VDD1  
OSCIN  
ICON_MODE  
SEL1  
SEL2  
EXT_SET  
SA0  
SA1  
VSSAUX  
TEST_10  
TEST_9  
TEST_8  
TEST_7  
TEST_6  
TEST_5  
TEST_4  
TEST_3  
TEST_2  
TEST_1  
ROW 80/ICON  
ROW 79  
COL 127  
ROW 76  
MARK_2  
6/61  
STE2002  
Pin description  
Figure 2.  
Improved ALTH & PLESKO driving method  
V
LCD  
V
2
V
3
V (t)  
V (t)  
2
1
ROW 0  
R0 (t)  
V
V
4
5
V
SS  
V
LCD  
V
V
2
3
ROW 1  
R1 (t)  
V
V
4
5
V
SS  
V
LCD  
V
V
2
3
COL 0  
C0 (t)  
V
V
4
5
V
SS  
V
LCD  
V
V
2
3
COL 1  
C1 (t)  
V
V
4
5
V
SS  
SS  
SS  
V
LCD  
- V  
- V  
V
3
V
LCD  
- V  
2
V - V  
4 5  
V (t)  
state1  
0V  
0V  
V
3
- V  
SS  
V - V  
SS 5  
V
V
- V  
LCD  
4
V
LCD  
- V  
- V  
SS  
- V  
LCD  
SS  
V
3
SS  
V
LCD  
- V  
2
V
4
- V  
5
V (t)  
state2  
0V  
0V  
V
3
- V  
SS  
V
SS  
- V  
5
V
V
- V  
LCD  
4
- V  
LCD  
SS  
.......  
.......  
0
..... 64  
1
2
3
4
5
6
7
8
9
..... 64  
0
1
2
3
4
5
6
7
8
9
FRAME n  
FRAME n + 1  
D00IN1154  
V (t) = C1(t) - R0(t)  
1
V (t) = C1(t) - R1(t)  
2
7/61  
Circuit description  
STE2002  
2
Circuit description  
2.1  
Supplies voltages and grounds  
VDD2 is supply voltages to the internal voltage generator (see below). If the internal voltage  
generator is not used, this should be connected to VDD1 pad. VDD1 supplies the rest of the  
IC. VDD1 supply voltage could be different form VDD2  
.
2.2  
Internal supply voltage generator  
The IC has a fully integrated (no external capacitors required) charge pump for the Liquid  
Crystal Display supply voltage generation. The multiplying factor can be programmed to be:  
Auto, X6, X5, X4, X3, X2, using the ’set CP Multiplication’ Command. If Auto is set, the  
multiplying factor is automatically selected to have the lowest current consumption in every  
condition. This make possible to have an input voltage that changes over time and a  
constant VLCD voltage. The output voltage (VLCDOUT) is tightly controlled through the  
V
LCDSENSE pad. For this voltage, eight different temperature coefficients (TC, rate of change  
with temperature) can be programmed using the bits TC1 and TC0 and T2,T1 & T0. This will  
ensure no contrast degradation over the LCD operating range. Using the internal charge  
pump, the VLCDIN and VLCDOUT pads must be connected together. An external supply could  
be connected to VLCDIN to supply the LCD without using the internal generator. In such  
event the VLDCOUT and VLCDSENSE must be connected to GND and the internal voltage  
generator must be programmed to zero (PRS = [0;0], Vop = 0 - Reset condition).  
2.3  
2.4  
Oscillator  
A fully integrated oscillator (requires no external components) is present to provide the clock  
for the Display System. When used the OSC pad must be connected to VDD1 pad. An  
external oscillator could be used and fed into the OSC pin. An oscillator out is provided on  
the OSCOUT Pad to cascade two or more drivers  
Bias levels  
To properly drive the LCD, six (Including VLCD and VSS) different voltage (Bias) levels are  
generated. The ratios among these levels and VLCD, should be selected according to the  
MUX ratio (m). They are established to be (Fig. 4):  
n + 3  
n + 4  
n + 2  
n + 4  
2
n + 4  
1
n + 4  
------------  
------------  
------------  
------------  
VLCD  
,
VLCD  
,
VLCD  
,
VLCD  
,
VLCD,VSS  
8/61  
STE2002  
Circuit description  
Figure 3.  
Bias level generator  
VLCD  
R
n + 3  
n + 4  
·VLCD  
R
nR  
R
n + 2  
n + 4  
·VLCD  
2
·VLCD  
n + 4  
1
·VLCD  
n + 4  
R
VSS  
D00IN1150  
thus providing an 1/(n+4) ratio, with n calculated from:  
=
m –  
For m = 81, n = 6 and an 1/10 ratio is set.  
For m = 65, n =5 and an 1/9 ratio is set.  
The STE2002 provides three bits (BS0, BS1, BS2) for programming the desired Bias Ratio  
as shown below:  
Table 2.  
Bias ratio programming  
BS2  
BS1  
BS0  
n
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
7
6
5
4
3
2
1
0
The following table Bias Level for m = 65 and m = 81 are provided:  
Table 3.  
Bias level  
Symbol  
m = 65 (1/9)  
m = 81 (1/10)  
V1  
V2  
V3  
V4  
V5  
V6  
VLCD  
8/9*VLCD  
7/9*VLCD  
2/9*V VLCD  
1/9 *VLCD  
VSS  
VLCD  
9/10*VLCD  
8/10*VLCD  
2/10*VLCD  
1/10*VLCD  
VSS  
9/61  
Circuit description  
STE2002  
2.5  
LCD voltage generation  
The LCD Voltage at reference temperature (To = 27°C) can be set using the VOP register  
content according to the following formula:  
V
LCD(T=To) = VLCDo = (Ai+VOP · B)  
(i=0,1,2)  
with the following values:  
Table 4.  
LCD voltage values  
Symbol  
Value  
Unit  
Note  
Ao  
A1  
A2  
B
2.95  
6.83  
V
V
PRS = [0;0]  
PRS = [0;1]  
PRS = [1;0]  
10.71  
0.0303  
27  
V
V
To  
°C  
Note that the three PRS values produce three adjacent ranges for VLCD. If the VOP register  
and PRS bits are set to zero the internal voltage generator is switched off.  
The proper value for the VLCD is a function of the Liquid Crystal Threshold Voltage (Vth)  
and of the Multiplexing Rate. A general expression for this is:  
1 + m  
--------------------------------------  
V
=
V  
LCD  
th  
1
2 1 --------  
m
For MUX Rate m = 65 the ideal VLCD is:  
LCD(to) = 6.85 · Vth  
then:  
V
(6.85 V A )  
th  
= --------------------------------------------  
i
V
op  
0.03  
10/61  
STE2002  
Circuit description  
2.6  
Temperature coefficient  
As the viscosity, and therefore the contrast, of the LCD are subject to change with  
temperature, there's the need to vary the LCD Voltage with temperature. The STE2002  
provides the possibility to change the VLCD in a linear fashion against temperature with  
eight different Temperature Coefficient selectable through the T2, T1 and T0 bits. Only four  
of them are available with basic instruction set (TC1 & TC0 Bits).  
Table 5.  
Name  
Temperature coefficients  
TC1  
TC0  
Value  
Unit  
TC0  
TC2  
TC3  
TC6  
0
0
1
1
0
1
0
1
-0.0· 10-3  
-0.7 · 10-3  
-1.05· 10-3  
-2.1 · 10-3  
1/ °C  
1/°C  
1/°C  
1/°C  
Table 6.  
Temperature coefficients  
Name  
TC2  
TC1  
TC0  
Value  
Unit  
TC0  
TC1  
TC2  
TC3  
TC4  
TC5  
TC6  
TC7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
-0.0· 10-3  
-0.35 · 10-3  
-0.7 · 10-3  
-1.05· 10-3  
-1.4 · 10-3  
-1.75· 10-3  
-2.1 · 10-3  
-2.3· 10-3  
1/ °C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
Figure 4.  
LCD voltage  
LCD  
V
B
2
A
1
A
0
A + B  
0
A
00h 01h 02h 03h 04h 05h …. 7Ch 7Dh 7Eh 7Fh 00h 01h 02h 03h 04h 05h …. 7Ch 7Dh 7Eh 7Fh 00h 01h 02h 03h 04h 05h …. 7Ch 7Dh 7Eh 7Fh  
O
V
PRS = [0;0]  
PRS = [0;1]  
PRS = [1;0]  
Finally, the VLCD voltage at a given (T) temperature can be calculated as:  
VLCD(T) = VLCDo · [1 + (T-To) · TC]  
11/61  
Display data RAM  
STE2002  
3
Display data RAM  
The STE2002, provides an 104X128 bits Static RAM to store Display data. This is organized  
into 13 (Bank0 to Bank12) banks with 128 Bytes. One of these banks (128 bits wide) can be  
used for Icons. RAM access is accomplished in either one of the Bus Interfaces provided  
(see below). Allowed addresses are X0 to X127 (Horizontal) and Y0 to Y12 (Vertical).  
When writing to RAM, four addressing mode are provided:  
• Normal Horizontal (MX=0 and V=0), having the column with address X= 0 located on the  
left of the memory map. The X pointer is increased after each byte written. After the last  
column address (X=X-Carriage), Y address pointer is set to jump to the following bank and  
X restarts from X=0. (Fig. 6)  
• Normal Vertical (MX=0 and V=1), having the column with address X= 0 located on the left  
of the memory map. The Y pointer is increased after each byte written. After the last Y bank  
address (Y=Y-Carriage), X address pointer is set to jump to next column and Y restarts from  
Y=0 (Fig. 7).  
• Mirrored Horizontal (MX=1 and V=0), having the column with address X= 0 located on the  
right of the memory map. The X pointer is increased after each byte written. After the last  
column address (X=X-Carriage), Y address pointer is set to jump to the next bank and X  
restarts from X=0 (fig. 8).  
• Mirrored Vertical (MX=1 and V=1), having the column with address X= 0 located on the  
right of the memory map. The Y pointer is increased after each byte written. After the last Y  
bank address (Y=Y-Carriage), the X pointer is set to jump to next column and Y restarts  
from Y=0 (fig. 9).  
After the last allowed address (X;Y)=(X-Carriage; Y-Carriage), the address pointers always  
jump to the cell with address (X;Y) = (0;0) (Fi. 10, 11, 12 & 13).  
Data bytes in the memory could have the MSB either on top (D0 = 0, Fig.14) or on the  
bottom (D0=1, Fig. 15).  
The STE2002 provides also means to alter the normal output addressing. A mirroring of the  
Display along the X axis is enabled setting to a logic one MY bit.This function doesn't affect  
the content of the memory RAM. It is only related to the visualization process.  
When ICON MODE=1 the Icon Row is not mirrored with MY and is not scrolled. When ICON  
Mode=0 the Icon Row is like the other graphic lines and is mirrored and scrolled.  
Four are the multiplex ratio available when the partial display mode is disabled (MUX 33,  
MUX 49, MUX 65 and MUX 81).  
Only a subset of writable rows are output on Row drivers.  
When Y-Carriage<MUX/8, if Mux 65 is selected only the first 65 memory rows are  
visualized, if Mux 49 is selected only the first 49 memory rows are visualized, if Mux 33 is  
selected only the first 33 memory rows are visualized. All unused Row and Column drivers  
must be left floating.  
When Y-Carriage<MUX/8, the icon Bank is located to BANK 10 in MUX 81 Mode, to  
BANK8 in MUX 65 Mode, to BANK 6 in MUX 49 Mode and to BANK 4 in MUX 33 Mode.  
When Y-Carriage>MUX/8 lines only 33, 49, 65 or 81 lines are visualized but it is possible to  
select which lines of DDRAM are connected on the output drivers. The DDRAM rows to  
visualized can be selected in the 0-Y-Carriage*8 range using the scrolling function.  
12/61  
STE2002  
Display data RAM  
When Y-Carriage>MUX lines, the icon row is moved in DDRAM to the first row of the Y-  
CARRIAGE Return BANK even if it is always connected on the same output Driver.  
When MY=0, the icon Row is output on R80 in mux 81 mode, on R72 in MUX 65, on R64 in  
MUX49 and on R56 in MUX 33.  
When MY=1, and ICON MODE=1, the icon Row is output on R80 in mux 81 mode, on R72  
in MUX 65, on R64 in MUX49 and on R56 in MUX 33.  
When MY=1, and ICON MODE=0, the icon Row is output on R0 whatever is the MUX Rate.  
When ICON MODE =1, the Memory ICON Row content is output on ICON Pad.  
If Not Used ICON Pad must be left floating.  
Figure 5.  
Automatic data RAM writing sequence with V=0 and Data RAM Normal  
Format (MX=0)(a)  
0
1
2
3
124 125 126 127  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
9
BANK 10  
BANK 11  
BANK 12  
Figure 6.  
Automatic data RAM writing sequence with V=1 and Data RAM Normal  
Format (MX=0)(a)  
0
1
2
3
124 125 126 127  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
9
BANK 10  
BANK 11  
BANK 12  
Figure 7.  
Automatic data RAM writing sequence with V=0 and Data RAM Mirrored  
Format (MX=1(a)  
127 126 125 124  
3
2
1
0
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
9
BANK 10  
BANK 11  
BANK 12  
a. X Carriage=127; Y-Carriage = 12  
13/61  
Display data RAM  
Figure 8.  
STE2002  
Automatic data RAM writing sequence with V=1 and Data RAM mirrored  
format (MX=1)(a)  
127 126 125 124  
3
2
1
0
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
9
BANK 10  
BANK 11  
BANK 12  
Figure 9.  
Automatic data RAM writing sequence with X-Y carriage return  
(V=0; MX=0)  
X CARR  
0
1
2
3
124 125 126 127  
BANK  
BANK  
BANK  
0
1
2
Y CARR  
BANK 11  
BANK 12  
Figure 10. Automatic data RAM writing sequence with X-Y carriage return  
(V=1; MX=0)  
X CARR  
0
1
2
3
124 125 126 127  
BANK  
BANK  
BANK  
0
1
2
Y CARR  
BANK 11  
BANK 12  
Figure 11. Automatic data RAM writing sequence with X-Y carriage return (V=0;  
MX=1)  
X CARR  
127 126 125 124  
3
2
1
0
BANK  
BANK  
BANK  
0
1
2
Y CARR  
BANK 11  
BANK 12  
14/61  
STE2002  
Display data RAM  
Figure 12. Automatic data RAM writing sequence with X-Y carriage return  
(V=1; MX=1)  
X CARR  
127 126 125 124  
3
2
1
0
BANK  
BANK  
BANK  
0
1
2
Y CARR  
BANK 11  
BANK 12  
Figure 13. Data RAM Byte organization with D0 = 0  
MSB  
0
1
2
3
124 125 126 127  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
9
LSB  
BANK 10  
BANK 11  
BANK 12  
Figure 14. Data RAM Byte organization with D0 = 1  
LSB  
0
1
2
3
124 125 126 127  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
9
MSB  
BANK 10  
BANK 11  
BANK 12  
Figure 15. Memory rows vs. row drivers mapping with MY=0, MUX81, icon mode=0,1  
ROW DRIVER  
ROW DRIVER  
PHYSICAL MEMORY ROW  
ICON MODE=1  
ICON MODE=0  
0
1
2
3
124 125 126 127  
ROW 0  
R 0  
R 1  
R 2  
R 3  
R 0  
R 1  
R 2  
R 3  
ROW 1  
ROW 2  
ROW 3  
Y-CARRIAGE  
R 79  
R 80  
R 79  
R 80  
ROW 79  
ROW 80  
ICON ROW  
ICON  
15/61  
Display data RAM  
STE2002  
Figure 16. Memory rows vs. row drivers mapping with MY=0, MUX 81, scroll pointer = +3, icon  
mode=1  
ROW DRIVER  
PHYSICAL MEMORY ROW  
ICON MODE=1  
0
1
2
3
124 125 126 127  
ROW 0  
ROW 1  
R 0  
R 1  
R 2  
R 3  
ROW 2  
ROW 3  
Y-CARRIAGE  
R 76  
R 77  
R 78  
R 79  
R 80  
ROW 79  
ROW 80  
ICON ROW  
ICON  
Figure 17. Memory rows vs. row drivers mapping with MY=0, MUX 81, scroll  
pointer=+3, icon mode=0  
ROW DRIVER  
PHYSICAL MEMORY ROW  
ICON MODE=0  
0
1
2
3
124 125 126 127  
ROW 0  
R 0  
R 1  
R 2  
R 3  
ROW 1  
ROW 2  
ROW 3  
Y-CARRIAGE  
R 76  
R 77  
R 78  
R 79  
R 80  
ROW 79  
ROW 80  
ICON ROW  
ICON  
Figure 18. Memory rows vs. row drivers mapping with MUX 65 Y-CARRIAGE<=8  
scroll pointer=0, icon mode=1  
PHYSICAL MEMORY ROW  
ROW DRIVER  
0
1
2
3
124 125 126 127  
ROW 0  
ROW 1  
R 0  
R 30  
R 31  
ROW 31  
ROW 32  
N.C.  
N.C.  
R 40  
Y-CARRIAGE  
ICON ROW  
R 71  
R 72  
ROW 63  
ROW 64  
R 79  
R 80  
ROW 96  
ICON  
16/61  
STE2002  
Display data RAM  
Figure 19. Memory rows vs. row drivers mapping with MUX65, Y-CARRIAGE>8,  
scroll pointer=0, icon mode=1  
PHYSICAL MEMORY ROW  
ROW DRIVER  
0
1
2
3
124 125 126 127  
ROW 0  
R 0  
ROW 31  
ROW 32  
R 31  
R 32  
N.C.  
R 40  
ROW 63  
R 71  
R 72  
ICON ROW  
ROW 75  
ROW 76  
Y-CARRIAGE  
N.C.  
R 79  
R 80  
ROW 96  
ICON  
Figure 20. Memory rows vs. row drivers mapping with MUX65, Y-CARRIAGE>8,  
scroll pointer=3, icon mode=1,  
PHYSICAL MEMORY ROW  
ROW DRIVER  
0
1
2
3
124 125 126 127  
ROW 0  
R 0  
ROW 1  
ROW 2  
R 30  
R 31  
ROW 33  
ROW 34  
N.C.  
R 40  
R 71  
R 72  
ROW 66  
ICON ROW  
ROW 75  
ROW 76  
Y-CARRIAGE  
N.C.  
R 79  
R 80  
ROW 96  
ICON  
Figure 21. Memory Rows vs. Row drivers mapping with MY=1, MUX81, icon mode  
0,1 scroll pointer=0  
ROW DRIVER  
ICON MODE=1  
ROW DRIVER  
ICON MODE=0  
PHYSICAL MEMORY ROW  
0
1
2
3
124 125 126 127  
ROW 0  
R 79  
R 78  
R 80  
R 79  
ROW 1  
ROW 2  
ROW 3  
Y-CARRIAGE  
R 2  
R 1  
R 3  
R 2  
R 1  
R 0  
ROW 79  
ROW 80  
R 0  
ICON ROW  
R 80  
ICON  
ICON  
17/61  
Display data RAM  
Figure 22. Memory rows vs. row drivers mapping with MY=1, MUX81,  
STE2002  
scroll offset = +3, icon mode =0  
ROW DRIVER  
ICON MODE=0  
PHYSICAL MEMORY ROW  
0
1
2
3
124 125 126 127  
ROW 0  
R 80  
R 78  
R 79  
R 77  
R 76  
ROW 1  
ROW 2  
ROW 3  
Y-CARRIAGE  
ROW 79  
ROW 80  
R 1  
R 0  
ICON ROW  
ICON  
Figure 23. Memory rows vs. row drivers mapping with MY=1, MUX81,  
scroll offset= +3, icon mode =1  
ROW DRIVER  
SCROLL OFFSET +3  
PHYSICAL MEMORY ROW  
ICON MODE=1  
0
1
2
3
124 125 126 127  
ROW 0  
R 79  
R 78  
R 77  
ROW 1  
ROW 2  
R 76  
ROW 3  
Y-CARRIAGE  
R 1  
R 0  
R 80  
ROW 79  
ROW 80  
ICON ROW  
ICON  
Figure 24. Row drivers vs. LCD panel interconnection in MUX81 mode  
ICON  
81x128  
MUX 81 Mode  
COLUMN DRIVERS  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
R65  
R66  
R67  
R68  
R69  
R70  
R71  
R72  
R73  
R74  
R75  
ICON  
R
R
R
R
R
R
R
R
R
R
0
1
2
3
4
5
6
7
8
9
ROW DRIVERS  
ROW DRIVERS  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
STE2002  
LR0012  
18/61  
STE2002  
Display data RAM  
Figure 25. Row drivers vs. LCD panel interconnection in MUX65 mode  
ICON  
65x128  
MUX 65 Mode  
COLUMN DRIVERS  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
R65  
R66  
R67  
R68  
R69  
R70  
R71  
R72  
R73  
R74  
R75  
ICON  
R
R
R
R
R
R
R
R
R
R
0
1
2
3
4
5
6
7
8
9
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
ROW DRIVERS  
ROW DRIVERS  
STE2002  
LR0014  
Figure 26. Row drivers vs. LCD panel interconnection in MUX49 mode  
ICON  
49x128  
MUX 49 Mode  
COLUMN DRIVERS  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
R65  
R66  
R67  
R68  
R69  
R70  
R71  
R72  
R73  
R74  
R75  
ICON  
R
R
R
R
R
R
R
R
R
R
0
1
2
3
4
5
6
7
8
9
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
ROW DRIVERS  
ROW DRIVERS  
STE2002  
LR0013  
19/61  
Display data RAM  
Figure 27. Row drivers vs. LCD panel interconnection in MUX33 mode  
STE2002  
ICON  
33x128  
MUX 33Mode  
COLUMN DRIVERS  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
R65  
R66  
R67  
R68  
R69  
R70  
R71  
R72  
R73  
R74  
R75  
ICON  
R
R
R
R
R
R
R
R
R
R
0
1
2
3
4
5
6
7
8
9
ROW DRIVERS  
ROW DRIVERS  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
STE2002  
LR0106  
20/61  
STE2002  
Instruction set  
4
Instruction set  
Two different instructions formats are provided:  
- With D/C set to LOW  
commands are sent to the Control circuitry.  
- With D/C set to HIGH  
the Data RAM is addressed.  
Two different instruction set are embedded: the STE2001-like instruction set and the  
extended instruction set. To select the STE2001-like instruction set the EXT pad has to be  
connected to a logic LOW (connect to VSS). To select the extended instruction the EXT pad  
has to be connected to a logic HIGH (connect to VDD1).  
The instructions have the syntax summarized in Table 10, (basic-set) and Table 11  
(extended set).  
4.1  
Reset (RES)  
At power-on, all internal registers are configured with the default value. The RAM content is  
not defined. A Reset pulse on RES pad (active low) re-initialize the internal registers content  
(see Table 10, Table 11, Table 12). Applying a reset pulse, every on-going communication  
with the host controller is interrupted. After the power-on, the Software Reset instruction can  
be used to re-load the reset configuration into the internal registers  
The default configurations is: .  
- Horizontal addressing (V = 0)  
- Normal instruction set (H[1:0] = 0)  
- Normal display (MX = MY = 0)  
- Display blank (E = D = 0)  
- Multiplexing Ratio (M[1:0]=0)  
- Frame Rate (FR[1:0]=”75Hz”)  
- Power Down (PD = 1)  
- Dual Partial Display Disabled (PE=0)  
- Address counter X[6: 0] = 0 and Y[4: 0] = 0 - VOP=0  
- Temperature coefficient (TC[1: 0] = 0)  
- Bias system (BS[2: 0] = 0)  
A MEMORY BLANK instruction can be executed to clear the RAM content.  
4.2  
Power down (PD = 1)  
When at Power Down, all LCD outputs are kept at VSS (display off). Bias generator and  
V
LCD generator are OFF (VLCDOUT output is discharged to VSS, and then is possible to  
disconnect VLCDOUT). The internal Oscillator is in off state. An external clock can be  
provided. The RAM contents is not cleared.  
21/61  
Instruction set  
STE2002  
4.3  
Memory blanking procedure  
This instruction allows to fill the memory with "blank" patterns, in order to delete patterns  
randomly generated in memory when starting up the device. This instruction substitutes  
(128X13) single "write" instructions. It is possible to program "Memory Blanking Procedure"  
only under the following conditions:  
- PD bit  
= 0  
The end of the procedure will be notified on the BSY_FLG pad going HIGH (while LOW the  
procedure is running). Any instruction programmed with BSY_FLG LOW will be ignored that  
is, no instruction can be programmed for a period equivalent to 128X13 internal write cycles  
(128X13X1/fclock). The start of Memory blanking procedure will be between one and two  
fclock cycles from the last active edge (E rising edge for the parallel interface, last SCLK  
rising edge for the Serial interface, last SCL rising edge for the I2C interface).  
4.4  
Checker board procedure  
This instruction allows to fill the memory with "checker-board" pattern. It is mainly intended  
to developers, who can now simply obtain complex module test configuration by means of a  
single instruction. It is possible to program "Checker Board Procedure" only under the  
following conditions:  
PD bit = 0  
The end of the procedure will be notified on the BSY_FLG pad going HIGH, while LOW the  
procedure is running. Any instruction programmed with BSY_FLG LOW will be ignored, that  
is, no instruction can be programmed for a period equivalent to 128X13 internal write cycles  
(128X13X1/fclock). The start of Memory blanking procedure will be between one and two  
fclock cycles from the last active edge (E rising edge for the parallel interface, last SCLK  
rising edge for the Serial interface, last SCL rising edge for the I2C interface).  
4.5  
Scrolling function  
The STE2002 can scroll the graphics display in units of raster-rows. The scrolling function is  
achieved changing the correspondence between the rows of the logical memory map and  
the output row drivers. The scroll function doesn't affect the data ram content. It is only  
related to the visualization process. The information output on the drivers is related to the  
row reading sequence (the 1st row read is output on R0, the 2nd on R1 and so on). Scrolling  
means reading the matrix starting from a row that is sequentially increased or decreased.  
After every scrolling command the offset between the memory address and the memory  
scanning pointer is increased or decreased by one. The offset range changes in accordance  
with MUX Rate. After 80th/81th scrolling commands in MUX 81 mode, or after the 64th/65th  
scrolling commands in mux 65 mode, or after 48nd/49rd scrolling command in MUX 49  
mode, or after 32nd/33rd scrolling command in MUX 33 mode, the offset between the  
memory address and the memory scanning pointer is again zero (Cyclic Scrolling).  
A Reset Scrolling Pointer instruction can be executed to force to zero the offset between the  
memory address and the memory scanning pointer  
The Icon Row is not scrolled if ICON MODE =1. If ICON MODE=0 the last row is like a  
general purpose row and it is scrolled as other rows.  
If the DIR Bit is set to a logic zero the offset register is increased by one and the raster is  
scrolled from top down. If the DIR Bit is set to a logic one the offset register is decreased by  
one and the raster is scrolled from bottom-up.  
22/61  
STE2002  
Instruction set  
Table 7.  
Mux rate  
Scrolling function  
Offset  
Icon row driver with  
MY=0  
Icon mode  
Description  
range  
MUX 33  
MUX 33  
MUX 49  
MUX 49  
MUX 65  
MUX 65  
MUX 81  
MUX 81  
1
0
1
0
1
0
1
0
0-31  
0-32  
0-47  
0-48  
0-63  
0-64  
0-79  
0-80  
ICON ROW NOT SCROOLED  
33 LINE GRAPHIC MATRIX  
ICON ROW NOT SCROOLED  
49 LINE GRAPHIC MATRIX  
ICON ROW NOT SCROOLED  
65 LINE GRAPHIC MATRIX  
ICON ROW NOT SCROOLED  
81 LINE GRAPHIC MATRIX  
R56  
R56  
R64  
R64  
R72  
R72  
R80  
R80  
4.6  
Dual partial display  
If the PE Bit is set to a logic one the dual partial display mode is enabled.  
Eight partial display modes are available. The offset of the two partial display zones is row  
by row programmable. The Icon row is accessed last in each partial display frame.  
Two sets of register for the HV-generator parameters are provided (PRS[1:0], Vop[6:0],  
BS[2:0], CP[2:0].). This allows switching from normal mode to partial display mode applying  
one instruction. The HV generator is automatically re configured using the parameters  
related to the enabled mode. The parameters of the two sets of registers with the same  
function are located in the same position of the instruction set. The registers related to the  
normal mode are accessible when normal mode (PE=0) is selected, the others are  
accessible when the partial display mode is enabled (PE=1). To Setup PRS[1:0], Vop[6:0],  
BS[2:0], CP[2:0] values the instruction flow proposed in Fig.46 must be followed. To setup  
Partial Display Sectors Start Address and Partial Display Mode no particular instruction flow  
has to be followed.  
Table 8.  
Dual partial display  
PD2 PD1 PD0  
Section 1  
Section2  
Reset state  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
8
8 + Icon Row  
0 + Icon Row  
8 + Icon Row  
16 + Icon Row  
0 + Icon Row  
16 + Icon Row  
8 + Icon Row  
16 + Icon Row  
8
0
000  
16  
8
16  
16  
23/61  
Bus interfaces  
STE2002  
5
Bus interfaces  
To provide the widest flexibility and ease of use the STE2002 features three different  
methods for interfacing the host Controller. To select the desired interface the SEL1 and  
SEL2 pads need to be connected to a logic LOW (connect to GND) or a logic HIGH (connect  
to VDD). All the I/O pins of the unused interfaces must be connected to GND.  
All interfaces are working while the STE2002 is in Power Down  
.
Table 9.  
Bus interface  
SEL2  
SEL1  
Interface  
Note  
Read and Write; Fast  
and High Speed Mode  
0
0
I2C  
0
1
1
1
0
1
Serial  
Read and Write  
Read and Write  
Not Used  
Parallel  
2
5.1  
I C interface  
The I2C interface is a fully complying I2C bus specification, selectable to work in both Fast  
(400kHz Clock) and High Speed Mode (3.4MHz).  
This bus is intended for communication between different Ics. It consists of two lines: one bi-  
directional for data signals (SDA) and one for clock signals (SCL). Both the SDA and SCL  
lines must be connected to a positive supply voltage via an active or passive pull-up.  
The following protocol has been defined:  
- Data transfer may be initiated only when the bus is not busy.  
- During data transfer, the data line must remain stable whenever the clock line is high.  
Changes in the data line while the clock line is high will be interpreted as control signals.  
Accordingly, the following bus conditions have been defined:  
BUS not busy: Both data and clock lines remain High.  
Start Data Transfer: A change in the state of the data line, from High to Low, while the clock  
is High, define the START condition.  
Stop Data Transfer: A Change in the state of the data line, from low to High, while the clock  
signal is High, defines the STOP condition.  
Data Valid: The state of the data line represents valid data when after a start condition, the  
data line is stable for the duration of the High period of the clock signal. The data on the line  
may be changed during the Low period of the clock signal. There is one clock pulse per bit  
of data.  
Each data transfer is initiated with a start condition and terminated with a stop condition.  
The number of data bytes transferred between the start and the stop conditions is not  
limited. The information is transmitted byte-wide and each receiver acknowledges with the  
ninth bit.  
24/61  
STE2002  
Bus interfaces  
By definition, a device that gives out a message is called "transmitter", the receiving device  
that gets the signals is called "receiver". The device that controls the message is called  
"master". The devices that are controlled by the master are called "slaves"  
Acknowledge. Each byte of eight bits is followed by one acknowledge bit. This  
acknowledge bit is a low level put on the bus by the receiver, whereas the master generates  
an extra acknowledge related clock pulse.  
A slave receiver which is addressed must generate an acknowledge after the reception of  
each byte. Also, a master receiver must generate an acknowledge after the reception of  
each byte that has been clocked out of the slave transmitter. The device that acknowledges  
has to pull down the SDA_IN line during the acknowledge clock pulse. Of course, setup and  
hold time must be taken into account. A master receiver must signal an end-of-data to the  
slave transmitter by not generating an acknowledge on the last byte that has been clocked  
out of the slave. In this case, the transmitter must leave the data line High to enable the  
master to generate the STOP condition.  
Connecting SDA_IN and SDA_OUT together the SDA line become the standard data line.  
Having the acknowledge output (SDAOUT) separated from the serial data line is  
advantageous in Chip-On-Glass (COG) applications. In COG applications where the track  
resistance from the SDAOUT pad to the system SDA line can be significant, a potential  
divider is generated by the bus pull-up resistor and the Indium Tin Oxide (ITO) track  
resistance. It is possible that during the acknowledge cycle the STE2002 will not be able to  
create a valid logic 0 level. By splitting the SDA input from the output the device could be  
used in a mode that ignores the acknowledge bit. In COG applications where the  
acknowledge cycle is required, it is necessary to minimize the track resistance from the  
SDACK pad to the system SDA line to guarantee a valid LOW level.  
To be compliant with the I2C-bus Hs-mode specification the STE2002 is able to detect the  
special sequence "S00001xxx". After this sequence no acknowledge pulse is generated.  
Since no internal modification are applied to work in Hs-mode, the device is able to work in  
Hs-mode without detecting the master code.  
Figure 28. Bit transfer and START,STOP conditions definition  
DATA LINE  
STABLE  
DATA VALID  
CLOCK  
DATA  
START  
CHANGE OF  
STOP  
CONDITION  
DATA ALLOWED  
CONDITION  
D00IN1151  
2
Figure 29. Acknowledgment on the I C-bus  
CLOCK PULSE FOR  
ACKNOWLEDGEMENT  
START  
SCLK FROM  
MASTER  
1
2
8
9
DATA OUTPUT  
BY TRANSMITTER  
MSB  
LSB  
DATA OUTPUT  
BY RECEIVER  
D00IN1152  
25/61  
Bus interfaces  
STE2002  
5.1.1  
Communication protocol  
The STE2002 is an I2C slave. The access to the device is bi-directional since data write and  
status read are allowed.  
Four are the device addresses available for the device. All have in common the first 5 bits  
(01111). The two least significant bit of the slave address are set by connecting the SA0 and  
SA1 inputs to a logic 0 or to a logic 1.  
To start the communication between the bus master and the slave LCD driver, the master  
must initiate a START condition. Following this, the master sends an 8-bit byte, shown in Fig.  
30, on the SDA bus line (Most significant bit first). This consists of the 7-bit Device select  
Code, and the 1-bit Read/Write Designator (R/W).  
All slaves with the corresponding address acknowledge in parallel, all the others will ignore  
the I2C-bus transfer.  
Writing mode  
If the R/W bit is set to logic 0 the STE2002 is set to be a receiver. After the slaves  
acknowledge one or more command word follows to define the status of the device.  
A command word is composed by two bytes. The first is a control byte which defines the Co  
and D/C values, the second is a data byte (fig 31). The Co bit is the command MSB and  
defines if after this command will follow one data byte and an other command word or if will  
follow a stream of data (Co = 1 Command word, Co = 0 Stream of data). The D/C bit defines  
whether the data byte is a command or RAM data (D/C = 1 RAM Data, D/C = 0 Command).  
If Co =1 and D/C = 0 the incoming data byte is decoded as a command, and if Co =1 and  
D/C =1, the following data byte will be stored in the data RAM at the location specified by the  
data pointer.  
Every byte of a command word must be acknowledged by all addressed units.  
After the last control byte, if D/C is set to a logic 1 the incoming data bytes are stored inside  
the STE2002 Display RAM starting at the address specified by the data pointer. The data  
pointer is automatically updated after every byte written and in the end points to the last  
RAM location written.  
Every byte must be acknowledged by all addressed units.  
Reading mode  
If the R/W bit is set to logic 1 the chip will output data immediately after the slave address. If  
the D/C bit sent during the last write access, is set to a logic 0, the byte read is the status  
byte.  
26/61  
STE2002  
Bus interfaces  
Figure 30. Communication protocol  
WRITE MODE  
STE2002 ACK  
STE2002 ACK  
STE2002 ACK  
STE2002 ACK  
STE2002 ACK  
S S  
A A  
S
0
1
1
1
1
0
A
1
DC Control Byte  
A
DATA Byte  
A
0
DC Control Byte  
A
DATA Byte  
A P  
1
0
R/W Co  
SLAVE ADDRESS  
Co  
LAST  
CONTROL BYTE  
N> 0 BYTE  
MSB........LSB  
COMMAND WORD  
READ MODE  
STE2002 ACK  
MASTER ACK  
P
S S  
A A  
S S R  
C D  
o C  
S
0
1
1
1
1
1
A
0
1
1
1
1
A A  
/
0 0 0 0 0 0 A  
1
0
1
0 W  
R/W  
STE2002  
SLAVE ADDRESS  
CONTROL BYTE  
5.2  
Serial interface  
The STE2002 serial Interface is a bidirectional link between the display driver and the  
application supervisor.  
It consists of five lines: two for data signals (SDIN, SOUT), one for clock signals (SCLK), one  
for the peripheral enable (SCE) and one for mode selection (SD/C).  
The serial interface is active only if the SCE line is set to a logic 0. When SCE line is high the  
serial peripheral power consumption is zero. While SCE pin is high the serial interface is  
kept in reset.  
The STE2002 is always a slave on the bus and receive the communication clock on the  
SCLK pin from the master.  
Information are exchanged byte-wide. During data transfer, the data line is sampled on the  
positive SCLK edge.  
SD/C line status indicates whether the byte is a command (SD/C =0) or RAM data (SD/C  
=1);it is read on the eighth SCLK clock pulse during every byte transfer.  
If SCE stays low after the last bit of a command/data byte, the serial interface expects the  
MSB of the next byte at the next SCLK positive edge.  
A reset pulse on RES pin interrupts the transmission. No data is written into the data RAM  
and all the internal registers are cleared.  
If SCE is low after the positive edge of RES, the serial interface is ready to receive data.  
Throughout SOUT can be read only the driver I2C slave address. The Command sequence  
that allows to read I2C slave address is reported in Fig. 34 & 35. SOUT is in High impedance  
in steady state and during data write.  
It is possible to short circuit DOUT and SDIN and read I2C address without any additional  
lines.  
27/61  
Bus interfaces  
Figure 31. Serial bus protocol - one byte transmission  
STE2002  
SCE  
D/C  
SCLK  
SDIN  
MSB  
LSB  
D00IN1159  
Figure 32. Serial bus protocol - several byte transmission  
SCE  
D/C  
SCLK  
SDIN  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
DB7  
DB6  
DB5  
D00IN1160  
Figure 33. Serial bus protocol - several byte transmission  
SCE  
D/C  
SCLK  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
SDIN  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
DB7  
DB6  
DB5  
D00IN1160  
High-Z  
High-Z  
SOUT  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
Command Write  
I2C Address Read  
28/61  
STE2002  
Bus interfaces  
Figure 34. Reading sequence  
READING SEQUENCE  
Write a "00000000" Instruction  
SOUT Buffer becomes active (Low Impedence)  
Source 8 pulses on SCLK and  
1
Read the I2C Address or Status Byte On SOUT  
SOUT Buffer Configured in High Impedence  
END OF READING SEQUENCE  
note: 1) these data are not read by the display Diver  
2) SDIN and SOUT can be short circuited if the processor can configure  
serial output buffers in high impedence during data read  
.
LR0078  
5.3  
Parallel interface  
The STE2002 parallel Interface is a bidirectional link between the display driver and the  
application supervisor. It consists of eleven lines: eight data lines (from DB7 to DB0) and  
three control lines. The control lines are: enable (E) for data latch, PD/C for mode selection  
and R/W for reading or writing.  
The data lines and the control line values are internally latched on E rising edge (fig. 50).  
When the parallel interface is selected, if R/W line is set to “one”, D0-D7 lines are configured  
as output drivers (low impedence) and it is possible to read the driver I2C address (Fig. 51)  
Table 10. STE2001-like instruction set  
D/C  
R/W  
Instruction  
H=0 or H=1  
B7 B6 B5 B4 B3 B2  
B1  
B0  
Description  
Read I2C Address  
(with Serial Interface  
only)  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
Power Down  
Management; Entry  
Mode;  
Function Set  
MX MY PD  
V
H[0]  
Read Status Byte  
Write Data  
0
1
1
0
PD A1 A2  
D
E
MX  
MY  
D1  
DO  
D0  
(I2C interface only)  
D7 D6 D5 D4 D3 D2  
Writes data to RAM  
29/61  
Bus interfaces  
STE2002  
Table 10. STE2001-like instruction set (continued)  
D/C  
R/W  
Instruction  
H=0  
B7 B6 B5 B4 B3 B2  
B1  
B0  
Description  
Starts Memory Blank  
Procedure  
Memory Blank  
Scroll  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
DIR  
PRS[0]  
E
Scrolls by one Row  
UP or DOWN  
VLCD Range  
Setting  
VLDC programming  
range selection  
1
0
Select Display  
Configuration  
Display Control  
Set CP Factor  
Set RAM Y  
D
S2  
0
Charge Pump  
Multiplication factor  
S1  
Y1  
X1  
S0  
Set Horizontal (Y)  
RAM Address  
Y3 Y2  
Y0  
Set Vertical (X) RAM  
Address  
Set RAM X  
X6 X5 X4 X3 X2  
X0  
H=1  
Starts Checker Board  
Procedure  
Checker Board  
Multiplex Select  
TC Select  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
X
0
0
0
0
1
X
0
0
0
1
0
X
0
0
0
1
1
MUX  
TC0  
A2  
Selects MUX factor  
Set Temperature  
Coefficient for VLDC  
1
TC1  
A1  
Output Address  
Bias Ratios  
Reserved  
DO  
BS2  
X
No function  
Set desired Bias  
Ratios  
BS1  
X
BS0  
X
Not to be used  
OP OP OP OP OP  
6
VOP register Write  
instruction  
Set VOP  
OP1  
OP0  
5
4
3
2
30/61  
STE2002  
Bus interfaces  
Description  
Table 11. Extended instruction set  
D/C R/W  
Instruction  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
H independent instructions  
Read I2C Address  
(with Serial  
Interface only)  
NOP  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
Power Down  
Management;Entry  
Mode; Extended  
Instruction Set  
Function Set  
MX  
MY  
PD  
H[1]  
H[0]  
Read Status  
Byte  
0
1
1
0
PD  
D7  
0
0
D
E
MX  
D2  
MY  
D1  
DO  
D0  
(I2C interface only)  
Writes data to RAM  
Write Data  
D6  
D5  
D4  
D3  
H=[0;0] RAM commands  
Memory  
Blank  
Starts Memory  
Blank Procedure  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
1
DIR  
PRS[0]  
E
Scrolls by one Row  
UP or DOWN  
Scroll  
VLCD Range  
Setting  
VLDC programming  
range selection  
0
0
0
0
1
PRS[1]  
0
Display  
Control  
Select Display  
Configuration  
0
0
0
1
D
Charge Pump  
Multiplication factor  
Set CP Factor  
Set RAM Y  
0
0
1
0
S2  
Y2  
X2  
S1  
S0  
Set Horizontal (Y)  
RAM Address  
1
0
0
Y3  
X3  
Y1  
Y0  
Set Vertical (X)  
RAM Address  
Set RAM X  
X6  
X5  
X4  
X1  
X0  
H=[0;1]  
Checker  
Board  
Starts Checker  
Board Procedure  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
Vertical Addressing  
Mode  
V
Set Temperature  
Coefficient for VLDC  
TC Select  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
X
0
0
1
X
0
1
0
X
1
TC1  
0
TC0  
0
Data Format  
Bias Ratios  
DO  
BS2  
X
MSB Position  
Set desired Bias  
Ratios  
BS1  
X
BS0  
X
Reserved  
VOP register Write  
instruction  
Set VOP  
OP6 OP5 OP4 OP3  
OP2  
OP1  
OP0  
31/61  
Bus interfaces  
STE2002  
Table 11. Extended instruction set  
D/C R/W  
Instruction  
H=[1;0]  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Description  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
Software RESET  
Partial Enable  
Frame rate Control  
Mux Ratio  
1
PE  
FR1  
M[1]  
FR0  
M[0]  
Partial Display  
Config  
Partial mode  
0
0
0
0
0
0
0
0
1
0
1
0
1
0
PD2  
PDY2  
PDY2  
PD1  
PDY1  
PDY1  
PD0  
PDY0  
PDY0  
1
st Sector Start  
Address  
PDY5 PDY4 PDY  
3
2
nd Sector Start  
PDY6 PDY5 PDY4 PDY  
3
Address  
H=[1;1]  
Scrolling Pointer  
Reset  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
X
X
Not Used  
Not Used  
X
Set Temperature  
Coefficient for VLDC  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
1
T2  
X
T1  
X
T0  
X
X
Not Used  
Y-CARRIAGE  
RETURN  
YC-3 YC-2  
YC-1  
YC-0  
X CARRIAGE  
RETURN  
0
0
1
XC-6 XC-5 XC-4 XC-3 XC-2  
XC-1  
XC-0  
Table 12. Explanations of symbols  
Reset  
state  
Bit  
0
1
DIR Scroll by one down  
Scroll by one up  
PD Device fully working  
Horizontal addressing  
MX Normal X axis addressing  
Device in power down  
Vertical addressing  
1
0
0
V
X axis address is mirrored.  
MY Image is displayed not vertically mirrored Image is displayed vertically mirrored  
0
0
0
0
0
DO MSB on TOP  
PE Partial Display disabled  
H[0] Select page 0  
MUX MUX 65  
MSB on BOTTOM  
Partial Display enabled  
Select page 1  
MUX 33  
32/61  
STE2002  
Bus interfaces  
Table 13. Page number  
H[1]  
H[0]  
Description  
Reset state  
0
0
1
1
0
1
0
1
Page 0  
Page 1  
Page 2  
Page 3  
Page 0  
Table 14. Display mode  
D
E
Description  
display blank  
Reset state  
0
0
1
1
0
1
0
1
all display segments on  
normal mode  
D=0  
E=0  
inverse video mode  
Table 15. Frame rate control  
FR[1]  
FR[0]  
Description  
Reset state  
0
0
1
1
0
1
0
1
65Hz  
70Hz  
75Hz  
80Hz  
75Hz  
Table 16. VLCD range selection  
PRS[1]  
PRS[0]  
Description  
Reset State  
0
0
1
1
0
1
0
1
2.94  
6.78  
10.62  
Not Used  
Table 17. Multiplexing ratio  
M[1]  
M[0]  
Description  
Reset state  
0
0
1
1
0
1
0
1
49  
65  
01  
81  
Not Used  
33/61  
Bus interfaces  
STE2002  
Table 18. Temperature coefficient  
T2  
T1  
T0  
Description  
Reset state  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
VLCD temperature Coefficient 0  
VLCD temperature Coefficient 1  
VLCD temperature Coefficient 2  
VLCD temperature Coefficient 3  
VLCD temperature Coefficient 4  
VLCD temperature Coefficient 5  
VLCD temperature Coefficient 6  
VLCD temperature Coefficient 7  
000  
Table 19. TC1 & TC0 temperature coefficients  
TC1  
TC0  
Description  
Reset state  
0
0
1
1
0
1
0
1
VLCD temperature Coefficient 0  
VLCD temperature Coefficient 2  
VLCD temperature Coefficient 3  
VLCD temperature Coefficient 6  
00  
Table 20. Charge pump multiplication factor  
CP2  
CP1  
CP0  
Description  
Reset state  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Multiplication Factor X2  
Multiplication Factor X3  
Multiplication Factor X4  
Multiplication Factor X5  
Multiplication Factor X6  
NOT USED  
000  
NOT USED  
AUTOMATIC  
34/61  
STE2002  
Bus interfaces  
O
Table 21. Bias ratio  
BS2  
BS1  
BS0  
Description  
Bias Ratio equal to 7  
Reset state  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Bias Ratio equal to 6  
Bias Ratio equal to 5  
Bias Ratio equal to 4  
Bias Ratio equal to 3  
Bias Ratio equal to 2  
Bias Ratio equal to 1  
Bias Ratio equal to 0  
000  
Table 22. Y carriage return register  
Y-C[3] Y-C[2] Y-C[1] Y-C[0] Description  
Reset state  
0
0
0
0
0
0
.
0
0
0
0
1
1
.
0
0
1
1
0
0
.
0
1
0
1
0
1
.
Y-CARRIAGE =1  
Y-CARRIAGE =2  
Y-CARRIAGE =3  
Y-CARRIAGE =4  
Y-CARRIAGE =5  
1000  
1
1
1
0
0
1
1
1
0
0
1
0
Y-CARRIAGE =10  
Y-CARRIAGE =11  
Y-CARRIAGE =12  
Table 23. Partial display configuration  
PD2  
PD1  
PD0  
Section 1  
Section2  
Reset state  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
8
8 + Icon Row  
0 + Icon Row  
8 + Icon Row  
16 + Icon Row  
0 + Icon Row  
16 + Icon Row  
8 + Icon Row  
16 + Icon Row  
8
0
000  
16  
8
16  
16  
35/61  
Bus interfaces  
Figure 35. Host processor interconnection with I2C interface  
STE2002  
SCL  
SDAIN  
SDAOUT  
VSSAUX  
RES  
E
µP  
STE2002  
PD/C  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
R/W  
VSSAUX  
SCLK  
SCE  
SD/C  
SDIN  
SDOUT  
BSY_FLG  
VDD2  
VDD1  
OSCIN  
VDD1 / GND / VSSAUX  
ICON_MODE  
SEL1  
SEL2  
GND / VSSAUX  
VDD1  
EXT_SET  
VDD1 / GND / VSSAUX  
VDD1 / GND / VSSAUX  
SA0  
SA1  
VSSAUX  
TEST_10  
TEST_9  
TEST_8  
TEST_7  
TEST_6  
TEST_5  
TEST_4  
TEST_3  
TEST_2  
TEST_1  
Figure 36. Host processor interconnection with serial interface  
SCL  
SDAIN  
SDAOUT  
µP  
STE2002  
VSSAUX  
RES  
E
PD/C  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
R/W  
VSSAUX  
SCLK  
SCE  
SD/C  
SDIN  
SDOUT  
BSY_FLG  
VDD2  
VDD1  
OSCIN  
VDD1 / GND / VSSAUX  
ICON_MODE  
SEL1  
VDD1  
GND / VSSAUX  
VDD1  
SEL2  
EXT_SET  
VDD1 / GND / VSSAUX  
VDD1 / GND / VSSAUX  
SA0  
SA1  
VSSAUX  
TEST_10  
TEST_9  
TEST_8  
TEST_7  
TEST_6  
TEST_5  
TEST_4  
TEST_3  
TEST_2  
TEST_1  
36/61  
STE2002  
Bus interfaces  
Figure 37. Host processor interconnection with parallel interface  
SCL  
SDAIN  
SDAOUT  
µP  
STE2002  
VSSAUX  
RES  
E
PD/C  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
R/W  
VSSAUX  
SCLK  
SCE  
SD/C  
SDIN  
SDOUT  
BSY_FLG  
VDD2  
VDD1  
OSCIN  
ICON_MODE  
SEL1  
VDD1 / GND / VSSAUX  
GND / VSSAUX  
VDD1  
SEL2  
EXT_SET  
VDD1  
VDD1 / GND / VSSAUX  
VDD1 / GND / VSSAUX  
SA0  
SA1  
VSSAUX  
TEST_10  
TEST_9  
TEST_8  
TEST_7  
TEST_6  
TEST_5  
TEST_4  
TEST_3  
TEST_2  
TEST_1  
Figure 38. application schematic using an external lcd Voltage Generator  
I/O  
VDD2  
VDD  
40  
128  
41  
VDD1  
100nF  
VSS  
81x 128  
DISPLAY  
VSS2  
VSS1  
1µF  
VLCDSENSE  
VLCDOUT  
VLCDIN  
VLCD  
Figure 39. Application schematic using the internal LCD voltage generator and two  
separate supplies  
I/O  
VDD2  
VDD2  
VDD1  
40  
128  
41  
VDD1  
100nF  
VSS  
100nF  
81x 128  
DISPLAY  
VSS2  
VSS1  
1µF  
VLCDSENSE  
VLCDOUT  
VLCDIN  
37/61  
Bus interfaces  
STE2002  
Figure 40. Application schematic using the internal LCD voltage generator and a  
single supply  
I/O  
VDD  
VDD2  
VDD1  
40  
128  
41  
100nF  
VSS  
81 x 128  
DISPLAY  
VSS2  
VSS1  
1µF  
VLCDSENSE  
VLCDOUT  
VLCDIN  
38/61  
STE2002  
Bus interfaces  
Figure 41. Power-up sequence  
T
vdd  
Tw(res) TLogic (res)  
VDD2  
VDD1  
RES  
SCE  
SCLK  
SDIN  
SD/C  
PD/C  
E
R/W  
D0 - D7  
HOST  
D0 - D7  
DRIVER  
Hi-Z  
Hi-Z  
SCL  
SDAIN  
SOUT  
SDA OUT  
OSCIN  
(HOST)  
OSC OUT  
(DRIVER)  
BSY FLG  
RESET POWER ON  
BOOSTER  
OFF  
TABLE  
INTERNAL  
RESET  
LR0116  
LOADED  
39/61  
Bus interfaces  
Figure 42. Power-OFF sequence  
STE2002  
T
w(res)  
VDD2  
VDD1  
RES  
SCLK  
SDIN  
SD/C  
PD/C  
E
SCE  
SCl  
SDAIN  
R/W  
D0 - D7  
HOST  
D0 - D7  
DRIVER  
Hi-Z  
Hi-Z  
SOUT  
SDA OUT  
OSCIN  
(HOST)  
OSC OUT  
(DRIVER)  
BSY FLG  
RESET  
TABLE  
LOADED  
LR0117  
40/61  
STE2002  
Bus interfaces  
Figure 43. Initialization with built-in booster  
SETUP NORMAL DISPLAY MODE CONFIGURATION  
SET Driver in Power Down(PD=1)  
SET Driver in Normal Display Mode (PE=0)  
SET PRS[1:0], Vop[6:0], BS[2:0], CP[2:0], FR[1:0],  
TC, M[1:0] for Normal Display Operation  
Switch "ON" Booster and Display Control Logic  
(PD=0)  
END OF NORMAL DISPLAY MODE CONFIG.  
Figure 44. Dual partial display enabling instruction flow  
ENABLE DUAL PARTIAL DISPLAY  
SET 1st Sector Start Address  
OPTIONAL1  
SET 2nd Sector Start Address  
SET PE=1  
END OF ENABLING DUAL PARTIAL DISPLAY  
41/61  
Bus interfaces  
Figure 45. Dual partial display mode configuration or duty change  
STE2002  
SETUP PARTIAL DISPLAY CONFIGURATION  
SET Driver in Power Down(PD=1)  
SET Driver in Partial Display Mode (PE=1)  
SET PRS[1:0], Vop[6:0], BS[2:0], CP[2:0]  
for Partial Display Operation  
SET Partial Display Configuration (PD[2:0])  
SET 1st Sector Start Address  
OPTIONAL  
SET 2nd Sector Start Address  
SET Driver in Normal Mode (PE=0)  
END OF PARTIAL DISPLAY CONFIG.  
Figure 46. Data RAM to display mapping  
DISPLAY DATA RAM  
bank  
0
GLASS  
TOP VIEW  
bank  
1
DISPLAY DATA RAM = "1"  
DISPLAY DATA RAM = "0"  
bank  
2
LCD  
bank  
3
bank  
7
bank  
8
ICOR ROW  
D00IN1155  
42/61  
STE2002  
Bus interfaces  
Table 24. Pin configuration  
Test numbers  
Pin configuration  
TEST_1  
TEST_2  
OPEN  
GND  
GND  
TEST_3  
TEST_4  
TEST_5  
TEST_6  
TEST_7  
TEST_8  
TEST_9  
TEST_10  
TEST_11  
TEST_12  
TEST_13  
TEST_14  
43/61  
Electrical characteristics  
STE2002  
6
Electrical characteristics  
6.1  
Absolute maximum ratings  
Table 25. Absolute maximum ratings  
Symbol  
Parameter  
Supply voltage range  
Value  
Unit  
VDD1  
VDD2  
VLCD  
ISS  
- 0.5 to + 5  
- 0.5 to + 7  
- 0.5 to + 15  
- 50 to +50  
-0.5 to VDD2 + 0.5  
- 10 to + 10  
- 10 to + 10  
300  
V
V
Supply voltage range  
LCD Supply Voltage Range  
Supply current  
V
mA  
V
Vi  
Input Voltage (all input pads)  
DC Input Current  
Iin  
mA  
mA  
mW  
mW  
°C  
°C  
Iout  
Ptot  
Po  
DC Output Current  
Total Power Dissipation (Tj = 85°C)  
Power Dissipation per Output  
Operating Junction Temperature(1)  
Storage Temperature  
30  
Tj  
-20 to + 120  
- 65 to 150  
Tstg  
1. Device behavior and characterization are measured over this temperature range during internal  
qualification of the product. During production testing, however, device performance is measured at a fixed  
ambient temperature, typically 25°C.  
44/61  
STE2002  
Electrical characteristics  
6.2  
DC operation  
VDD1 = 1.7 to 3.6 V; VDD2 = 1.75 to 4.2V; Vss1,2 = 0V; VLCD = 4.5 to 14.5 V;  
Tamb = 25°C; unless otherwise specified.  
Table 26. Electrical characteristics DC operation  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Supply voltages  
VDD1  
VDD2  
Supply voltage(1)  
1.7  
3.6  
4.2  
V
V
LCD voltage internally  
generated  
Supply voltage  
1.75  
LCD voltage supplied  
externally  
VLCDIN  
LCD supply voltage  
LCD supply voltage  
4.5  
4.5  
14.5  
14.5  
V
V
VLCDOUT  
Internally generated(2)  
;
VDD1 = 2.8V;  
V
LCD = 10V;  
15  
20  
40  
200  
1
µA  
µA  
µA  
µA  
fsclk = 0(3)  
I(VDD1  
)
)
Supply current  
VDD1 = 2.8V;  
V
LCD = 10V; fsclk = 1Mhz;  
120  
(1) (3); OSC_IN=GND;  
parallel port  
with VOP = 0 and  
PRS = [0:0] with external  
VLCD  
(4)  
Voltage generator supply  
current  
I(VDD2  
VDD2= 2.8V;VLCD=10V;  
fsclk= 0;  
10  
25  
40  
no display load;  
5x charge pump (5) (3) (6)  
VDD1,VDD2= 2.8V;  
VLCD = 10V; 5x charge  
pump; fsclk = 0;  
80  
µA  
no display load (5) (3) (6)  
I(VDD1,2  
)
Total supply current  
Power down Mode with  
internal or External  
VLCD(7)  
3
10  
15  
µA  
µA  
VDD =2.8V;  
External LCD supply  
voltage current  
I(VLDCIN  
)
V
LCD =10V;no display  
5
10  
load; fsclk = 0 (3)  
Logic outputs  
High logic level output  
voltage  
V0H  
VOL  
IOH=-500µA  
IOL=500µA  
0.8VDD1  
VSS  
VDD1  
V
V
Low logic level output  
voltage  
0.2VDD1  
45/61  
Electrical characteristics  
STE2002  
Unit  
Table 26. Electrical characteristics DC operation  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Logic inputs  
VIL  
VIH  
Iin  
Logic LOW voltage level  
Logic HIGH voltage level  
Input current  
VSS  
0.7VDD1  
-1  
0.3VDD1  
VDD2  
1
V
V
Vin = VSS1 or VDD1  
µA  
logic inputs/outputs  
VIL  
Logic LOW voltage level  
VSS  
0.3VDD1  
V
V
Logic HIGH Voltage  
Level  
VDD1  
+0.5V  
VIH  
0.7VDD1  
Column and row driver  
Rrow  
Rcol  
ROW output resistance  
VLCD = 10V;  
3K  
5K  
5K  
kohm  
kohm  
Column output  
resistance  
VLCD = 10V;  
10K  
Column Bias voltage  
accuracy  
Vcol  
No load  
-50  
-50  
+50  
+50  
mV  
mV  
Row Bias voltage  
accuracy  
Vrow  
LCD supply voltage  
VDD = 2.8V; VLCD = 10V;  
fsclk=0;  
LCD supply voltage  
accuracy; internally  
generated  
no display load(5)(3)(6)(8)  
VLCD  
-2.2  
2.2  
%
(8) VOP = 61h,  
PRS = 2hex  
TC0  
TC1  
TC2  
TC3  
TC4  
TC5  
TC6  
TC7  
-0.0·10-3  
-0.35·10-3  
-0.7·10-3  
-1.05·10-3  
-1.4 ·10-3  
-1.75·10-3  
-2.1·10-3  
-2.3·10-3  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
Temperature coefficient  
1. Data Byte Writing Mode V  
V  
DD2  
DD1  
2. The maximum possible V  
3. When f  
voltage that can be generated is dependent on voltage, temperature and (display) load.  
LCD  
= 0 there is no interface clock.  
sclk  
4. External V  
, the display load current is not transmitted to I  
DD  
LCD  
5. Internal clock  
6. Tolerance depends on the temperature; (typically zero at T  
temperature range limit.  
= 27°C), maximum tolerance values are measured at the  
amb  
7. Power-down mode. During power-down all static currents are switched-off.  
8. For TC0 to TC7  
46/61  
STE2002  
Electrical characteristics  
6.3  
AC operation  
VDD1 = 1.7 to 3.6V; VDD2 = 1.75 to 4.2V; Vss1,2 = 0V; VLCD = 4.5 to 14.5V; Tamb = 25°C;  
unless otherwise specified.  
Table 27. AC operation  
Symbol Parameter  
Test condition  
Min.  
Typ.  
Max.  
Unit  
Internal oscillator (Figure 47)  
Internal oscillator  
frequency  
FOSC  
VDD = 2.8V;  
61  
20  
72  
83  
kHz  
kHz  
External oscillator  
frequency  
FEXT  
100  
FFRAME  
Tw(RES)  
Frame frequency  
fosc or fext = 72 kHz(1)  
75  
Hz  
µs  
µs  
RES LOW pulse width  
Reset pulse rejection  
5
1
5
TLOGIC  
Internal logic reset time  
µs  
µs  
(RES)  
TVDD  
VDD1 vs. VDD2 delay  
0
I2C Bus interface(4) (Figure 48)  
Fast Mode  
DC  
DC  
400  
3.4  
kHz  
High Speed Mode;  
Cb=100pF  
MHz  
(max);VDD1=2  
FSCL  
SCL clock frequency  
High Speed Mode;  
Cb=400pF (max);  
DC  
1.7  
MHz  
VDD1=2  
Fast Mode; VDD1=1.7V  
Cb=100pF(2) (3)  
400  
KHz  
ns  
Set-up time (repeated)  
START condition  
TSU;STA  
THD;STA  
TLOW  
160  
160  
160  
60  
Hold time (repeated)  
START condition  
Cb=100pF(2) (3)  
Cb=100pF (2) (3)  
Cb=100pF(2) (3)  
ns  
ns  
ns  
LOW period of the SCLH  
clock  
HIGH period of the  
SCLH clock  
THIGH  
TSU;DAT  
THD;DAT  
Data set-up time  
Data hold time  
Cb=100pF (2) (3)  
Cb=100pF (2) (3)  
10  
40  
10  
ns  
ns  
ns  
T
Rise time of SCLH signal Cb=100pF (2) (3)  
r;CL  
Rise time of SCLH signal  
after a repeated START  
Cb=100pF (2) (3)  
T
10  
10  
ns  
ns  
rCL1  
condition and after an  
acknowledge bit  
TfCL  
Fall time of SCLH signal Cb=100pF (2) (3)  
47/61  
Electrical characteristics  
STE2002  
Unit  
Table 27. AC operation (continued)  
Symbol  
Parameter  
Test condition  
Min.  
Typ.  
Max.  
T
Rise time of SDAH signal Cb=100pF(2) (3) (4)  
Fall time of SDAH signal Cb=100pF (2) (3) (4)  
Rise time of SDAH signal Cb=400pF(2) (3) (4)  
Fall time of SDAH signal Cb=400pF(2) (3) (4)  
10  
10  
20  
20  
ns  
ns  
ns  
ns  
rDA  
TfDA  
80  
T
rDA  
TfDA  
160  
Set-up time for STOP  
Cb=100pF(2) (3)  
condition  
TSU;STO  
160  
100  
ns  
pF  
Capacitive load for SDAH  
and SCLH  
Cb  
Cb  
400  
400  
Capacitive load for SDAH  
+ SDA line and SCLH +  
SCL line  
pF  
Parallel interface (Figure 49, Figure 50)  
TCY(EN)  
TW(EN)  
TSU(A)  
TH(A)  
Enable Cycle Time  
Enable Pulse width  
Address Set-up Time  
Address Hold Time  
Data Set-Up Time  
Data Hold Time  
150  
60  
30  
40  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
VDD1 = 1.7V; Write-(2) (5)  
TSU(D)  
TH(D)  
Data Set-Up Time in  
read Mode  
TSU(D)  
THU(D)  
100  
ns  
ns  
Data Hold Time In Read  
mode  
100  
48/61  
STE2002  
Electrical characteristics  
Table 27. AC operation (continued)  
Symbol  
Parameter  
Test condition  
Min.  
Typ.  
Max.  
Unit  
Serial interface (Figure 51)  
TCYC  
TPWH1  
TPWL1  
TS2  
Clock Cycle SCLK  
SCLK pulse width HIGH  
SCLK Pulse width LOW  
SCE setup time  
150  
60  
60  
30  
50  
50  
30  
40  
30  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TH2  
SCE hold time  
TPWH2  
TS3  
SCE minimum high time  
SD/C setup time  
V
DD1 = 1.7V; Write(2) (5)  
TH3  
SD/C hold time  
TS4  
SDIN setup time  
TH4  
SDIN hold time  
TS5  
SOUT Access Time  
100  
100  
SOUT Disable Time vs.  
SCLK  
TH5  
ns  
ns  
SOUT Disable Time vs.  
SCE  
TH6  
100  
fos  
1. Fframe = --------  
960  
2. All timing values are valid within the operating supply voltage and ambient temperature ranges and referenced to V and  
IL  
V
with an input voltage swing of V to V  
SS DD  
IH  
3. Cb is the capacitive load for each bus line.  
4. For bus line loads Cb between 100 and 400pF the timing parameters must be linearly interpolated  
5. is the filtering Capacitor on VLCDOUTT and T (30%-70%) = 10 ns  
C
VLCD  
rise  
fall  
49/61  
Electrical characteristics  
Figure 47. RESET timing diagram  
STE2002  
Tw(res)  
Tlogic(res)  
VDD2  
VDD1  
RES  
INPUTS  
I/O  
(HOST)  
I/O  
(DRIVER)  
Hi-Z  
Hi-Z  
INTERFACE  
OUTPUT  
OSCIN  
(HOST)  
OSC OUT  
(DRIVER)  
BSY FLG  
RESET  
TABLE  
LOADED  
LR0118  
2
Figure 48. I C-bus timings  
Sr  
Sr P  
t
t
rDA  
fDA  
SDAH  
SCLH  
t
HD;DAT  
t
HD;STA  
t
SU;DAT  
t
SU;STA  
t
fCL  
t
t
t
rCL1  
rCL  
rCL1  
(1)  
(1)  
t
t
t
t
LOW HIGH  
HIGH LOW  
D00IN1153  
=
=
MCS current source pull-up  
Rp resistor pull-up  
50/61  
STE2002  
Pad coordinates  
Figure 49. Parallel interface write timing  
PD/C  
t
t
W(en)  
SU(A)  
t
h(A)  
E
t
t
SU(D) HO(D)  
t
CY(en)  
DB0-DB7  
R/W  
WRITE  
Figure 50. Parallel interface read timing  
PD/C  
Don't Care  
t
t
W(en)  
SU(A)  
t
h(A)  
E
t
HOR(D)  
t
SUR(D)  
t
CY(en)  
DB0-DB7  
R/W  
READ  
Figure 51. Serial interface timing  
t
S2  
t
H2  
t
PWH2  
CS  
t
S3  
t
H3  
D/C  
t
CYC  
t
t
WH1  
PWL1  
t
S2  
SCLK  
SDIN  
SOUT  
t
S4  
t
H4  
t
H6  
t
S5  
t
H5  
LR0001  
7
Pad coordinates  
See Table 28: Pad coordinates and Table 29: Alignment marks coordinates.  
51/61  
Pad coordinates  
STE2002  
Table 28. Pad coordinates  
Name  
Pad  
X (µm)  
Y(µm)  
Name  
Pad  
X (µm)  
Y(µm)  
C0  
C1  
1
-3275.0  
-3225.0  
-3175.0  
-3125.0  
-3075.0  
-3025.0  
-2975.0  
-2925.0  
-2875.0  
-2825.0  
-2775.0  
-2725.0  
-2675.0  
-2625.0  
-2575.0  
-2525.0  
-2475.0  
-2425.0  
-2375.0  
-2325.0  
-2275.0  
-2225.0  
-2175.0  
-2125.0  
-2075.0  
-2025.0  
-1975.0  
-1925.0  
-1875.0  
-1825.0  
-1775.0  
-1725.0  
-1675.0  
-1625.0  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
C34  
C35  
C36  
C37  
C38  
C39  
C40  
C41  
C42  
C43  
C44  
C45  
C46  
C47  
C48  
C49  
C50  
C51  
C52  
C53  
C54  
C55  
C56  
C57  
C58  
C59  
C60  
C61  
C62  
C63  
C64  
C65  
C66  
C67  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
-1575.0  
-1525.0  
-1475.0  
-1425.0  
-1375.0  
-1325.0  
-1275.0  
-1225.0  
-1175.0  
-1125.0  
-1075.0  
-1025.0  
-975.0  
-925.0  
-875.0  
-825.0  
-775.0  
-725.0  
-675.0  
-625.0  
-575.0  
-525.0  
-475.0  
-425.0  
-375.0  
-325.0  
-275.0  
-225.0  
-175.0  
-125.0  
+125.0  
+175.0  
+225.0  
+275.0  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
2
C2  
3
C3  
4
C4  
5
C5  
6
C6  
7
C7  
8
C8  
9
C9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C32  
C33  
52/61  
STE2002  
Pad coordinates  
Table 28. Pad coordinates (continued)  
Name  
Pad  
X (µm)  
Y(µm)  
Name  
Pad  
X (µm)  
Y(µm)  
C68  
C69  
C70  
C71  
C72  
C73  
C74  
C75  
C76  
C77  
C78  
C79  
C80  
C81  
C82  
C83  
C84  
C85  
C86  
C87  
C88  
C89  
C90  
C91  
C92  
C93  
C94  
C95  
C96  
C97  
C98  
C99  
C100  
C101  
C102  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
+325.0  
+375.0  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
C103  
C104  
C105  
C106  
C107  
C108  
C109  
C110  
C111  
C112  
C113  
C114  
C115  
C116  
C117  
C118  
C119  
C120  
C121  
C122  
C123  
C124  
C125  
C126  
C127  
R40  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
+2075.0  
+2125.0  
+2175.0  
+2225.0  
+2275.0  
+2325.0  
+2375.0  
+2425.0  
+2475.0  
+2525.0  
+2575.0  
+2625.0  
+2675.0  
+2725.0  
+2775.0  
+2825.0  
+2875.0  
+2925.0  
+2975.0  
+3025.0  
+3075.0  
+3125.0  
+3175.0  
+3225.0  
+3275.0  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-946.5  
-875.0  
-825.0  
-775.0  
-725.0  
-675.0  
-625.0  
-575.0  
-525.0  
-475.0  
-425.0  
+425.0  
+475.0  
+525.0  
+575.0  
+625.0  
+675.0  
+725.0  
+775.0  
+825.0  
+875.0  
+925.0  
+975.0  
+1025.0  
+1075.0  
+1125.0  
+1175.0  
+1225.0  
+1275.0  
+1325.0  
+1375.0  
+1425.0  
+1475.0  
+1525.0  
+1575.0  
+1625.0  
+1675.0  
+1725.0  
+1775.0  
+1825.0  
+1875.0  
+1925.0  
+1975.0  
+2025.0  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
53/61  
Pad coordinates  
STE2002  
Table 28. Pad coordinates (continued)  
Name  
Pad  
X (µm)  
Y(µm)  
Name  
Pad  
X (µm)  
Y(µm)  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
R65  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
-375.0  
-325.0  
-275.0  
-225.0  
-175.0  
-125.0  
-75.0  
TEST_4  
TEST_5  
TEST_6  
TEST_7  
TEST_8  
TEST_9  
TEST_10  
VSSAUX  
SA1  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
+2675.0  
+2625.0  
+2575.0  
+2525.0  
+2475.0  
+2425.0  
+2375.0  
+2225.0  
+2175.0  
+2125.0  
+2075.0  
+2025.0  
+1975.0  
+1925.0  
+1875.0  
+1825.0  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
-25.0  
+25.0  
+75.0  
SA0  
+125.0  
+175.0  
+225.0  
+275.0  
+325.0  
+375.0  
EXT  
SEL2  
SEL1  
ICON_MODE  
OSC_IN  
VDD1_1  
R66  
155  
+3571.5  
+425.0  
VDD1_2  
189  
+1825.0  
+839.5  
R67  
R68  
R69  
R70  
R71  
R72  
R73  
R74  
R75  
R76  
R77  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3571.5  
+3275.0  
+3225.0  
+475.0  
+525.0  
+575.0  
+625.0  
+675.0  
+725.0  
+775.0  
+825.0  
+875.0  
+946.5  
+946.5  
VDD1_3  
VDD1_4  
VDD1_5  
VDD1_6  
VDD1_7  
VDD1_8  
VDD1_9  
VDD1_10  
VDD1_11  
VDD1_12  
VDD2_1  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
+1775.0  
+1775.0  
+1725.0  
+1725.0  
+1675.0  
+1675.0  
+1625.0  
+1625.0  
+1575.0  
+1575.0  
+1525.0  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
R78  
167  
+3175.0  
+946.5  
VDD2_2  
201  
+1525.0  
+839.5  
R79  
168  
169  
170  
171  
172  
+3125.0  
+3075.0  
+2825.0  
+2775.0  
+2725.0  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
VDD2_3  
VDD2_4  
VDD2_5  
VDD2_6  
VDD2_7  
202  
203  
204  
205  
206  
+1475.0  
+1475.0  
+1425.0  
+1425.0  
+1375.0  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
R80/ICON  
TEST_1  
TEST_2  
TEST_3  
54/61  
STE2002  
Pad coordinates  
Table 28. Pad coordinates (continued)  
Name  
Pad  
X (µm)  
Y(µm)  
Name  
Pad  
X (µm)  
Y(µm)  
VDD2_8  
VDD2_9  
VDD2_10  
VDD2_11  
VDD2_12  
BUSY_FLAG  
SDOUT  
SDIN  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
+1375.0  
+1325.0  
+1325.0  
+1275.0  
+1275.0  
+1125.0  
+975.0  
+925.0  
+875.0  
+825.0  
+775.0  
+625.0  
+575.0  
+525.0  
+475.0  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
VSS_6  
VSS_7  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
-1075.0  
-1125.0  
-1125.0  
-1175.0  
-1175.0  
-1225.0  
-1225.0  
-1275.0  
-1275.0  
-1325.0  
-1325.0  
-1375.0  
-1375.0  
-1425.0  
-1425.0  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
VSS_8  
VSS_9  
VSS_10  
VSS_11  
VSS_12  
VSS_13  
VSS_14  
VSS_15  
VSS_16  
VSS_17  
VSS_18  
VSS_19  
VSS_20  
SD/C  
SCE  
SCLK  
VSSAUX  
R/W  
D7  
D6  
D5  
D4  
D3  
222  
223  
224  
+425.0  
+375.0  
+325.0  
+946.5  
+946.5  
+946.5  
TEST_11  
TEST_12  
TEST_13  
256  
257  
258  
-1475.0  
-1525.0  
-1575.0  
+946.5  
+946.5  
+946.5  
D2  
D1  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
+275.0  
+225.0  
+175.0  
+125.0  
+75.0  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
TEST_14  
OSC_OUT  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
-1625.0  
-2175.0  
-2325.0  
-2325.0  
-2375.0  
-2375.0  
-2425.0  
-2425.0  
-2475.0  
-2475.0  
-2525.0  
-2525.0  
-2575.0  
-2575.0  
-2625.0  
-2625.0  
+946.5  
+946.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
D0  
VLCDIN_1  
PD/C  
VLCDIN_2  
E
VLCDIN_3  
RES  
-75.0  
VLCDIN_4  
VSSAUX  
SDA_OUT  
SDA_OUT  
SDA_IN  
SCL  
-225.0  
-275.0  
-325.0  
-375.0  
-425.0  
-975.0  
-975.0  
-1025.0  
-1025.0  
-1075.0  
VLCDIN_5  
VLCDIN_6  
VLCDIN_7  
VLCDIN_8  
VLCDIN_9  
VSS_1  
VSS_2  
VSS_3  
VSS_4  
VSS_5  
VLCDIN_10  
VLCDSENSE_1  
VLCDSENSE_2  
VLCDOUT_1  
VLCDOUT_2  
55/61  
Pad coordinates  
STE2002  
Table 28. Pad coordinates (continued)  
Name  
Pad  
X (µm)  
Y(µm)  
Name  
Pad  
X (µm)  
Y(µm)  
VLCDOUT_3  
VLCDOUT_4  
VLCDOUT_5  
VLCDOUT_6  
VLCDOUT_7  
VLCDOUT_8  
VLCDOUT_9  
275  
276  
277  
278  
279  
280  
281  
-2675.0  
-2675.0  
-2725.0  
-2725.0  
-2775.0  
-2775.0  
-2825.0  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
+839.5  
+946.5  
R13  
R12  
R11  
R10  
R9  
309  
310  
311  
312  
313  
314  
315  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-175.0  
-225.0  
-275.0  
-325.0  
-375.0  
-425.0  
-475.0  
R8  
R7  
VLCDOUT_10  
R39  
282  
283  
-2825.0  
-3075.0  
+839.5  
+946.5  
R6  
316  
-3571.5  
-525.0  
-575.0  
R5  
317  
-3571.5  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R31  
R30  
R29  
R28  
R27  
R26  
R25  
R24  
R23  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
-3125.0  
-3175.0  
-3225.0  
-3275.0  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
+946.5  
+946.5  
+946.5  
+946.5  
+875.0  
+825.0  
+775.0  
+725.0  
+675.0  
+625.0  
+575.0  
+525.0  
+475.0  
+425.0  
+375.0  
+325.0  
R4  
R3  
318  
319  
320  
321  
322  
323  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
-625.0  
-675.0  
-725.0  
-775.0  
-825.0  
-875.0  
R2  
R1  
R0  
ICON  
R22  
300  
-3571.5  
+275.0  
R21  
R20  
R19  
R18  
301  
302  
303  
304  
-3571.5  
-3571.5  
-3571.5  
-3571.5  
+225.0  
+175.0  
+125.0  
+75.0  
R17  
305  
-3571.5  
+25.0  
R16  
R15  
306  
-3571.5  
-25.0  
-75.0  
307  
-3571.5  
56/61  
STE2002  
Pad coordinates  
Marks  
Table 29. Alignment marks coordinates  
X
Y
-3574.5  
+3574.5  
-2250  
-949.5  
-949.5  
+949.5  
+949.5  
mark1  
mark2  
mark3  
mark4  
+1200  
Figure 52. Alignment marks dimensions  
39 µm  
94 µm  
57/61  
Mechanical data  
STE2002  
8
Mechanical data  
Table 30. Bumps  
Bump number  
Dimensions  
1-187  
212-235  
256-260  
283-323  
Bumps on single row size  
Bumps on two rows size  
30µm x 98 µm x 17.5  
188-211  
236-255  
261-282  
30µm x 87 µm x 17.5  
Pad size  
1-323  
1-323  
1-323  
43µm x 107µm  
50µm  
Pad pitch  
Spacing between bumps  
20µm  
Table 31. Die mechanical dimensions  
Die size  
2.07mm x 7.32mm  
Wafers thickness  
500µm  
Figure 53. Die orientation in tray  
DIE IDENTIFICATION  
Mark 3  
Mark 4  
Mark 2  
STE2002  
Mark 1  
58/61  
STE2002  
Mechanical data  
Figure 54. Tray information  
A
A
Array Size = 13 x5 (65) Units  
59/61  
Ordering information  
STE2002  
9
Ordering information  
Table 32. Order codes  
Part numbers  
Type  
STE2002DIE1  
STE2002DIE2  
Bumped wafers  
Bumped dice on waffle pack  
10  
Revision history  
Table 33. Document revision history  
Date  
Revision  
Changes  
15-Sep-2002  
1
Initial release.  
Updated suppy current values, LCD supply voltage accuracy, Internal  
Oscillator frequency range  
15-Sep- 2005  
12-Dec-2006  
2
3
Reviewed the Junction operating temperature range in Table 25:  
Absolute maximum ratings and added a footnote.  
60/61  
STE2002  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
61/61  

相关型号:

STE2004

102 X 65 SINGLE CHIP LCD CONTROLLER / DRIVER
STMICROELECTR

STE2004DIE1

102 X 65 SINGLE CHIP LCD CONTROLLER / DRIVER
STMICROELECTR

STE2004DIE2

102 X 65 SINGLE CHIP LCD CONTROLLER / DRIVER
STMICROELECTR

STE2004S

102 x 65 single-chip LCD controller/driver
STMICROELECTR

STE2004SDIE2

102 x 65 single-chip LCD controller/driver
STMICROELECTR

STE2007

96 x 68 Single-chip LCD controller/driver
STMICROELECTR

STE2007DIE2

96 x 68 Single-chip LCD controller/driver
STMICROELECTR

STE2007_06

96 x 68 Single-chip LCD controller/driver
STMICROELECTR

STE2028

162 x 130 RGB single-chip true 262k color LCD controller driver
STMICROELECTR

STE2028D3

162 x 130 RGB single-chip true 262k color LCD controller driver
STMICROELECTR

STE2102

240x320RGB single-chip true 262K colors ramless LCD controller/driver
STMICROELECTR

STE2102D3

240x320RGB single-chip true 262K colors ramless LCD controller/driver
STMICROELECTR