VND7004AY [STMICROELECTRONICS]

Double channel high-side driver with MultiSense analog feedback for automotive applications;
VND7004AY
型号: VND7004AY
厂家: ST    ST
描述:

Double channel high-side driver with MultiSense analog feedback for automotive applications

文件: 总47页 (文件大小:2999K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VND7004AY  
Double channel high-side driver with MultiSense analog  
feedback for automotive applications  
Datasheet - production data  
Configurable latch-off on  
overtemperature or power limitation  
with dedicated fault reset pin  
Loss of ground and loss of VCC  
Reverse battery with self switch of the  
PowerMOS  
Electrostatic discharge protection  
Applications  
Features  
Specially intended for Automotive smart power  
distribution, glow plugs, heating systems, DC  
motors, relay replacement and high power  
resistive and inductive actuators.  
Max transient supply voltage  
Operating voltage range  
Typ. on-state resistance (per Ch)  
Current limitation (typ)  
VCC  
VCC  
40 V  
4 to 28 V  
4 mΩ  
RON  
ILIMH  
ISTBY  
100 A  
Description  
Standby current (max)  
0.5 µA  
The device is a double channel high-side driver  
manufactured using ST proprietary VIPower®  
M0-7 technology and housed in PowerSSO-36  
package. The device is designed to drive 12 V  
automotive grounded loads through a 3 V and  
5 V CMOS-compatible interface, providing  
protection and diagnostics.  
AEC-Q100 qualified  
General  
Double channel smart high-side driver  
with MultiSense analog feedback  
Very low standby current  
Compatible with 3 V and 5 V CMOS  
outputs  
The device integrates advanced protective  
functions such as load current limitation, overload  
active management by power limitation and  
overtemperature shutdown with configurable  
latch-off.  
MultiSense diagnostic functions  
Multiplexed analog feedback of: load  
current with high precision proportional  
current mirror, VCC supply voltage and  
TCHIP device temperature  
A FaultRST pin unlatches the output in case of  
fault or disables the latch-off functionality.  
Overload and short to ground (power  
limitation) indication  
A dedicated multifunction multiplexed analog  
output pin delivers sophisticated diagnostic  
functions including high precision proportional  
load current sense, supply voltage feedback and  
chip temperature sense, in addition to the  
detection of overload and short circuit to ground,  
short to VCC and OFF-state open-load.  
Thermal shutdown indication  
OFF-state open-load detection  
Output short to VCC detection  
Sense enable/disable  
Protections  
Undervoltage shutdown  
Overvoltage clamp  
Load current limitation  
Self limiting of fast thermal transients  
A sense enable pin allows OFF-state diagnosis to  
be disabled during the module low-power mode  
as well as external sense resistor sharing among  
similar devices.  
November 2016  
DocID027772 Rev 9  
1/47  
www.st.com  
This is information on a product in full production.  
Contents  
VND7004AY  
Contents  
1
2
Block diagram and pin description................................................5  
Electrical specification....................................................................7  
2.1  
2.2  
2.3  
2.4  
2.5  
Absolute maximum ratings................................................................7  
Thermal data.....................................................................................8  
Main electrical characteristics ...........................................................8  
Waveforms......................................................................................20  
Electrical characteristics curves ......................................................22  
3
4
Protections.....................................................................................26  
3.1  
3.2  
3.3  
3.4  
Power limitation...............................................................................26  
Thermal shutdown...........................................................................26  
Current limitation.............................................................................26  
Negative voltage clamp...................................................................26  
Application information ................................................................27  
4.1  
4.2  
4.3  
4.4  
GND protection network against reverse battery.............................27  
Immunity against transient electrical disturbances..........................28  
MCU I/Os protection........................................................................28  
Multisense - analog current sense ..................................................29  
4.4.1  
4.4.2  
4.4.3  
Principle of Multisense signal generation......................................... 30  
TCASE and VCC monitor................................................................. 32  
Short to VCC and OFF-state open-load detection ........................... 33  
5
Package and PCB thermal data....................................................34  
5.1  
PowerSSO-36 thermal data ............................................................34  
6
7
Maximum demagnetization energy (VCC = 16 V)........................38  
Package information .....................................................................39  
7.1  
7.2  
7.3  
PowerSSO-36 package information................................................39  
PowerSSO-36 packing information .................................................41  
PowerSSO-36 marking information.................................................43  
8
9
Order codes ...................................................................................44  
Revision history ............................................................................45  
2/47  
DocID027772 Rev 9  
VND7004AY  
List of tables  
List of tables  
Table 1: Pin functions .................................................................................................................................5  
Table 2: Suggested connections for unused and not connected pins........................................................6  
Table 3: Absolute maximum ratings ...........................................................................................................7  
Table 4: Thermal data.................................................................................................................................8  
Table 5: Power section ...............................................................................................................................8  
Table 6: Switching.....................................................................................................................................10  
Table 7: Logic inputs.................................................................................................................................10  
Table 8: Protections..................................................................................................................................11  
Table 9: MultiSense ..................................................................................................................................12  
Table 10: Truth table.................................................................................................................................19  
Table 11: MultiSense multiplexer addressing...........................................................................................19  
Table 12: ISO 7637-2 - electrical transient conduction along supply line.................................................28  
Table 13: MultiSense pin levels in off-state ..............................................................................................32  
Table 14: PCB properties .........................................................................................................................35  
Table 15: Thermal parameters .................................................................................................................37  
Table 16: PowerSSO-36 mechanical data................................................................................................39  
Table 17: Reel dimensions .......................................................................................................................41  
Table 18: PowerSSO-36 carrier tape dimensions ....................................................................................42  
Table 19: Device summary.......................................................................................................................44  
Table 20: Document revision history ........................................................................................................45  
DocID027772 Rev 9  
3/47  
List of figures  
VND7004AY  
List of figures  
Figure 1: Block diagram..............................................................................................................................5  
Figure 2: Configuration diagram (top view).................................................................................................6  
Figure 3: Current and voltage conventions.................................................................................................7  
Figure 4: Switching time and Pulse skew .................................................................................................17  
Figure 5: MultiSense timings (current sense mode).................................................................................17  
Figure 6: Multisense timings (chip temperature and VCC sense mode) ..................................................18  
Figure 7: TDSTKON..................................................................................................................................18  
Figure 8: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD) ........................20  
Figure 9: Latch functionality - behavior in hard short circuit condition......................................................20  
Figure 10: Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off)....21  
Figure 11: Standby mode activation .........................................................................................................21  
Figure 12: Standby state diagram.............................................................................................................22  
Figure 13: OFF-state output current .........................................................................................................22  
Figure 14: Standby current .......................................................................................................................22  
Figure 15: IGND(ON) vs. Iout ...................................................................................................................22  
Figure 16: Logic Input high level voltage ..................................................................................................22  
Figure 17: Logic Input low level voltage....................................................................................................23  
Figure 18: High level logic input current ...................................................................................................23  
Figure 19: Low level logic input current ....................................................................................................23  
Figure 20: Logic Input hysteresis voltage .................................................................................................23  
Figure 21: FaultRST Input clamp voltage .................................................................................................23  
Figure 22: Undervoltage shutdown...........................................................................................................23  
Figure 23: On-state resistance vs. Tcase.................................................................................................24  
Figure 24: On-state resistance vs. VCC ...................................................................................................24  
Figure 25: Turn-on voltage slope..............................................................................................................24  
Figure 26: Turn-off voltage slope..............................................................................................................24  
Figure 27: Won vs. Tcase.........................................................................................................................24  
Figure 28: Woff vs. Tcase.........................................................................................................................24  
Figure 29: OFF-state open-load voltage detection threshold ...................................................................25  
Figure 30: Vsense clamp vs. Tcase..........................................................................................................25  
Figure 31: Vsenseh vs. Tcase ..................................................................................................................25  
Figure 32: Application diagram.................................................................................................................27  
Figure 33: Simplified internal structure .....................................................................................................27  
Figure 34: MultiSense and diagnostic block diagram............................................................................29  
Figure 35: MultiSense block diagram .......................................................................................................30  
Figure 36: Analogue HSD open-load detection in off-state ...................................................................31  
Figure 37: Open-load / short to VCC condition.........................................................................................32  
Figure 38: GND voltage shift ....................................................................................................................33  
Figure 39: PowerSSO-36 PC board .........................................................................................................34  
Figure 40: Rthj-amb vs PCB copper area in open box free air conditions ...............................................35  
Figure 41: PowerSSO-36 thermal impedance junction ambient single pulse ..........................................36  
Figure 42: Thermal fitting model for PowerSSO-36..................................................................................36  
Figure 43: Maximum turn off current versus inductance ..........................................................................38  
Figure 44: PowerSSO-36 package outline ...............................................................................................39  
Figure 45: PowerSSO-36 reel 13" ............................................................................................................41  
Figure 46: PowerSSO-36 carrier tape ......................................................................................................42  
Figure 47: PowerSSO-36 schematic drawing of leader and trailer tape ..................................................43  
Figure 48: PowerSSO-36 marking information.........................................................................................43  
4/47  
DocID027772 Rev 9  
VND7004AY  
Block diagram and pin description  
1
Block diagram and pin description  
Figure 1: Block diagram  
VCC  
Internal supply  
VCC GND  
Clamp  
Undervoltage  
shut-down  
CH1  
Channe l 1  
Control & Diagno stic  
VCC OUT  
Clamp  
Channe l 0  
CH0  
FaultRST  
INPUT  
1
Gate Driver  
INPUT0  
OUTPUT  
1
SEL  
1
T
V
CC  
SEL  
0
Current  
Limitation  
SEn  
Power Limitation  
Overtemperature  
T
Multisense  
Short to VCC  
Open-Loadin OFF  
Current  
Sense  
0
Fault  
VSENSEH  
GND  
OUTPUT  
0
Table 1: Pin functions  
Function  
Name  
VCC  
Battery connection.  
OUTPUT0,1 Power output.  
GND  
Ground connection.  
Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS  
outputs. They control output switch state.  
INPUT0,1  
Multiplexed analog sense output pin; it delivers a current proportional to the selected  
diagnostic: load current, supply voltage or chip temperature.  
MultiSense  
SEn  
Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense  
diagnostic pin.  
Active high compatible with 3 V and 5 V CMOS outputs pin; they address the  
MultiSense multiplexer.  
SEL0,1  
Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in  
case of fault; If kept low, sets the outputs in auto-restart mode  
FaultRST  
DocID027772 Rev 9  
5/47  
Block diagram and pin description  
VND7004AY  
Figure 2: Configuration diagram (top view)  
OUTPUT0  
OUTPUT0  
OUTPUT0  
OUTPUT0  
OUTPUT0  
OUTPUT0  
OUTPUT0  
OUTPUT0  
OUTPUT0  
OUTPUT0  
N.C.  
OUTPUT1  
1
2
3
4
5
6
7
36  
35  
34  
33  
32  
31  
30  
OUTPUT1  
OUTPUT1  
OUTPUT1  
OUTPUT1  
OUTPUT1  
OUTPUT1  
OUTPUT1  
OUTPUT1  
OUTPUT1  
N.C.  
TAB/Vcc  
8
9
10  
11  
12  
29  
28  
27  
26  
25  
N.C.  
N.C.  
13  
14  
15  
16  
24  
23  
22  
21  
N.C.  
SEn  
N.C.  
SEL1  
N.C.  
INPUT1  
INPUT0  
MultiSense  
GND  
SEL0 17  
18  
20  
19  
N.C.  
FaultRST  
PowerSSO-36  
Table 2: Suggested connections for unused and not connected pins  
SEn, SELx,  
FaultRST  
Connection /  
pin  
MultiSense  
N.C.  
Output  
Input  
Floating  
Not allowed  
X (1)  
X
X
X
X
Through 1 kΩ  
Not  
allowed  
Through 10 kΩ  
Through 10 kΩ  
To ground  
resistor  
resistor  
resistor  
Notes:  
(1)X: do not care.  
6/47  
DocID027772 Rev 9  
 
VND7004AY  
Electrical specification  
2
Electrical specification  
Figure 3: Current and voltage conventions  
IS  
VCC  
VCC  
VFn  
IFR  
IOUT  
FaultRST  
SEn  
OUTPUT0,1  
MultiSense  
ISEn  
VOUT  
ISENSE  
ISEL  
SEL0,1  
VSENSE  
IIN  
INPUT0,1  
IGND  
GAPGCFT00315  
VF = VOUT - VCC when VOUT > VCC and INPUT = LOW.  
2.1  
Absolute maximum ratings  
Stressing the device above the rating listed in Table 3: "Absolute maximum ratings" may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to the conditions in table below for extended  
periods may affect device reliability.  
Table 3: Absolute maximum ratings  
Symbol  
VCC  
Parameter  
Value  
38  
Unit  
DC supply voltage  
V
-VCC  
Reverse DC supply voltage  
16  
Maximum transient supply voltage (ISO 7637-2:2004 Pulse 5b  
level IV clamped to 40 V; RL = 4 Ω)  
VCCPK  
40  
V
VCCJS  
-IGND  
Maximum jump start voltage for single pulse short circuit protection  
DC reverse ground pin current  
28  
V
200  
mA  
Internally  
limited  
IOUT  
OUTPUT0,1 DC output current  
A
-IOUT  
IIN  
Reverse DC output current  
INPUT0,1 DC input current  
SEn DC input current  
65  
-1 to 10  
7.5  
ISEn  
ISEL  
IFR  
mA  
SEL0,1 DC input current  
FaultRST DC input current  
FaultRST DC input voltage  
VFR  
V
DocID027772 Rev 9  
7/47  
 
Electrical specification  
VND7004AY  
Symbol  
Parameter  
Value  
Unit  
MultiSense pin DC output current (VGND = VCC and VSENSE < 0 V)  
MultiSense pin DC output current in reverse (VCC < 0 V)  
10  
ISENSE  
mA  
-20  
Maximum switching energy (single pulse) (TDEMAG = 0.4 ms;  
Tjstart = 150 °C)  
EMAX  
103  
mJ  
Electrostatic discharge (JEDEC 22A-114F)  
4000  
2000  
4000  
4000  
4000  
V
V
V
V
V
INPUT0,1  
MultiSense  
SEn, SEL0,1, FaultRST  
OUTPUT0,1  
VCC  
VESD  
VESD  
Tj  
Charge device model (CDM-AEC-Q100-011)  
Junction operating temperature  
Storage temperature  
750  
V
-40 to 150  
-55 to 150  
°C  
Tstg  
2.2  
Thermal data  
Table 4: Thermal data  
Parameter  
Symbol  
Typ. value  
3.4  
Unit  
Rthj-board  
Rthj-amb  
Rthj-amb  
Thermal resistance junction-board (1)  
Thermal resistance junction-ambient (JEDEC JESD 51-5)(1)(2)  
Thermal resistance junction-ambient (JEDEC JESD 51-7)(1)(3)  
50.6  
°C/W  
15.8  
Notes:  
(1)One channel ON.  
(2)Device mounted on two-layers 2s0p PCB with 2 cm2 heatsink copper trace  
(3)Device mounted on four-layers 2s2p PCB  
2.3  
Main electrical characteristics  
7 V < VCC < 28 V; -40°C < Tj < 150°C, unless otherwise specified.  
All typical values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.  
Table 5: Power section  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
Operating supply  
voltage  
VCC  
4
13  
28  
4
V
V
V
V
Undervoltage  
shutdown  
VUSD  
Undervoltage  
shutdown reset  
VUSDReset  
VUSDhyst  
5
Undervoltage  
shutdown hysteresis  
0.3  
4
IOUT = 15 A; Tj = 25°C  
RON  
On-state resistance(1)  
IOUT = 15 A; Tj = 150°C  
8
6
mΩ  
IOUT = 15 A; VCC = 4 V; Tj = 25°C  
8/47  
DocID027772 Rev 9  
 
VND7004AY  
Electrical specification  
Symbol  
RON_REV  
Vclamp  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
On-state resistance in  
reverse battery  
IOUT = -15 A; VCC = -13 V;  
Tj = 25°C  
mΩ  
4
Clamp voltage  
IS = 20 mA; 25°C < Tj < 150°C  
41  
46  
52  
V
VCC = 13 V;  
VIN = VOUT = VFR = VSEn = 0 V;  
VSEL0,1 = 0 V; Tj = 25°C  
0.5  
Supply current in  
standby at  
VCC = 13 V(2)  
VCC = 13 V;  
VIN = VOUT = VFR = VSEn = 0 V;  
VSEL0,1 = 0 V; Tj = 85°C  
ISTBY  
1.9  
15  
µA  
(3)  
VCC = 13 V;  
VIN = VOUT = VFR = VSEn = 0 V;  
VSEL0,1 = 0 V; Tj = 125°C  
VCC = 13 V;  
VIN = VOUT = VFR = VSEL0,1 = 0 V;  
VSEn = 5 V to 0 V  
Standby mode  
blanking time  
tD_STBY  
60  
300  
6
550  
µs  
VCC = 13 V;  
VSEn = VFR = VSEL0,1 = 0 V;  
VIN0 = 5 V; VIN1 = 5 V;  
IS(ON)  
Supply current  
12  
12  
mA  
IOUT0 = 0 A; IOUT1 = 0 A  
Control stage current  
consumption in ON  
state. All channels  
active.  
VCC = 13 V; VSEn = 5 V;  
VFR = VSEL0,1 = 0 V; VIN0 = 5 V;  
VIN1 = 5 V; IOUT0,1 = 15 A  
IGND(ON)  
mA  
VIN = VOUT = 0 V; VCC = 13 V;  
Tj = 25°C  
0
0
0.01  
0.5  
7.5  
0.7  
Off-state output  
current (2)  
IL(off)  
µA  
V
VIN = VOUT = 0 V; VCC = 13 V;  
Tj = 125°C  
Output - VCC diode  
voltage  
VF  
IOUT = -15 A; Tj = 150°C  
Notes:  
(1)For each channel  
(2)PowerMOS leakage included.  
(3)Parameter specified by design; not subjected to production test.  
DocID027772 Rev 9  
9/47  
 
 
Electrical specification  
VND7004AY  
Table 6: Switching  
VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified  
Test  
conditions  
Symbol  
Parameter  
Turn-on delay time  
Min. Typ. Max. Unit  
(1)  
td(on)  
60  
50  
110  
100  
195  
160  
RL = 0.87 Ω  
µs  
(1)  
td(off)  
Turn-off delay time  
(1)  
(1)  
(dVOUT/dt)on  
(dVOUT/dt)off  
Turn-on voltage slope  
0.05 0.21 0.35  
0.05 0.21 0.35  
RL = 0.87 Ω  
RL = 0.87 Ω  
V/µs  
mJ  
Turn-off voltage slope  
Switching energy losses at turn-on  
WON  
2.3  
3.7(2)  
(twon  
Switching energy losses at turn-off  
(twoff  
Differential pulse skew (tPHL - tPLH  
)
WOFF  
RL = 0.87 Ω  
RL = 0.87 Ω  
2.5  
-45  
4.5(2)  
20  
mJ  
µs  
)
(1)  
tSKEW  
)
-110  
Notes:  
(1)See Figure 4: "Switching time and Pulse skew".  
(2)Parameter guaranteed by design and characterization; not subjected to production test.  
Table 7: Logic inputs  
7 V < VCC < 28 V; -40°C < Tj < 150°C  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
INPUT0,1 characteristics  
VIL  
IIL  
Input low level voltage  
0.9  
V
µA  
V
Low level input current  
Input high level voltage  
High level input current  
Input hysteresis voltage  
VIN = 0.9 V  
VIN = 2.1 V  
1
VIH  
2.1  
IIH  
10  
µA  
V
VI(hyst)  
0.2  
5.3  
IIN = 1 mA  
IIN = -1 mA  
7.2  
VICL  
Input clamp voltage  
V
-0.7  
FaultRST characteristics  
VFRL  
IFRL  
VFRH  
IFRH  
Input low level voltage  
0.9  
V
µA  
V
Low level input current  
Input high level voltage  
High level input current  
Input hysteresis voltage  
VIN = 0.9 V  
VIN = 2.1 V  
1
2.1  
10  
µA  
V
VFR(hyst)  
0.2  
5.3  
IIN = 1 mA  
IIN = -1 mA  
7.5  
VFRCL  
Input clamp voltage  
V
-0.7  
SEL0,1 characteristics (7 V < VCC < 18 V)  
VSELL  
ISELL  
VSELH  
ISELH  
Input low level voltage  
Low level input current  
Input high level voltage  
High level input current  
0.9  
10  
V
µA  
V
VIN = 0.9 V  
VIN = 2.1 V  
1
2.1  
µA  
10/47  
DocID027772 Rev 9  
 
 
VND7004AY  
7 V < VCC < 28 V; -40°C < Tj < 150°C  
Electrical specification  
Symbol  
Parameter  
Test conditions  
Min.  
0.2  
Typ.  
Max.  
Unit  
VSEL(hyst)  
Input hysteresis voltage  
V
IIN = 1 mA  
IIN = -1 mA  
5.3  
7.2  
VSELCL  
Input clamp voltage  
V
-0.7  
SEn characteristics (7 V < VCC < 18 V)  
VSEnL  
ISEnL  
VSEnH  
ISEnH  
Input low level voltage  
Low level input current  
Input high level voltage  
High level input current  
Input hysteresis voltage  
0.9  
V
µA  
V
VIN = 0.9 V  
VIN = 2.1 V  
1
2.1  
10  
µA  
V
VSEn(hyst)  
0.2  
5.3  
IIN = 1 mA  
IIN = -1 mA  
7.2  
VSEnCL  
Input clamp voltage  
V
-0.7  
Table 8: Protections  
Test conditions  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
Symbol  
Parameter  
Min.  
Typ.  
Max. Unit  
VCC = 13 V  
70  
100  
DC short circuit  
current  
ILIMH  
140  
A
4 V < VCC < 18 V(1)  
VCC = 13 V;  
Short circuit current  
during thermal cycling  
ILIML  
33  
TR < Tj < TTSD  
Shutdown  
temperature  
TTSD  
TR  
150  
175  
200  
Reset temperature(1)  
TRS + 1 TRS + 7  
135  
°C  
Thermal reset of fault  
diagnostic indication  
TRS  
VFR = 0 V; VSEn = 5 V  
Thermal hysteresis  
(TTSD - TR)(1)  
THYST  
7
ΔTJ_SD  
Dynamic temperature Tj = -40°C; VCC = 13 V  
60  
K
VFR = 5 V to 0 V;  
Fault reset time for  
tLATCH_RST  
VSEn = 5 V; VIN = 5 V;  
output unlatch  
3
10  
20  
µs  
VSEL0,1 = 0 V  
IOUT = 2 A; L = 6 mH; Tj = -  
40°C  
VCC  
38  
-
-
V
V
Turn-off output  
voltage clamp  
VDEMAG  
IOUT = 2 A; L = 6 mH;  
Tj = 25°C to 150°C  
VCC  
41  
VCC  
46  
-
VCC  
52  
-
Notes:  
(1)Parameter guaranteed by design and characterization; not subjected to production test.  
DocID027772 Rev 9  
11/47  
 
Electrical specification  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
VND7004AY  
Table 9: MultiSense  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
VSEn = 0 V; ISENSE = 1 mA  
-17  
-12  
MultiSense clamp  
voltage  
VSENSE_CL  
V
VSEn = 0 V; ISENSE = -1 mA  
7
Current sense characteristics  
IOUT = 3.5 A; VSENSE = 4 V;  
VSEn = 5 V  
K1  
IOUT/ISENSE  
1500 14200 31500  
IOUT = 3.5 A; VSENSE = 4 V;  
VSEn = 5 V  
Current sense  
ratio drift  
(1)(2)  
dK1/K1  
-30  
30  
%
%
%
%
IOUT = 10 A; VSENSE = 4 V;  
VSEn = 5 V  
KGP  
dKGP/KGP  
K2  
IOUT/ISENSE  
7990 13900 21050  
IOUT = 10 A; VSENSE = 4 V;  
VSEn = 5 V  
Current sense  
ratio drift  
(1)(2)  
-10  
10  
IOUT = 15 A; VSENSE = 4 V;  
VSEn = 5 V  
IOUT/ISENSE  
9580 13850 19020  
IOUT = 15 A; VSENSE = 4 V;  
VSEn = 5 V  
Current sense  
ratio drift  
(1)(2)  
dK2/K2  
K3  
-7  
7
IOUT = 45 A; VSENSE = 4 V;  
VSEn = 5 V  
IOUT/ISENSE  
11470 13800 15840  
Current sense  
ratio drift  
IOUT = 45 A; VSENSE = 4 V;  
VSEn = 5 V  
(1)(2)  
dK3/K3  
-5  
0
5
MultiSense disabled:  
VSEn = 0 V  
0.5  
0.5  
MultiSense disabled:  
-1 V < VSENSE < 5 V(1)  
-0.5  
MultiSense enabled:  
VSEn = 5 V; All channels  
ON; IOUTX = 0 A; ChX  
diagnostic selected;  
E.g. Ch0:  
0
120  
VIN0 = 5 V;  
VIN1 = 5 V;  
VSEL0 = 0 V;  
VSEL1 = 0 V;  
IOUT0 = 0 A;  
IOUT1 = 15 A  
MultiSense  
leakage current  
ISENSE0  
µA  
MultiSense enabled:  
VSEn = 5 V; ChX OFF; ChX  
diagnostic selected:  
E.g. Ch0:  
0
2
VIN0 = 0 V;  
VIN1 = 5 V;  
VSEL0 = 0 V;  
VSEL1 = 0 V;  
IOUT1 = 15 A  
12/47  
DocID027772 Rev 9  
VND7004AY  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
Electrical specification  
Symbol  
Parameter  
Test conditions  
VSEn = 5 V;  
Min.  
Typ.  
Max.  
Unit  
RSENSE = 2.7 kΩ;  
Output Voltage for  
MultiSense  
shutdown  
E.g. Ch0:  
(1)  
VOUT_MSD  
5
V
VIN0 = 5 V;  
VSEL0 = 0 V;  
VSEL1 = 0 V;  
IOUT0 = 15 A  
VCC = 7 V;  
RSENSE = 2.7 kΩ;  
Multisense  
saturation voltage  
VSENSE_SAT  
VSEn = 5 V; VIN0 = 5 V;  
VSEL0 = 0 V; VSEL1 = 0 V;  
IOUT0 = 45 A; Tj = 150°C  
5
V
VCC = 7 V; VSENSE = 4 V;  
VIN0 = 5 V; VSEn = 5 V;  
VSEL0 = 0 V; VSEL1 = 0 V;  
CS saturation  
current  
(1)  
ISENSE_SAT  
4
mA  
A
Tj = 150°C  
VCC = 7 V; VSENSE = 4 V;  
VIN0 = 5 V; VSEn = 5 V;  
VSEL0 = 0 V; VSEL1 = 0 V;  
Output saturation  
current  
(1)  
IOUT_SAT  
65  
Tj = 150°C  
OFF-state diagnostic  
VSEn = 5 V; ChX OFF;  
OFF-state open-  
ChX diagnostic selected  
load voltage  
detection  
threshold  
E.g: Ch0  
VOL  
2
3
4
V
VIN0 = 0 V;  
VSEL0 = 0 V;  
VSEL1 = 0 V  
VIN = 0 V; VOUT = VOL  
;
OFF-state output  
sink current  
IL(off2)  
-100  
-15  
µA  
Tj = -40°C to 125°C  
VSEn = 5 V; ChX ON to  
OFF transition;  
OFF-state  
ChX diagnostic selected  
diagnostic delay  
time from falling  
edge of INPUT  
(see Figure 7:  
"TDSTKON")  
E.g: Ch0  
tDSTKON  
100  
350  
700  
µs  
µs  
VIN0 = 5 V to 0 V;  
VSEL0 = 0 V;  
VSEL1 = 0 V;  
IOUT0 = 0 A;  
VOUT = 4 V  
Settling time for  
valid OFF-state  
open load  
diagnostic  
indication from  
rising edge of SEn  
VIN0 = 0 V; VIN1 = 0 V;  
VFR = 0 V; VSEL0 = 0 V;  
VSEL1 = 0 V; VOUT0 = 4 V;  
VSEn = 0 V to 5 V  
tD_OL_V  
60  
DocID027772 Rev 9  
13/47  
Electrical specification  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
VND7004AY  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
VSEn = 5 V; ChX OFF;  
ChX diagnostic selected  
OFF-state  
E.g: Ch0  
diagnostic delay  
time from rising  
edge of VOUT  
tD_VOL  
5
30  
µs  
VIN0 = 0 V;  
VSEL0 = 0 V;  
VSEL1 = 0 V;  
VOUT = 0 V to 4 V  
Chip temperature analog feedback  
VSEn = 5 V; VSEL0 = 0 V;  
VSEL1 = 5 V; VIN0,1 = 0 V;  
RSENSE = 1 kΩ; Tj = -40°C  
2.325  
1.985  
1.435  
2.41  
2.07  
2.495  
2.155  
1.605  
V
V
MultiSense output  
VSEn = 5 V; VSEL0 = 0 V;  
VSEL1 = 5 V; VIN0,1 = 0 V;  
RSENSE = 1 kΩ; Tj = 25°C  
voltage  
proportional to  
VSENSE_TC  
chip temperature  
VSEn = 5 V; VSEL0 = 0 V;  
VSEL1 = 5 V; VIN0,1 = 0 V;  
RSENSE = 1 kΩ; Tj = 125°C  
1.52  
-5.5  
V
Temperature  
dVSENSE_TC/dT(1)  
Tj = -40°C to 150°C  
mV/K  
coefficient  
Transfer function  
VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0)  
VCC supply voltage analog feedback  
MultiSense output  
VCC = 13 V; VSEn = 5 V;  
VSEL0 = 5 V; VSEL1 = 5 V;  
voltage  
VSENSE_VCC  
3.16  
3.23  
3.3  
V
proportional to VCC VIN0,1 = 0 V;  
supply voltage  
RSENSE = 1 kΩ  
Transfer function (3)  
VSENSE_VCC = VCC / 4  
Fault diagnostic feedback (see Table 10: "Truth table")  
VCC = 13 V;  
RSENSE = 1 kΩ;  
E.g: Ch0 in open  
load VIN0 = 0 V;  
VSEn = 5 V;  
VSEL0 = 0 V;  
VSEL1 = 0 V;  
IOUT0 = 0 A;  
MultiSense output  
voltage in fault  
condition  
VSENSEH  
5
7
6.6  
30  
V
VOUT = 4 V  
MultiSense output  
current in fault  
condition  
ISENSEH  
VCC = 13 V; VSENSE = 5 V  
20  
mA  
MultiSense timings (current sense mode - see Figure 5: "MultiSense timings (current sense  
mode)")(4)  
Current sense  
VIN = 5 V; VSEn = 0 V to  
tDSENSE1H  
settling time from  
5 V; RSENSE = 1 kΩ;  
60  
µs  
rising edge of SEn RL = 0.87 Ω  
14/47  
DocID027772 Rev 9  
VND7004AY  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
Electrical specification  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
Current sense  
disable delay time  
from falling edge  
of SEn  
VIN = 5 V; VSEn = 5 V to  
0 V; RSENSE = 1 kΩ;  
RL = 0.87 Ω  
tDSENSE1L  
5
20  
µs  
Current sense  
settling time from  
rising edge of  
INPUT  
VIN = 0 V to 5 V;  
VSEn = 5 V;  
RSENSE = 1 kΩ;  
RL = 0.87 Ω  
tDSENSE2H  
ΔtDSENSE2H  
tDSENSE2L  
170  
400  
200  
250  
µs  
µs  
µs  
Current sense  
settling time from  
rising edge of IOUT  
(dynamic  
VIN = 5 V; VSEn = 5 V;  
RSENSE = 1 kΩ; ISENSE  
= 90 % of ISENSEMAX  
;
response to a step RL = 0.87 Ω  
change of IOUT  
)
Current sense  
VIN = 5 V to 0 V;  
VSEn = 5 V;  
RSENSE = 1 kΩ;  
RL = 0.87 Ω  
turn-off delay time  
from falling edge  
of INPUT  
50  
MultiSense timings (chip temperature sense mode - see Figure 6: "Multisense timings (chip  
temperature and VCC sense mode)")(4)  
VSENSE_TC settling  
time from rising  
edge of SEn  
VSEn = 0 V to 5 V;  
VSEL0 = 0 V; VSEL1 = 5 V;  
RSENSE = 1 kΩ  
tDSENSE3H  
60  
20  
µs  
µs  
VSENSE_TC disable  
delay time from  
falling edge of  
SEn  
VSEn = 5 V to 0 V;  
VSEL0 = 0 V; VSEL1 = 5 V;  
RSENSE = 1 kΩ  
tDSENSE3L  
MultiSense timings (VCC voltage sense mode - see Figure 6: "Multisense timings (chip  
temperature and VCC sense mode)")(4)  
VSENSE_VCC settling VSEn = 0 V to 5 V;  
tDSENSE4H  
time from rising  
edge of SEn  
VSEL0 = 5 V; VSEL1 = 5 V;  
RSENSE = 1 kΩ  
60  
20  
µs  
µs  
VSENSE_VCC disable  
delay time from  
falling edge of  
SEn  
VSEn = 5 V to 0 V;  
VSEL0 = 5 V; VSEL1 = 5 V;  
RSENSE = 1 kΩ  
tDSENSE4L  
MultiSense timings (Multiplexer transition times)(4)  
VIN0 = 5 V; VIN1 = 5 V;  
MultiSense  
transition delay  
from ChX to ChY  
VSEn = 5 V; VSEL1 = 0 V;  
VSEL0 = 0 V to 5 V;  
IOUT0 = 0 A; IOUT1 = 15 A;  
RSENSE = 1 kΩ  
tD_XtoY  
20  
60  
µs  
µs  
MultiSense  
transition delay  
from current  
VIN0 = 5 V; VSEn = 5 V;  
VSEL0 = 0 V; VSEL1 = 0 V to  
5 V; IOUT0 = 1.5 A;  
tD_CStoTC  
sense to TC sense RSENSE = 1 kΩ  
DocID027772 Rev 9  
15/47  
Electrical specification  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
VND7004AY  
Symbol  
Parameter  
MultiSense  
transition delay  
from TC sense to  
current sense  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
VIN0 = 5 V; VSEn = 5 V;  
VSEL0 = 0 V; VSEL1 = 5 V to  
0 V; IOUT0 = 1.5 A;  
tD_TCtoCS  
20  
µs  
RSENSE = 1 kΩ  
MultiSense  
transition delay  
from current  
sense to VCC  
sense  
VIN1 = 5 V; VSEn = 5 V;  
VSEL0 = 5 V; VSEL1 = 0 V to  
5 V; IOUT1 = 15A;  
tD_CStoVCC  
60  
µs  
RSENSE = 1 kΩ  
MultiSense  
VIN1 = 5 V; VSEn = 5 V;  
VSEL0 = 5 V; VSEL1 = 5 V to  
0 V; IOUT1 = 15 A;  
transition delay  
from VCC sense to  
current sense  
tD_VCCtoCS  
tD_TCtoVCC  
tD_VCCtoTC  
20  
20  
20  
µs  
µs  
µs  
RSENSE = 1 kΩ  
MultiSense  
VCC = 13 V; Tj = 125°C;  
VSEn = 5 V; VSEL0 = 0 V to  
5 V; VSEL1 = 5 V;  
transition delay  
from TC sense to  
VCC sense  
RSENSE = 1 kΩ  
MultiSense  
VCC = 13 V; Tj = 125°C;  
VSEn = 5 V; VSEL0 = 5 V to  
0 V; VSEL1 = 5 V;  
transition delay  
from VCC sense to  
TC sense  
RSENSE = 1 kΩ  
MultiSense  
transition delay  
from stable  
current sense on  
ChX to VSENSEH on  
ChY  
VIN0 = 5 V; VIN1 = 0 V;  
VSEn = 5 V; VSEL1 = 0 V;  
VSEL0 = 0 V to 5 V;  
IOUT0 = 3 A; VOUT1 = 15 V;  
RSENSE = 1 kΩ  
tD_CStoVSENSEH  
20  
µs  
Notes:  
(1)Parameter guaranteed by design and characterization; not subjected to production test.  
(2)All values refer to VCC = 13 V; Tj = 25 °C, unless otherwise specified.  
(3)  
V
sensing and TC sensing are referred to GND potential.  
CC  
(4)Transition delay are measured up to +/- 10% of final conditions.  
16/47  
DocID027772 Rev 9  
VND7004AY  
Electrical specification  
Figure 4: Switching time and Pulse skew  
Figure 5: MultiSense timings (current sense mode)  
DocID027772 Rev 9  
17/47  
Electrical specification  
VND7004AY  
Figure 6: Multisense timings (chip temperature and VCC sense mode)  
Figure 7: TDSTKON  
18/47  
DocID027772 Rev 9  
VND7004AY  
Electrical specification  
Table 10: Truth table  
INX FR SEn SELX OUTX MultiSense  
Mode  
Standby  
Conditions  
Comments  
Low quiescent  
current  
consumption  
All logic inputs  
low  
L
L
L
X
L
L
L
L
L
Hi-Z  
See (1)  
See (1)  
Outputs  
configured for  
auto-restart  
Nominal load  
connected;  
H
H
Normal  
See (1)  
Tj < 150 °C  
Outputs  
configured for  
Latch-off  
H
L
H
X
H
L
See (1)  
See (1)  
Overload or  
short to GND  
causing:  
Output cycles  
with  
temperature  
hysteresis  
H
L
H
L
See (1)  
See (1)  
Overload  
See (1)  
Tj > TTSD or  
ΔTj > ΔTj_SD  
Output latches-  
off  
H
X
H
X
Re-start when  
L
L
Hi-Z  
Hi-Z  
VCC < VUSD  
(falling)  
VCC > VUSD  
+
Undervoltage  
X
X
VUSDhyst (rising)  
Short to VCC  
Open-load  
Inductive  
L
L
X
X
H
H
See (1)  
See (1)  
OFF-state  
diagnostics  
See (1)  
See (1)  
External pull-up  
Negative  
L
X
< 0 V  
See (1)  
output voltage loads turn-off  
Notes:  
(1)Refer to Table 11: "MultiSense multiplexer addressing"  
Table 11: MultiSense multiplexer addressing  
MultiSense output  
SEn SEL1 SEL0 MUX channel  
Normal  
mode  
OFF-state  
diag. (1)  
Negative  
output  
Overload  
L
X
L
X
L
Hi-Z  
Channel 0  
diagnostic  
ISENSE  
1/K * IOUT0  
=
VSENSE  
VSENSEH  
=
VSENSE  
VSENSEH  
=
H
H
Hi-Z  
Hi-Z  
Channel 1  
diagnostic  
ISENSE  
1/K * IOUT1  
=
VSENSE  
VSENSEH  
=
VSENSE  
VSENSEH  
=
L
H
H
H
H
H
L
TCHIP Sense  
VCC Sense  
VSENSE = VSENSE_TC  
VSENSE = VSENSE_VCC  
H
Notes:  
(1)In case the output channel corresponding to the selected MUX channel is latched off while the  
relevant input is low, Multisense pin delivers feedback according to OFF-State diagnostic.  
Example 1: FR = 1; IN0 = 0; OUT0 = L (latched); MUX channel = channel 0 diagnostic; Mutisense = 0.  
Example 2: FR = 1; IN0 = 0; OUT0 = latched, VOUT0 > VOL; MUX channel = channel 0 diagnostic;  
Mutisense = VSENSEH  
DocID027772 Rev 9  
19/47  
 
 
 
Electrical specification  
VND7004AY  
2.4  
Waveforms  
Figure 8: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD)  
Figure 9: Latch functionality - behavior in hard short circuit condition  
20/47  
DocID027772 Rev 9  
VND7004AY  
Electrical specification  
Figure 10: Latch functionality - behavior in hard short circuit condition (autorestart mode +  
latch off)  
Figure 11: Standby mode activation  
DocID027772 Rev 9  
21/47  
Electrical specification  
VND7004AY  
Figure 12: Standby state diagram  
2.5  
Electrical characteristics curves  
Figure 13: OFF-state output current  
Figure 14: Standby current  
Figure 15: IGND(ON) vs. Iout  
Figure 16: Logic Input high level voltage  
22/47  
DocID027772 Rev 9  
VND7004AY  
Electrical specification  
Figure 17: Logic Input low level voltage  
Figure 19: Low level logic input current  
Figure 21: FaultRST Input clamp voltage  
Figure 18: High level logic input current  
Figure 20: Logic Input hysteresis voltage  
Figure 22: Undervoltage shutdown  
DocID027772 Rev 9  
23/47  
Electrical specification  
Figure 23: On-state resistance vs. Tcase  
VND7004AY  
Figure 24: On-state resistance vs. VCC  
Figure 25: Turn-on voltage slope  
Figure 26: Turn-off voltage slope  
Figure 27: Won vs. Tcase  
Figure 28: Woff vs. Tcase  
24/47  
DocID027772 Rev 9  
VND7004AY  
Electrical specification  
Figure 29: OFF-state open-load voltage  
detection threshold  
Figure 30: Vsense clamp vs. Tcase  
Figure 31: Vsenseh vs. Tcase  
DocID027772 Rev 9  
25/47  
Protections  
VND7004AY  
3
Protections  
3.1  
Power limitation  
The basic working principle of this protection consists of an indirect measurement of the  
junction temperature swing ΔTj through the direct measurement of the spatial temperature  
gradient on the device surface in order to automatically shut off the output MOSFET as  
soon as ΔTj exceeds the safety level of 60 K. According to the voltage level on the  
FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis  
according to the maximum instantaneous power which can be handled (FaultRST = Low)  
or remains off (FaultRST = High). The protection prevents fast thermal transient effects  
and, consequently, reduces thermo-mechanical fatigue.  
3.2  
3.3  
3.4  
Thermal shutdown  
In case the junction temperature of the device exceeds the maximum allowed threshold  
(typically 175°C), it automatically switches off and the diagnostic indication is triggered.  
According to the voltage level on the FaultRST pin, the device switches on again as soon  
as its junction temperature drops to TRS (FaultRST = Low) or remains off  
(FaultRST = High).  
Current limitation  
The device is equipped with an output current limiter in order to protect the silicon as well  
as the other components of the system (e.g. bonding wires, wiring harness, connectors,  
loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or  
during load power-up, the output current is clamped to a safety level, ILIMH, by operating the  
output power MOSFET in the active region.  
Negative voltage clamp  
In case the device drives inductive load, the output voltage reaches a negative value during  
turn off. A negative voltage clamp structure limits the maximum negative voltage to a  
certain value, VDEMAG, allowing the inductor energy to be dissipated without damaging the  
device.  
26/47  
DocID027772 Rev 9  
VND7004AY  
Application information  
4
Application information  
Figure 32: Application diagram  
4.1  
GND protection network against reverse battery  
Figure 33: Simplified internal structure  
Vcc  
5V  
Rprot  
INPUT  
Rprot  
SEn  
MCU  
Dld  
Rprot  
Rprot  
FaultRST  
OUTPUT  
Multisense  
GND  
Rsense  
GND  
The device does not need any external components to protect the internal logic in case of a  
reverse battery condition. The protection is provided by internal structures.  
DocID027772 Rev 9  
27/47  
Application information  
VND7004AY  
In addition, due to the fact that the output MOSFET turns on even in reverse battery mode,  
thus providing the same low ohmic path as in regular operating conditions, no additional  
power dissipation has to be considered.  
4.2  
Immunity against transient electrical disturbances  
The immunity of the device against transient electrical emissions, conducted along the  
supply lines and injected into the VCC pin, is tested in accordance with ISO7637-2:2011 (E)  
and ISO 16750-2:2010.  
The related function performance status classification is shown in Table 12: "ISO 7637-2 -  
electrical transient conduction along supply line".  
Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and  
in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present  
device only, without components and accessed through VCC and GND terminals.  
Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as  
follows: “The function does not perform as designed during the test but returns  
automatically to normal operation after the test”.  
Table 12: ISO 7637-2 - electrical transient conduction along supply line  
Test pulse severity  
Test  
Pulse  
2011(E)  
Burst cycle /  
pulse  
Minimum  
number of  
pulses or test  
time  
level with Status II  
functional performance  
status  
Pulse duration and  
pulse generator  
internal impedance  
repetition time  
(1)  
Level  
III  
US  
min  
0.5 s  
0.2 s  
max  
1
-112 V  
+55 V  
500 pulses  
500 pulses  
2 ms, 10 Ω  
50 µs, 2 Ω  
2a  
III  
5 s  
100  
ms  
3a  
IV  
-220 V  
1h  
90 ms  
90 ms  
0.1 µs, 50 Ω  
100  
ms  
3b  
IV  
IV  
+150 V  
-7 V  
1h  
0.1 µs, 50 Ω  
4 (2)  
1 pulse  
100 ms, 0.01 Ω  
Load dump according to ISO 16750-2:2010  
Test B (3)  
40 V  
5 pulse  
1 min  
400 ms, 2 Ω  
Notes:  
(1)US is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.  
(2)Test pulse from ISO 7637-2:2004(E).  
(3)With 40 V external suppressor referred to ground (-40°C < Tj < 150 °C).  
4.3  
MCU I/Os protection  
If a ground protection network is used and negative transients are present on the VCC line,  
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line both to  
prevent the microcontroller I/O pins from latching-up and to protect the HSD inputs.  
The value of these resistors is a compromise between the leakage current of  
microcontroller and the current required by the HSD I/Os (Input levels compatibility) with  
the latch-up limit of microcontroller I/Os.  
28/47  
DocID027772 Rev 9  
 
 
 
 
VND7004AY  
Application information  
Equation  
VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC - VIH - VGND) / IIHmax  
Calculation example:  
For VCCpeak = -150 V; Ilatchup ≥ 20 mA; VOHµC ≥ 4.5 V  
7.5 kΩ ≤ Rprot ≤ 140 kΩ.  
Recommended values: Rprot = 15 kΩ  
4.4  
Multisense - analog current sense  
Diagnostic information on device and load status are provided by an analog output pin  
(MultiSense) delivering the following signals:  
Current monitor: current mirror of channel output current  
VCC monitor: voltage propotional to VCC  
TCASE: voltage propotional to chip temperature  
Those signals are routed through an analog multiplexer which is configured and controlled  
by means of SELx and SEn pins, according to the address map in MultiSense multiplexer  
addressing Table.  
Figure 34: MultiSense and diagnostic block diagram  
DocID027772 Rev 9  
29/47  
Application information  
VND7004AY  
4.4.1  
Principle of Multisense signal generation  
Figure 35: MultiSense block diagram  
Current monitor  
When current mode is selected via MultiSense, this output is capable of providing:  
Current mirror proportional to the load current in normal operation, delivering current  
proportional to the load according to a known ratio named K  
Diagnostics flag in fault conditions delivering fixed voltage VSENSEH  
The current delivered by the current sense circuit, ISENSE, can be easily converted to a  
voltage VSENSE by using an external sense resistor, RSENSE, allowing continuous load  
monitoring and abnormal condition detection.  
Normal operation (channel ON, no fault, SEn active)  
While device is operating in normal conditions (no fault intervention), VSENSE calculation can  
be done using simple equations  
Current provided by MultiSense output: ISENSE = IOUT/K  
Voltage on RSENSE: VSENSE = RSENSE · ISENSE = RSENSE · IOUT/K  
30/47  
DocID027772 Rev 9  
VND7004AY  
Where:  
VSENSE is the voltage measurable on RSENSE resistor  
ISENSE is the current provided from MultiSense pin in current output mode  
Application information  
IOUT is the current flowing through output  
K factor represents the ratio between PowerMOS cells and SenseMOS cells; its  
spread includes geometric factor spread, current sense amplifier offset and process  
parameters spread of overall circuitry specifying the ratio between IOUT and ISENSE  
.
Failure flag indication  
In case of power limitation/overtemperature, the fault is indicated by the MultiSense pin  
which is switched to a “current limited” voltage source, VSENSEH  
.
In any case, the current sourced by the MultiSense in this condition is limited to ISENSEH  
.
The typical behavior in case of overload or hard short circuit is shown in Waveforms  
section.  
Figure 36: Analogue HSD open-load detection in off-state  
DocID027772 Rev 9  
31/47  
Application information  
VND7004AY  
Figure 37: Open-load / short to VCC condition  
Table 13: MultiSense pin levels in off-state  
Condition  
Output  
MultiSense  
SEn  
L
Hi-Z  
VSENSEH  
Hi-Z  
0
VOUT > VOL  
H
L
Open-load  
VOUT < VOL  
VOUT > VOL  
VOUT < VOL  
H
L
Hi-Z  
VSENSEH  
Hi-Z  
0
Short to VCC  
Nominal  
H
L
H
4.4.2  
TCASE and VCC monitor  
In this case, MultiSense output operates in voltage mode and output level is referred to  
device GND. Care must be taken in case a GND network protection is used, because a  
voltage shift is generated between the device GND and the microcontroller input GND  
reference.  
Figure 38: "GND voltage shift" shows the link between VMEASURED and the real VSENSE  
signal.  
32/47  
DocID027772 Rev 9  
VND7004AY  
Application information  
Figure 38: GND voltage shift  
VCC monitor  
Battery monitoring channel provides VSENSE = VCC / 8.  
Case temperature monitor  
Case temperature monitor is capable of providing information about the actual device  
temperature. Since a diode is used for temperature sensing, the following equation  
describes the link between temperature and output VSENSE level:  
VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0)  
where dVSENSE_TC / dT ~ typically -5.5 mV/K (for temperature range (-40 °C to 150 °C)).  
4.4.3  
Short to VCC and OFF-state open-load detection  
Short to VCC  
A short circuit between VCC and output is indicated by the relevant current sense pin set to  
VSENSEH during the device off-state. Small or no current is delivered by the current sense  
during the on-state depending on the nature of the short circuit.  
OFF-state open-load with external circuitry  
Detection of an open-load in off mode requires an external pull-up resistor RPU connecting  
the output to a positive supply voltage VPU.  
It is preferable that VPU is switched off during the module standby mode in order to avoid  
the overall standby current consumption to increase in normal conditions, i.e. when load is  
connected.  
RPU must be selected in order to ensure VOUT > VOLmax in accordance with the following  
equation:  
Equation  
DocID027772 Rev 9  
33/47  
Package and PCB thermal data  
VND7004AY  
5
Package and PCB thermal data  
5.1  
PowerSSO-36 thermal data  
Figure 39: PowerSSO-36 PC board  
34/47  
DocID027772 Rev 9  
VND7004AY  
Package and PCB thermal data  
Table 14: PCB properties  
Dimension  
Value  
1.6 mm +/- 10%  
129 mm x 60 mm  
FR4  
Board finish thickness  
Board dimension  
Board Material  
Copper thickness (top and bottom layers)  
Copper thickness (inner layers)  
Thermal vias separation  
0.070 mm  
0.035 mm  
1.2 mm  
Thermal via diameter  
0.3 mm +/- 0.08 mm  
0.025 mm  
Copper thickness on vias  
Footprint dimension (top layer)  
Heatsink copper area dimension (bottom layer)  
4.1 mm x 6.5 mm  
Footprint, 2 cm2 or 8 cm2  
Figure 40: Rthj-amb vs PCB copper area in open box free air conditions  
RTHjamb  
65  
60  
55  
50  
45  
40  
35  
30  
RTHjamb  
0
2
4
6
8
10  
DocID027772 Rev 9  
35/47  
Package and PCB thermal data  
VND7004AY  
Figure 41: PowerSSO-36 thermal impedance junction ambient single pulse  
ZTH (°C/W)  
100  
Cu=8 cm2  
Cu=2 cm2  
Cu=foot print  
4Layer  
10  
1
0.1  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Time (s)  
Equation: pulse calculation formula  
ZTHδ = RTH · δ + ZTHtp (1 - δ)  
where δ = tP/T  
Figure 42: Thermal fitting model for PowerSSO-36  
The fitting model is a simplified thermal tool and is valid for transient evolutions  
where the embedded protections (power limitation or thermal cycling during  
thermal shutdown) are not triggered.  
36/47  
DocID027772 Rev 9  
VND7004AY  
Package and PCB thermal data  
Table 15: Thermal parameters  
Area/island (cm2)  
R1 = R7 (°C/W)  
FP  
2
8
4L  
0.01  
1.2  
3.4  
6
R2 = R8 (°C/W)  
R3 (°C/W)  
3.4  
6
3.4  
6
2.6  
3
R4 (°C/W)  
R5 (°C/W)  
18  
14  
26  
10  
15  
2
R6 (°C/W)  
30  
7
C1 = C7 (W·s/°C)  
C2 = C8 (W·s/°C)  
C3 (W·s/°C)  
C4 (W·s/°C)  
C5 (W·s/°C)  
C6 (W·s/°C)  
0.0005  
0.001  
0.1  
0.5  
1
0.8  
2
0.8  
3
1
10  
18  
3
5
9
DocID027772 Rev 9  
37/47  
Maximum demagnetization energy (VCC = 16 V)  
VND7004AY  
6
Maximum demagnetization energy (VCC = 16 V)  
Figure 43: Maximum turn off current versus inductance  
100  
10  
1
VND7004AY - Single Pulse  
Repetitive pulse Tjstart=100°C  
Repetitive pulse Tjstart=125°C  
0.1  
0.1  
1
10  
L (mH)  
100  
1000  
Values are generated with RL = 0 Ω.  
In case of repetitive pulses, Tjstart (at the beginning of each demagnetization) of  
every pulse must not exceed the temperature specified above for curves A and B.  
38/47  
DocID027772 Rev 9  
VND7004AY  
Package information  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
7.1  
PowerSSO-36 package information  
Figure 44: PowerSSO-36 package outline  
BOTTOM VIEW  
TOP VIEW  
SECTION A-A  
SECTION B-B  
GAPG2508150825CFT  
Table 16: PowerSSO-36 mechanical data  
Dimensions  
Ref.  
Millimeters  
Min.  
0°  
Typ.  
Max.  
8°  
Θ
Θ1  
Θ2  
A
5°  
10°  
0°  
2.15  
0.00  
2.45  
0.10  
A1  
DocID027772 Rev 9  
39/47  
Package information  
VND7004AY  
Dimensions  
Millimeters  
Typ.  
Ref.  
Min.  
2.15  
0.18  
0.13  
0.23  
0.20  
Max.  
2.35  
0.32  
0.30  
0.32  
0.30  
A2  
b
b1  
c
0.25  
c1  
D
0.20  
10.30 BSC  
D1  
D2  
D3  
e
6.90  
7.50  
3.65  
4.30  
0.50 BSC  
10.30 BSC  
7.50 BSC  
E
E1  
E2  
E3  
E4  
G1  
G2  
G3  
h
4.30  
5.20  
2.30  
2.90  
1.20  
1.00  
0.80  
0.30  
0.55  
0.40  
0.85  
L
0.70  
1.40 REF  
0.25 BSC  
36  
L1  
L2  
N
R
0.30  
0.20  
0.25  
R1  
S
Tolerance of form and position  
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.20  
0.20  
0.10  
0.20  
0.10  
0.20  
0.15  
ggg  
40/47  
DocID027772 Rev 9  
VND7004AY  
Package information  
7.2  
PowerSSO-36 packing information  
Figure 45: PowerSSO-36 reel 13"  
Table 17: Reel dimensions  
Description  
Base quantity  
Bulk quantity  
A (max)  
Value(1)  
1000  
1000  
330  
B (min)  
1.5  
C (± 0.2)  
F
13  
20.2  
24.4  
100  
G (+2 / -0)  
N (min)  
T (max)  
30.4  
Notes:  
(1)All dimensions are in mm.  
DocID027772 Rev 9  
41/47  
 
Package information  
VND7004AY  
Figure 46: PowerSSO-36 carrier tape  
Table 18: PowerSSO-36 carrier tape dimensions  
Description  
Value(1)  
10.90 ± 0.10  
10.80 ± 0.10  
2.75 ± 0.10  
2.45 ± 0.10  
1.50 (+0.10 / -0)  
1.60 ± 0.10  
4.00 ± 0.10  
12.00 ± 0.10  
2.00 ± 0.10  
40.00 ± 0.20  
1.75 ± 0.10  
11.50 ± 0.10  
24.00 ± 0.30  
0.30 ± 0.05  
A0  
B0  
K0  
K1  
D0  
D1  
P0  
P1  
P2  
P10  
E
F
W
T
Notes:  
(1)All dimensions are in mm.  
42/47  
DocID027772 Rev 9  
 
VND7004AY  
Package information  
Figure 47: PowerSSO-36 schematic drawing of leader and trailer tape  
7.3  
PowerSSO-36 marking information  
Figure 48: PowerSSO-36 marking information  
Engineering Samples: Parts marked as & are not yet qualified and therefore not  
approved for use in production. ST is not responsible for any consequences  
resulting from such use. In no event will ST be liable for the customer using any of  
these engineering samples in production. ST’s Quality department must be  
contacted to run a qualification activity prior to any decision to use these  
engineering samples.  
Commercial Samples: fully qualified parts from ST standard production with no  
usage restrictions.  
DocID027772 Rev 9  
43/47  
Order codes  
VND7004AY  
8
Order codes  
Table 19: Device summary  
Order codes  
Tape and reel  
VND7004AYTR  
Package  
PowerSSO-36  
44/47  
DocID027772 Rev 9  
VND7004AY  
Revision history  
9
Revision history  
Table 20: Document revision history  
Changes  
Date  
Revision  
23-Apr-2015  
1
Initial release.  
Table 3: "Absolute maximum ratings":  
-IOUT: updated value  
Updated Table 4: "Thermal data" and Table 6: "Switching"  
Table 8: "Protections":  
TR, THYST: added note  
20-Jul-2015  
2
Table 9: "MultiSense":  
K0, dK0/K0: removed rows  
Kx, dKx/Kx, IOUT_SAT: updated values  
Added Section 5: "Package and PCB thermal data"  
Updated Figure 1: "Block diagram"  
Updated Table 1: "Pin functions"  
Table 3: "Absolute maximum ratings":  
ISENSE: updated parameter and value  
EMAX: updated parameter  
Table 5: "Power section":  
RON_REV: updated value  
Table 9: "MultiSense":  
VSENSE_CL, VSENSE_TC, VSENSE_VCC: updated test conditions  
Removed following tables:  
30-Jul-2015  
3
Table: Electrical transient requirements (part 1)  
Table: Electrical transient requirements (part 2)  
Table: Electrical transient requirements (part 3)  
Added Section 4: "Application information"  
Table 5: "Power section":  
ISTBY, IL(off): updated values  
Updated Table 6: "Switching"  
Table 9: "MultiSense":  
02-Dec-2015  
27-Jan-2016  
4
5
Kx, tDSENSE2H: updated values  
Added Section 2.5: "Electrical characteristics curves"  
Table 9: "MultiSense":  
ISENSE0: updated value  
DocID027772 Rev 9  
45/47  
Revision history  
VND7004AY  
Date  
Revision  
Changes  
Updated Features list  
Table 3: "Absolute maximum ratings":  
EMAX: updated value  
Table 9: "MultiSense":  
dKx/Kx, ISENSE_SAT, IOUT_SAT: added note  
20-Apr-2016  
6
Added Section 6: "Maximum demagnetization energy (VCC = 16 V)"  
Updated Figure 1: "Block diagram" and Figure 34: "MultiSense and  
diagnostic block diagram"  
26-Apr-2016  
7
Updated Figure 45: "PowerSSO-36 reel 13""and Table 17: "Reel  
dimensions"  
8
9
15-Jul-2016  
02-Nov-2016  
Updated Applications section  
46/47  
DocID027772 Rev 9  
VND7004AY  
IMPORTANT NOTICE PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST  
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the  
design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2016 STMicroelectronics All rights reserved  
DocID027772 Rev 9  
47/47  

相关型号:

VND7004AYTR

Double channel high-side driver with MultiSense analog feedback for automotive applications
STMICROELECTR

VND7020AJ

Double channel high-side driver with MultiSense analog feedback
STMICROELECTR

VND7020AJTR

Double channel high-side driver with MultiSense analog feedback
STMICROELECTR

VND7030AJ

Double channel high-side driver with MultiSense analog feedback for automotive applications
STMICROELECTR

VND7030AJ-E

BUF OR INV BASED PRPHL DRVR
STMICROELECTR

VND7030AJTR

Double channel high-side driver with MultiSense analog feedback for automotive applications
STMICROELECTR

VND7030AJTR-E

BUF OR INV BASED PRPHL DRVR
STMICROELECTR

VND7040AJTR-E

BUF OR INV BASED PRPHL DRVR, PDSO16, ROHS COMPLIANT, SSOP-16
STMICROELECTR

VND7050AJ

Double channel high-side driver with MultiSense analog feedback
STMICROELECTR

VND7050AJ12

Double channel high-side driver with CurrentSense analog feedback
STMICROELECTR

VND7050AJ12TR

Double channel high-side driver with CurrentSense analog feedback
STMICROELECTR

VND7050AJTR

Double channel high-side driver with MultiSense analog feedback
STMICROELECTR