VNH5019A-E [STMICROELECTRONICS]

Automotive fully integrated H-bridge motor driver; 汽车完全集成H桥电机驱动器
VNH5019A-E
型号: VNH5019A-E
厂家: ST    ST
描述:

Automotive fully integrated H-bridge motor driver
汽车完全集成H桥电机驱动器

外围驱动器 驱动程序和接口 接口集成电路 光电二极管 电机 PC
文件: 总37页 (文件大小:514K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VNH5019A-E  
Automotive fully integrated  
H-bridge motor driver  
Features  
Type  
RDS(on)  
Iout  
Vccmax  
MultiPowerSO-30™  
18 mΩ typ  
(per leg)  
VNH5019A-E  
30 A  
41 V  
Power MOSFET with an intelligent  
signal/protection circuit.  
ECOPACK®: lead free and RoHS compliant  
The three dice are assembled in  
MultiPowerSO-30 package on electrically isolated  
lead-frames. This package, specifically designed  
for the harsh automotive environment offers  
improved thermal performance thanks to exposed  
die pads. The input signals INA and INB can  
directly interface to the microcontroller to select  
the motor direction and the brake condition.  
Automotive Grade: compliance with AEC  
guidelines  
Output current: 30 A  
3 V CMOS compatible inputs  
Undervoltage and overvoltage shutdown  
High-side and low-side thermal shutdown  
Cross-conduction protection  
Current limitation  
The DIAGA/ENA or DIAGB/ENB, when connected  
to an external pull-up resistor, enable one leg of  
the bridge. They also provide a feedback digital  
diagnostic signal. The CS pin allows to monitor  
the motor current by delivering a current  
proportional to its value when CS_DIS pin is  
driven low or left open. The PWM, up to 20 KHz,  
lets us to control the speed of the motor in all  
possible conditions. In all cases, a low-level state  
on the PWM pin turns-off both the LSA and LSB  
switches. When PWM rises to a high-level, LSA or  
LSB turn-on again depending on the input pin  
state.  
Very low standby power consumption  
PWM operation up to 20 khz  
Protection against:  
– Loss of ground and loss of VCC  
Current sense output proportional to motor  
current  
Charge pump output for reverse polarity  
protection  
Output protected against short to ground and  
Output current limitation and thermal shutdown  
protects the concerned high-side in short to  
ground condition.  
short to VCC  
Description  
The short to battery condition is revealed by the  
overload detector or by thermal shutdown that  
latches off the relevant low-side.  
The VHN5019A-E is a full bridge motor driver  
intended for a wide range of automotive  
applications. The device incorporates a dual  
monolithic high-side drivers and two low-side  
switches. The high-side driver switch is designed  
using STMicroelectronics’ well known and proven  
proprietary VIPower® M0 technology that allows  
to efficiently integrate on the same die a true  
Active VCC pin voltage clamp protects the device  
against low energy spikes in all configurations for  
the motor.  
CP pin provides the necessary gate drive for an  
external n-channel PowerMOS used for reverse  
polarity protection.  
December 2011  
Doc ID 15701 Rev 8  
1/37  
www.st.com  
1
 
Contents  
VNH5019A-E  
Contents  
1
2
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1  
2.2  
2.3  
2.4  
2.5  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Waveforms and truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Reverse battery protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3
4
Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.1  
MultiPowerSO-30 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.1.1  
Thermal calculation in clockwise and anti-clockwise operation in  
steady-state mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.1.2  
Thermal calculation in transient mode . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
®
4.1  
4.2  
4.3  
4.4  
ECOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
MultiPowerSO-30 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
MultiPowerSO-30 suggested land pattern . . . . . . . . . . . . . . . . . . . . . . . . 32  
MultiPowerSO-30 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5
6
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
2/37  
Doc ID 15701 Rev 8  
VNH5019A-E  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin definitions and functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Logic inputs (INA, INB, ENA, ENB,PWM, CS_DIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Switching (VCC = 13 V, RLOAD = 0.87 W, Tj = 25 °C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Protection and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Current sense (8 V < VCC < 21 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Truth table in normal operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Truth table in fault conditions (detected on OUTA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical transient requirements (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Electrical transient requirements (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Electrical transient requirements (part 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Thermal calculation in clockwise and anti-clockwise operation in steady-state mode . . . . 27  
Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
MultiPowerSO-30 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Doc ID 15701 Rev 8  
3/37  
List of figures  
VNH5019A-E  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Typical application circuit for DC to 20 kHz PWM operation with reverse battery protection  
(option A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Typical application circuit for DC to 20 kHz PWM operation with reverse battery protection  
(option B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Behavior in fault condition (how a fault can be cleared) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Definition of the delay times measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Definition of the low-side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Definition of the high-side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Figure 10. Definition of dynamic cross conduction current during a PWM operation. . . . . . . . . . . . . . 21  
Figure 11. Waveforms in full bridge operation (part 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 12. Waveforms in full bridge operation (part 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 13. Definition of delay response time of sense current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 14. Half-bridge configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 15. Multi-motors configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 16. MultiPowerSO-30™ PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 17. Chipset configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 18. Auto and mutual Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . 26  
Figure 19. Chipset configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 20. MultiPowerSO-30 HSD thermal impedance junction ambient single pulse . . . . . . . . . . . . 28  
Figure 21. MultiPowerSO-30 LSD thermal impedance junction ambient single pulse. . . . . . . . . . . . . 28  
Figure 22. Thermal fitting model of an H-bridge in MultiPowerSO-30 . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 23. MultiPowerSO-30 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 24. MultiPowerSO-30 suggested pad layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 25. MultiPowerSO-30 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 26. MultiPowerSO-30 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
4/37  
Doc ID 15701 Rev 8  
VNH5019A-E  
Block diagram and pin description  
1
Block diagram and pin description  
Figure 1.  
Block diagram  
6##  
#(!2'%  
05-0  
&!5,4  
$%4%#4)/.  
0/7%2  
,)-)4!4)/.  
,3!?/6%24%-0%2!452%  
(3!?/6%24%-0%2!452%  
,3"?/6%24%-0%2!4 52%  
(3"?/6%24%-0%2!452%  
/
6 ꢂ 56  
#,!-0?(3!  
$2)6%2  
#,!-0?(3"  
$2)6%2  
(3  
,/')#  
(3!  
(3"  
(3  
!
"
#522%.4  
,)-)4!4 )/.?!  
#522%.4  
,)-)4!4 )/.?"  
/54  
ꢀꢁ+  
ꢀꢁ+  
/54  
"
!
#,!-0?,3  
#,!-0?,3  
!
"
$2)6%2  
$2)6%2  
,3  
,3!  
,3"  
,3  
!
"
/6%2,/!$  
$%4%#4/2?!  
/6%2,/!$  
$%4%#4/2?"  
'.$  
$)!' ꢁ%. ). #3 #3?$)3 07- ).  
$)!' ꢁ%.  
'.$  
"
!
!
!
!
"
"
"
("1($'5ꢀꢀꢁꢂꢃ  
Doc ID 15701 Rev 8  
5/37  
 
Block diagram and pin description  
Figure 2. Configuration diagram (top view)  
VNH5019A-E  
1
30  
OUTA  
OUTA  
N.C.  
VCC  
INA  
N.C.  
GNDA  
GNDA  
OUTA  
Heat Slug2  
ENA/DIAGA  
CS_DIS  
PWM  
GNDA  
OUTA  
N.C.  
VCC  
Heat Slug1  
CS  
VCC  
ENB/DIAGB  
INB  
N.C.  
OUTB  
CP  
VBAT  
GNDB  
GNDB  
GNDB  
N.C.  
OUTB  
Heat Slug3  
VCC  
N.C.  
15  
16  
OUTB  
OUTB  
Table 1.  
Suggested connections for unused and not connected pins  
INPUTx, PWM  
Connection / pin  
Current sense  
N.C.  
OUTx  
DIAGx/ENx  
CS_DIS  
Floating  
Not allowed  
X
X
X
X
Through 10 kΩ  
To ground  
Through 1 kΩ resistor  
Not allowed  
resistor  
Table 2.  
Pin  
Pin definitions and functions  
Symbol  
Function  
OUTA,  
Heat Slug2  
Source of high-side switch A / drain of low-side switch A, power  
connection to the motor  
1, 25, 30  
2,14,17, 22,  
24,29  
N.C.  
Not connected  
VCC  
Heat Slug1  
,
Drain of high-side switches and connection to the drain of the  
external PowerMOS used for the reverse battery protection  
3, 13, 23  
12  
Battery connection and connection to the source of the external  
PowerMOS used for the reverse battery protection  
VBAT  
Status of high-side and low-side switches A; open drain output.  
This pin must be connected to an external pull-up resistor. When  
externally pulled low, it disables half-bridge A. In case of fault  
detection (thermal shutdown of a high-side FET or excessive  
ON-state voltage drop across a low-side FET), this pin is pulled  
low by the device (see Table 13: Truth table in fault conditions  
(detected on OUTA))  
5
ENA/DIAGA  
6/37  
Doc ID 15701 Rev 8  
 
VNH5019A-E  
Block diagram and pin description  
Pin definitions and functions (continued)  
Table 2.  
Pin  
Symbol  
Function  
Active high CMOS compatible pin to disable the current sense  
pin  
6
CS_DIS  
4
7
INA  
Clockwise input. CMOS compatible  
PWM input. CMOS compatible.  
PWM  
Output of current sense. This output delivers a current  
proportional to the motor current, if CS_DIS is low or left open.  
The information can be read back as an analog voltage across  
an external resistor.  
8
CS  
Status of high-side and low-side switches B; Open drain output.  
This pin must be connected to an external pull up resistor. When  
externally pulled low, it disables half-bridge B. In case of fault  
detection (thermal shutdown of a high-side FET or excessive  
ON-state voltage drop across a low-side FET), this pin is pulled  
low by the device (see Table 13: Truth table in fault conditions  
(detected on OUTA).  
9
ENB/DIAGB  
10  
11  
INB  
CP  
Counter clockwise input. CMOS compatible  
Connection to the gate of the external MOS used for the reverse  
battery protection  
OUTB,  
Heat Slug3  
Source of high-side switch B / drain of low-side switch B, power  
connection to the motor  
15, 16, 21  
26, 27, 28  
18, 19, 20  
GNDA  
GNDB  
Source of low-side switch A and power ground(1)  
Source of low-side switch B and power ground(1)  
1. GNDA and GNDB must be externally connected together  
)
Table 3.  
Block descriptions(1)  
Name  
Description  
Allows the turn-on and the turn-off of the high-side and the  
low-side switches according to the Table 12.  
Logic control  
Shut down the device outside the range [4.5 V to 24 V] for the  
battery voltage.  
Overvoltage + undervoltage  
High-side, low-side and clamp  
voltage  
Protect the high-side and the low-side switches from the  
high-voltage on the battery line in all configuration for the motor.  
Drive the gate of the concerned switch to allow a proper RDS(on)  
for the leg of the bridge.  
High-side and low-side driver  
Linear current limiter  
Limits the motor current, by reducing the high-side switch  
gate-source voltage when short-circuit to ground occurs.  
In case of short-circuit with the increase of the junction’s  
temperature, it shuts down the concerned driver to prevent its  
degradation and to protect the die.  
High-side and low-side  
overtemperature protection  
Detects when low-side current exceeds shutdown current and  
latches off the concerned low-side.  
Low-side overload detector  
Doc ID 15701 Rev 8  
7/37  
 
 
Block diagram and pin description  
VNH5019A-E  
Table 3.  
Block descriptions(1) (continued)  
Name  
Description  
Provides the voltage necessary to drive the gate of the external  
PowerMOS used for the reverse polarity protection  
Charge pump  
Fault detection  
Signalizes an abnormal condition of the switch (output  
shorted to ground or output shorted to battery) by pulling  
down the concerned ENx/DIAGx pin.  
Limits the power dissipation of the high-side driver inside  
safe range in case of short to ground condition.  
Power limitation  
1. See Figure 1  
8/37  
Doc ID 15701 Rev 8  
VNH5019A-E  
Electrical specifications  
2
Electrical specifications  
Figure 3.  
Current and voltage conventions  
ICP  
IBAT  
IS  
VCP  
VBAT  
VCC  
IINA  
VCC  
OUTA  
CP  
VBAT  
IOUTA  
INA  
INB  
IINB  
VINA  
IOUTB  
OUTB  
CS  
VOUTA  
IENA  
VINB  
ISENSE  
ICSD  
DIAGA/ENA  
VOUTB  
IENB  
CS_DIS  
VSENSE  
DIAGB/ENB  
PWM  
VENA  
VCSD  
GNDA  
GNDB  
VENB  
Ipw  
GND  
IGND  
Vpw  
2.1  
Absolute maximum ratings  
Stressing the device above the rating listed in the “absolute maximum ratings” table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE  
program and other relevant quality document.  
Table 4.  
Symbol  
Absolute maximum rating  
Parameter  
Value  
Unit  
-16  
V
V
VBAT  
Maximum battery voltage(1)  
+41  
VCC  
Imax  
IR  
Maximum bridge supply voltage  
Maximum output current (continuous)  
Reverse output current (continuous)  
Input current (INA and INB pins)  
Enable input current (DIAGA/ENA and DIAGB/ENB pins)  
PWM input current  
+ 41  
30  
V
A
-30  
A
IIN  
+/- 10  
+/- 10  
+/- 10  
+/- 10  
+/- 10  
mA  
mA  
mA  
mA  
mA  
IEN  
Ipw  
ICP  
CP output current  
ICS_DIS CS_DIS input current  
Doc ID 15701 Rev 8  
9/37  
 
Electrical specifications  
VNH5019A-E  
Unit  
Table 4.  
Symbol  
Absolute maximum rating (continued)  
Parameter  
Value  
VCC - 41  
+VCC  
V
V
VCS  
Current sense maximum voltage  
Electrostatic discharge (human body model: R = 1.5 kΩ,  
C = 100 pF)  
VESD  
2
kV  
Tc  
Case operating temperature  
Storage temperature  
-40 to 150  
-55 to 150  
°C  
°C  
TSTG  
1. This applies with the n-channel MOSFET used for the reverse battery protection. Otherwise V  
has to be  
BAT  
shorted to V  
.
CC  
2.2  
Thermal data  
Table 5.  
Symbol  
Thermal data  
Parameter  
Max. value  
Unit  
Thermal resistance junction-case HSD  
Thermal resistance junction-case LSD  
1.7  
3.2  
°C/W  
°C/W  
°C/W  
Rthj-case  
Rthj-amb Thermal resistance junction-ambient  
See Figure 18  
10/37  
Doc ID 15701 Rev 8  
 
VNH5019A-E  
Electrical specifications  
2.3  
Electrical characteristics  
Values specified in this section are for 8 V < VCC < 21 V, -40 °C < Tj < 150 °C, unless  
otherwise specified.  
Table 6.  
Symbol  
Power section  
Parameter  
Test conditions  
Min.  
Typ.  
Max. Unit  
Operating bridge supply  
voltage  
VCC  
5.5  
24  
V
OFF-state with all fault cleared and ENx = 0 V  
(standby):  
INA = INB = PWM = 0; Tj = 25 °C; VCC = 13 V  
INA = INB = PWM = 0  
10  
15  
60  
µA  
µA  
OFF-state (no standby):  
IS  
Supply current  
INA = INB = PWM = 0; ENx = 5 V  
6
mA  
ON-state:  
INA or INB = 5 V, no PWM  
INA or INB = 5 V, PWM = 20 kHz  
4
8
8
mA  
mA  
I
OUT = 15 A; Tj = 25 °C  
12.0  
Static high-side  
resistance  
RONHS  
mΩ  
mΩ  
IOUT = 15 A; Tj = - 40 °C to 150 °C  
IOUT = 15 A; Tj = 25 °C  
26.5  
6.0  
0.6  
Static low-side  
resistance  
RONLS  
IOUT = 15 A; Tj = - 40 °C to 150 °C  
11.5  
0.8  
High-side  
free-wheeling diode  
forward voltage  
If = 15 A,  
Tj = 150 °C  
Vf  
V
High-side OFF-state  
output current (per  
channel)  
Tj = 25 °C; VOUTX = ENX = 0 V; VCC = 13 V  
Tj = 125 °C; VOUTX = ENX = 0 V; VCC = 13 V  
3
5
IL(off)  
µA  
Table 7.  
Symbol  
Logic inputs (INA, INB, ENA, ENB,PWM, CS_DIS)  
Parameter  
Test conditions  
Min.  
Typ.  
Max. Unit  
Normal operation (DIAGX/ENX pin  
acts as an input pin)  
VIL  
Low-level input voltage  
0.9  
V
High-level input  
voltage  
Normal operation (DIAGX/ENX pin  
acts as an input pin)  
VIH  
IINL  
IINH  
2.1  
1
V
Low-level input current VIN = 0.9 V  
High-level input  
µA  
µA  
VIN = 2.1 V  
10  
current  
Input hysteresis  
voltage  
Normal operation (DIAGX/ENX pin  
acts as an input pin)  
VIHYST  
0.15  
V
Doc ID 15701 Rev 8  
11/37  
 
Electrical specifications  
VNH5019A-E  
Max. Unit  
Table 7.  
Symbol  
Logic inputs (INA, INB, ENA, ENB,PWM, CS_DIS) (continued)  
Parameter  
Test conditions  
IN = 1 mA  
Min.  
Typ.  
I
5.5  
6.3  
7.5  
V
-0.3  
VICL  
Input clamp voltage  
IIN = -1 mA  
-1.0  
-0.7  
Enable low-level  
output voltage  
Fault operation (DIAGX/ENX pin  
acts as an output pin); IEN = 1 mA  
VDIAG  
0.4  
V
Table 8.  
Symbol  
Switching (VCC = 13 V, RLOAD = 0.87 Ω, Tj = 25 °C)  
Parameter  
Test conditions  
Min  
Typ Max Unit  
f
PWM frequency  
0
20  
kHz  
µs  
Input rise time < 1µs  
(see Figure 9)  
td(on)  
HSD rise time  
HSD fall time  
250  
Input rise time < 1µs  
(see Figure 9)  
td(off)  
250  
µs  
tr  
tf  
LSD rise time  
LSD fall time  
(see Figure 8)  
(see Figure 8)  
1
1
2
2
µs  
µs  
Delay time during change of  
operating mode  
tDEL  
trr  
(see Figure 7)  
(see Figure 10)  
200  
400 1600  
µs  
ns  
A
High-side free wheeling  
diode reverse recovery time  
110  
2
Dynamic cross-conduction  
current  
IOUT = 15 A  
(see Figure 10)  
IRM  
Table 9.  
Symbol  
Protection and diagnostic  
Parameter  
Test conditions  
Min Typ Max Unit  
VCC undervoltage  
shutdown  
VUSD  
4.5  
0.5  
5.5  
V
V
VCC undervoltage  
shutdown hysteresis  
VUSDhyst  
VOV  
V
CC overvoltage shutdown  
24  
30  
70  
27  
50  
30  
70  
V
A
A
ILIM_H  
ISD_LS  
High-side current limitation  
Low-side shutdown current  
High-side clamp voltage  
115 160  
(1)  
VCLPHS  
IOUT = 15 A  
43  
48  
30  
54  
33  
V
(VCC to OUTA = 0 or  
OUTB = 0)  
Low-side clamp voltage  
(1)  
VCLPLS  
IOUT = 15 A  
VIN = 2.1 V  
27  
V
(OUTA = VCC or  
OUTB = VCC to GND)  
Thermal shutdown  
temperature  
(2)  
TTSD  
150  
175 200  
°C  
12/37  
Doc ID 15701 Rev 8  
 
 
VNH5019A-E  
Table 9.  
Electrical specifications  
Min Typ Max Unit  
Protection and diagnostic (continued)  
Symbol  
Parameter  
Test conditions  
Low-side thermal  
shutdown temperature  
TTSD_LS  
VIN = 0 V  
150  
175 200  
°C  
(3)  
TTR  
Thermal reset temperature  
Thermal hysteresis  
135  
7
°C  
°C  
(3)  
THYST  
15  
1. The device is able to pass the ESD and ISO pulse requirements as specified in the Table 15.  
2. is the minimum threshold temperature between HS and LS  
T
TSD  
3. Valid for both HSD and LSD  
Table 10. Current sense (8 V < VCC < 21 V)  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
IOUT = 3 A, VSENSE = 0.5 V,  
Tj = - 40 °C to 150°C  
K0  
IOUT SENSE  
/I  
4670  
7110 10110  
19  
Analog current sense ratio  
drift  
IOUT = 3 A; VSENSE = 0.5 V,  
Tj = -40 °C to 150 °C  
dK0/K0  
K1  
-19  
6060  
-14  
%
IOUT = 8 A, VSENSE = 1.3V,  
Tj = - 40 °C to 150°C  
IOUT SENSE  
/I  
7030  
6990  
6940  
8330  
14  
Analog current sense ratio  
drift  
IOUT = 8 A; VSENSE = 1.3V,  
Tj = -40 °C to 150 °C  
dK1/K1  
K2  
%
%
%
IOUT = 15 A, VSENSE = 2.4 V,  
Tj = - 40 °C to 150°C  
IOUT SENSE  
/I  
6070  
-12  
7810  
12  
Analog current sense ratio  
drift  
IOUT = 15 A; VSENSE = 2.4 V,  
Tj = -40 °C to 150 °C  
dK2/K2  
K3  
IOUT = 25 A, VSENSE = 4 V,  
Tj = - 40 °C to 150°C  
IOUT SENSE  
/I  
6000  
-12  
7650  
12  
Analog current sense ratio  
drift  
IOUT =25 A; VSENSE = 4 V,  
Tj = -40 °C to 150 °C  
dK3/K3  
VSENSE  
Max analog sense output  
voltage  
IOUT = 15 A, RSENSE = 1.1 kΩ  
5
V
IOUT = 0 A, VSENSE = 0 V, VCSD = 5 V,  
VIN = 0 V,  
Tj = - 40 to 150°C  
0
0
5
ISENSEO Analog sense leakage current  
µA  
IOUT = 0 A, VSENSE = 0 V, VCSD = 0 V,  
VIN = 5 V,  
Tj = - 40 to 150°C  
100  
50  
VIN = 5 V, VSENSE < 4 V, IOUT = 8 A,  
ISENSE = 90% of ISENSEmax  
(see fig Figure 13)  
Delay response time from  
tDSENSEH  
µs  
µs  
falling edge of CS_DIS pin  
VIN = 5 V, VSENSE < 4 V, IOUT = 8 A,  
Delay response time from  
tDSENSEL  
ISENSE = 10% of ISENSEmax  
20  
rising edge of CS_DIS pin  
(see fig Figure 13)  
Doc ID 15701 Rev 8  
13/37  
 
 
Electrical specifications  
VNH5019A-E  
Table 11. Charge pump  
Symbol  
Parameter  
Test conditions  
ENX = 5 V  
Min  
Typ  
Max  
Unit  
VCC + 5  
VCC + 10  
Charge pump output  
voltage  
VCP  
V
ENX = 5 V, VCC = 4.5 V  
ENA = ENB = 0 V  
10.5  
200  
Charge pump standby  
current  
IBAT  
nA  
2.4  
Waveforms and truth table  
In normal operating conditions the DIAGX/ENX pin is considered as an input pin by the  
device. This pin must be externally pulled-high  
PWM pin usage: in all cases, a “0” on the PWM pin turns-off both LSA and LSB switches.  
When PWM rises back to “1”, LSA or LSB turn-on again depending on the input pin state.  
Table 12. Truth table in normal operating conditions  
INA  
INB DIAGA/ENA DIAGB/ENB OUTA OUTB CS (VCSD = 0 V)  
Operating mode  
1
1
1
0
1
1
1
1
H
H
H
L
High imp.  
Brake to VCC  
ISENSE = IOUT/K Clockwise (CW)  
Counterclockwise  
ISENSE = IOUT/K  
0
0
1
0
1
1
1
1
L
L
H
L
(CCW)  
High imp.  
Brake to GND  
14/37  
Doc ID 15701 Rev 8  
 
VNH5019A-E  
Electrical specifications  
Figure 4.  
Typical application circuit for DC to 20 kHz PWM operation with reverse battery  
protection (option A)  
VBAT  
Reg 5V  
+5V  
+ 5V  
3.3K  
1K  
3.3K  
DIAG /EN  
VCC  
B
B
VBAT  
CP  
1K  
DIAGA/ENA  
1K  
HSA  
HSB  
PWM  
μC  
OUT  
A
OUTB  
IN  
B
INA  
CS  
1K  
1K  
LSA  
LSB  
10K  
C
M
33nF  
1.5K  
GNDB  
GNDA  
Note:  
The external N-channel Power MOSFET used for the reverse battery protection should have the following characteristics:  
- BVdss > 20 V (for a reverse battery of -16 V);  
- RDS(on) < 1/3 of H-bridge total RDS(on)  
- Standard Logic Gate Driving  
Doc ID 15701 Rev 8  
15/37  
 
Electrical specifications  
VNH5019A-E  
Figure 5.  
Typical application circuit for DC to 20 kHz PWM operation with reverse battery  
protection (option B)  
VCC  
+5V  
Reg 5V  
+ 5V  
VCC  
VBAT CP  
3.3K  
3.3K  
1K  
DIAG /EN  
B
B
1K  
DIAGA/ENA  
1K  
HSA  
HSB  
PWM  
μC  
OUT  
A
OUTB  
IN  
A
1K  
IN  
B
1K  
LSA  
LSB  
CS  
10K  
C
M
33nF  
1.5K  
GND  
GND  
B
A
S
100K  
G
D
Note:  
The value of the blocking capacitor (C) depends on the application conditions and defines voltage and current ripple onto supply line at PWM  
operation. Stored energy of the motor inductance may flyback into the blocking capacitor, if the bridge driver goes into 3-state. This causes a  
hazardous overvoltage if the capacitor is not big enough. As basic orientation, 500 µF per 10 A load current is recommended.  
Table 13. Truth table in fault conditions (detected on OUTA)  
INA  
INB  
DIAGA/ENA  
DIAGB/ENB  
OUTA  
OUTB  
CS (VCSD=0V)  
1
0
1
0
X
H
High  
impedance  
1
L
H
1
0
0
OPEN  
I
OUTB/K  
High  
0
L
impedance  
X
OPEN  
Fault Information  
Protection Action  
Note:  
In normal operating conditions the DIAGX/ENX pin is considered as an input pin by the  
device. This pin must be externally pulled high.  
In case of a fault condition the DIAGX/ENX pin is considered as an output pin by the device.  
16/37  
Doc ID 15701 Rev 8  
 
 
VNH5019A-E  
The fault conditions are:  
Electrical specifications  
overtemperature on one or both high-sides (for example, if a short to ground occurs as  
it could be the case described in line 1 and 2 in the Table 14);  
Short to battery condition on the output (saturation detection on the low-side  
Power MOSFET).  
Possible origins of fault conditions may be:  
OUTA is shorted to ground. It follows that, high-side A is in overtemperature state.  
OUTA is shorted to VCC. It follow that, low-side Power MOSFET is in saturation state.  
When a fault condition is detected, the user can know which power element is in fault by  
monitoring the INA, INB, DIAGA/ENA and DIAGB/ENB pins.  
In any case, when a fault is detected, the faulty leg of the bridge is latched off. To turn-on the  
respective output (OUTX) again, the input signal must rise from low-level to high-level.  
Figure 6.  
Behavior in fault condition (how a fault can be cleared)  
Note:  
In case of the fault condition is not removed, the procedure for unlatching and sending the  
device in Stby mode is:  
- Clear the fault in the device (toggle: INA if ENA=0 or INB if ENB=0)  
- Pull low all inputs, PWM and Diag/EN pins within tDEL.  
If the Diag/En pins are already low, PWM=0, the fault can be cleared simply toggling the  
input. The device enters in stby mode as soon as the fault is cleared.  
Doc ID 15701 Rev 8  
17/37  
 
Electrical specifications  
VNH5019A-E  
Table 14. Electrical transient requirements (part 1)  
ISO T/R  
7637/1  
Test level  
I
II  
III  
IV  
Delay and impedance  
Test Pulse  
1
2
-25 V  
+25 V  
-25 V  
-50 V  
+50 V  
-50 V  
-75 V  
+75 V  
-100 V  
+75 V  
-6 V  
-100 V  
+100 V  
-150 V  
+100 V  
-7 V  
2 ms, 10 Ω  
0.2 ms, 10 Ω  
0.1 μs, 50 Ω  
0.1 μs, 50 Ω  
100 ms, 0.01 Ω  
400 ms, 2 Ω  
3a  
3b  
4
+25 V  
-4 V  
+50 V  
-5 V  
5
+26.5 V  
+46.5 V  
+66.5 V  
+86.5 V  
Table 15. Electrical transient requirements (part 2)  
ISO T/R  
7637/1  
Test levels  
I
II  
III  
IV  
Test Pulse  
1
2
C
C
C
C
C
C
C
C
C
C
C
E
C
C
C
C
C
E
C
C
C
C
C
E
3a  
3b  
4
5
Table 16. Electrical transient requirements (part 3)  
Class  
Contents  
All functions of the device are performed as designed after exposure to  
disturbance.  
C
One or more functions of the device are not performed as designed after  
exposure to disturbance and cannot be returned to proper operation without  
replacing the device.  
E
18/37  
Doc ID 15701 Rev 8  
VNH5019A-E  
Electrical specifications  
2.5  
Reverse battery protection  
Against reverse battery condition the charge pump feature allows to use an external  
N-channel MOSFET connected as shown in the typical application circuit (see Figure 4).  
As alternative option, a N-channel MOSFET connected to GND pin can be used (see typical  
application circuit in figure Figure 5).  
With this configuration we recommend to short VBAT pin to VCC  
.
The device sustains no more than -30 A in reverse battery conditions because of the two  
body diodes of the Power MOSFETs. Additionally, in reverse battery condition the I/Os of  
VNH5019A-E is pulled-down to the VCC line (approximately -1.5 V). Series resistor must be  
inserted to limit the current sunk from the microcontroller I/Os. If IRmax is the maximum  
target reverse current through microcontroller I/Os, series resistor is:  
V
V  
IOs  
I
CC  
R = -------------------------------  
Rmax  
Figure 7.  
Definition of the delay times measurement  
VINA,  
t
VINB  
t
PWM  
t
ILOAD  
t
DEL  
t
DEL  
t
Doc ID 15701 Rev 8  
19/37  
Electrical specifications  
Figure 8.  
VNH5019A-E  
Definition of the low-side switching times  
PWM  
t
V
OUTA, B  
90%  
80%  
tf  
tr  
t
10%  
20%  
Figure 9.  
Definition of the high-side switching times  
VINA,  
td(on)  
td(off)  
t
VOUTA  
90%  
10%  
t
20/37  
Doc ID 15701 Rev 8  
VNH5019A-E  
Electrical specifications  
Figure 10. Definition of dynamic cross conduction current during a PWM operation  
INA=1, IN =0  
B
PWM  
t
IMOTOR  
t
VOUTB  
t
ICC  
IRM  
t
trr  
Doc ID 15701 Rev 8  
21/37  
Electrical specifications  
VNH5019A-E  
Figure 11. Waveforms in full bridge operation (part 1)  
NORMAL OPERATION (DIAGA/ENA=1, DIAGB/ENB=1)  
LOAD CONNECTED BETWEEN OUTA, OUTB  
DIAGA/ENA  
DIAGB/ENB  
INA  
INB  
PWM  
OUTA  
OUTB  
IOUTA->OUTB  
CS (*)  
tDEL  
tDEL  
CS_DIS  
(*) CS BEHAVIOUR DURING PWM MODE DEPENDS ON PWM FREQUENCY AND DUTY CYCLE  
NORMAL OPERATION (DIAGA/ENA=1, DIAGB/ENB=0 and DIAGA/ENA=0, DIAGB/ENB=1)  
LOAD CONNECTED BETWEEN OUTA, OUTB  
DIAGA/ENA  
DIAGB/ENB  
INA  
INB  
PWM  
OUTA  
OUTB  
IOUTA->OUTB  
CS  
CS_DIS  
CURRENT LIMITATION/THERMAL SHUTDOWN or OUTA SHORTED TO GROUND  
INA  
INB  
ILIM  
IOUTA->OUTB  
TTSD_HSA  
TTR_HSA  
Tj =TTSD  
Tj < TTSD  
Tj > TTR  
TjHSA  
DIAGA/ENA  
DIAGB/ENB  
CS  
CS_DIS  
power limitation  
current  
limitation  
normal operation  
normal operation  
OUTA shorted to ground  
22/37  
Doc ID 15701 Rev 8  
 
VNH5019A-E  
Figure 12. Waveforms in full bridge operation (part 2)  
Electrical specifications  
OUTA shorted to VCC (resistive short) and undervoltage shutdown  
CS_DIS  
INA  
INB  
OUTA  
OUTB  
IOUTA->OUTB  
I
SD_LS  
ILSA  
T
TSD_LS  
Tj_LSA  
DIAGB/ENB  
DIAGA/ENA  
CS  
V<nominal  
normal operation OUTA softly shorted to VCC  
normal operation  
undervoltage shutdown  
OUTA shorted to VCC (pure short) and undervoltage shutdown  
CS_DIS  
INA  
INB  
OUTA  
OUTB  
IOUTA->OUTB  
I
SD_LS  
ILSA  
T
TSD_LS  
Tj_LSA  
DIAGB/ENB  
DIAGA/ENA  
CS  
V<nominal  
normal operation OUTA hardly shorted to VCC  
normal operation  
undervoltage shutdown  
Doc ID 15701 Rev 8  
23/37  
 
Electrical specifications  
Figure 13. Definition of delay response time of sense current  
VNH5019A-E  
INPUT  
CS_DIS  
LOAD CURRENT  
CURRENT SENSE  
t
t
DSENSEH  
DSENSEL  
The VNH5019A-E can be used as a high power half-bridge driver achieving an  
on- resistance per leg of 9.5 mΩ. The figure below shows the suggested configuration:  
Figure 14. Half-bridge configuration  
V
CP  
V
CC  
CP  
BAT  
V
CC  
IN  
IN  
IN  
A
B
A
B
IN  
V
DIAG /EN  
DIAG /EN  
BAT  
A
A
A
B
A
B
DIAG /EN  
DIAG /EN  
B
B
PWM  
PWM  
CS_DIS  
CS_DIS  
OUT  
A
OUT  
OUT  
B
OUT  
M
B
A
GND  
GND  
B
GND  
GND  
B
A
A
The VNH5019A-E can easily be designed in multi-motors driving applications such as seat  
positioning systems where only one motor must be driven at a time. DIAGX/ENX pins allow  
to put unused half-bridges in high-impedance. The figure below shows the suggested  
configuration:  
24/37  
Doc ID 15701 Rev 8  
VNH5019A-E  
Figure 15. Multi-motors configuration  
Electrical specifications  
V
CP  
V
CC  
CP  
BAT  
V
CC  
IN  
IN  
IN  
A
B
A
B
IN  
V
BAT  
DIAG /EN  
DIAG /EN  
A
A
B
A
B
A
B
DIAG /EN  
DIAG /EN  
B
PWM  
PWM  
CS_DIS  
CS_DIS  
OUT  
A
OUT  
OUT  
OUT  
B
M
2
B
A
GND  
GND  
B
GND  
GND  
B
A
A
M
M
1
3
Doc ID 15701 Rev 8  
25/37  
Package and PCB thermal data  
VNH5019A-E  
3
Package and PCB thermal data  
3.1  
MultiPowerSO-30 thermal data  
Figure 16. MultiPowerSO-30™ PC board  
Note:  
Layout condition of Rth and Zth measurements (PCB FR4 area= 58 mm x 58 mm, PCB thickness=2 mm, Cu thickness=35 mm, Copper areas:  
from minimum pad lay-out to 16 cm2).  
Figure 17. Chipset configuration  
CHIP 1  
RthA  
RthAB  
RthAC  
RthBC  
CHIP 3  
RthC  
CHIP 2  
RthB  
Figure 18. Auto and mutual Rthj-amb vs PCB copper area in open box free air  
condition  
50  
RthA  
45  
RthB = RthC  
RthAB = RthAC  
RthBC  
40  
35  
30  
25  
20  
15  
10  
5
0
0
2
4
6
8
10  
12  
14  
16  
18  
cm2 of Cu Area (refer to PCB layout)  
26/37  
Doc ID 15701 Rev 8  
 
VNH5019A-E  
Package and PCB thermal data  
3.1.1  
Thermal calculation in clockwise and anti-clockwise operation in  
steady-state mode  
Table 17. Thermal calculation in clockwise and anti-clockwise operation in steady-state mode  
Chip 1 Chip 2 Chip 3  
Tjchip1  
Tjchip2  
Tjchip3  
Pdchip1 • RthA + Pdchip3  
RthAC + Tamb  
Pdchip1 • RthAB + Pdchip3  
RthBC + Tamb  
Pdchip1 • RthAC + Pdchip3  
RthC + Tamb  
ON  
OFF  
ON  
Pdchip1 • RthA + Pdchip2  
Pdchip1 • RthAB + Pdchip2 • RthB  
+ Tamb  
Pdchip1 • RthAC + Pdchip2  
ON  
ON  
ON  
ON  
OFF  
ON  
OFF  
OFF  
ON  
RthAB + Tamb  
RthBC + Tamb  
Pdchip1 • RthA+ Tamb  
dchip1 • RthA + (Pdchip2  
Pdchip1 • RthAB + Tamb  
Pdchip1 • RthAC + Tamb  
P
+
Pdchip2 • RthB + Pdchip1  
thAB + Pdchip3 • RthBC + Tamb  
Pdchip1 • RthAB + Pdchip2  
thBC + Pdchip3 • RthC + Tamb  
Pdchip3) • RthAB + Tamb  
R
R
3.1.2  
Thermal calculation in transient mode  
Ths= Pdhs • Zhs + Zhsls • (PdlsA + PdlsB) + Tamb  
TlsA= PdlsA • Zls + Pdhs • Zhsls + PdlsB • Zhsls + Tamb  
TlsB= PdlsB • Zls + Pdhs • Zhsls + PdlsA • Zhsls + Tamb  
Figure 19. Chipset configuration  
CHIP 1  
Zls  
Zhsls  
Zhsls  
Zlsls  
CHIP 3  
Zls  
CHIP 2  
Zls  
Equation 1: pulse calculation formula  
Z
= R  
⋅ δ + Z  
(1 δ)  
THtp  
THδ  
where  
TH  
δ = t T  
p
Doc ID 15701 Rev 8  
27/37  
Package and PCB thermal data  
VNH5019A-E  
Figure 20. MultiPowerSO-30 HSD thermal impedance junction ambient single pulse  
ZTH -HSD @ cu area  
100  
HSD-16 cm^2 Cu  
HSD-8 cm^2 Cu  
HSD-4 cm^2 Cu  
HSD-footprint  
HsLsD-16 cm^2 Cu  
HsLsD-8 cm^2 Cu  
HsLsD-4 cm^2 Cu  
HsLsD-footprint  
10  
W
/
C°  
1
0.1  
0.001  
0.01  
0.1 time (sec)  
1
10  
100  
1000  
Figure 21. MultiPowerSO-30 LSD thermal impedance junction ambient single pulse  
ZTH -LSD @ cu area  
100  
LSD-16 cm^2 Cu  
LSD-8 cm^2 Cu  
LSD-4 cm^2 Cu  
LSD-footprint  
LsLsD-16 cm^2 Cu  
LsLsD-8 cm^2 Cu  
LsLsD-4 cm^2 Cu  
10  
LsLsD-footprint  
Z ls  
W
/
C°  
Z lsls  
1
0.1  
0.001  
0.01  
0.1  
1
10  
100  
1000  
time (sec)  
28/37  
Doc ID 15701 Rev 8  
VNH5019A-E  
Package and PCB thermal data  
Figure 22. Thermal fitting model of an H-bridge in MultiPowerSO-30  
Table 18. Thermal parameters(1)  
Area/island (cm2)  
Footprint  
4
8
16  
R1 = R7 (°C/W)  
R2 = R8 (°C/W)  
R3 = R10 = R16 (°C/W)  
R4 (°C/W)  
0.1  
0.3  
0.5  
6
R5 (°C/W)  
30  
24  
52  
24  
42  
24  
32  
R6 (°C/W)  
56  
R9 = R15 (°C/W)  
R11 = R17 (°C/W)  
R12 = R18 (°C/W)  
R13 = R19 (°C/W)  
R14 = R20 (°C/W)  
R21 = R22 (°C/W)  
R23 (°C/W)  
0.05  
0.7  
10  
36  
26  
42  
26  
36  
26  
28  
56  
35  
25  
25  
25  
160  
0.005  
0.01  
0.03  
0.4  
1.5  
3
150  
150  
150  
C1 = C7 = C9 = C15 (W.s/°C)  
C2 = C8 (W.s/°C)  
C3 (W.s/°C)  
C4 (W.s/°C)  
C5 (W.s/°C)  
2
4
2
5
2
6
C6 (W.s/°C)  
C10 = C16 (W.s/°C)  
C11 = C17 (W.s/°C)  
C12 = C18 (W.s/°C)  
C13 = C19 (W.s/°C)  
C14 = C20 (W.s/°C)  
C21 = C22 = C23 (W.s/°C)  
0.015  
0.05  
0.3  
1.2  
2.5  
0.01  
2
3
2
4
2
5
0.008  
0.008  
0.008  
1. The blank space means that the value is the same as the previous one.  
Doc ID 15701 Rev 8  
29/37  
Package and packing information  
VNH5019A-E  
4
Package and packing information  
®
4.1  
ECOPACK  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
4.2  
MultiPowerSO-30 mechanical data  
Figure 23. MultiPowerSO-30 package dimensions  
N
S
L
BOTTOM VIEW  
F1  
F1  
B
e
h x 45°  
30  
A
1
C
F3  
D
30/37  
Doc ID 15701 Rev 8  
 
VNH5019A-E  
Package and packing information  
Table 19. MultiPowerSO-30 mechanical data  
Data book mm  
Typ.  
Symbol  
Min.  
Max.  
A
A2  
A3  
B
2.35  
2.25  
0.1  
1.85  
0
0.42  
0.23  
17.1  
18.85  
15.9  
0.58  
0.32  
17.3  
19.15  
16.1  
C
D
17.2  
E
E1  
e
16  
1
F1  
F2  
F3  
L
5.55  
4.6  
6.05  
5.1  
9.6  
10.1  
1.15  
10°  
7°  
0.8  
N
S
0°  
Doc ID 15701 Rev 8  
31/37  
Package and packing information  
VNH5019A-E  
4.3  
MultiPowerSO-30 suggested land pattern  
Figure 24. MultiPowerSO-30 suggested pad layout  
32/37  
Doc ID 15701 Rev 8  
VNH5019A-E  
Package and packing information  
4.4  
MultiPowerSO-30 packing information  
The devices can be packed in tube or tape and reel shipments (see Table 20: Device  
summary for packaging quantities).  
Figure 25. MultiPowerSO-30 tube shipment (no suffix)  
Dimension  
mm  
29  
Base q.ty  
A
Bulk q.ty  
435  
532  
3.82  
23.6  
0.8  
Tube length ( 0.5)  
C
B
A
B
C ( 0.13)  
Figure 26. MultiPowerSO-30 tape and reel shipment (suffix “TR”)  
Reel dimensions  
SO-28 tube shipment (no suffix)  
Dimension  
mm  
1000  
Base q.ty  
Bulk q.ty  
A (max)  
B (min)  
1000  
330  
1.5  
C ( 0.2)  
D (min)  
13  
20.2  
32  
G (+ 2 / -0)  
N (min)  
100  
38.4  
T (max)  
Tape dimensions  
According to Electronic Industries Association  
(EIA) Standard 481 rev. A, Feb 1986  
Description  
Dimension  
mm  
Tape width  
W
32  
4
Tape hole spacing  
Component spacing  
Hole diameter  
P0 ( 0.1)  
P
24  
1.5  
2
D ( 0.1/-0)  
D1 (min)  
F ( 0.1)  
K (max)  
P1 ( 0.1)  
Hole diameter  
Hole position  
14.2  
2.2  
2
Compartment Depth  
Hole Spacing  
End  
Start  
Top  
cover  
tape  
No components  
500 mm min  
Components  
No components  
500 mm min  
Empty components pockets  
User direction of feed  
Doc ID 15701 Rev 8  
33/37  
Order codes  
VNH5019A-E  
5
Order codes  
Table 20. Device summary  
Package  
Order codes  
Tube  
Tape and reel  
VNH5019TR-E  
MultiPowerSO-30  
VNH5019A-E  
34/37  
Doc ID 15701 Rev 8  
VNH5019A-E  
Revision history  
6
Revision history  
Table 21. Document revision history  
Date  
Revision  
Changes  
22-Jan-2008  
1
Initial release.  
Uploaded corporate template by using V3 version  
Added Table 5: Thermal data  
Section 2.1: Absolute maximum ratings  
– Added text  
Table 6: Power section  
– IS: added max value for INA = INB = PWM = 0; Tj = 25 °C;  
VCC=13V in Test conditions, deleted INA = INB = PWM = 0  
– Vf: changed Test conditions, changed typ/max value  
– IRM: deleted and copied in Table 8: Switching (VCC = 13 V,  
R
LOAD = 0.87 W, Tj = 25 °C) whole row  
04-Nov-2009  
2
Table 8: Switching (VCC = 13 V, RLOAD = 0.87 W, Tj = 25 °C)  
– tDEL: changed min/typ/max value  
– Copied IRM row by Table 6: Power section  
Updated Table 10: Current sense (8 V < VCC < 21 V)  
Table 11: Charge pump  
– VCP: changed min/max value for ENX = 5 V, changed typ  
value for ENX = 5 V, VCC = 4.5 V  
Updated Figure 11: Waveforms in full bridge operation (part 1)  
Updated Figure 12: Waveforms in full bridge operation (part 2)  
Added Chapter 4  
Updated following tables:  
Table 6: Power section  
Table 9: Protection and diagnostic  
Table 10: Current sense (8 V < VCC < 21 V)  
16-Dec-2009  
3
Added Figure 6: Behavior in fault condition (how a fault can be  
cleared)  
Added Chapter 3: Package and PCB thermal data  
Updated Table 5: Thermal data.  
Table 6: Power section:  
– IS: updated test condition and max value  
Updated table notes on Table 9: Protection and diagnostic.  
Table 10: Current sense (8 V < VCC < 21 V):  
06-Apr-2010  
4
– dK0/k0, dK1/k1, dK3/k3: updated minimum end maximum  
values.  
19-Apr-2010  
25-May-2010  
5
6
Updated Table 10: Current sense (8 V < VCC < 21 V).  
Updated Features list.  
Updated Table 6: Power section.  
Doc ID 15701 Rev 8  
35/37  
Revision history  
Table 21. Document revision history (continued)  
VNH5019A-E  
Date  
Revision  
Changes  
Updated Table 5: Thermal data.  
Updated Figure 1: Block diagram  
02-Sep-2010  
7
Added Table 1: Suggested connections for unused and not  
connected pins  
Updated Table 3: Block descriptions  
Table 8: Switching (VCC = 13 V, RLOAD = 0.87 W, Tj = 25 °C):  
22-Dec-2011  
8
– TTSD, TTR, THYST: added note  
– TTSD_LS: added row  
Updated Table 13: Truth table in fault conditions (detected on  
OUTA)  
Updated Figure 11: Waveforms in full bridge operation (part 1)  
and Figure 12: Waveforms in full bridge operation (part 2)  
36/37  
Doc ID 15701 Rev 8  
VNH5019A-E  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2011 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 15701 Rev 8  
37/37  

相关型号:

VNH5050A-E

Automotive fully integrated H-bridge motor driver
STMICROELECTR

VNH5050ATR-E

Automotive fully integrated H-bridge motor driver
STMICROELECTR

VNH50N04

FULLY AUTOPROTECTED POWER MOSFET
STMICROELECTR

VNH5180A-E

Automotive fully integrated H-bridge motor driver
STMICROELECTR

VNH7013XP-E

Automotive integrated H-bridge
STMICROELECTR

VNH70N07

TRANSISTOR | MOSFET | N-CHANNEL | 70V V(BR)DSS | 70A I(D) | TO-218
ETC

VNH7100AS

Automotive fully integrated H-bridge motor driver
STMICROELECTR

VNH7100ASTR

Automotive fully integrated H-bridge motor driver
STMICROELECTR

VNI4140K

Quad high side smart power solid state relay
STMICROELECTR

VNI4140K-32

Quad high side smart power solid state relay
STMICROELECTR

VNI4140KTR

Quad high side smart power solid state relay
STMICROELECTR

VNI4140KTR-32

Quad high side smart power solid state relay
STMICROELECTR