VNP10N06 [STMICROELECTRONICS]

”OMNIFET”: FULLY AUTOPROTECTED POWER MOSFET; ? OMNIFET ?:岗AUTOPROTECTED功率MOSFET
VNP10N06
型号: VNP10N06
厂家: ST    ST
描述:

”OMNIFET”: FULLY AUTOPROTECTED POWER MOSFET
? OMNIFET ?:岗AUTOPROTECTED功率MOSFET

接口集成电路 驱动 局域网
文件: 总11页 (文件大小:129K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VNP10N06  
”OMNIFET”:  
FULLY AUTOPROTECTED POWER MOSFET  
TYPE  
Vclamp  
RDS(on)  
Ilim  
VNP10N06  
60 V  
0.3  
10 A  
LINEAR CURRENT LIMITATION  
THERMAL SHUT DOWN  
SHORT CIRCUIT PROTECTION  
INTEGRATED CLAMP  
LOW CURRENT DRAWN FROM INPUT PIN  
LOGIC LEVEL INPUT THRESHOLD  
ESD PROTECTION  
SCHMITT TRIGGER ON INPUT  
HIGH NOISE IMMUNITY  
3
2
1
TO-220  
STANDARD TO-220 PACKAGE  
DESCRIPTION  
The VNP10N06 is a monolithic device made  
using SGS-THOMSON Vertical Intelligent Power  
M0 Technology, intended for replacement of  
standard power MOSFETS in DC to 50 KHz  
applications. Built-in thermal shut-down, linear  
current limitation and overvoltage clamp protect  
the chip in harsh enviroments.  
BLOCK DIAGRAM  
1/11  
June 1997  
VNP10N06  
ABSOLUTE MAXIMUM RATING  
Symbol  
VDS  
Vin  
Parameter  
Value  
Internally Clamped  
Internally Clamped  
± 20  
Unit  
V
Drain-source Voltage (Vin = 0)  
Input Voltage  
V
Iin  
Input Current  
mA  
A
ID  
Drain Current  
Internally Limited  
-15  
IR  
Reverse DC Output Current  
Electrostatic Discharge (C= 100 pF, R=1.5 K)  
Total Dissipation at Tc = 25 oC  
Operating Junction Temperature  
Case Operating Temperature  
Storage Temperature  
A
Vesd  
Ptot  
Tj  
4000  
V
42  
W
oC  
oC  
oC  
Internally Limited  
Internally Limited  
-55 to 150  
Tc  
Tst g  
THERMAL DATA  
Rthj-case Thermal Resistance Junction-case  
Rthj-amb Thermal Resistance Junction-ambient  
Max  
Max  
3
62.5  
oC/W  
oC/W  
ELECTRICAL CHARACTERISTICS (Tcase = 25 oC unless otherwise specified)  
OFF  
Symbol  
Parameter  
Test Conditions  
ID = 200 mA Vin = 0  
Min.  
Typ.  
Max.  
Unit  
VCLAMP  
Drain-source Clamp  
Voltage  
50  
60  
70  
V
VIL  
VIH  
Input Low Level  
Voltage  
1.5  
V
V
ID = 100 µA VDS = 16 V  
Input High Level  
Voltage  
3.2  
RL = 27 VDD = 16 V  
VDS = 0.5 V  
VINCL  
IDSS  
IISS  
Input-Source Reverse  
Clamp Voltage  
Iin = -1 mA  
Iin = 1 mA  
-1  
8
-0.3  
11  
V
V
Zero Input Voltage  
Drain Current (Vin = 0) VDS < 35 V Vin = VIL  
VDS = 50 V Vin = VIL  
250  
100  
µA  
µA  
Supply Current from  
Input Pin  
VDS = 0 V Vin = 5 V  
150  
300  
µA  
ON ( )  
Symbol  
Parameter  
Test Conditions  
Min.  
Min.  
Typ.  
Max.  
Unit  
RDS(on)  
Static Drain-source On Vin = 7 V  
Resistance  
ID = 1 A TJ < 125 oC  
0.15  
0.3  
DYNAMIC  
Symbol  
Parameter  
Test Conditions  
Typ.  
Max.  
Unit  
Coss  
Output Capacitance  
VDS = 13 V f = 1 MHz Vin = 0  
350  
500  
pF  
2/11  
VNP10N06  
ELECTRICAL CHARACTERISTICS (continued)  
SWITCHING (  
)
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
td(on)  
tr  
td(off)  
tf  
Turn-on Delay Time  
Rise Time  
Turn-off Delay Time  
Fall Time  
VDD = 16 V  
Vgen = 7 V  
(see figure 3)  
Id = 1 A  
Rgen = 10 Ω  
1100  
550  
200  
100  
1600  
900  
400  
200  
ns  
ns  
ns  
ns  
td(on)  
tr  
td(off)  
tf  
Turn-on Delay Time  
Rise Time  
Turn-off Delay Time  
Fall Time  
VDD = 16 V  
Vgen = 7 V  
(see figure 3)  
Id = 1 A  
Rgen = 1000 Ω  
1.2  
1
1.6  
1.2  
1.8  
1.5  
2.3  
1.8  
µs  
µs  
µs  
µs  
(di/dt)on Turn-on Current Slope VDD = 16 V  
Vin = 7 V  
ID = 1 A  
Rgen = 10 Ω  
1.5  
A/µs  
Qi  
Total Input Charge  
VDD = 12 V ID = 1 A Vin = 7 V  
13  
nC  
SOURCE DRAIN DIODE  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
0.8  
Max.  
Unit  
V
VSD ( ) Forward On Voltage  
ISD = 1 A Vin = VIL  
1.6  
trr  
(
)
Reverse Recovery  
Time  
125  
ns  
ISD = 1 A  
VDD = 30 V  
di/dt = 100 A/µs  
Tj = 25 oC  
Qrr  
(
)
Reverse Recovery  
Charge  
Reverse Recovery  
Current  
0.22  
3.5  
µC  
(see test circuit, figure 5)  
IRRM  
(
)
A
PROTECTION  
Symbol  
Parameter  
Test Conditions  
Vin = 7 V VDS = 13 V  
Min.  
Typ.  
10  
Max.  
15  
Unit  
A
Ilim  
Drain Current Limit  
6
tdlim  
(
)
)
Step Response  
Current Limit  
Vin = 7 V VDS step from 0 to 13 V  
12  
20  
µs  
Tjsh  
(
Overtemperature  
Shutdown  
150  
oC  
Tjrs  
Eas  
(
)
Overtemperature Reset  
135  
250  
oC  
(
)
Single Pulse  
Avalanche Energy  
starting Tj = 25 oC  
Vin = 7 V Rgen = 1 KL = 10 mH  
VDD = 24 V  
mJ  
( ) Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %  
) Parameters guaranteed by design/characterization  
(
3/11  
VNP10N06  
PROTECTION FEATURES  
to a voltage high enough to sustain the inductive  
load current even if the INPUT pin is driven to 0V.  
The device integrates an active current limiter  
circuit which limits the drain current ID to Ilim  
whatever the INPUT pin Voltage.  
During Normal Operation, the INPUT pin is  
electrically connected to the gate of the internal  
power MOSFET through a low impedance path  
as soon as VIN > VIH.  
The device then behaves like a standard power  
MOSFET and can be used as a switch from DC  
to 50KHz. The only difference from the user’s  
standpoint is that a small DC current (typically  
150 µA) flows into the INPUT pin in order to  
supply the internal circuitry.  
When the current limiter is active, the device  
operates in the linear region, so power dissipation  
may exceed the heatsinkingcapability. Both case  
and junction temperatures increase, and if this  
phase lasts long enough, junction temperature  
may reach the overtemperature threshold Tjsh  
.
If Tj reaches Tjsh, the device shuts down  
whatever the INPUT pin voltage. The device will  
restart automatically when Tj has cooled down to  
Tjrs  
During turn-off of an unclamped inductive load  
the output voltage is clamped to a safe level by  
an integrated Zener clamp between DRAIN pin  
and the gate of the internal Power MOSFET.  
In this condition, the Power MOSFET gate is set  
4/11  
VNP10N06  
Thermal Impedance  
Derating Curve  
Output Characteristics  
Static Drain-Source On Resistance vs Input  
Voltage  
Static Drain-Source On Resistance  
Static Drain-Source On Resistance  
5/11  
VNP10N06  
Input Charge vs Input Voltage  
Capacitance Variations  
Normalized Input Threshold Voltage vs  
Temperature  
Normalized On Resistance vs Temperature  
Normalized On Resistance vs Temperature  
Turn-on Current Slope  
6/11  
VNP10N06  
Turn-on Current Slope  
Turn-off Drain-Source Voltage Slope  
Switching Time Resistive Load  
Switching Time Resistive Load  
Turn-off Drain-Source Voltage Slope  
Switching Time Resistive Load  
7/11  
VNP10N06  
Current Limit vs Junction Temperature  
Step Response Current Limit  
Source Drain Diode Voltage vs Junction  
Temperature  
8/11  
VNP10N06  
Fig. 1: Unclamped Inductive Load Test Circuits  
Fig. 2: Unclamped Inductive Waveforms  
Fig. 3: Switching Times Test Circuits For  
Fig. 4: Input Charge Test Circuit  
Resistive Load  
Fig. 5: Test Circuit For Inductive Load Switching  
Fig. 6: Waveforms  
And Diode Recovery Times  
9/11  
VNP10N06  
TO-220 MECHANICAL DATA  
mm  
inch  
TYP.  
DIM.  
MIN.  
4.40  
1.23  
2.40  
TYP.  
MAX.  
4.60  
1.32  
2.72  
MIN.  
0.173  
0.048  
0.094  
MAX.  
0.181  
0.051  
0.107  
A
C
D
D1  
E
1.27  
0.050  
0.49  
0.61  
1.14  
1.14  
4.95  
2.4  
0.70  
0.88  
1.70  
1.70  
5.15  
2.7  
0.019  
0.024  
0.044  
0.044  
0.194  
0.094  
0.393  
0.027  
0.034  
0.067  
0.067  
0.203  
0.106  
0.409  
F
F1  
F2  
G
G1  
H2  
L2  
L4  
L5  
L6  
L7  
L9  
DIA.  
10.0  
10.40  
16.4  
0.645  
13.0  
2.65  
15.25  
6.2  
14.0  
2.95  
15.75  
6.6  
0.511  
0.104  
0.600  
0.244  
0.137  
0.147  
0.551  
0.116  
0.620  
0.260  
0.154  
0.151  
3.5  
3.93  
3.85  
3.75  
L2  
Dia.  
L5  
L9  
L7  
L6  
L4  
P011C  
10/11  
VNP10N06  
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No  
license is granted by implication or otherwise underany patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned  
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.  
SGS-THOMSON Microelectronics productsare notauthorized for use as criticalcomponents in life supportdevices or systems withoutexpress  
written approval of SGS-THOMSON Microelectonics.  
1997 SGS-THOMSON Microelectronics - Printedin Italy - All Rights Reserved  
SGS-THOMSON Microelectronics GROUP OF COMPANIES  
Australia- Brazil - Canada - China - France - Germany - Hong Kong - Italy- Japan- Korea - Malaysia- Malta- Morocco - TheNetherlands -  
Singapore - Spain- Sweden- Switzerland - Taiwan - Thailand - United Kingdom - U.S.A  
.
11/11  

相关型号:

VNP10N06FI

ISO HIGH SIDE SMART POWER SOLID STATE RELAY
STMICROELECTR

VNP10N07

”OMNIFET”: FULLY AUTOPROTECTED POWER MOSFET
STMICROELECTR

VNP10N07-E

OMNIFET :FULLY AUTOPROTECTED POWER MOSFET
STMICROELECTR

VNP10N07FI

”OMNIFET”: FULLY AUTOPROTECTED POWER MOSFET
STMICROELECTR

VNP14N04

”OMNIFET”: FULLY AUTOPROTECTED POWER MOSFET
STMICROELECTR

VNP14N04FI

”OMNIFET”: FULLY AUTOPROTECTED POWER MOSFET
STMICROELECTR

VNP14NV04

“OMNIFET II”: FULLY AUTOPROTECTED POWER MOSFET
STMICROELECTR

VNP14NV04-1

TRANSISTOR,MOSFET,N-CHANNEL,40V V(BR)DSS,12A I(D),TO-251AA
STMICROELECTR

VNP20N07

”OMNIFET”: FULLY AUTOPROTECTED POWER MOSFET
STMICROELECTR

VNP20N07-E

OMNIFET :FULLY AUTOPROTECTED POWER MOSFET
STMICROELECTR

VNP20N07FI

”OMNIFET”: FULLY AUTOPROTECTED POWER MOSFET
STMICROELECTR

VNP28N04

”OMNIFET”: FULLY AUTOPROTECTED POWER MOSFET
STMICROELECTR