ADS54J40IRMP [TI]

双通道、14 位、1.0GSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85;
ADS54J40IRMP
型号: ADS54J40IRMP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双通道、14 位、1.0GSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85

转换器 模数转换器
文件: 总115页 (文件大小:5989K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS54J40  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
ADS54J40 双通道 14 1.0GSPS 模数转换器  
1 特性  
3 说明  
14 位分辨率、双通道、1GSPS ADC  
ADS54J40 是一款低功耗、高带宽、14 位、1.0GSPS  
双通道模数转换器 (ADC)该器件具有高信噪比  
(SNR)可为需要在高瞬时带宽内实现超高动态范围的  
应用提供 -158dBFS/Hz 本底噪声。该器件支持  
JESD204B 串行接口数据传输速率高达 10.0Gbps,  
每个 ADC 可支持双通道或四通道。经缓冲的模拟输入  
可在较宽频率范围内提供统一的输入阻抗并尽可能降  
低采样和保持毛刺脉冲能量。可选择将每个 ADC 通道  
连接至数字下变频器 (DDC) 模块。ADS54J40 以超低  
功耗在宽输入频率范围内提供出色的无杂散动态范围  
(SFDR)。  
本底噪声-158dBFS/Hz  
频谱性能fIN = 170MHz1dBFS):  
SNR69.0dBFS  
NSD-155.9dBFS/Hz  
SFDR86dBc包括交错音调)  
SFDR89dBc不包括 HD2HD3 和交错音  
)  
频谱性能fIN = 350MHz1dBFS):  
SNR66.3dBFS  
NSD-153.3dBFS/Hz  
SFDR75dBc  
JESD204B 接口减少了接口线路数从而实现高系统  
集成度。内部锁相环 (PLL) 会将 ADC 采样时钟加倍,  
以获得对各通道的 14 位数据进行串行化所使用的位时  
钟。  
SFDR85dBc不包括 HD2HD3 和交错音  
)  
通道隔离fIN = 170MHz 时为 100dBc  
满量程输入1.9V VPP  
输入带宽 (3dB)1.2GHz  
片上抖动  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
ADS54J40  
VQFNP (72)  
10.00mm x 10.00mm  
集成宽带 DDC 块  
支持子类 1 JESD204B 接口:  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
10.0Gbps 时每个 ADC 具有 2 条信道  
5.0Gbps 时每个 ADC 具有 4 条信道  
– 支持多芯片同步  
空白  
空白  
功率耗散1GSPS 时为每通道 1.35W  
封装72 引脚 VQFNP (10mm × 10mm)  
0
-20  
-40  
2 应用  
雷达和天线阵列  
无线宽带  
电缆 CMTSDOCSIS 3.1 接收器  
通信测试设备  
微波接收器  
软件定义无线电 (SDR)  
数字转换器  
医疗成像和诊断  
-60  
-80  
-100  
-120  
0
100  
200 300  
Input Frequency (MHz)  
400  
500  
D003  
SNR = 69dBFSSFDR = 86dBcfIN = 170MHzIL 毛刺 =  
84dBcHD2HD3 毛刺 = 89dBc)  
用于 170MHz 输入信号的 FFT  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBAS714  
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
Table of Contents  
8.3 Feature Description...................................................28  
8.4 Device Functional Modes..........................................36  
8.5 Register Maps...........................................................48  
9 Application Information Disclaimer.............................85  
9.1 Application Information............................................. 85  
9.2 Typical Application.................................................. 103  
10 Power Supply Recommendations............................106  
10.1 Power Sequencing and Initialization.....................106  
11 Layout.........................................................................107  
11.1 Layout Guidelines................................................. 107  
11.2 Layout Example.................................................... 107  
12 Device and Documentation Support........................108  
12.1 Documentation Support........................................ 108  
12.2 Receiving Notification of Documentation Updates108  
12.3 支持资源................................................................108  
12.4 Trademarks...........................................................108  
12.5 静电放电警告........................................................ 108  
12.6 术语表................................................................... 108  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 ADS54J40 Comparison...................................................5  
6 Pin Configuration and Functions...................................6  
7 Specifications.................................................................. 8  
7.1 Absolute Maximum Ratings........................................ 8  
7.2 ESD Ratings............................................................... 8  
7.3 Recommended Operating Conditions.........................9  
7.4 Thermal Information....................................................9  
7.5 Electrical Characteristics...........................................10  
7.6 AC Characteristics.................................................... 11  
7.7 Digital Characteristics............................................... 15  
7.8 Timing Requirements................................................16  
7.9 Typical Characteristics..............................................18  
8 Detailed Description......................................................27  
8.1 Overview...................................................................27  
8.2 Functional Block Diagram.........................................27  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (January 2017) to Revision C (December 2020)  
Page  
特性 要点添加了文本“包括交错音调...................................................................................................1  
Added ADS54J40 Comparison section, moved Device Comparison Table to this section.................................5  
Changed the description of SYSREFM, SYSREFP, and PDN pins in Pin Functions table ............................... 6  
Changed fIN = 470 MHz test conditions and typical values across parameters in AC Characteristics table.... 11  
Added fIN = 720 MHz test conditions across parameters in AC Characteristics table...................................... 11  
Changed ENOB unit from dBFS to Bits in AC Characteristics table.................................................................11  
Changed typical values of SFDR_IL parameter ...............................................................................................11  
Changed first IMD3 typical value from 85 dBFS to 89 dBFS ....................................................................11  
Changed first footnote in Timing Characteristics table..................................................................................... 16  
Changed typical value of FOVR latency from 18 + 4 ns to 18 .........................................................................16  
Changed tPD parameter name to tPDI in Timing Characteristics table.............................................................. 16  
Changed FFT for 470-MHz Input Signal at 3 dBFS figure, title, and conditions........................................... 18  
Added FFT for 720-MHz Input Signal at 6 dBFS figure................................................................................ 18  
Changed Spurious-Free Dynamic Range vs Input Frequency figure............................................................... 18  
Changed IL Spur vs Input Frequency figure.....................................................................................................18  
Changed 16-bit to 14-bit in first sentence of Overview section.........................................................................27  
Added DDC Block section ............................................................................................................................... 30  
Changed 8-6 ............................................................................................................................................... 36  
Added last sentence to Step 4 in Serial Register Readout: Analog Bank section............................................39  
Added last sentence to Step 4 in Serial Register Readout: JESD Bank section..............................................40  
Added SDOUT Timing Diagram figure............................................................................................................. 40  
Changed the JESD204B Test Patterns section ............................................................................................... 43  
Changed Serial Interface Registers diagram....................................................................................................48  
Added register addresses 1 and 2 to GENERAL REGISTERS in Register Map section ................................ 48  
Changed the name of JESD ANALOG PAGE (6A00h) to JESD ANALOG PAGE (JESD BANK PAGE  
SEL=6A00h) in Register Map table ................................................................................................................. 48  
Changed bit 1, register 12 of JESD ANALOG PAGE (6A00h) from 0 to ALWAYS WRITE 1 .......................... 48  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
Added OFFSET READ Page and OFFSET LOAD Page registers to Register Map table .............................. 48  
Added ADS54J40 Access Type Codes table....................................................................................................52  
Deleted legends from bit registers in Register Descriptions section.................................................................53  
Added register 1h and 2h to Register Descriptions section .............................................................................53  
Added text '6100h = OFFSET READ or LOAD Page' to the JESD BANK PAGE SEL[7:0] bit description.......53  
Changed description of Registers 3h and 4h (address = 3h and 4h)in General Registers Page. ................... 54  
Changed description of bit 0 in Register 4Fh (address = 4Fh), Master Page (080h)....................................... 58  
Changed Register 53H .................................................................................................................................... 59  
Changed Register 54H .................................................................................................................................... 59  
Changed Register 55H .................................................................................................................................... 60  
Added Register 40h .........................................................................................................................................62  
Changed Register 4Eh .................................................................................................................................... 67  
Changed Register 52h .....................................................................................................................................67  
Added Register 68h .........................................................................................................................................68  
Changed the Register ABh description.............................................................................................................69  
Changed bit 1 from 0 to ALWAYS WRITE 1 in Register 12h (address = 12h), JESD Analog Page (6A00h)...76  
Changed Register 1Ah .................................................................................................................................... 79  
Added Offset Read Page Register and Offset Load Page Register sections to Register Descriptions section...  
81  
Changed Register 075h, 077h, 079h, 7Bh (address = 075h, 077h, 079h, 7Bh ...............................................82  
Changed Register 00h, 04h, 08h, 0Ch ............................................................................................................ 83  
Changed Register 01h, 05h, 09h, 0Dh ............................................................................................................ 83  
Added Register 78h .........................................................................................................................................84  
Added DC Offset Correction Block in the ADS54J40 section...........................................................................89  
Added Idle Channel Histogram section............................................................................................................ 93  
Added the Interleaving (IL) Mismatch Compensation section.......................................................................... 94  
Changed the description in Transformer-Coupled Circuits section.................................................................104  
Changed the Layout Guidelines .................................................................................................................... 107  
Changes from Revision A (October 2015) to Revision B (January 2017)  
Page  
Added the Device Comparison Table ................................................................................................................ 5  
Added CDM row to ESD Ratings table...............................................................................................................8  
Changed the minimum value for the input clock frequency in the Recommended Operating Conditions table ..  
9
Changed Sample Timing, Aperture jitter parameter typical specification in Timing Characteristics section.....16  
Added the FOVR latency parameter to the Timing Characteristics table......................................................... 16  
Changed Overview section ..............................................................................................................................27  
Changed Functional Block Diagram section: changed Control and SPI block and added dashed outline to  
FOVR traces.....................................................................................................................................................27  
Changed SYSREF Signal section: changed 8-4 and added last paragraph................................................34  
Added SYSREF Not Present (Subclass 0, 2) section.......................................................................................34  
Changed the number of clock cycles in the Fast OVR section.........................................................................35  
Deleted Lane Enable with Decimation subsection ...........................................................................................45  
Added the Program Summary of DDC Modes and JESD Link Configuration table..........................................45  
Added 8-27 to Register Maps section..........................................................................................................48  
Changed the Register Map ..............................................................................................................................48  
Deleted register 39h, 3Ah, and 56h .................................................................................................................48  
Added 8-63 ..................................................................................................................................................71  
Changed Power Supply Recommendations section ......................................................................................106  
Added the Power Sequencing and Initialization section.................................................................................106  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
Added the Receiving Notification of Documentation Updates section............................................................108  
Changes from Revision * (May 2015) to Revision A (October 2015)  
Page  
已投入量产..........................................................................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
5 ADS54J40 Comparison  
5-1 lists companion devices to the ADS54J40 .(TBD: Why has it been shifted to this place? )  
5-1. Device Comparison Table  
PART NUMBER  
ADS54J20  
ADS54J42  
ADS54J40  
ADS54J60  
ADS54J66  
ADS54J69  
SPEED GRADE (MSPS)  
RESOLUTION (Bits)  
CHANNEL  
1000  
625  
12  
14  
14  
16  
14  
16  
2
2
2
2
4
2
1000  
1000  
500  
500  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
6 Pin Configuration and Functions  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
1
2
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
DB3M  
DB3P  
DA3M  
DA3P  
DGND  
IOVDD  
PDN  
3
DGND  
IOVDD  
SDIN  
4
5
6
SCLK  
RES  
7
SEN  
RESET  
DVDD  
AVDD  
AVDD3V  
AVDD  
AVDD  
INAP  
8
DVDD  
AVDD  
AVDD3V  
SDOUT  
AVDD  
INBP  
9
GND Pad  
(Back Side)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
INBM  
INAM  
AVDD  
AVDD3V  
AVDD  
AGND  
AVDD  
AVDD3V  
AVDD  
AGND  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
6-1. RMP Package, 72-Pin VQFNP, Top View  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
CLOCK, SYSREF  
CLKINM  
28  
27  
34  
33  
I
I
I
I
Negative differential clock input for the ADC.  
Positive differential clock input for the ADC.  
CLKINP  
SYSREFM  
SYSREFP  
Negative external SYSREF input. Connect this pin to GND if not used.  
Positive external SYSREF input. Connect this pin to 1.8 V if not used.  
CONTROL, SERIAL  
Power down, active low pin. Can be configured via an SPI register setting.  
Can be configured to fast overrange output for channel A through the SPI. This pin  
has an internal 20kΩ pulldown resistor.  
PDN  
50  
I/O  
RESET  
SCLK  
48  
6
I
I
Hardware reset; active high. This pin has an internal 20-kΩ pulldown resistor.  
Serial interface clock input  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
6-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
SDIN  
5
I
Serial interface data input  
Serial interface data output.  
SDOUT  
SEN  
11  
7
O
I
Can be configured to fast overrange output for channel B through the SPI.  
Serial interface enable  
DATA INTERFACE  
DA0M  
DA1M  
DA2M  
DA3M  
DA0P  
62  
59  
56  
54  
61  
58  
55  
53  
65  
68  
71  
1
O
O
O
JESD204B serial data negative outputs for channel A  
JESD204B serial data positive outputs for channel A  
JESD204B serial data negative outputs for channel B  
DA1P  
DA2P  
DA3P  
DB0M  
DB1M  
DB2M  
DB3M  
DB0P  
66  
69  
72  
2
DB1P  
O
I
JESD204B serial data positive outputs for channel B  
Synchronization input for the JESD204B port  
DB2P  
DB3P  
SYNC  
63  
INPUT, COMMON MODE  
INAM  
INAP  
INBM  
INBP  
41  
42  
14  
13  
I
I
I
I
Differential analog negative input for channel A  
Differential analog positive input for channel A  
Differential analog negative input for channel B  
Differential analog positive input for channel B  
Common-mode voltage, 2.1 V.  
VCM  
22  
O
Note that analog inputs are internally biased to this pin through 600 Ω (effective),  
no external connection from the VCM pin to the INxP or INxM pin is required.  
POWER SUPPLY  
AGND  
AVDD  
18, 23, 26, 29, 32, 36, 37  
I
I
Analog ground  
9, 12, 15, 17, 25, 30, 35, 38,  
40, 43, 44, 46  
Analog 1.9-V power supply  
AVDD3V  
DGND  
DVDD  
IOVDD  
NC, RES  
NC  
10, 16, 24, 31, 39, 45  
3, 52, 60, 67  
8, 47  
I
I
I
I
Analog 3.0-V power supply for the analog buffer  
Digital ground  
Digital 1.9-V power supply  
4, 51, 57, 64, 70  
Digital 1.15-V power supply for the JESD204B transmitter  
19-21  
49  
Unused pins, do not connect  
RES  
I
Reserved pin. Connect to DGND.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
AVDD3V  
3.6  
0.3  
0.3  
0.3  
0.2  
0.3  
0.3  
0.3  
0.3  
0.2  
65  
AVDD  
Supply voltage range  
DVDD  
2.1  
2.1  
IOVDD  
Voltage between AGND and DGND  
INAP, INBP, INAM, INBM  
1.4  
0.3  
3
V
CLKINP, CLKINM  
Voltage applied to input pins  
AVDD + 0.3  
AVDD + 0.3  
2.1  
V
SYSREFP, SYSREFM  
SCLK, SEN, SDIN, RESET, SYNC, PDN  
Storage temperature, Tstg  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V HBM allows safe manufacturing with a standard ESD control process.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
 
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(2) (3)  
MIN  
2.85  
1.8  
NOM  
3
MAX  
3.6  
UNIT  
AVDD3V  
AVDD  
Supply voltage range  
DVDD  
1.9  
1.9  
1.15  
1.9  
2
2.0  
V
1.7  
2.0  
IOVDD  
1.1  
1.2  
Differential input voltage range  
VPP  
V
Analog inputs  
Input common-mode voltage  
Maximum analog input frequency for 1.9-VPP input amplitude(4) (5)  
400  
MHz  
MHz  
VPP  
Input clock frequency, device clock frequency  
250(6)  
0.75  
0.8  
1000  
Input clock amplitude differential  
(VCLKP VCLKM  
Sine wave, ac-coupled  
LVPECL, ac-coupled  
LVDS, ac-coupled  
1.5  
1.6  
)
Clock inputs  
Temperature  
0.7  
Input device clock duty cycle  
Operating free-air, TA  
45%  
50%  
55%  
85  
40  
°C  
Operating junction, TJ  
105(1)  
125  
(1) Prolonged use above the nominal junction temperature can increase the device failure-in-time (FIT) rate.  
(2) SYSREF must be applied for the device to initialize; see the SYSREF Signal section for details.  
(3) After power-up, always use a hardware reset to reset the device for the first time; see 9-1 for details.  
(4) Operating 0.5 dB below the maximum-supported amplitude is recommended to accommodate gain mismatch in interleaving ADCs.  
(5) At high frequencies, the maximum supported input amplitude reduces; see 7-37 for details.  
(6) See 8-10.  
7.4 Thermal Information  
ADS54J40  
THERMAL METRIC(1)  
RMP (VQFNP)  
UNIT  
72 PINS  
22.3  
5.1  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
2.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJT  
2.3  
ψJB  
RθJC(bot)  
0.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ADS54J40  
 
 
 
 
 
 
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
7.5 Electrical Characteristics  
Typical values are at TA = 25°C, full temperature range is from TMIN = 40°C to TMAX = 85°C, ADC sampling rate = 1 GSPS,  
50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, 1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GENERAL  
ADC sampling rate  
Resolution  
250  
14  
1000 MSPS  
Bits  
POWER SUPPLIES  
AVDD3V  
AVDD  
DVDD  
IOVDD  
IAVDD3V  
IAVDD  
3.0-V analog supply  
2.85  
1.8  
1.7  
1.1  
3.0  
1.9  
3.6  
2.0  
V
V
1.9-V analog supply  
1.9-V digital supply  
1.9  
2.0  
V
1.15-V SERDES supply  
3.0-V analog supply current  
1.9-V analog supply current  
1.9-V digital supply current  
1.15-V SERDES supply current  
Total power dissipation  
1.15  
334  
359  
197  
566  
2.71  
211  
618  
2.80  
1.2  
V
VIN = full-scale on both channels  
VIN = full-scale on both channels  
Eight lanes active (LMFS = 8224)  
Eight lanes active (LMFS = 8224)  
Eight lanes active (LMFS = 8224)  
Four lanes active (LMFS = 4244)  
Four lanes active (LMFS = 4244)  
Four lanes active (LMFS = 4244)  
360  
510  
260  
920  
3.1  
mA  
mA  
mA  
mA  
W
IDVDD  
IIOVDD  
Pdis  
IDVDD  
IIOVDD  
Pdis  
1.9-V digital supply current  
1.15-V SERDES supply current  
Total power dissipation  
mA  
mA  
W
Four lanes active (LMFS = 4222),  
2X decimation  
IDVDD  
IIOVDD  
Pdis  
1.9-V digital supply current  
1.15-V SERDES supply current  
Total power dissipation  
197  
593  
2.74  
176  
562  
mA  
mA  
W
Four lanes active (LMFS = 4222),  
2X decimation  
Four lanes active (LMFS = 4222),  
2X decimation  
Two lanes active (LMFS = 2221),  
4X decimation  
IDVDD  
IIOVDD  
1.9-V digital supply current  
1.15-V SERDES supply current  
mA  
mA  
Two lanes active (LMFS = 2221),  
4X decimation  
Two lanes active (LMFS = 2221),  
4X decimation  
(1)  
Pdis  
Total power dissipation  
2.66  
139  
W
Global power-down power dissipation  
315  
mW  
ANALOG INPUTS (INAP, INAM, INBP, INBM)  
Differential input full-scale voltage  
1.9  
2.0  
0.6  
4.7  
VPP  
V
VIC  
RIN  
CIN  
Common-mode input voltage  
Differential input resistance  
Differential input capacitance  
At 170-MHz input frequency  
At 170-MHz input frequency  
kΩ  
pF  
50-Ω source driving ADC inputs  
terminated with 50 Ω  
Analog input bandwidth (3 dB)  
1.2  
GHz  
CLOCK INPUT (CLKINP, CLKINM)  
CLKINP and CLKINM are  
connected to internal biasing  
voltage through 400 Ω  
Internal clock biasing  
1.15  
V
(1) See the Power-down Mode section for details.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
7.6 AC Characteristics  
Typical values are at TA = 25°C, full temperature range is from TMIN = 40°C to TMAX = 85°C, ADC sampling rate = 1 GSPS,  
50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, 1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
69.7  
69.5  
68.9  
68.4  
67.9  
67.5  
66.5  
66.5  
64.9  
fIN = 10 MHz, AIN = 1 dBFS  
fIN = 100 MHz, AIN = 1 dBFS  
fIN = 170 MHz, AIN = 1 dBFS  
fIN = 230 MHz, AIN = 1 dBFS  
fIN = 270 MHz, AIN = 1 dBFS  
fIN = 300 MHz, AIN = 1 dBFS  
fIN = 370 MHz, AIN = 1 dBFS  
fIN = 470 MHz, AIN = 3 dBFS  
fIN = 720 MHz, AIN = 6 dBFS  
66.2  
SNR  
Signal-to-noise ratio  
dBFS  
fIN = 720 MHz, AIN = 6 dBFS,  
gain = 5 dB  
63.3  
fIN = 10 MHz, AIN = -1 dBFS  
fIN = 100 MHz, AIN = 1 dBFS  
fIN = 170 MHz, AIN = 1 dBFS  
fIN = 230 MHz, AIN = 1 dBFS  
fIN = 270 MHz, AIN = 1 dBFS  
fIN = 300 MHz, AIN = 1 dBFS  
fIN = 370 MHz, AIN = 1 dBFS  
fIN = 470 MHz, AIN = 3 dBFS  
fIN = 720 MHz, AIN = 6 dBFS  
156.7  
156.5  
155.9  
155.4  
154.9  
154.5  
153.5  
153.5  
151.9  
153.2  
NSD  
Noise spectral density  
dBFS/Hz  
fIN = 720 MHz, AIN = 6 dBFS,  
gain = 5 dB  
150.3  
69.6  
69.3  
68.8  
68.3  
67.6  
67  
fIN = 10 MHz, AIN = 1 dBFS  
fIN = 100 MHz, AIN = 1 dBFS  
fIN = 170 MHz, AIN = 1 dBFS  
fIN = 230 MHz, AIN = 1 dBFS  
fIN = 270 MHz, AIN = 1 dBFS  
fIN = 300 MHz, AIN = 1 dBFS  
fIN = 370 MHz, AIN = 1 dBFS  
fIN = 470 MHz, AIN = 3 dBFS  
fIN = 720 MHz, AIN = 6 dBFS  
65.2  
SINAD  
Signal-to-noise and distortion ratio  
dBFS  
65.5  
65.7  
64.1  
fIN = 720 MHz, AIN = 6 dBFS,  
gain = 5 dB  
63.2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
7.6 AC Characteristics (continued)  
Typical values are at TA = 25°C, full temperature range is from TMIN = 40°C to TMAX = 85°C, ADC sampling rate = 1 GSPS,  
50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, 1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
83  
86  
85  
81  
78  
73  
71  
67  
fIN = 100 MHz, AIN = 1 dBFS  
76  
fIN = 170 MHz, AIN = 1 dBFS  
fIN = 230 MHz, AIN = 1 dBFS  
fIN = 270 MHz, AIN = 1 dBFS  
fIN = 300 MHz, AIN = 1 dBFS  
fIN = 370 MHz, AIN = 1 dBFS  
fIN = 470 MHz, AIN = 3 dBFS  
fIN = 720 MHz, AIN = 6 dBFS  
Spurious free dynamic range  
(excluding IL spurs  
SFDR  
dBc  
fIN = 720 MHz, AIN = 6 dBFS,  
gain = 5 dB  
71  
85  
90  
92  
85  
81  
81  
76  
71  
67  
fIN = 10 MHz, AIN = 1 dBFS  
fIN = 100 MHz, AIN = 1 dBFS  
fIN = 170 MHz, AIN = 1 dBFS  
fIN = 230 MHz, AIN = 1 dBFS  
fIN = 270 MHz, AIN = 1 dBFS  
fIN = 300 MHz, AIN = 1 dBFS  
fIN = 370 MHz, AIN = 1 dBFS  
fIN = 470 MHz, AIN = 3 dBFS  
fIN = 720 MHz, AIN = 6 dBFS  
76  
HD2  
Second-order harmonic distortion  
dBc  
fIN = 720 MHz, AIN = 6 dBFS,  
gain = 5 dB  
71  
85  
83  
86  
87  
81  
78  
73  
71  
74  
fIN = 10 MHz, AIN = 1 dBFS  
fIN = 100 MHz, AIN = 1 dBFS  
fIN = 170 MHz, AIN = 1 dBFS  
fIN = 230 MHz, AIN = 1 dBFS  
fIN = 270 MHz, AIN = 1 dBFS  
fIN = 300 MHz, AIN = 1 dBFS  
fIN = 370 MHz, AIN = 1 dBFS  
fIN = 470 MHz, AIN = 3 dBFS  
fIN = 720 MHz, AIN = 6 dBFS  
76  
HD3  
Third-order harmonic distortio  
dBc  
fIN = 720 MHz, AIN = 6 dBFS,  
gain = 5 dB  
83  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
7.6 AC Characteristics (continued)  
Typical values are at TA = 25°C, full temperature range is from TMIN = 40°C to TMAX = 85°C, ADC sampling rate = 1 GSPS,  
50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, 1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
94  
97  
93  
95  
95  
91  
85  
89  
89  
fIN = 10 MHz, AIN = 1 dBFS  
fIN = 100 MHz, AIN = 1 dBFS  
fIN = 170 MHz, AIN = 1 dBFS  
fIN = 230 MHz, AIN = 1 dBFS  
fIN = 270 MHz, AIN = 1 dBFS  
fIN = 300 MHz, AIN = 1 dBFS  
fIN = 370 MHz, AIN = 1 dBFS  
fIN = 470 MHz, AIN = 3 dBFS  
fIN = 720 MHz, AIN = 6 dBFS  
79  
Non  
Spurious-free dynamic range  
dBFS  
HD2, HD3 (excluding HD2, HD3, and IL spur)  
fIN = 720 MHz, AIN = 6 dBFS,  
gain = 5 dB  
93  
11.3  
11.2  
11.1  
11.1  
10.9  
10.8  
10.6  
10.6  
10.4  
fIN = 10 MHz, AIN = 1 dBFS  
fIN = 100 MHz, AIN = 1 dBFS  
fIN = 170 MHz, AIN = 1 dBFS  
fIN = 230 MHz, AIN = 1 dBFS  
fIN = 270 MHz, AIN = 1 dBFS  
fIN = 300 MHz, AIN = 1 dBFS  
fIN = 370 MHz, AIN = 1 dBFS  
fIN = 470 MHz, AIN = 3 dBFS  
fIN = 720 MHz, AIN = 6 dBFS  
10.5  
ENOB  
Effective number of bits  
Bits  
fIN = 720 MHz, AIN = 6 dBFS,  
gain = 5 dB  
10.2  
82  
80  
83  
82  
78  
75  
70  
70  
66  
fIN = 10 MHz, AIN = 1 dBFS  
fIN = 100 MHz, AIN = 1 dBFS  
fIN = 170 MHz, AIN = 1 dBFS  
fIN = 230 MHz, AIN = 1 dBFS  
fIN = 270 MHz, AIN = 1 dBFS  
fIN = 300 MHz, AIN = 1 dBFS  
fIN = 370 MHz, AIN = 1 dBFS  
fIN = 470 MHz, AIN = 3 dBFS  
fIN = 720 MHz, AIN = 6 dBFS  
73  
THD  
Total harmonic distortion  
dBc  
fIN = 720 MHz, AIN = 6 dBFS,  
gain = 5 dB  
70  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
7.6 AC Characteristics (continued)  
Typical values are at TA = 25°C, full temperature range is from TMIN = 40°C to TMAX = 85°C, ADC sampling rate = 1 GSPS,  
50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, 1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
85  
84  
83  
82  
81  
81  
77  
78  
78  
fIN = 10 MHz, AIN = 1 dBFS  
fIN = 100 MHz, AIN = 1 dBFS  
fIN = 170 MHz, AIN = 1 dBFS  
fIN = 230 MHz, AIN = 1 dBFS  
fIN = 270 MHz, AIN = 1 dBFS  
fIN = 300 MHz, AIN = 1 dBFS  
fIN = 370 MHz, AIN = 1 dBFS  
fIN = 470 MHz, AIN = 3 dBFS  
fIN = 720 MHz, AIN = 6 dBFS  
69  
SFDR_IL  
Interleaving spur  
dBc  
fIN = 720 MHz, AIN = 6 dBFS,  
gain = 5 dB  
74  
fIN1 = 185 MHz, fIN2 = 190 MHz,  
AIN = 7 dBFS  
89  
79  
75  
100  
fIN1 = 365 MHz, fIN2 = 370 MHz,  
AIN = 7 dBFS  
Two-tone, third-order intermodulation  
distortion  
IMD3  
dBFS  
dB  
fIN1 = 465 MHz, fIN2 = 470 MHz,  
AIN = 7 dBFS  
Full-scale, 170-MHz signal on  
aggressor; idle channel is victim  
Crosstalk Isolation between channel A and B  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
7.7 Digital Characteristics  
Typical values are at TA = 25°C, full temperature range is from TMIN = 40°C to TMAX = 85°C, ADC sampling rate = 1 GSPS,  
50% clock duty cycle, AVDD3V = 3 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, 1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (RESET, SCLK, SEN, SDIN, SYNC, PDN)(1)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
All digital inputs support 1.2-V and 1.8-V logic levels  
All digital inputs support 1.2-V and 1.8-V logic levels  
SEN  
0.8  
V
V
0.4  
0
50  
50  
0
IIH  
High-level input current  
Low-level input current  
µA  
µA  
RESET, SCLK, SDIN, PDN, SYNC  
SEN  
IIL  
RESET, SCLK, SDIN, PDN, SYNC  
DIGITAL INPUTS (SYSREFP, SYSREFM)  
VD  
Differential input voltage  
0.35  
0.45  
1.3  
1.4  
V
V
V(CM_DIG)  
Common-mode voltage for SYSREF  
DIGITAL OUTPUTS (SDOUT, PDN(3)  
)
DVDD –  
VOH  
High-level output voltage  
DVDD  
V
V
0.1  
VOL  
Low-level output voltage  
0.1  
DIGITAL OUTPUTS (JESD204B Interface: DxP, DxM)(2)  
VOD  
VOC  
Output differential voltage  
With default swing setting  
700  
450  
mVPP  
mV  
Output common-mode voltage  
Transmitter pins shorted to any voltage between –  
0.25 V and 1.45 V  
Transmitter short-circuit current  
Single-ended output impedance  
Output capacitance  
100  
mA  
100  
zos  
50  
2
Ω
Output capacitance inside the device,  
from either output to ground  
pF  
(1) The RESET, SCLK, SDIN, and PDN pins have a 20-kΩ (typical) internal pulldown resistor to ground, and the SEN pin has a 20-kΩ  
(typical) pullup resistor to IOVDD.  
(2) 100-Ω differential termination.  
(3) When functioning as an OVR pin for channel B.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ADS54J40  
 
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
7.8 Timing Requirements  
Typical values are at TA = 25°C, full temperature range is from TMIN = 40°C to TMAX = 85°C, ADC sampling rate = 1.0  
GSPS, 50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, and 1-dBFS differential input,  
unless otherwise noted.  
MIN  
TYP  
MAX  
UNITS  
SAMPLE TIMING (TBD are any of these Switching Characteristics?TBD: No)  
Aperture delay  
0.75  
1.6  
ns  
ps  
Aperture delay matching between two channels on the same device  
±70  
±270  
120  
Aperture delay matching between two devices at the same temperature and supply voltage  
ps  
Aperture jitter  
fS rms  
WAKE-UP TIMING  
Wake-up time to valid data after coming out of global power-down  
150  
µs  
LATENCY (1)  
Input clock  
cycles  
Data latency: ADC sample to digital output  
OVR latency: ADC sample to OVR bit  
134  
62  
Input clock  
cycles  
Input clock  
cycles  
FOVR latency: ADC sample to FOVR signal on pin  
18  
4
tPDI  
Propagation delay: logic gates and output buffers delay (does not change with fS)  
ns  
SYSREF TIMING  
tSU_SYSREF Setup time for SYSREF, referenced to the input clock falling edge  
tH_SYSREF Hold time for SYSREF, referenced to the input clock falling edge  
JESD OUTPUT INTERFACE TIMING CHARACTERISTICS  
Unit interval  
300  
100  
900  
ps  
ps  
100  
2.5  
400  
10  
ps  
Gbps  
ps  
Serial output data rate  
Total jitter for BER of 1E-15 and lane rate = 10 Gbps  
Random jitter for BER of 1E-15 and lane rate = 10 Gbps  
Deterministic jitter for BER of 1E-15 and lane rate = 10 Gbps  
26  
0.75  
12  
ps rms  
ps, pk-pk  
Data rise time, data fall time: rise and fall times are measured from 20% to 80%,  
differential output waveform, 2.5 Gbps bit rate 10 Gbps  
tR, tF  
35  
ps  
(1) Overall latency = latency + tPDI  
.
Sample N  
ts_min  
ts_max  
CLKIN  
1.0 GSPS  
SYSREF  
7-1. SYSREF Timing  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
N+1  
N+2  
N
N+3  
Sample  
tPD  
Data Latency: 134 Clock Cycles  
CLKINM  
CLKINP  
D
20  
D
11  
D
20  
D
11  
D
20  
DA0P, DA0M,  
DB0P, DB0M  
Sample N-1  
Sample N  
Sample N+1  
Sample N+2  
D
10  
D
1
D
10  
D
1
D
10  
DA1P, DA1M,  
DB1P, DB1M  
Sample N-1  
Sample N  
Sample N+1  
Sample N+2  
7-2. Sample Timing Requirements  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
7.9 Typical Characteristics  
Typical values are at TA = 25°C, full temperature range is from TMIN = 40°C to TMAX = 85°C, ADC sampling  
rate = 1.0 GSPS, 50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, and 1-  
dBFS differential input, unless otherwise noted.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
100  
200 300  
Input Frequency (MHz)  
400  
500  
0
100  
200 300  
Input Frequency (MHz)  
400  
500  
D001  
D002  
SNR = 69.7 dBFS; SFDR = 85 dBc; IL spur = 86 dBc; non  
HD2, HD3 spur = 89 dBc  
SNR = 69.2 dBFS; SFDR = 86 dBc; IL spur = 85 dBc; non  
HD2, HD3 spur = 94 dBc  
7-3. FFT for 10-MHz Input Signal  
7-4. FFT for 140-MHz Input Signal  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
100  
200 300  
Input Frequency (MHz)  
400  
500  
0
100  
200 300  
Input Frequency (MHz)  
400  
500  
D003  
D004  
SNR = 68.9 dBFS; SFDR = 86 dBc; IL spur = 84 dBc; non  
HD2, HD3 spur = 89 dBc  
SNR = 68.1 dBFS; SFDR = 84 dBc; IL spur = 86 dBc; non  
HD2, HD3 spur = 86 dBc  
7-5. FFT for 170-MHz Input Signal  
7-6. FFT for 230-MHz Input Signal  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
100  
200 300  
Input Frequency (MHz)  
400  
500  
0
100  
200 300  
Input Frequency (MHz)  
400  
500  
D005  
D006  
SNR = 67.4 dBFS; SFDR = 77 dBc; IL spur = 83 dBc; non  
HD2, HD3 spur = 85 dBc  
SNR = 66.2 dBFS; SFDR = 72 dBc; IL spur = 84 dBc; non  
HD2, HD3 spur = 78 dBc  
7-7. FFT for 300-MHz Input Signal  
7-8. FFT for 370-MHz Input Signal  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-120  
0
100  
200 300  
Input Frequency (MHz)  
400  
500  
0
100  
200 300  
Input Frequency (MHz)  
400  
500  
D007  
D070  
SNR = 66.5 dBFS; SFDR = 73 dBc; IL spur = 81 dBc; non  
HD2, HD3 spur = 88 dBc  
SNR = 65.3 dBFS; SFDR = 71 dBc; IL spur = 83 dBc; non  
HD2, HD3 spur = 89 dBFS  
7-9. FFT for 470-MHz Input Signal at 3 dBFS  
7-10. FFT for 720-MHz Input Signal at 6 dBFS  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
100  
200 300  
Input Frequency (MHz)  
400  
500  
0
100  
200 300  
Input Frequency (MHz)  
400  
500  
D008  
D009  
fIN1 = 185 MHz, fIN2 = 190 MHz, each tone at 7 dBFS, IMD3  
fIN1 = 185 MHz, fIN2 = 190 MHz, each tone at 36 dBFS,  
= 85 dBFS  
IMD3 = 103 dBFS  
7-11. FFT for Two-Tone Input Signal (7 dBFS) 7-12. FFT for Two-Tone Input Signal (36 dBFS)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
100  
200 300  
Input Frequency (MHz)  
400  
500  
0
100  
200 300  
Input Frequency (MHz)  
400  
500  
D010  
D011  
fIN1 = 370 MHz, fIN2 = 365 MHz, each tone at 7 dBFS, IMD3  
fIN1 = 370 MHz, fIN2 = 365 MHz, each tone at 36 dBFS,  
= 80 dBFS  
IMD3 = 109 dBFS  
7-13. FFT for Two-Tone Input Signal (7 dBFS) 7-14. FFT for Two-Tone Input Signal (36 dBFS)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
100  
200 300  
Input Frequency (MHz)  
400  
500  
0
100  
200 300  
Input Frequency (MHz)  
400  
500  
D012  
D013  
fIN1 = 470 MHz, fIN2 = 465 MHz, each tone at 7 dBFS, IMD3  
fIN1 = 470 MHz, fIN2 = 465 MHz, each tone at 36 dBFS,  
= 74.9 dBFS  
IMD3 = 109.2 dBFS  
7-15. FFT for Two-Tone Input Signal (7 dBFS) 7-16. FFT for Two-Tone Input Signal (36 dBFS)  
-82  
-76  
-80  
-86  
-84  
-90  
-88  
-94  
-92  
-98  
-96  
-102  
-106  
-110  
-100  
-104  
-108  
-35  
-31  
-27  
Each Tone Amplitude (dBFS)  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
Each Tone Amplitude (dBFS)  
-23  
-19  
-15  
-11  
-7  
D014  
D015  
fIN1 = 185 MHz, fIN2 = 190 MHz  
fIN1 = 365 MHz, fIN2 = 370 MHz  
7-17. Intermodulation Distortion vs Input Tone  
7-18. Intermodulation Distortion vs Input Tone  
Amplitude  
Amplitude  
-70  
-74  
90  
AIN = -6 dBFS  
Ain = -3 dBFS  
AIN = -1 dBFS  
85  
80  
75  
70  
65  
60  
-78  
-82  
-86  
-90  
-94  
-98  
-102  
-106  
-35  
-31  
-27  
-23  
-19  
-15  
Each Tone Amplitude (dBFS)  
-11  
-7  
0
100  
200  
300  
400  
Input Frequency (MHz)  
500  
600  
700  
D016  
D017  
fIN1 = 465 MHz, fIN2 = 470 MHz  
7-20. Spurious-Free Dynamic Range vs Input  
Frequency  
7-19. Intermodulation Distortion vs Input Tone  
Amplitude  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
90  
60  
56  
52  
48  
44  
40  
71  
70  
69  
68  
67  
66  
65  
IL Enable  
IL Disable  
AIN = -6 dBFS  
AIN = -3 dBFS  
AIN = -1 dBFS  
86  
82  
78  
74  
70  
0
40 80 120 160 200 240 280 320 360 400 440 480  
Input Frequency (MHz)  
0
100  
200  
300  
400  
Input Frequency (MHz)  
500  
600  
700  
D500  
D042  
7-21. IL Spur vs Input Frequency  
7-22. Signal-to-Noise Ratio vs Input Frequency  
71  
70.5  
70  
94  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
92  
90  
88  
86  
84  
82  
80  
78  
69.5  
69  
68.5  
68  
67.5  
67  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
D020  
D021  
fIN = 170 MHz  
fIN = 170 MHz  
7-23. Signal-to-Noise Ratio vs AVDD Supply and  
7-24. Spurious-Free Dynamic Range vs AVDD  
Temperature  
Supply and Temperature  
72  
79  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
71  
70  
69  
68  
67  
66  
65  
64  
78  
77  
76  
75  
74  
73  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
D022  
D023  
fIN = 350 MHz  
fIN = 350 MHz  
7-25. Signal-to-Noise Ratio vs AVDD Supply and 7-26. Spurious-Free Dynamic Range vs AVDD  
Temperature  
Supply and Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
71  
92  
90  
88  
86  
84  
82  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
70.2  
69.4  
68.6  
67.8  
67  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
D024  
D025  
fIN = 170 MHz  
fIN = 170 MHz  
7-27. Signal-to-Noise Ratio vs DVDD Supply and 7-28. Spurious-Free Dynamic Range vs DVDD  
Temperature  
Supply and Temperature  
70  
69  
68  
67  
66  
65  
64  
82  
80  
78  
76  
74  
72  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
D026  
D027  
fIN = 350 MHz  
fIN = 350 MHz  
7-29. Signal-to-Noise Ratio vs DVDD Supply and 7-30. Spurious-Free Dynamic Range vs DVDD  
Temperature  
Supply and Temperature  
71  
70.5  
70  
94  
92  
90  
88  
86  
84  
82  
80  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
69.5  
69  
68.5  
68  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
D028  
D029  
fIN = 170 MHz  
fIN = 170 MHz  
7-31. Signal-to-Noise Ratio vs AVDD3V Supply 7-32. Spurious-Free Dynamic Range vs AVDD3V  
and Temperature Supply and Temperature  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
71  
70  
69  
68  
67  
66  
65  
82  
80  
78  
76  
74  
72  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
64  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
D030  
D031  
fIN = 350 MHz  
fIN = 350 MHz  
7-33. Signal-to-Noise Ratio vs AVDD3V Supply  
7-34. Spurious-Free Dynamic Range vs AVDD3V  
and Temperature  
Supply and Temperature  
79  
110  
Gain = 0 dB  
Gain = 2 dB  
Gain = 4 dB  
Gain = 6 dB  
Gain = 8 dB  
Gain = 10 dB  
Gain = 12 dB  
Gain = 0 dB  
Gain = 2 dB  
Gain = 4 dB  
Gain = 6 dB  
Gain = 8 dB  
Gain = 10 dB  
Gain = 12 dB  
105  
100  
95  
76  
73  
70  
67  
64  
61  
58  
55  
90  
85  
80  
75  
70  
65  
0
80  
160  
Input Frequency (MHz)  
240  
320  
400  
480  
0
80  
160  
Input Frequency (MHz)  
240  
320  
400  
480  
D053  
D054  
7-35. Signal-to-Noise Ratio vs Gain and Input  
7-36. Spurious-Free Dynamic Range vs Gain  
Frequency  
and Input Frequency  
2
0
75  
73  
71  
69  
67  
65  
200  
160  
120  
80  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
-2  
-4  
-6  
40  
-8  
-10  
0
0
100 200 300 400 500 600 700 800 900 1000  
Input Frequency (MHz)  
-70  
-60  
-50  
-40 -30  
Amplitude (dBFS)  
-20  
-10  
0
D046  
D032  
fIN = 170 MHz  
7-37. Maximum Supported Amplitude vs  
Frequency  
7-38. Performance vs Input Amplitude  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
74  
180  
150  
120  
90  
76  
74  
72  
70  
68  
66  
110  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR  
SFDR  
72.5  
71  
100  
90  
69.5  
68  
80  
60  
70  
66.5  
30  
65  
0
60  
-70  
-60  
-50  
-40 -30  
Amplitude (dBFS)  
-20  
-10  
0
0.2  
0.6  
1
Differential Clock Amplitude (Vpp)  
1.4  
1.8  
2.2  
D033  
D034  
fIN = 350 MHz  
fIN = 170 MHz  
7-39. Performance vs Input Amplitude  
7-40. Performance vs Sampling Clock Amplitude  
75  
72  
69  
66  
63  
60  
125  
100  
75  
50  
25  
0
73  
72  
71  
70  
69  
68  
100  
95  
90  
85  
80  
75  
SNR  
SFDR  
SNR  
SFDR  
0.2  
0.6  
1
Differential Clock Amplitude (Vpp)  
1.4  
1.8  
2.2  
30  
35  
40  
45  
50  
Input Clock Duty Cycle (%)  
55  
60  
65  
70  
D035  
D036  
fIN = 350 MHz  
fIN = 170 MHz  
7-41. Performance vs Sampling Clock Amplitude  
7-42. Performance vs Input Clock Duty Cycle  
72  
71  
70  
69  
68  
67  
66  
65  
88  
84  
80  
76  
72  
68  
64  
60  
-10  
SNR  
SFDR  
PSRR with 25-mVpp Signal on AVDD  
PSRR with 50-mVpp Signal on AVDD3V  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
30  
35  
40  
45  
Input Clock Duty Cycle (%)  
50  
55  
60  
65  
70  
0
50  
100  
Frequency of Signal on Supply (MHz)  
150  
200  
250  
300  
D037  
D038  
fIN = 350 MHz  
fIN = 170 MHz  
7-43. Performance vs Input Clock Duty Cycle  
7-44. Power-Supply Rejection Ratio vs Test  
Signal Frequency  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
0
-20  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-40  
-60  
-80  
-100  
-120  
0
100  
200 300  
Input Frequency (MHz)  
400  
500  
0
50  
100  
150  
Frequency of Input Common-Mode Signal (MHz)  
200  
250  
300  
D039  
D040  
fIN = 170 MHz  
fIN = 170 MHz , AIN = 1 dBFS, SINAD = 65.7 dBFS, SFDR =  
79 dBc, fPSRR = 5 MHz, APSRR = 25 mVPP, amplitude of fIN  
7-46. Common-Mode Rejection Ratio vs Test  
fPSRR = 74 dBFS, amplitude of fIN + fPSRR = 76 dBFS  
Signal Frequency  
7-45. Power-Supply Rejection Ratio FFT for Test  
Signals on the AVDD Supply  
0
-20  
4
3.5  
3
-40  
-60  
2.5  
2
-80  
-100  
-120  
1.5  
1
0
100  
200 300  
Input Frequency (MHz)  
400  
500  
500 550 600 650 700 750 800 850 900 950 1000  
Sampling Speed (MSPS)  
D041  
D042  
fIN = 170.1 MHz , AIN = 1 dBFS, fCMRR = 5 MHz, ACMRR = 50  
7-48. Power Consumption vs Sampling Speed  
mVPP, SINAD = 67.3 dBFS, SFDR = 85 dBc, amplitude of fIN  
±
fCMRR= 80 dBFS  
7-47. Common-Mode Rejection Ratio FFT  
800  
700  
600  
500  
400  
300  
200  
100  
2.78  
2.76  
2.74  
2.72  
2.7  
0
-20  
I DVDD (mA)  
I AVDD (mA)  
I IOVDD (mA)  
I AVDD3 (mA)  
Total Power (W)  
-40  
-60  
-80  
2.68  
2.66  
2.64  
-100  
-120  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
0
25  
50 75  
Input Frequency (MHz)  
100  
125  
D045  
D047  
SNR = 73.1 dBFS, SFDR = 88.6 dBc  
7-49. Power vs Temperature  
7-50. FFT for 60-MHz Input Signal in Decimate-  
by-4 Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
25  
50 75  
Input Frequency (MHz)  
100  
125  
0
25  
50 75  
Input Frequency (MHz)  
100  
125  
D048  
D049  
SNR = 72.5 dBFS, SFDR = 87 dBc  
SNR = 71.1 dBFS, SFDR = 86 dBc  
7-51. FFT for 170-MHz Input Signal in Decimate- 7-52. FFT for 300-MHz Input Signal in Decimate-  
by-4 Mode  
by-4 Mode  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
25  
50 75  
Input Frequency (MHz)  
100  
125  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
D050  
D051  
SNR = 68.7 dBFS, SFDR = 83 dBc  
SNR = 70.5 dBFS, SFDR = 86 dBc  
7-53. FFT for 450-MHz Input Signal in Decimate- 7-54. FFT for 170-MHz Input Signal in Decimate-  
by-4 Mode by-2 Mode  
0
-20  
-40  
-60  
-80  
-100  
-120  
0
50  
100 150  
Input Frequency (MHz)  
200  
250  
D052  
SNR = 67.6 dBFS, SFDR = 80 dBc  
7-55. FFT for 350-MHz Input Signal in Decimate-by-2 Mode  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8 Detailed Description  
8.1 Overview  
The ADS54J40 is a low-power, wide-bandwidth, 14-bit, 1.0-GSPS, dual-channel, analog-to-digital converter  
(ADC). The ADS54J40 employs four interleaving ADCs for each channel to achieve a noise floor of –  
159 dBFS/Hz. The ADS54J40 uses TI's proprietary interleaving and dither algorithms to achieve a clean  
spectrum with a high spurious-free dynamic range (SFDR). The device also offers various programmable  
decimation filtering options for systems requiring higher signal-to-noise ratio (SNR) and SFDR over a wide range  
of frequencies.  
Analog input buffers isolate the ADC driver from glitch energy generated from sampling process, thereby simplify  
the driving network on-board. The JESD204B interface reduces the number of interface lines with two-lane and  
four-lane options, allowing a high system integration density. The JESD204B interface operates in subclass 1,  
enabling multi-chip synchronization with the SYSREF input.  
8.2 Functional Block Diagram  
DA0P, DA0M,  
DA1P, DA1M  
DDC Block:  
2x, 4x Decimation  
Mixer: fS / 16, fS / 4  
Buffer  
Digital Block  
ADC  
Interleaving  
Correction  
INAP, INAM  
DA2P, DA2M,  
DA3P, DA3M  
PLL:  
x20  
x40  
Divide-by-  
4
CLKINP,  
CLKINM  
SYNC  
SYSREFP,  
SYSREFM  
DDC Block:  
2X, 4X Decimation  
Mixer: fS / 16, fS / 4  
DB0P, DB0M,  
DB1P, DB1M  
Buffer  
Digital Block  
ADC  
Interleaving  
Correction  
INBP, INBM  
DB2P, DB2M,  
DB3P, DB3M  
FOVR  
Control and SPI  
Common  
Mode  
VCM  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ADS54J40  
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.3 Feature Description  
8.3.1 Analog Inputs  
The ADS54J40 analog signal inputs are designed to be driven differentially. The analog input pins have internal  
analog buffers that drive the sampling circuit. As a result of the analog buffer, the input pins present a high  
impedance input across a very wide frequency range to the external driving source that enables great flexibility  
in the external analog filter design as well as excellent 50-matching for RF applications. The buffer also helps  
isolate the external driving circuit from the internal switching currents of the sampling circuit, resulting in a more  
constant SFDR performance across input frequencies.  
The common-mode voltage of the signal inputs is internally biased to VCM using 600-Ω resistors, allowing for  
ac-coupling of the input drive network. Each input pin (INP, INM) must swing symmetrically between (VCM +  
0.475 V) and (VCM 0.475 V), resulting in a 1.9-VPP (default) differential input swing. The input sampling circuit  
has a 3-dB bandwidth that extends up to 1.2 GHz. An equivalent analog input network diagram is shown in 图  
8-1.  
0.77 W  
1 W  
3.3 W  
2 nH  
0.6 W  
150 fF  
200 fF  
3 pF  
375 fF  
375 fF  
375 fF  
375 fF  
INP  
40 W  
500 fF  
150 fF  
0.77 W  
1 W  
3.3 W  
600 W  
150 fF  
200 fF  
3 pF  
VCM  
40 W  
600 W  
0.77 W  
1 W  
3.3 W  
150 fF  
200 fF  
3 pF  
2 nH  
0.6 W  
INM  
40 W  
500 fF  
150 fF  
0.77 W  
1 W  
3.3 W  
150 fF  
200 fF  
3 pF  
40 W  
8-1. Analog Input Network  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
The input bandwidth shown in 8-2 is measured with respect to a 50-Ω differential input termination at the  
ADC input pins. Figure x shows the signal processing done inside the DDC block of the ADS54J40.  
0
-3  
-6  
-9  
-12  
-15  
-18  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Input Frequency (MHz)  
D056  
8-2. Transfer Function vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.3.2 DDC Block  
The ADS54J40 has an optional DDC block that can be enabled via an SPI register write. Each ADC channel is  
followed by a DDC block consisting of three different decimate-by-2 and decimate-by-4 finite impulse response  
(FIR) half-band filter options. The different decimation filter options can be selected through SPI programming.图  
8-3 shows the signal processing done inside the DDC block of the ADS54J40  
Default 14-Bit Data (At 1 GSPS)  
Decimate-by-2 Data (At 500 MSPS)  
LPF  
BPF  
2
4
Decimate-by-4 Data (At 250 MSPS)  
Interleaving  
Engine,  
Digital  
Features  
Ch X  
1 GSPS Data,  
x(n)  
To JESD  
Encoder  
4
LPF  
Decimate-by-4, I-Data (At 250 MSPS)  
cos(2 n Œ fmix / fS)(1)  
sin(2 n Œ fmix / fS)(1)  
Decimate-by-4 Q-Data (At 250 MSPS)  
4
LPF  
Mode Selection Using DECFIL  
MODE[3:0] Register Bits  
A. In IQ decimate-by-4 mode, the mixer frequency is fixed at fmix = fS / 4. For fS = 1 GSPS and fmix = 250 MHz.  
8-3. DDC Block  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.3.2.1 Decimate-by-2 Filter  
This decimation filter has 41 taps. The stop-band attenuation is approximately 90 dB and the pass-band flatness  
is ±0.05 dB. 8-1 shows corner frequencies for low-pass and high-pass filter options.  
8-1. Corner Frequencies for the Decimate-by-2 Filter  
CORNERS (dB)  
LOW PASS  
0.202 × fS  
0.210 × fS  
0.215 × fS  
0.227 × fS  
HIGH PASS  
0.298 × fS  
0.290 × fS  
0.285 × fS  
0.273 × fS  
0.1  
0.5  
1  
3  
8-4 and 8-5 show the frequency response of decimate-by-2 filter from dc to fS / 2.  
5
0.5  
0
-20  
-0.5  
-1  
-45  
-1.5  
-2  
-70  
-95  
-2.5  
-3  
-120  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Frequency Response  
0
0.05  
0.1 0.15  
Frequency Response  
0.2  
0.25  
D013  
D014  
8-4. Decimate-by-2 Filter Response  
8-5. Decimate-by-2 Filter Response (Zoomed)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.3.2.2 Decimate-by-4 Filter Using a Digital Mixer  
This band-pass decimation filter consists of a digital mixer and three concatenated FIR filters with a combined  
latency of approximately 28 output clock cycles. The alias band attenuation is approximately  
55 dB and the pass-band flatness is ±0.1 dB. By default after reset, the band-pass filter is centered at fS / 16.  
Using the SPI, the center frequency can be programmed at N × fS / 16 (where N = 1, 3, 5, or 7). 8-2 shows  
corner frequencies for two extreme options.  
8-2. Corner frequencies for the Decimate-by-4 Filter  
CORNER FREQUENCY AT LOWER SIDE  
(Center Frequency fS / 16)  
CORNER FREQUENCY AT HIGHER SIDE  
(Center Frequency fS / 16)  
CORNERS (dB)  
0.011 × fS  
0.010 × fS  
0.008 × fS  
0.006 × fS  
0.114 × fS  
0.116 × fS  
0.117 × fS  
0.120 × fS  
0.1  
0.5  
1  
3  
8-6 and 8-7 show the frequency response of the decimate-by-4 filter for center frequencies fS / 16 and 3 ×  
fS / 16 (N = 1 and N = 3, respectively).  
10  
0
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Frequency Response  
0
0.05  
0.1 0.15  
Frequency Response  
0.2  
0.25  
D015  
D016  
8-6. Decimate-by-4 Filter Response  
8-7. Decimate-by-4 Filter Response (Zoomed)  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.3.2.3 Decimate-by-4 Filter with IQ Outputs  
In this configuration, the DDC block includes a fixed digital fS / 4 mixer. Thus, the IQ pass band is approximately  
±110 MHz, centered at fS / 4. This decimation filter has 41 taps with a latency of approximately ten output clock  
cycles. The stop-band attenuation is approximately 90 dB and the pass-band flatness is ±0.05 dB. 8-3 shows  
the corner frequencies for a low-pass, decimate-by-4 IQ filter.  
8-3. Corner Frequencies for a Decimate-by-4 IQ Output Filter  
CORNERS (dB)  
LOW PASS  
0.107 × fS  
0.112 × fS  
0.115 × fS  
0.120 × fS  
0.1  
0.5  
1  
3  
8-8 and 8-9 show the frequency response of a decimate-by-4 IQ output filter from dc to fS / 2.  
5
0.5  
0
-20  
-0.5  
-1  
-45  
-1.5  
-2  
-70  
-95  
-2.5  
-3  
-120  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Frequency Response  
0
0.025  
0.05 0.075  
Frequency Response  
0.1  
0.125  
D012  
D011  
8-8. Decimate-by-4 IQ Output Filter Response  
8-9. Decimate-by-4 IQ Output Filter Response  
(Zoomed)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.3.3 SYSREF Signal  
The SYSREF signal is a periodic signal that is sampled by the ADS54J40 device clock and used to align the  
boundary of the local multi-frame clock inside the data converter. SYSREF is required to be a sub-harmonic of  
the local multiframe clock (LMFC) internal timing. To meet this requirement, the timing of SYSREF is dependent  
on the device clock frequency and the LMFC frequency, as determined by the selected DDC decimation and  
frames per multi-frame settings. The SYSREF signal is recommended to be a low-frequency signal in the range  
of 1 MHz to 5 MHz to reduce coupling to the signal path both on the printed circuit board (PCB) as well as  
internal in the device.  
The external SYSREF signal must be a sub-harmonic of the internal LMFC clock, as shown in 方程式 1 and 表  
8-4.  
SYSREF = LMFC / 2N  
(1)  
where  
N = 0, 1, 2, and so forth.  
8-4. Local Multi-Frame Clock Frequency  
LMFS CONFIGURATION  
DECIMATION  
LMFC CLOCK(1) (2)  
fS / K  
4211  
4244  
8224  
4222  
2242  
2221  
2441  
4421  
1241  
(fS / 4) / K  
(fS / 4) / K  
(fS / 4) / K  
(fS / 4) / K  
(fS / 4) / K  
(fS / 4) / K  
(fS / 4) / K  
(fS / 4) / K  
2X  
2X  
4X  
4X (IQ)  
4X (IQ)  
4X  
(1) K = Number of frames per multi frame (JESD digital page 6900h, address 06h, bits 4-0).  
(2) fS = sampling (device) clock frequency.  
For example, if LMFS = 8224 then the programmed value of K is 9 (the actual value is 9 + 1 = 10 because the  
actual value for K = the value set in the SPI register +1). If the device clock frequency is fS = 1000 MSPS, then  
the local multi-frame clock frequency becomes (1000 / 4) / 10 = 25 MHz. The SYSREF signal frequency can be  
chosen as the LMFC frequency / 8 = 3.125 MHz.  
8.3.3.1 SYSREF Not Present (Subclass 0, 2)  
A SYSREF pulse is required by the ADS54J40 to reset internal counters. If SYSREF is not present, as can be  
the case in subclass 0 or 2, this pulse can be done by doing the following register writes shown in 8-5.  
8-5. Internally Pulsing SYSREF Twice Using Register Writes  
ADDRESS (Hex)  
DATA (Hex)  
COMMENT  
Set the master page  
Enable manual SYSREF  
Set SYSREF high  
Set SYSREF low  
0-011h  
80h  
0-054h  
80h  
0-053h  
01h  
0-053h  
00h  
0-053h  
01h  
Set SYSREF high  
Set SYSREF low  
0-053h  
00h  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
 
 
 
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.3.4 Overrange Indication  
The ADS54J40 provides a fast overrange indication that can be presented in the digital output data stream via  
SPI configuration. Alternatively, if not used, the SDOUT (pin 11) and PDN (pin 50) pins can be configured  
through the SPI to output the fast OVR indicator.  
JESD 8b/10b encoder receives 16-bit data that is formed by 14-bit ADC data padded with two 0s as LSBs. When  
the FOVR indication is embedded in the output data stream, it replaces the LSB of the 16-bit data stream going  
to the 8b/10b encoder, as shown in 8-10.  
16-Bit Data Output (14-Bit ADC Data Padded with Two 0s)  
0,  
OVR  
D13 D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
16-Bit Data Going to the 8b, 10b Encoder  
8-10. Overrange Indication in a Data Stream  
8.3.4.1 Fast OVR  
The fast OVR is triggered if the input voltage exceeds the programmable overrange threshold and is presented  
after only 18 clock cycles + tPD (tPD of the gates and buffers is approximately 4 ns), thus enabling a quicker  
reaction to an overrange event.  
The input voltage level that the overload is detected at is referred to as the threshold. The threshold is  
programmable using the FOVR THRESHOLD bits, as shown in 8-11. The FOVR is triggered 18 clock cycles +  
tPD (tPD of the gates and buffers is approximately 4 ns) after the overload condition occurs.  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
0
32  
64  
96  
128  
160  
Threshold Decimal Value  
192  
224  
255  
D055  
8-11. Programming Fast OVR Thresholds  
The input voltage level that the fast OVR is triggered at is defined by 方程式 2:  
Full-Scale × [Decimal Value of the FOVR Threshold Bits] / 255)  
(2)  
(3)  
The default threshold is E3h (227d), corresponding to a threshold of 1 dBFS.  
In terms of full-scale input, the fast OVR threshold can be calculated as 方程式 3:  
20log (FOVR Threshold / 255)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ADS54J40  
 
 
 
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.4 Device Functional Modes  
8.4.1 Power-Down Mode  
The ADS54J40 provides a highly-configurable power-down mode. Power-down can be enabled using the PDN  
pin or SPI register writes.  
A power-down mask can be configured that allows a trade-off between wake-up time and power consumption in  
power-down mode. Two independent power-down masks can be configured: MASK 1 and MASK 2, as shown in  
8-6. See the master page registers in Register Maps for further details.  
8-6. Register Address for Power-Down Modes  
REGISTER  
ADDRESS  
REGISTER DATA  
COMMENT  
A[7:0] (Hex)  
MASTER PAGE (80h)  
20  
7
6
5
4
3
2
1
0
PDN ADC CHA  
PDN BUFFER CHB  
PDN ADC CHA  
PDN BUFFER CHB  
PDN ADC CHB  
MASK 1  
21  
23  
24  
PDN BUFFER CHA  
PDN BUFFER CHA  
0
0
0
0
PDN ADC CHB  
MASK 2  
CONFIG  
0
0
0
0
0
0
0
0
0
0
0
0
OVERRIDE  
PDN PIN  
PDN MASK  
26  
55  
GLOBAL PDN  
0
0
SEL  
0
0
PDN MASK  
To save power, the device can be put in complete power-down by using the GLOBAL PDN register bit. However,  
when JESD must remain linked up when putting the device in power-down, the ADC and analog buffer can be  
powered down by using the PDN ADC CHx and PDN BUFFER CHx register bits after enabling the PDN MASK  
register bit. The PDN MASK SEL register bit can be used to select between MASK 1 or MASK 2. 8-7 shows  
power consumption for different combinations of the GLOBAL PDN, PDN ADC CHx, and PDN BUFF CHx  
register bits.  
8-7. Power Consumption in Different Power-Down Settings  
IAVDD3V  
(mA)  
TOTAL  
REGISTER BIT  
Default  
COMMENT  
IAVDD (mA) IDVDD (mA) IIOVDD (mA) POWER (W)  
After reset, with a full-scale input signal  
to both channels  
336  
2
358  
6
198  
22  
533  
199  
2.68  
0.29  
The device is in complete power-down  
state  
GBL PDN = 1  
GBL PDN = 0,  
PDN ADC CHx = 1  
(x = A or B)  
The ADC of one channel is powered  
down  
274  
262  
223  
352  
135  
194  
512  
545  
2.09  
2.45  
GBL PDN = 0,  
PDN BUFF CHx = 1  
(x = A or B)  
The input buffer of one channel is  
powered down  
GBL PDN = 0,  
PDN ADC CHx = 1, PDN The ADC and input buffer of one  
198  
60  
222  
85  
132  
66  
508  
484  
1.85  
1.02  
BUFF CHx = 1  
(x = A or B)  
channel is powered down  
GBL PDN = 0,  
PDN ADC CHx = 1, PDN The ADC and input buffer of both  
BUFF CHx = 1  
(x = A and B)  
channels are powered down  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.4.2 Device Configuration  
The ADS54J40 can be configured by using a serial programming interface, as described in the Serial Interface  
section. In addition, the device has one dedicated parallel pin (PDN) for controlling the power-down mode.  
The ADS54J40 supports a 24-bit (16-bit address, 8-bit data) SPI operation and uses paging (see the Register  
Maps section) to access all register bits.  
8.4.2.1 Serial Interface  
The ADC has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock), and SDIN (serial interface data) pins, as shown in 8-12.  
Legends used in 8-12 are explained in 8-8. Serially shifting bits into the device is enabled when SEN is  
low. Serial data on SDIN are latched at every SCLK rising edge when SEN is active (low). The interface can  
function with SCLK frequencies from 2 MHz down to very low speeds (of a few Hertz) and also with a non-50%  
SCLK duty cycle.  
Register Address[11:0]  
Register Data[7:0]  
SDIN  
R/W  
M
P
CH  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
tDH  
D0  
tSCLK  
tDSU  
SCLK  
SEN  
tSLOADS  
tSLOADH  
RESET  
8-12. SPI Timing Diagram  
8-8. SPI Timing Diagram Legend  
SPI BITS  
DESCRIPTION  
BIT SETTINGS  
0 = SPI write  
1 = SPI read back  
R/W  
M
Read/write bit  
0 = Analog SPI bank (master and ADC pages)  
1 = JESD SPI bank (main digital, JESD analog, and  
JESD digital pages)  
SPI bank access  
JESD page selection bit  
0 = Page access  
1 = Register access  
P
0 = Channel A  
1 = Channel B  
By default, both channels are being addressed.  
SPI access for a specific channel of the JESD SPI  
bank  
CH  
A[11:0]  
D[7:0]  
SPI address bits  
SPI data bits  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: ADS54J40  
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8-9 shows the timing requirements for the serial interface signals in 8-12.  
8-9. SPI Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
SCLK frequency (equal to 1 / tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDIN setup time  
)
> dc  
100  
100  
100  
100  
2
ns  
ns  
tDH  
SDIN hold time  
ns  
8.4.2.2 Serial Register Write: Analog Bank  
The analog SPI bank contains of two pages (the master and ADC page). The internal register of the ADS54J40  
analog SPI bank can be programmed by:  
1. Driving the SEN pin low.  
2. Initiating a serial interface cycle specifying the page address of the register whose content must be written.  
Master page: write address 0011h with 80h.  
ADC page: write address 0011h with 0Fh.  
3. Writing the register content as shown in 8-13. When a page is selected, multiple writes into the same  
page can be done.  
Register Address[11:0]  
Register Data[7:0]  
0
0
0
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN  
RESET  
8-13. Serial Register Write Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.4.2.3 Serial Register Readout: Analog Bank  
The content from one of the two analog banks can be read out by:  
1. Driving the SEN pin low.  
2. Selecting the page address of the register whose content must be read.  
Master page: write address 0011h with 80h.  
ADC page: write address 0011h with 0Fh.  
3. Setting the R/W bit to 1 and writing the address to be read back.  
4. Reading back the register content on the SDOUT pin, as shown in 8-14. When a page is selected,  
multiple read backs from the same page can be done. SDOUT comes out at the SCLK falling edge with an  
approximate delay (tSD_DELAY) of 68 ns; see 8-18.  
Register Address[11:0]  
Register Data[7:0] = XX  
1
0
0
0
SDIN  
SCLK  
R/W  
M
P
CH  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN  
RESET  
SDOUT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDOUT[7:0]  
8-14. Serial Register Read Timing Diagram  
8.4.2.4 JESD Bank SPI Page Selection  
The JESD SPI bank contains four pages (main digital, JESD digital, and JESD analog pages). The individual  
pages can be selected by:  
1. Driving the SEN pin low.  
2. Setting the M bit to 1 and specifying the page with two register writes. Note that the P bit must be set to 0, as  
shown in 8-15.  
Write address 4003h with 00h (LSB byte of the page address).  
Write address 4004h with the MSB byte of the page address.  
For the main digital page: write address 4004h with 68h.  
For the JESD digital page: write address 4004h with 69h.  
For the JESD analog page: write address 4004h with 6Ah.  
Register Address[11:0]  
Register Data[7:0]  
0
1
0
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN  
RESET  
8-15. SPI Page Selection  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: ADS54J40  
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.4.2.5 Serial Register Write: JESD Bank  
The ADS54J40 is a dual-channel device and the JESD204B portion is configured individually for each channel  
by using the CH bit. Note that the P bit must be set to 1 for register writes.  
1. Drive the SEN pin low.  
2. Select the JESD bank page. Note that the M bit = 1 and the P bit = 0.  
Write address 4003h with 00h.  
Write address 4005h with 01h to enable separate control for both channels.  
For the main digital page: write address 4004h with 68h.  
For the JESD digital page: write address 4004h with 69h.  
For the JESD analog page: write address 4004h with 6Ah.  
3. Set the M and P bits to 1, select channel A (CH = 0) or channel B (CH = 1), and write the register content as  
shown in 8-16. When a page is selected, multiple writes into the same page can be done.  
Register Address[11:0]  
Register Data[7:0]  
0
1
1
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN  
RESET  
8-16. JESD Serial Register Write Timing Diagram  
8.4.2.5.1 Individual Channel Programming  
By default, register writes are applied to both channels. To enable individual channel writes, write address 4005h  
with 01h (default is 00h).  
8.4.2.6 Serial Register Readout: JESD Bank  
The content from one of the pages of the JESD bank can be read out by:  
1. Driving the SEN pin low.  
2. Selecting the JESD bank page. Note that the M bit = 1 and the P bit = 0.  
Write address 4003h with 00h.  
Write address 4005h with 01h to enable separate control for both channels.  
For the main digital page: write address 4004h with 68h.  
For the JESD digital page: write address 4004h with 69h.  
For the JESD analog page: write address 4004h with 6Ah.  
3. Setting the R/W, M, and P bits to 1, selecting channel A or channel B, and writing the address to be read  
back.  
4. Reading back the register content on the SDOUT pin; see 8-17. When a page is selected, multiple read  
backs from the same page can be done. SDOUT comes out at the SCLK falling edge with an approximate  
delay (tSD_DELAY) of 68 ns; see 8-18.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
Register Address[11:0]  
Register Data[7:0] = XX  
1
1
1
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN  
RESET  
SDOUT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDOUT[7:0]  
8-17. JESD Serial Register Read Timing Diagram  
SCLK  
tSD_DELAY  
SDOUT  
8-18. SDOUT Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.4.3 JESD204B Interface  
The ADS54J40 supports device subclass 1 with a maximum output data rate of 10.0 Gbps for each serial  
transmitter.  
An external SYSREF signal is used to align all internal clock phases and the local multi-frame clock to a specific  
sampling clock edge, allowing synchronization of multiple devices in a system and minimizing timing and  
alignment uncertainty. The SYNC input is used to control the JESD204B SERDES blocks.  
Depending on the ADC output data rate, the JESD204B output interface can be operated with either two or four  
lanes per single ADC, as shown in 8-19. The JESD204B setup and configuration of the frame assembly  
parameters is controlled through the SPI interface.  
SYSREF  
SYNC  
JESD204B  
DA[3:0]  
INA  
INB  
JESD204B  
JESD204B  
JESD204B  
DB[3:0]  
Sample Clock  
8-19. ADS54J40 Block Diagram  
The JESD204B transmitter block shown in 8-20 consists of the transport layer, the data scrambler, and the  
link layer. The transport layer maps the ADC output data into the selected JESD204B frame data format. The link  
layer performs the 8b/10b data encoding as well as the synchronization and initial lane alignment using the  
SYNC input signal. Optionally, data from the transport layer can be scrambled.  
JESD204B Block  
Transport Layer  
Link Layer  
8b, 10b  
Encoding  
Frame Data  
Mapping  
Scrambler  
1 + x14 + x15  
D[3:0]  
Comma Characters,  
Initial Lane Alignment  
SYNC  
8-20. JESD204B Transmitter Block  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.4.3.1 JESD204B Initial Lane Alignment (ILA)  
The initial lane alignment process is started when the receiving device de-asserts the SYNC signal, as shown in  
8-21. When a logic low is detected on the SYNC input pin, the ADS54J40 starts transmitting comma (K28.5)  
characters to establish a code group synchronization.  
When synchronization is complete, the receiving device asserts the SYNC signal and the ADS54J40 starts the  
initial lane alignment sequence with the next local multi-frame clock boundary. The ADS54J40 transmits four  
multi-frames, each containing K frames (K is SPI programmable). Each of the multi-frames contains the frame  
start and end symbols and the second multi-frame also contains the JESD204 link configuration data.  
SYSREF  
LMFC Clock  
LMFC Boundary  
Multi  
Frame  
SYNC  
Transmit Data  
xxx  
K28.5  
K28.5  
ILA  
ILA  
DATA  
DATA  
Code Group  
Synchronization  
Initial Lane  
Alignment  
Data Transmission  
8-21. Lane Alignment Sequence  
8.4.3.2 JESD204B Test Patterns  
There are three different test patterns available in the transport layer of the JESD204B interface. The ADS54J40  
supports a clock output-encoded test pattern, and a 12-octet RPAT. These test patterns can be enabled via an  
SPI register write and are located in the JESD digital page of the JESD bank.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.4.3.3 JESD204B Frame  
The JESD204B standard defines the following parameters:  
L is the number of lanes per link.  
M is the number of converters per device.  
F is the number of octets per frame clock period, per lane.  
S is the number of samples per frame per converter.  
8-10 lists the available JESD204B formats and valid ranges for the ADS54J40 when the decimation filter is  
not used. The ranges are limited by the SERDES lane rate and the maximum ADC sample frequency.  
Note  
16-bit data going to JESD 8b/10b encoder is formed by padding two 0s as LSBs into the 14-bit ADC  
data.  
8-10. Default Interface Rates  
MINIMUM RATES  
MAXIMUM RATES  
L
M
F
S
DECIMATION  
SAMPLING RATE  
SERDES BIT  
RATE (Gbps)  
SAMPLING RATE  
SERDES BIT  
RATE (Gbps)  
(MSPS)  
(MSPS)  
4
4
8
2
2
2
1
4
2
1
4
4
Not used  
Not used  
Not used  
250  
2.5  
2.5  
2.5  
1000  
10.0  
10.0  
5.0  
250  
1000  
500  
1000  
Note  
In the LMFS = 8224 row of 8-10, the sample order in lane DA2 and DA3 are swapped.  
The detailed frame assembly is shown in 8-11.  
8-11. Default Frame Assembly  
PIN  
DA0  
DA1  
DA2  
DA3  
DB0  
DB1  
DB2  
DB3  
LMFS = 4211  
LMFS = 4244  
LMFS = 8224  
A3[15:8]  
A2[15:8]  
A0[15:8]  
A1[15:8]  
B3[15:8]  
B2[15:8]  
B0[15:8]  
B1[15:8]  
A3[7:0]  
A2[7:0]  
A0[7:0]  
A1[7:0]  
B3[7:0]  
B2[7:0]  
B0[7:0]  
B1[7:0]  
A0[7:0]  
A2[15:8]  
A0[15:8]  
A2[7:0]  
A3[15:8]  
A1[15:8]  
A3[7:0]  
A1[7:0]  
A0[15:8]  
A0[7:0]  
B0[7:0]  
B2[15:8]  
B0[15:8]  
B2[7:0]  
B0[7:0]  
B3[15:8]  
B1[15:8]  
B3[7:0]  
B1[7:0]  
B0[15:8]  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.4.3.4 JESD204B Frame Assembly with Decimation  
8-12 lists the available JESD204B formats and valid ranges for the ADS54J40 when enabling the decimation  
filter. The ranges are limited by the SERDES line rate and the maximum ADC sample frequency.  
8-13 lists the detailed frame assembly with different decimation options.  
8-12. Interface Rates with Decimation Filter  
MINIMUM RATES  
MAXIMUM RATES  
DEVICE  
CLOCK  
FREQUENCY  
(MSPS)  
DEVICE  
CLOCK  
FREQUENCY  
(MSPS)  
OUTPUT  
SAMPLE RATE  
(MSPS)  
OUTPUT  
SAMPLE RATE  
(MSPS)  
L
M
F
S
DECIMATION  
SERDES BIT  
RATE (Gbps)  
SERDES BIT  
RATE (Gbps)  
4
4
2
2
2
1
4
2
2
2
4
2
2
2
4
2
4
4
1
2
2
1
1
1
4X (IQ)  
2X  
500  
500  
300  
500  
300  
300  
125  
250  
150  
125  
75  
2.5  
2.5  
3
1000  
1000  
1000  
1000  
1000  
1000  
250  
500  
500  
250  
250  
250  
5.0  
5.0  
2X  
10.0  
5.0  
4X  
2.5  
3
4X (IQ)  
4X  
10.0  
10.0  
75  
3
8-13. Frame Assembly with Decimation Filter  
LMFS = 4222, 2X  
DECIMATION  
LMFS = 2242, 2X  
DECIMATION  
LMFS = 2221, 4X  
DECIMATION  
LMFS = 2441, 4X  
DECIMATION (IQ)  
LMFS = 4421, 4X  
DECIMATION (IQ)  
LMFS = 1241, 4X  
DECIMATION  
PIN  
DA0  
DA1  
A1  
A1  
AQ0  
[15:8]  
AQ0  
[7:0]  
[15:8]  
[7:0]  
A0  
A0  
A0  
A0  
A1  
A1  
A0  
A0  
AI0  
AI0 AQ0 AQ0  
AI0  
AI0  
A0  
A0  
B0  
B0  
[15:8]  
[7:0]  
[15:8] [7:0] [15:8] [7:0]  
[15:8]  
[7:0]  
[15:8] [7:0] [15:8] [7:0]  
[15:8]  
[7:0]  
[15:8] [7:0] [15:8] [7:0]  
DA2  
DA3  
B1  
[15:8]  
B1  
[7:0]  
BQ0  
[15:8]  
BQ0  
[7:0]  
DB0  
DB1  
B0  
[15:8]  
B0  
[7:0]  
B0  
B0  
B1  
B1  
B0  
[15:8]  
B0  
[7:0]  
BI0  
BI0 BQ0 BQ0  
BI0  
[15:8]  
BI0  
[7:0]  
[15:8] [7:0] [15:8] [7:0]  
[15:8] [7:0] [15:8] [7:0]  
DB2  
DB3  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: ADS54J40  
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8-14. Program Summary of DDC Modes and JESD Link Configuration  
LMFS  
OPTIONS  
DDC MODES PROGRAMMING  
JESD LINK (LMFS) PROGRAMMING  
DEC  
DECIMATI  
ON  
OPTIONS  
DA_BUS_ DB_BUS_ BUS_REO BUS_REO  
MODE EN,  
DECFIL  
EN(1)  
DECFIL  
JESD  
JESD  
JESD PLL  
MODE(5)  
LANE  
L
M
F
S
REORDER REORDER  
RDER  
RDER  
MODE[3:0](2)  
FILTER(3)  
MODE(4)  
SHARE(6)  
(7)  
(8)  
EN1(9)  
EN2(10)  
No  
decimation  
4
4
2
2
1
4
1
4
00  
00  
00  
00  
000  
000  
100  
010  
10  
10  
0
0
00h  
00h  
00h  
00h  
0
0
0
0
No  
decimation  
No  
decimation  
(default  
8
2
2
4
00  
00  
000  
001  
00  
0
00h  
00h  
0
0
after reset)  
0011 (LPF with  
fS / 4 mixer)  
4
4
2
4
2
2
2
2
4
1
2
2
4X (IQ)  
2X  
11  
11  
11  
111  
110  
110  
001  
001  
010  
00  
00  
10  
0
0
0
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
1
1
1
1
1
1
0010 (LPF) or  
0110 (HPF)  
0010 (LPF) or  
0110 (HPF)  
2X  
0000, 0100,  
1000, or 1100 (all  
BPFs with  
different center  
frequencies).  
2
2
1
2
4
2
2
4
4
1
1
1
4X  
4X (IQ)  
4X  
11  
11  
11  
100  
111  
100  
001  
010  
010  
00  
10  
10  
0
0
1
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
1
1
1
1
1
1
0011 (LPF with  
an fS / 4 mixer)  
0000, 0100,  
1000, or 1100 (all  
BPFs with  
different center  
frequencies)  
(1) The DEC MODE EN and DECFIL EN register bits are located in the main digital page, register 04Dh (bit 3) and register 041h (bit 4).  
(2) The DECFIL MODE[3:0] register bits are located in the main digital page, register 041h (bits 5 and 2-0).  
(3) The JESD FILTER register bits are located in the JESD digital page, register 001h (bits 5-3).  
(4) The JESD MODE register bits are located in the JESD digital page, register 001h (bits 2:0).  
(5) The JESD PLL MODE register bits are located in the JESD analog page, register 016h (bits 1-0).  
(6) The LANE SHARE register bit is located in the JESD digital page, register 016h (bit 4).  
(7) The DA_BUS_REORDER register bits are located in the JESD digital page, register 031h (bits 7-0).  
(8) The DB_BUS_REORDER register bits are located in the JESD digital page, register 032h (bits 7-0).  
(9) The BUS_REORDER EN1 register bit is located in the main digital page, register 052h (bit 7).  
(10) The BUS_REORDER EN2 register bit is located in the main digital page, register 072h (bit 3).  
8.4.3.4.1 JESD Transmitter Interface  
Each of the 10-Gbps SERDES JESD transmitter outputs requires ac coupling between the transmitter and  
receiver. The differential pair must be terminated with 100-Ω resistors as close to the receiving device as  
possible to avoid unwanted reflections and signal degradation, as shown in 8-22.  
0.1 mF  
DA[3:0]P,  
DB[3:0]P  
Rt = ZO  
Transmission Line, Zo  
VCM  
Receiver  
Rt = ZO  
DA[3:0]M,  
DB[3:0]M  
0.1 mF  
8-22. Output Connection to Receiver  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
 
 
 
 
 
 
 
 
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.4.3.4.2 Eye Diagrams  
8-23 to 8-26 show the serial output eye diagrams of the ADS54J40 at 5.0 Gbps and 10 Gbps with default  
and increased output voltage swing against the JESD204B mask.  
8-23. Eye at 5-Gbps Bit Rate with Default Output  
8-24. Eye at 5-Gbps Bit Rate with Increased  
Swing  
Output Swing  
8-26. Eye at 10-Gbps Bit Rate with Increased  
8-25. Eye at 10-Gbps Bit Rate with Default  
Output Swing  
Output Swing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5 Register Maps  
8-27 shows a conceptual diagram of the serial registers.  
Initiate an SPI Cycle  
R/W, M, P, CH, Bits Decoder  
M = 0  
M = 1  
JESD Bank  
Analog Bank  
General Register  
(Address 00h,  
Keep M = 0, P = 0)  
General Register  
(Address 005h,  
Keep M = 1, P = 0)  
JESD Bank Page Selection  
(Address 003h and Address 004h,  
Keep M = 1, P = 0)  
Unused Registers  
(Address 01h, Address 02h.  
Keep M = 1, P = 0)  
Analog Bank Page Selection  
(Address 011h, Keep M = 0, P = 0)  
Value 80h  
Addr 5Fh  
Value 0Fh  
Value 6800h  
Value 6900h  
Value 6A00h  
Value 6100h  
JESD Bank Page Selection1  
Addr 0h  
Addr 20h  
Addr 0h  
Addr 12h  
(Address 001h and Address 002h,  
Keep M = 1, P = 0)  
Main  
Digital Page  
JESD  
ADC Page  
(Fast OVR)  
JESD  
Digital Page  
Value 0500h  
Value 0000h  
Addr 00h  
Master Page  
(PDN, OVR,  
DC Coupling)  
Analog Page  
(PLL Configuration,  
Output Swing,  
Addr 68h  
(Nyquist Zone,  
Gain,  
OVR, Filter)  
Keep  
M = 0, P = 0  
(JESD  
Configuration)  
Pre-Emphasis)  
Keep  
M = 0, P = 0  
Keep M = 1,  
P = 1  
Offset Read Page  
Keep M = 1,  
P = 1  
Keep M = 1,  
P = 1  
(Freeze, Bypass  
and read internal  
estimate of DC  
Offset correction  
block)  
Offset Load Page  
Addr F7h  
Addr 59h  
Addr 32h  
Addr 1Bh  
(Load external  
estimate into DC  
Offset correction  
block)  
Keep M = 1,  
P = 1  
R/W=0/1(1)  
Keep M = 1,  
P = 1  
Addr 7Bh  
Addr 0Dh  
8-27. Serial Interface Registers  
The ADS54J40 contains two main SPI banks. The analog SPI bank gives access to the ADC analog blocks and the digital SPI bank controls the  
interleaving engine and anything related to the JESD204B serial interface. The analog SPI bank is divided into two pages (master and ADC) and the  
digital SPI bank is divided into three pages (main digital, JESD digital, and JESD analog). 8-15 lists a register map for the ADS54J40.  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8-15. Register Map  
REGISTER  
ADDRESS  
REGISTER DATA(1)  
A[11:0] (Hex)  
7
6
5
4
3
2
1
0
GENERAL REGISTERS  
0
1
2
3
4
RESET  
0
0
0
0
0
0
RESET  
JESD BANK PAGE SEL1[7:0]  
JESD BANK PAGE SEL1[15:8]  
JESD BANK PAGE SEL[7:0]  
JESD BANK PAGE SEL[15:8]  
DISABLE  
BROADCAST  
5
0
0
0
0
0
0
0
0
0
11  
ANALOG BANK PAGE SEL  
MASTER PAGE (80h)  
20  
21  
23  
24  
PDN ADC CHA  
PDN ADC CHA  
PDN ADC CHB  
PDN ADC CHB  
PDN BUFFER CHB  
PDN BUFFER CHA  
0
0
PDN BUFFER CHB  
PDN BUFFER CHA  
0
0
0
0
0
0
0
0
OVERRIDE PDN  
PIN  
26  
4F  
53  
GLOBAL PDN  
PDN MASK SEL  
0
EN INPUT DC  
COUPLING  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
EN SYSREF DC  
COUPLING  
0
0
SET SYSREF  
0
ENABLE MANUAL  
SYSREF  
54  
MASK SYSREF  
MASK SYSREF  
0
55  
0
0
0
0
PDN MASK  
0
0
0
0
0
0
0
0
0
59  
ADC PAGE (0Fh)  
5F  
FOVR CHB  
ALWAYS WRITE 1  
FOVR THRESHOLD PROG  
MAIN DIGITAL PAGE (6800h)  
0
0
0
0
0
0
0
0
0
PULSE RESET  
FORMAT SEL  
40  
41  
42  
43  
IL ENGINE MODE  
0
0
0
0
0
0
DECFIL MODE[3]  
DECFIL EN  
0
0
0
DECFIL MODE[2:0]  
NYQUIST ZONE  
0
0
0
0
0
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8-15. Register Map (continued)  
REGISTER  
ADDRESS  
REGISTER DATA(1)  
A[11:0] (Hex)  
7
6
5
4
3
2
1
0
44  
0
DIGITAL GAIN  
CTRL IL ENGINE  
MODE  
4B  
0
0
FORMAT EN  
0
0
0
0
CTRL FREEZE IL  
ENGINE  
4D  
4E  
52  
68  
0
0
0
0
0
0
0
0
DEC MODE EN  
0
0
0
0
0
0
CTRL NYQUIST  
IMPROVE IL PERF  
0
0
0
BUS_  
REORDER EN1  
0
0
DIG GAIN EN  
FREEZE IL  
ENGINE  
0
BUS_  
REORDER EN2  
72  
0
0
0
0
0
0
0
0
AB  
AD  
F7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LSB SEL EN  
LSB SELECT  
0
DIG RESET  
TX LINK DIS  
JESD DIGITAL PAGE (6900h)  
0
1
CTRL K  
0
0
TESTMODE EN  
JESD FILTER  
FLIP ADC DATA  
LANE ALIGN  
0
FRAME ALIGN  
JESD MODE  
SYNC REG  
SYNC REG EN  
LMFC MASK  
RESET  
2
3
LINK LAYER TESTMODE  
LINK LAYER RPAT  
0
0
FORCE LMFC  
COUNT  
LMFC COUNT INIT  
0
RELEASE ILANE SEQ  
5
6
SCRAMBLE EN  
0
0
0
0
0
0
0
0
0
0
0
0
0
FRAMES PER MULTI FRAME (K)  
7
0
SUBCLASS  
0
0
0
0
0
0
16  
31  
32  
ALWAYS WRITE 1  
0
LANE SHARE  
0
DA_BUS_REORDER[7:0]  
DB_BUS_REORDER[7:0]  
JESD ANALOG PAGE (JESD BANK PAGE SEL = 6A00h)  
12  
13  
14  
15  
SEL EMP LANE 1  
SEL EMP LANE 0  
SEL EMP LANE 2  
SEL EMP LANE 3  
ALWAYS WRITE 1  
0
0
0
0
0
0
0
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8-15. Register Map (continued)  
REGISTER  
ADDRESS  
REGISTER DATA(1)  
A[11:0] (Hex)  
7
0
0
0
6
5
4
0
0
0
0
3
2
0
0
0
0
1
0
16  
17  
1A  
1B  
0
0
0
JESD PLL MODE  
PLL RESET  
0
LANE PDN 1  
0
LANE PDN 0  
0
0
0
0
0
FOVR CHA  
0
JESD SWING  
FOVR CHA EN  
OFFSET READ PAGE (JESD BANK PAGE SEL = 6100h, JESD BANK PAGE SEL1 = 0000h)  
DC OFFSET  
CORR BW  
DC OFFSET  
CORR BW  
DC OFFSET  
CORR BW  
DC OFFSET  
CORR BW  
68  
FREEZE CORR  
0
BYPASS CORR  
0
ALWAYS WRITE 1  
0
0
69  
74  
75  
76  
77  
78  
79  
7A  
7B  
0
0
0
0
0
0
0
0
0
0
0
0
EXT CORR EN  
ADC0_CORR_INT_EST[7:0]  
0
0
0
0
0
0
ADC0_CORR_INT_EST[10:8]  
ADC1_CORR_INT_EST[10:8]  
ADC2_CORR_INT_EST[10:8]  
ADC3_CORR_INT_EST[10:8]  
ADC1_CORR_INT_EST[7:0]  
0
0
ADC2_CORR_INT_EST[7:0]  
0
0
ADC3_CORR_INT_EST[7:0]  
0
0
OFFSET LOAD PAGE (JESD BANK PAGE SEL = 6100h, JESD BANK PAGE SEL1 = 0500h)  
00  
01  
ADC0_LOAD_INT_EST[7:0]  
0
0
0
0
0
0
0
0
0
0
0
ADC0_CORR_INT_EST[10:8]  
ADC1_CORR_INT_EST[10:8]  
ADC2_CORR_INT_EST[10:8]  
04  
ADC1_LOAD_INT_EST[7:0]  
05  
0
0
08  
ADC2_LOAD_INT_EST[7:0]  
09  
0
0
0C  
0D  
78h  
ADC3_LOAD_INT_EST[7:0]  
0
0
0
0
0
0
0
0
0
0
ADC3_CORR_INT_EST[10:8]  
IL ENGINE FREEZE SECONDARY CONTROL  
(1) X = Don't care  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.1 Example Register Writes  
This section provides three different example register writes. 8-16 describes a global power-down register  
write, 8-17 describes the register writes when the default lane setting (eight active lanes per device) is  
changed to four active lanes (LMFS = 4211), and 8-18 describes the register writes for 2X decimation with  
four active lanes (LMFS = 4222).  
8-16. Global Power Down  
ADDRESS (Hex)  
0-011h  
DATA (Hex)  
80h  
COMMENT  
Set the master page  
0-026h  
C0h  
Set the global power-down  
8-17. Two Lanes per Channel Mode (LMFS = 4211)  
ADDRESS (Hex)  
4-004h  
DATA (Hex)  
COMMENT  
69h  
Select the JESD digital page  
Select the JESD digital page  
Select the digital to 40X mode  
Select the JESD analog page  
Set the SERDES PLL to 40X mode  
4-003h  
00h  
6-001h  
02h  
4-004h  
6Ah  
6-016h  
02h  
8-18. 2X Decimation (LPF for Both Channels) with Four Active Lanes (LMFS = 4222)  
ADDRESS (Hex)  
DATA (Hex)  
COMMENT  
4-004h  
68h  
Select the main digital page (6800h)  
Select the main digital page (6800h)  
Set decimate-by-2 (low-pass filter)  
Enable decimation filter control  
BUS_REORDER EN2  
4-003h  
00h  
6-041h  
12h  
6-04Dh  
6-072h  
08h  
08h  
6-052h  
80h  
BUS_REORDER EN1  
6-000h  
01h  
Pulse the PULSE RESET bit (so that register writes to the main digital page go into effect).  
6-000h  
00h  
4-004h  
69h  
Select the JESD digital page (6900h)  
4-003h  
00h  
Select the JESD digital page (6900h)  
6-031h  
0Ah  
0Ah  
31h  
Output bus reorder for channel A  
6-032h  
Output bus reorder for channel B  
6-001h  
Program the JESD MODE and JESD FILTER register bits for LMFS = 4222.  
8-19 lists the access codes for the ADS54J40 registers.  
8-19. ADS54J40 Access Type Codes  
Access Type  
Code  
Description  
R
R
Read  
R-W  
W
R/W  
W
Read or write  
Write  
-n  
Value after reset or the default  
value  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2 Register Descriptions  
8.5.2.1 General Registers  
8.5.2.1.1 Register 0h (address = 0h)  
8-22. Register 0h  
7
6
0
5
0
4
3
2
0
1
0
0
RESET  
W-0h  
0
0
RESET  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-20. Register 0h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESET  
W
0h  
0 = Normal operation  
1 = Internal software reset, clears back to 0  
6-1  
0
0
W
W
0h  
0h  
Must write 0  
RESET  
0 = Normal operation  
1 = Internal software reset, clears back to 0  
8.5.2.1.2 Register 1h (address = 1h)  
8-23. Register 1h  
7
6
5
4
3
2
1
0
JESD BANK PAGE SEL1[7:0]  
R/W-0h  
8-21. Register 1h Field Descriptions  
Bit  
Field  
JESD BANK PAGE SEL1[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Program these bits to access the desired page in the JESD  
bank.  
0000h = OFFSET READ Page  
0500h = OFFSET LOAD Page  
8.5.2.1.3 Register 2h (address = 2h)  
8-24. Register 2h  
7
6
5
4
3
2
1
0
JESD BANK PAGE SEL1[15:8]  
R/W-0h  
8-22. Register 2h Field Descriptions  
Bit  
Field  
JESD BANK PAGE SEL1[15:8]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Program these bits to access the desired page in the JESD  
bank.  
0000h = OFFSET READ Page  
0500h = OFFSET LOAD Page  
8.5.2.1.4 Register 3h (address = 3h)  
8-25. Register 3h  
7
6
5
4
3
2
1
0
JESD BANK PAGE SEL[7:0]  
R/W-0h  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: ADS54J40  
 
 
 
 
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8-23. Register 3h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
JESD BANK PAGE SEL[7:0]  
R/W  
0h  
Program these bits to access the desired page in the JESD  
bank.  
6800h = Main digital page selected  
6900h = JESD digital page selected  
6A00h = JESD analog page selected  
6100h = OFFSET READ or LOAD Page  
8.5.2.1.5 Register 4h (address = 4h)  
8-26. Register 4h  
7
6
5
4
3
2
1
0
JESD BANK PAGE SEL[15:8]  
R/W-0h  
8-24. Register 4h Field Descriptions  
Bit  
Field  
JESD BANK PAGE SEL[15:8]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Program these bits to access the desired page in the JESD  
bank.  
6800h = Main digital page selected  
6900h = JESD digital page selected  
6A00h = JESD analog page selected  
6100h = OFFSET READ or LOAD Page  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.1.6 Register 5h (address = 5h)  
8-27. Register 5h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
DISABLE BROADCAST  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-25. Register 5h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
0
W
0h  
Must write 0  
DISABLE BROADCAST  
R/W  
0h  
0 = Normal operation. Channel A and B are programmed as a pair.  
1 = Channel A and B can be individually programmed based on the  
CH bit.  
8.5.2.1.7 Register 11h (address = 11h)  
8-28. Register 11h  
7
6
5
4
3
2
1
0
ANALOG PAGE SELECTION  
R/W-0h  
8-26. Register 11h Field Descriptions  
Bit  
Field  
ANALOG BANK PAGE SEL  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Program these bits to access the desired page in the analog bank.  
Master page = 80h  
ADC page = 0Fh  
8.5.2.2 Master Page (080h) Registers  
8.5.2.2.1 Register 20h (address = 20h), Master Page (080h)  
8-29. Register 20h  
7
6
5
4
3
2
1
0
PDN ADC CHA  
R/W-0h  
PDN ADC CHB  
R/W-0h  
8-27. Registers 20h Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
PDN ADC CHA  
PDN ADC CHB  
0h  
There are two power-down masks that are controlled through  
the PDN mask register bit in address 55h. The power-down  
mask 1 or mask 2 are selected via register bit 5 in address 26h.  
Power-down mask 1: addresses 20h and 21h.  
Power-down mask 2: addresses 23h and 24h.  
0Fh = Power-down CHB only.  
0h  
F0h = Power-down CHA only.  
FFh = Power-down both.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: ADS54J40  
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.2.2 Register 21h (address = 21h), Master Page (080h)  
8-30. Register 21h  
7
6
5
4
3
2
0
1
0
0
0
PDN BUFFER CHB  
R/W-0h  
PDN BUFFER CHA  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
8-28. Register 21h Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-4  
PDN BUFFER CHB  
PDN BUFFER CHA  
0h  
There are two power-down masks that are controlled through  
the PDN mask register bit in address 55h. The power-down  
mask 1 or mask 2 are selected via register address 26h, bit 5.  
Power-down mask 1: addresses 20h and 21h.  
Power-down mask 2: addresses 23h and 24h.  
There are two buffers per channel. One buffer drives two ADC  
cores.  
0h  
PDN BUFFER CHx:  
00 = Both buffers of a channel are active.  
11 = Both buffers are powered down.  
0110 = Do not use.  
3-0  
0
W
0h  
Must write 0.  
8.5.2.2.3 Register 23h (address = 23h), Master Page (080h)  
8-31. Register 23h  
7
6
5
4
3
2
1
0
PDN ADC CHA  
R/W-0h  
PDN ADC CHB  
R/W-0h  
8-29. Register 23h Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
PDN ADC CHA  
PDN ADC CHB  
0h  
There are two power-down masks that are controlled through  
the PDN mask register bit in address 55h. The power-down  
mask 1 or mask 2 are selected via register address 26h, bit 5.  
Power-down mask 1: addresses 20h and 21h.  
Power-down mask 2: addresses 23h and 24h.  
0Fh = Power-down CHB only.  
0h  
F0h = Power-down CHA only.  
FFh = Power-down both.  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.2.4 Register 24h (address = 24h), Master Page (080h)  
8-32. Register 24h  
7
6
5
4
3
2
0
1
0
0
0
PDN BUFFER CHB  
R/W-0h  
PDN BUFFER CHA  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
8-30. Register 24h Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-4  
PDN BUFFER CHB  
PDN BUFFER CHA  
0h  
There are two power-down masks that are controlled through  
the PDN mask register bit in address 55h. The power-down  
mask 1 or mask 2 are selected via register address 26h, bit 5.  
Power-down mask 1: addresses 20h and 21h.  
Power-down mask 2: addresses 23h and 24h.  
Power-down mask 2: addresses 23h and 24h.  
There are two buffers per channel. One buffer drives two ADC  
cores.  
0h  
PDN BUFFER CHx:  
00 = Both buffers of a channel are active.  
11 = Both buffers are powered down.  
0110 = Do not use.  
3-0  
0
W
0h  
Must write 0.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.2.5 Register 26h (address = 26h), Master Page (080h)  
8-31. Register 26h  
7
6
5
4
3
2
0
1
0
0
0
OVERRIDE  
PDN PIN  
PDN MASK  
SEL  
GLOBAL PDN  
R/W-0h  
0
0
R/W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-32. Register 26h Field Descriptions  
Bit  
Field  
GLOBAL PDN  
Type  
Reset  
Description  
7
R/W  
0h  
Bit 6 (OVERRIDE PDN PIN) must be set before this bit can be  
programmed.  
0 = Normal operation  
1 = Global power-down through the SPI  
6
5
OVERRIDE PDN PIN  
R/W  
R/W  
W
0h  
0h  
0h  
This bit ignores the power-down pin control.  
0 = Normal operation  
1 = Ignores inputs on the power-down pin  
PDN MASK SEL  
0
This bit selects power-down mask 1 or mask 2.  
0 = Power-down mask 1  
1 = Power-down mask 2  
4-0  
Must write 0  
8.5.2.2.6 Register 4Fh (address = 4Fh), Master Page (080h)  
8-33. Register 4Fh  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
EN INPUT DC COUPLING  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-34. Register 4Fh Field Descriptions  
Bit  
7-1  
0
Field  
Type  
Reset  
Description  
0
W
0h  
Must write 0  
EN INPUT DC COUPLING  
R/W  
0h  
The device has an internal biassing resistor of 600 Ω from VCM  
to the INP and INM pins. A small common-mode current flows  
through these resistors causing approximately a 100-mV drop.  
To compenste for the drop, the device raises the VCM voltage  
by 100-mV by default. This compensation is particularly helpful  
in AC-coupling applications where the common-mode voltage on  
the INP and INM pins is established by internal biasing resistors.  
In DC-coupling applications, because the common-mode  
voltage is established by an external circuit, there is no need to  
raise VCM by 100-mV.  
0 = Device raises VCM voltage by 100 mV, useful in AC-  
coupling applications  
1 = Device does not raise the VCM voltage, useful in DC-  
coupling applications.  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.2.7 Register 53h (address = 53h), Master Page (080h)  
8-35. Register 53h  
7
0
6
0
5
0
4
3
2
0
1
0
EN SYSREF  
DC COUPLING  
0
0
SET SYSREF  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
8-36. Register 53h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:2  
1
0
W
0h  
Must write 0  
EN SYSREF DC COUPLING  
R/W  
0h  
This bit enables a higher common-mode voltage input on the  
SYSREF signal (up to 1.6 V).  
0 = Normal operation  
1 = Enables a higher SYSREF common-mode voltage support  
0
MANUAL SYSREF  
R/W  
0h  
The device has a feature to apply the SYSREF signal manually  
through the serial interface instead of the SYSREFP, SYSREFM  
pins. This application can be done by first setting the ENABLE  
MANUAL SYSREF register bit, then using the MANUAL  
SYSREF bit to set the SYSREF signal high or low.0 = Set  
SYSREF low  
1 = Set SYSREF high  
8.5.2.2.8 Register 54h (address = 54h), Master Page (080h)  
8-33. Register 54h  
7
6
0
5
4
3
2
0
1
0
0
0
ENABLE  
MANUAL  
SYSREF  
MASK SYSREF MASK SYSREF  
0
R/W-0h  
W-0h  
W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-37. Register 54h Field Descriptions  
Bit  
7
Field  
Type  
R/W  
W
Reset  
Description  
ENABLE MANUAL SYSREF  
0h  
This bit enables manual SYSREF  
Must write 0  
6
0
0h  
5-4  
MASK SYSREF  
R/W  
0h  
00 = Normal operation  
11 = The SYSREF signal is ignored by the device irrespective of  
how the signal was applied (through a pin or manually by the  
serial interface)  
01 and 10 = Not applicable  
3-0  
0
W
0h  
Must write 0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: ADS54J40  
 
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.2.9 Register 55h (address = 55h), Master Page (080h)  
8-38. Register 55h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
PDN MASK  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-39. Register 55h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4
0
W
0h  
Must write 0  
PDN MASK  
R/W  
0h  
This bit enables power-down via a register bit.  
0 = Normal operation  
1 = Power-down is enabled by powering down the internal  
blocks as specified in the selected power-down mask  
3-0  
0
W
0h  
Must write 0  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.2.10 Register 59h (address = 59h), Master Page (080h)  
8-34. Register 59h  
7
6
0
5
4
3
0
2
0
1
0
0
0
FOVR CHB  
W-0h  
ALWAYS WRITE 1  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-40. Register 59h Field Descriptions  
Bit  
Field  
FOVR CHB  
Type  
Reset  
Description  
7
W
0h  
This bit outputs the FOVR signal for channel B on the SDOUT  
pin.  
0 = Normal operation  
1 = The FOVR signal is available on the SDOUT pin  
6
5
0
W
0h  
0h  
0h  
Must write 0  
Must write 1  
Must write 0  
ALWAYS WRITE 1  
0
R/W  
W
4-0  
8.5.2.3 ADC Page (0Fh) Register  
8.5.2.3.1 Register 5F (addresses = 5F), ADC Page (0Fh)  
8-35. Register 5F  
7
6
5
4
3
2
1
0
FOVR THRESHOLD PROG  
R/W-E3h  
8-41. Register 5F Field Descriptions  
Bit  
Field  
FOVR THRESHOLD PROG  
Type  
Reset  
Description  
7-0  
R/W  
E3h  
Program the fast OVR thresholds together for channel A and B,  
as described in the Overrange Indication section.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.4 Main Digital Page (6800h) Registers  
8.5.2.4.1 Register 0h (address = 0h), Main Digital Page (6800h)  
8-42. Register 0h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
PULSE RESET  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-43. Register 0h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
0
W
0h  
Must write 0  
PULSE RESET  
R/W  
0h  
This bit must be pulsed after power-up or after configuring  
registers in the main digital page of the JESD bank. Any register  
bits in the main digital page (6800h) take effect only after this bit  
is pulsed; see the Start-Up Sequence section for the correct  
sequence.  
0 = Normal operation  
0 1 0 = This bit is pulsed  
8.5.2.4.2 Register 40h (address = 40h), Main Digital Page (6800h)  
8-44. Register 40h  
7
6
5
4
3
2
1
0
IL ENGINE MODE  
W-0h  
8-45. Register 40h Field Descriptions  
Bit  
Field  
IL ENGINE MODE  
Type  
Reset  
Description  
7-0  
W
0h  
Specifies the Interleaving Engine Mode  
0 = Interleaving Engine is enabled  
8 = Interleaving Engine is disabled  
Other Values = Reserved  
Note that for this register setting to take effect, CTRL IL ENGINE  
field should be set to 1  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.4.3 Register 41h (address = 41h), Main Digital Page (6800h)  
8-36. Register 41h  
7
0
6
0
5
4
3
0
2
1
0
DECFIL MODE[3]  
R/W-0h  
DECFIL EN  
R/W-0h  
DECFIL MODE[2:0]  
R/W-0h  
W-0h  
W-0h  
W-0h  
8-46. Register 41h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
0
W
0h  
Must write 0  
DECFIL MODE[3]  
R/W  
0h  
This bit selects the decimation filter mode. 8-47 lists the bit settings.  
The decimation filter control (DEC MODE EN, register 4Dh, bit 3) and  
decimation filter enable (DECFIL EN, register 41h, bit 4) must be enabled.  
4
DECFIL EN  
R/W  
0h  
This bit enables the digital decimation filter.  
0 = Normal operation, full rate output  
1 = Digital decimation enabled  
3
0
W
0h  
0h  
Must write 0  
2-0  
DECFIL MODE[2:0]  
R/W  
These bits select the decimation filter mode. 8-47 lists the bit settings.  
The decimation filter control (DEC MODE EN, register 4Dh, bit 3) and  
decimation filter enable (DECFIL EN, register 41h, bit 4) must be enabled.  
8-47. DECFIL MODE Bit Settings  
BITS (5, 2-0)  
FILTER MODE  
DECIMATION  
0000  
0100  
1000  
1100  
0010  
0110  
0011  
Band-pass filter centered on 3 × fS / 16  
4X  
4X  
Band-pass filter centered on 5 × fS / 16  
Band-pass filter centered on 1 × fS / 16  
Band-pass filter centered on 7 × fS / 16  
Low-pass filter  
4X  
4X  
2X  
High-pass filter  
2X  
Low-pass filter with fS /4 mixer  
4X (IQ)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.4.4 Register 42h (address = 42h), Main Digital Page (6800h)  
8-48. Register 42h  
7
0
6
0
5
0
4
3
2
1
0
0
0
NYQUIST ZONE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-49. Register 42h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
2-0  
0
W
0h  
Must write 0  
NYQUIST ZONE  
R/W  
0h  
The Nyquist zone must be selected for proper interleaving  
correction. The CONTROL NYQUIST register bit (register 4Eh,  
bit 7) must be enabled to use these bits.  
000 = 1st Nyquist zone (0 MHz to 500 MHz)  
001 = 2nd Nyquist zone (500 MHz to 1000 MHz)  
010 = 3rd Nyquist zone (1000 MHz to 1500 MHz)  
All others = Not used  
8.5.2.4.5 Register 43h (address = 43h), Main Digital Page (6800h)  
8-37. Register 43h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
FORMAT SEL  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-50. Register 43h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
0
W
0h  
Must write 0  
FORMAT SEL  
R/W  
0h  
This bit changes the output format. Set the FORMAT EN bit to  
enable control using this bit.  
0 = Twos complement  
1 = Offset binary  
8.5.2.4.6 Register 44h (address = 44h), Main Digital Page (6800h)  
8-38. Register 44h  
7
0
6
5
4
3
2
1
0
DIGITAL GAIN  
R/W-0h  
R/W-0h  
8-51. Register 44h Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
0
0h  
Must write 0  
6-0  
DIGITAL GAIN  
0h  
These bits set the digital gain setting. The DIG GAIN EN register  
bit (register 52h, bit 0) must be enabled to use these bits.  
Gain in dB = 20log (digital gain / 32)  
7Fh = 127 equals a digital gain of 9.5 dB  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.4.7 Register 4Bh (address = 4Bh), Main Digital Page (6800h)  
8-39. Register 4Bh  
7
0
6
0
5
4
3
2
1
0
0
0
FORMAT EN  
0
0
CTRL IL  
ENGINE MODE  
W-0h  
W-0h  
R/W-0h  
W-0h  
W-0h  
R/W-0h  
W-0h  
W-0h  
8-52. Register 4Bh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
0
W
0h  
Must write 0  
FORMAT EN  
R/W  
0h  
This bit enables control for data format selection using the  
FORMAT SEL register bit.  
0 = Default, output is in twos complement format  
1 = Output is in offset binary format after the FORMAT SEL bit is  
set  
4-3  
2
W
oh  
0h  
Must write 0  
0
CTRL IL ENGINE MODE  
R/W  
This bit enables control of interleaving engine mode selection  
using the IL ENGINE Mode register field.  
0 = Default. IL Engine Mode (IL Engine enabled)  
1 = IL Engine Mode is determined from IL ENGINE MODE field  
setting.  
1-0  
0
W
0h  
Must write 0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.4.8 Register 4Dh (address = 4Dh), Main Digital Page (6800h)  
8-40. Register 4Dh  
7
0
6
0
5
0
4
3
2
0
1
0
0
CTRL FREEZE  
IL ENGINE  
0
DEC MOD EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
8-53. Register 4Dh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
0
W
0h  
Must write 0  
DEC MOD EN  
R/W  
0h  
This bit enables control of decimation filter mode through the  
DECFIL MODE[3:0] register bits.  
0 = Default  
1 = Decimation mode control is enabled  
2-1  
0
0
W
0h  
0h  
Must write 0  
R/W  
This bit enables control of interleaving engine freeze/unfreeze  
state using the FREEZE IL ENGINE register field.  
0 = IL Engine continues in its current state (either frozen or  
unfrozen).  
CTRL FREEZE IL ENGINE  
1 = IL Engine state enters a frozen or unfrozen state base on  
FREEZE IL ENGINE register field setting.  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.4.9 Register 4Eh (address = 4Eh), Main Digital Page (6800h)  
8-41. Register 4Eh  
7
6
0
5
4
3
0
2
0
1
0
0
0
IMPROVE IL  
PERF  
CTRL NYQUIST  
R/W-0h  
0
W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-54. Register 4Eh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CTRL NYQUIST  
R/W  
0h  
This bit enables selecting the Nyquist zone using register 42h,  
bits 2-0.  
0 = Selection disabled  
1 = Selection enabled  
6
5
0
W
0h  
0h  
Must write 0  
IMPROVE IL PERF  
R/W  
Improves interleaving performance. Effective only for input  
frequencies that are within +/- fs / 64 band centered at n * fs / 8  
(n = 1, 2, 3 or 4). For example, at a 1-Gsps sampling rate, this  
bit may improve IL performance when the input frequencies fall  
within +/- 15.625 MHz band located at 125 MHz, 250 MHz, 375  
MHz and 500 MHz.  
0 = Default  
1 = Improves IL performance for certain input frequenies  
6-0  
0
W
0h  
Must write 0  
8.5.2.4.10 Register 52h (address = 52h), Main Digital Page (6800h)  
8-42. Register 52h  
7
6
0
5
0
4
3
2
0
1
0
0
0
0
DIG GAIN EN  
BUS_REORD  
ER_EN1  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
8-55. Register 52h Field Descriptions  
Bit  
7
Field  
Type  
R/W  
W
Reset  
Description  
BUS_REORDER_EN1  
0h  
Must write 1 in DDC mode only  
Must write 0  
6-1  
0
0
0h  
DIG GAIN EN  
R/W  
0h  
Enables selecting the digital gain for register 44h.  
0 = Digital gain disabled  
1 = Digital gain enabled  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: ADS54J40  
 
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.4.11 Register 68h (address = 68h), Main Digital Page (6800h)  
8-43. Register 68h  
7
6
5
0
4
3
2
1
0
FREEZE IL ENGINE  
W-0h  
0
W-0h  
W-0h  
8-56. Register 68h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
2
0
W
0h  
Must write 0  
FREEZE IL ENGINE  
W
0h  
IL Engine Freeze/Unfreeze Configuration.  
0 = IL Engine is unfrozen (i.e. Interleaving Mismatch estimation  
is resumed)  
1 = IL Engine is frozen (i.e. Interleaving Mismatch estimation is  
frozen, correction continues with estimates computed prior to  
freeze)  
Note -  
1. Value specified here takes effect when CTRL FREEZE IL  
ENGINE is 1.  
2. For IL Engine to be frozen, register field IL ENGINE  
FREEZE SECONDARY CONTROL should be set to 0  
3. Unlike other register fields in the Main Digital Page,  
FREEZE IL ENGINE does not need a PULSE RESET to  
take effect. FREEZE IL ENGINE can be asserted/de-  
asserted at any time and the setting takes effect immediatel  
.
1-0  
0
W
0h  
Must write 0  
8.5.2.4.12 Register 72h (address = 72h), Main Digital Page (6800h)  
8-44. Register 72h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
BUS_REORDER_EN2  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
8-57. Register 72h Field Descriptions  
Bit  
7-4  
3
Field  
Type  
Reset  
Description  
0
W
0h  
Must write 0  
BUS_REORDER_EN2  
0
R/W  
W
0h  
Must write a 1 in DDC mode only  
Must write 0  
2-0  
0h  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.4.13 Register ABh (address = ABh), Main Digital Page (6800h)  
8-45. Register ABh  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
LSB SEL EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-58. Register ABh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
0
W
0h  
Must write 0  
LSB SEL EN  
R/W  
0h  
Enable control for the LSB SELECT register bit.  
0 = Default  
1 = LSB of the 16-bit data (14-bit ADC data padded with two 0s  
as the LSBs) can be programmed as fast OVR using the LSB  
SELECT register bit.  
8.5.2.4.14 Register ADh (address = ADh), Main Digital Page (6800h)  
8-46. Register ADh  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
LSB SELECT  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-59. Register ADh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
1-0  
0
W
0h  
Must write 0  
LSB SELECT  
R/W  
0h  
These bits enable the output of the FOVR flag instead of the  
output data LSB. Ensure that LSB SEL EN register bit is set to  
1.  
00 = Output is 16-bit data (14-bit ADC data padded with two 0s  
as LSBs)  
11 = LSB of 16-bit output data is replaced by the FOVR  
information for each channel.  
8.5.2.4.15 Register F7h (address = F7h), Main Digital Page (6800h)  
8-47. Register F7h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
DIG RESET  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-60. Register F7h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
0
W
0h  
Must write 0  
DIG RESET  
W
0h  
This bit is the self-clearing reset for the digital block and does  
not include interleaving correction.  
0 = Normal operation  
1 = Digital reset  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: ADS54J40  
 
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.5 JESD Digital Page (6900h) Registers  
8.5.2.5.1 Register 0h (address = 0h), JESD Digital Page (6900h)  
8-48. Register 0h  
7
6
0
5
0
4
3
2
1
0
TESTMODE EN  
FLIP ADC  
DATA  
CTRL K  
R/W-0h  
LANE ALIGN FRAME ALIGN  
R/W-0h R/W-0h  
TX LINK DIS  
R/W-0h  
W-0h  
W-0h  
R/W-0h  
R/W-0h  
8-61. Register 0h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CTRL K  
R/W  
0h  
Thib bit is the enable bit for a number of frames per multi frame.  
0 = Default is five frames per multi frame  
1 = Frames per multi frame can be set in register 06h  
6-5  
4
0
W
0h  
0h  
Must write 0  
TESTMODE EN  
R/W  
This bit generates the long transport layer test pattern mode, as  
per section 5.1.6.3 of the JESD204B specification.  
0 = Test mode disabled  
1 = Test mode enabled  
3
2
FLIP ADC DATA  
LANE ALIGN  
R/W  
R/W  
0h  
0h  
0 = Normal operation  
1 = Output data order is reversed: MSB to LSB.  
This bit inserts the lane alignment character (K28.3) for the  
receiver to align to lane boundary, as per section 5.3.3.5 of the  
JESD204B specification.  
0 = Normal operation  
1 = Inserts lane alignment characters  
1
0
FRAME ALIGN  
TX LINK DIS  
R/W  
R/W  
0h  
0h  
This bit inserts the lane alignment character (K28.7) for the  
receiver to align to lane boundary, as per section 5.3.3.5 of the  
JESD204B specification.  
0 = Normal operation  
1 = Inserts frame alignment characters  
This bit disables sending the initial link alignment (ILA)  
sequence when SYNC is de-asserted.  
0 = Normal operation  
1 = ILA disabled  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.5.2 Register 1h (address = 1h), JESD Digital Page (6900h)  
8-49. Register 1h  
7
6
5
4
3
2
1
0
SYNC REG  
R/W-0h  
SYNC REG EN  
R/W-0h  
JESD FILTER  
R/W-0h  
JESD MODE  
R/W-01h  
8-62. Register 1h Field Descriptions  
Bit  
Field  
SYNC REG  
Type  
Reset  
Description  
7
R/W  
0h  
This bit is the register control for the sync request.  
0 = Normal operation  
1 = ADC output data are replaced with K28.5 characters; the  
SYNC REG EN register bit must also be set to 1  
6
SYNC REG EN  
JESD FILTER  
R/W  
R/W  
0h  
0h  
This bit enables register control for the sync request.  
0 = Use the SYNC pin for sync requests  
1 = Use the SYNC REG register bit for sync requests  
5-3  
These bits and the JESD MODE bits set the correct LMFS  
configuration for the JESD interface. The JESD FILTER setting  
must match the configuration in the decimation filter page.  
000 = Filter bypass mode  
See 8-63 for valid combinations for register bits JESD FILTER  
along with JESD MODE.  
2-0  
JESD MODE  
R/W  
01h  
These bits select the number of serial JESD output lanes per ADC.  
The JESD PLL MODE register bit located in the JESD analog page  
must also be set accordingly.  
001 = Default after reset(Eight active lanes)  
See 8-63 for valid combinations for register bits JESD FILTER  
along with JESD MODE.  
8-63. Valid Combinations for JESD FILTER and JESD MODE Bits  
NUMBER OF ACTIVE LANES  
PER DEVICE  
REGISTER BIT JESD FILTER  
REGISTER BIT JESD MODE  
DECIMATION FACTOR  
000  
000  
100  
010  
No decimation  
No decimation  
Four lanes are active  
Four lanes are active  
No decimation  
(default after reset)  
000  
001  
Eight lanes are active  
111  
110  
110  
100  
111  
100  
001  
001  
010  
001  
010  
010  
4X (IQ)  
2X  
Four lanes are active  
Four lanes are active  
Two lanes are active  
Two lanes are active  
Two lanes are active  
One lane is active  
2X  
4X  
4X (IQ)  
4X  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: ADS54J40  
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.5.3 Register 2h (address = 2h), JESD Digital Page (6900h)  
8-50. Register 2h  
7
6
5
4
3
2
0
1
0
0
0
LINK LAYER TESTMODE  
R/W-0h  
LINK LAYER RPAT  
R/W-0h  
LMFC MASK RESET  
R/W-0h  
W-0h  
W-0h  
W-0h  
8-64. Register 2h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
LINK LAYER TESTMODE  
R/W  
0h  
These bits generate a pattern as per section 5.3.3.8.2 of the  
JESD204B document.  
000 = Normal ADC data  
001 = D21.5 (high-frequency jitter pattern)  
010 = K28.5 (mixed-frequency jitter pattern)  
011 = Repeat initial lane alignment (generates a K28.5 character  
and continuously repeats lane alignment sequences)  
100 = 12-octet RPAT jitter pattern  
All others = Not used  
4
LINK LAYER RPAT  
R/W  
0h  
This bit changes the running disparity in the modified RPAT pattern  
test mode (only when the link layer test mode = 100).  
0 = Normal operation  
1 = Changes disparity  
3
LMFC MASK RESET  
0
R/W  
W
0h  
0h  
This bit masks the LMFC reset coming to the digital block.  
0 = LMFC reset is not masked  
1 = Ignore the LMFC reset request  
2-0  
Must write 0  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.5.4 Register 3h (address = 3h), JESD Digital Page (6900h)  
8-51. Register 3h  
7
6
5
4
3
2
1
0
FORCE LMFC COUNT  
R/W-0h  
LMFC COUNT INIT  
R/W-0h  
RELEASE ILANE SEQ  
R/W-0h  
8-65. Register 3h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FORCE LMFC COUNT  
R/W  
0h  
This bit forces the LMFC count.  
0 = Normal operation  
1 = Enables using a different starting value for the LMFC  
counter  
6-2  
1-0  
LMFC COUNT INIT  
R/W  
R/W  
0h  
0h  
When SYSREF transmits to the digital block, the LMFC count  
resets to 0 and K28.5 stops transmitting when the LMFC count  
reaches 31. The initial value that the LMFC count resets to can  
be set using LMFC COUNT INIT. In this manner, the receiver  
can be synchronized early because it receives the LANE  
ALIGNMENT SEQUENCE early. The FORCE LMFC COUNT  
register bit must be enabled.  
RELEASE ILANE SEQ  
These bits delay the generation of the lane alignment sequence  
by 0, 1, 2, or 3 multi frames after the code group  
synchronization.  
00 = 0  
01 = 1  
10 = 2  
11 = 3  
8.5.2.5.5 Register 5h (address = 5h), JESD Digital Page (6900h)  
8-52. Register 5h  
7
6
0
5
0
4
3
0
2
0
1
0
0
0
SCRAMBLE EN  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-66. Register 5h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SCRAMBLE EN  
R/W  
This bit is the scramble enable bit in the JESD204B interface.  
0 = Scrambling disabled  
0h  
1 = Scrambling enabled  
6-0  
0
W
0h  
Must write 0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.5.6 Register 6h (address = 6h), JESD Digital Page (6900h)  
8-53. Register 6h  
7
0
6
0
5
0
4
3
2
1
0
FRAMES PER MULTI FRAME (K)  
R/W-8h  
W-0h  
W-0h  
W-0h  
8-67. Register 6h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
0
W
0h  
Must write 0  
FRAMES PER MULTI FRAME (K)  
R/W  
8h  
These bits set the number of multi frames.  
Actual K is the value in hex + 1 (that is, 0Fh is K = 16).  
8.5.2.5.7 Register 7h (address = 7h), JESD Digital Page (6900h)  
8-54. Register 7h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
SUBCLASS  
R/W-1h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-68. Register 7h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
0
W
0h  
Must write 0  
SUBCLASS  
R/W  
1h  
This bit sets the JESD204B subclass.  
000 = Subclass 0 is backward compatible with JESD204A  
001 = Subclass 1 deterministic latency using the SYSREF signal  
2-0  
0
W
0h  
Must write 0  
8.5.2.5.8 Register 16h (address = 16h), JESD Digital Page (6900h)  
8-55. Register 16h  
7
1
6
0
5
0
4
3
2
0
1
0
0
0
LANE SHARE  
R/W-0h  
0
W-1h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-69. Register 16h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Must write 1  
Must write 0  
7
6-5  
4
1
0
W
1h  
W
0h  
LANE SHARE  
R/W  
0h  
When using decimate-by-4, the data of both channels are output  
over one lane (LMFS = 1241).  
0 = Normal operation (each channel uses one lane)  
1 = Lane sharing is enabled, both channels share one lane  
(LMFS = 1241)  
3-0  
0
W
0h  
Must write 0  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.5.9 Register 31h (address = 31h), JESD Digital Page (6900h)  
8-56. Register 31h  
7
6
5
4
3
2
1
0
DA_BUS_REORDER[7:0]  
R/W-0h  
8-70. Register 31h Field Descriptions  
Bit  
Field  
DA_BUS_REORDER[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Use these bits to program output connections between data  
streams and output lanes in decimate-by-2 and decimate-by-4  
mode. 8-14 lists the supported combinations of these bits.  
8.5.2.5.10 Register 32h (address = 32h), JESD Digital Page (6900h)  
8-57. Register 32h  
7
6
5
4
3
2
1
0
DB_BUS_REORDER[7:0]  
R/W-0h  
8-71. Register 32h Field Descriptions  
Bit  
Field  
DB_BUS_REORDER[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Use these bits to program output connections between data  
streams and output lanes in decimate-by-2 and decimate-by-4  
mode. 8-14 lists the supported combinations of these bits.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.6 JESD Analog Page (6A00h) Registers  
8.5.2.6.1 Register 12h (address = 12h), JESD Analog Page (6A00h)  
TBD I separated this register since it is now different from the rest  
8-58. Register 12h  
7
6
5
4
3
2
1
0
0
SEL EMP LANE 1  
R/W-0h  
ALWAYS  
WRITE 1  
W-0h  
W-0h  
8-72. Register 12h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
SEL EMP LANE 1, 0, 2, or 3  
R/W  
0h  
These bits select the amount of de-emphasis for the JESD  
output transmitter. The de-emphasis value in dB is measured as  
the ratio between the peak value after the signal transition to the  
settled value of the voltage in one bit period.  
000000 = 0 dB  
000001 = 1 dB  
000011 = 2 dB  
000111 = 4.1 dB  
001111 = 6.2 dB  
011111 = 8.2 dB  
111111 = 11.5 dB  
1
0
ALWAYS WRITE 1  
0
W
W
0h  
0h  
1 = Always write 1  
0 = Must write 0  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.6.2 Registers 13h-15h (addresses = 13h-5h), JESD Analog Page (6A00h)  
8-59. Register 13h  
7
7
7
6
6
6
5
4
3
2
2
2
1
0
0
0
SEL EMP LANE 0  
R/W-0h  
W-0h  
W-0h  
8-60. Register 14h  
5
4
3
1
0
0
0
SEL EMP LANE 2  
R/W-0h  
W-0h  
W-0h  
8-61. Register 15h  
5
4
3
1
0
0
0
SEL EMP LANE 3  
R/W-0h  
W-0h  
W-0h  
8-73. Registers 13h-15h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
SEL EMP LANE x (where x = 1, 0, 2, R/W  
or 3)  
0h  
These bits select the amount of de-emphasis for the JESD  
output transmitter. The de-emphasis value in dB is measured as  
the ratio between the peak value after the signal transition to the  
settled value of the voltage in one bit period.  
000000 = 0 dB  
000001 = 1 dB  
000011 = 2 dB  
000111 = 4.1 dB  
001111 = 6.2 dB  
011111 = 8.2 dB  
111111 = 11.5 dB  
1-0  
0
W
0h  
Must write 0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: ADS54J40  
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.6.3 Register 16h (address = 16h), JESD Analog Page (6A00h)  
8-62. Register 16h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
JESD PLL MODE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-74. Register 16h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
1-0  
0
W
0h  
Must write 0  
JESD PLL MODE  
R/W  
0h  
These bits select the JESD PLL multiplication factor and must  
match the JESD MODE setting.  
00 = 20X mode, four lanes per ADC  
01 = Not used  
10 = 40X mode, two lanes per ADC  
11 = Not used  
8-14 lists a programming summary of the DDC modes and  
JESD link configuration.  
8.5.2.6.4 Register 17h (address = 17h), JESD Analog Page (6A00h)  
8-63. Register 17h  
7
0
6
5
4
3
2
0
1
0
0
0
PLL RESET  
R/W-0h  
LANE PDN 1  
R/W-0h  
0
LANE PDN 0  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-75. Register 17h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
0
W
0h  
Must write 0  
PLL RESET  
R/W  
0h  
Pulse this bit after powering up the device; see 9-1.  
0 = Default  
0 1 0 = The PLL RESET bit is pulsed.  
5
LANE PDN 1  
R/W  
0h  
This bit powers down unused SERDES lanes DA0, DA3, DB0,  
and DB3 in certain LMFS settings (applicable for LMFS = 4244,  
2242, 2441, 4211, and 2221). Powering down unused lanes puts  
the SERDES buffers in tri-state moe and saves approximately  
15-mA current on the IOVDD supply. This bit must be used with  
LANE PDN 0 to take effect.  
0 = Default  
1 = DA0, DB0, DA3 and DB3 are powered down4  
4
3
0
W
0h  
0h  
Must write 0  
LANE PDN 0  
R/W  
This bit powers down unused SERDES lanes DA0, DA3, DB0,  
and DB3 in certain LMFS settings (applicable for LMFS = 4244,  
2242, 2441, 4211, and 2221). Powering down unused lanes puts  
the SERDES buffers in tri-state moe and saves approximately  
15-mA current on the IOVDD supply.This bit must be used with  
LANE PDN 1 to take effect.  
0 = Dafult  
1 = DA0, DB0, DA3 and DB3 are powered down4  
2-0  
0
W
0h  
Must write 0  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.6.5 Register 1Ah (address = 1Ah), JESD Analog Page (6A00h)  
8-64. Register 1Ah  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
FOVR CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-76. Register 1Ah Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
1
0
W
0h  
Must write 0  
FOVR CHA  
R/W  
0h  
This bit outputs the FOVR signal for channel A on the PDN pin.  
FOVR CHA EN (register 1Bh, bit 3) must be enabled for this bit  
to function.  
0 = Normal operation  
1 = The FOVR signal of channel A is available on the PDN pin  
0
0
W
0h  
Must write 0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.6.6 Register 1Bh (address = 1Bh), JESD Analog Page (6A00h)  
8-65. Register 1Bh  
7
6
5
4
3
2
0
1
0
0
0
JESD SWING  
R/W-0h  
0
FOVR CHA EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-77. Register 1Bh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
JESD SWING  
R/W  
0h  
These bits select the output amplitude VOD (mVPP) of the JESD  
transmitter (for all lanes).  
0 = 860 mVPP  
1 = 810 mVPP  
2 = 770 mVPP  
3 = 745 mVPP  
4 = 960 mVPP  
5 = 930 mVPP  
6 = 905 mVPP  
7 = 880 mVPP  
4
3
0
W
0h  
0h  
Must write 0  
FOVR CHA EN  
R/W  
This bit enables overwrites of the PDN pin with the FOVR signal  
from channel A.  
0 = Normal operation  
1 = PDN is overwritten  
2-0  
0
R/W  
0h  
Must write 0  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.7 Offset Read Page (JESD BANK PAGE SEL = 6100h, JESD BANK PAGE SEL1 = 0000h) Registers  
8.5.2.7.1 Register 068h (address = 068h), Offset Read Page  
8-66. Register 068h  
7
6
5
4
3
2
1
0
0
FREEZE CORR DC OFFSET  
CORR BW  
DC OFFSET  
CORR BW  
DC OFFSET  
CORR BW  
DC OFFSET BYPASS CORR  
CORR BW  
ALWAYS  
WRITE 1  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
W-0h  
8-78. Register 068h Field Descriptions  
Bit  
Field  
Type Reset Description  
Offset correction block is enabled by default. Set this bit to freeze the block.  
0 = Default after reset  
1 = Offset correction block is frozen  
7
FREEZE CORR  
R/W 0h  
See the DC Offset Correction Block in the ADS54J40ADS54J40W section for details.  
DC OFFSET CORR BW  
These bits allow the user to program the 3-dB bandwidth of the notch filter centered  
around k x fs4/ 4 (k = 0, 1, 2). The notch filter is a first-order digital filter with 3-dB  
bandwidth:  
3-dB bandwidth normalized to fs  
0 = 2.99479E-07  
1 = 1.4974E-07  
2 = 7.48698E-08  
3 = 3.74349E-08  
4 = 1.87174E-08  
5 = 9.35872E-09  
6-3  
R/W 0h  
6 = 4.67936E-09  
7 = 2.33968E-09  
8 = 1.16984E-09  
9 = 5.8492E-10  
10 = 2.9246E-10  
11 = 1.4623E-10  
For example, at fs = 1 GSPS,if DC OFFSET CORR BW is set to 1, the notch filter has  
a 3-dB bandwidth of 149.74 Hz.  
0 = Default after reset  
2
BYPASS CORR  
R/W 0h  
R/W 0h  
1 = Offset correction block is bypassed  
See the DC Offset Correction Block in the ADS54J40ADS54J40W section for details.  
1
0
ALWAYS WRITE 1  
0
Always write 1  
Must write 0  
W
0h  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.7.2 Register 069h (address = 069h), Offset Read Page  
8-67. Register 069h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
EXT CORR EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-79. Register 069h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
W
0h  
Must write 0  
Enables loading of external estimate into offset correction block.  
0 = Default after reset (device uses internal estimate for offset  
correction)  
0
EXT CORR EN  
R/W  
0h  
1 = External estimate can be loaded by using the  
ADCx_LOAD_EXT_EST register bits  
See the DC Offset Correction Block in the  
ADS54J40ADS54J40W section for details.  
8.5.2.7.3 Registers 074h, 076h, 078h, 7Ah (address = 074h, 076h, 078h, 7Ah), Offset Read Page  
8-68. Registers 074h, 076h, 078h, 7Ah  
7
6
5
4
3
2
1
X
0
X
ADCx_CORR_INT_EST[5:0]  
R/W-0h  
n/a  
n/a  
8-80. Registers 074h, 076h, 078h, 7Ah Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
n/a  
Reset  
Description  
Internal estimate for all four interleaving ADC cores of the dc  
offset corrector block can be read from these bits.  
Keep the R/W bit set to 1 when reading from these registers.  
See the DC Offset Correction Block in the  
ADCx_CORR_INT_EST[5:0]  
X
0h  
ADS54J40ADS54J40W section for details.  
n/a  
Don't care  
8.5.2.7.4 Registers 075h, 077h, 079h, 7Bh (address = 075h, 077h, 079h, 7Bh), Offset Read Page  
8-69. Registers 075h, 077h, 079h, 7Bh  
7
0
6
0
5
4
3
2
1
0
0
0
0
ADCx_CORR_INT_EST[8:6]  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-81. Registers 075h, 077h, 079h, 7Bh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
0
W
0h  
Must write 0  
Internal estimate for all four interleaving ADC cores of the dc  
offset corrector block can be read from these bits.  
Keep the R/W bit set to 1 when reading from these registers.  
See the DC Offset Correction Block in the  
2-0  
ADCx_CORR_INT_EST[8:6]  
R/W  
0h  
ADS54J40ADS54J40W section for details.  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.8 Offset Load Page (JESD BANK PAGE SEL= 6100h, JESD BANK PAGE SEL1 = 0500h) Registers  
8.5.2.8.1 Registers 00h, 04h, 08h, 0Ch (address = 00h, 04h, 08h, 0Ch), Offset Load Page  
8-70. Registers 00h, 04h, 08h, 0Ch  
7
6
5
4
3
2
1
X
0
X
ADCx_LOAD_EXT_EST[5:0]  
R/W-0h  
n/a  
n/a  
8-82. Registers 00h, 04h, 08h, 0Ch Field Descriptions  
Bit  
5-0  
1-0  
Field  
Type  
R/W  
n/a  
Reset  
Description  
External estimate can be loaded into the dc offset corrector  
blocks for all four interleaving ADC cores.  
See the DC Offset Correction Block in the  
ADCx_LOAD_EXT_EST[5:0]  
X
0h  
ADS54J40ADS54J40W section for details.  
n/a  
Don't care  
8.5.2.8.2 Registers 01h, 05h, 09h, 0Dh (address = 01h, 05h, 09h, 0Dh), Offset Load Page  
8-71. Registers 01h, 05h, 09h, 0Dh  
7
0
6
0
5
0
4
3
2
1
0
0
0
ADCx_LOAD_EXT_EST[8:6]  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
8-83. Registers 01h, 05h, 09h, 0Dh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
0
W
0h  
Must write 0  
External estimate can be loaded into the dc offset corrector  
blocks for all four interleaving ADC cores.  
See the DC Offset Correction Block in the  
2-0  
ADCx_CORR_INT_EST[8:6]  
R/W  
0h  
ADS54J40ADS54J40W section for details.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: ADS54J40  
 
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
8.5.2.8.3 Registers 78h (address = 78h), Offset Load Page  
8-72. Registers 078h  
7
0
6
0
5
0
4
3
2
1
0
0
0
0
0
IL ENGINE FREEZE  
SECONDARY CONTROL  
W
W
W
W
W
W
W
R/W  
8-84. Registers 078h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
0
W
0h  
Must write 0  
IL ENGINE FREEZE SECONDARY  
CONTROL  
Whenever IL ENGINE freeze is required, this bit needs to be set  
to 0.  
R/W  
0h  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
9 Application Information Disclaimer  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
9.1.1 Start-Up Sequence  
The steps described in 9-1 are recommended as the power-up sequence with the ADS54J40 in 20X mode (LMFS = 8224).  
9-1. Initialization Sequence  
PAGE BEING  
PROGRAMMED  
STEP  
SEQUENCE  
DESCRIPTION  
COMMENT  
Bring up IOVDD to 1.15 V before applying power to DVDD. Bring up  
DVDD to 1.9 V, AVDD to 1.9 V, and AVDD3V to 3.0 V.  
See the Power Sequencing and Initialization section for power sequence  
requirements.  
1
Power-up the device  
Hardware reset  
A hardware reset clears all registers to their default values.  
Apply a hardware reset by pulsing pin 48 (low high low).  
Register writes are equivalent to a hardware reset.  
Reset registers in the ADC and master pages of the analog bank.  
This bit is a self-clearing bit.  
Write address 0-000h with 81h.  
General register  
2
Reset the device  
Write address 4-001h with 00h and address 4-002h with 00h.  
Write address 4-003h with 00h and address 4-004h with 68h.  
Unused page  
Clear any unwanted content from the unused pages of the JESD bank.  
Select the main digital page of the JESD bank.  
Use the DIG RESET register bit to reset all pages in the JESD bank.  
This bit is a self-clearing bit.  
Write address 6-0F7h with 01h for channel A.  
Main digital page  
(JESD bank)  
Write address 6-000h with 01h, then address 6-000h with 00h.  
Write address 0-011h with 80h.  
Pulse the PULSE RESET register bit for channel A.  
Select the master page of the analog bank.  
3
Performance modes  
Master page  
(analog bank)  
Write address 0-059h with 20h.  
Set the ALWAYS WRITE 1 bit.  
Default register writes for DDC modes and JESD link configuration (LMFS 8224).  
Write address 4-003h with 00h and address 4-004h with 69h.  
Select the JESD digital page.  
Set the CTRL K bit for both channels by programming K according to the  
SYSREF signal later on in the sequence.  
Write address 6-000h with 80h.  
JESD  
digital page  
(JESD bank)  
See 8-14 for configuring the JESD digital page registers for the desired LMFS  
and programming appropriate DDC mode.  
JESD link is configured with LMFS = 8224 by default with no decimation.  
Write address 4-003h with 00h and address 4-004h with 6Ah.  
Select the JESD analog page.  
Program desired registers for  
decimation options and  
JESD link configuration  
See 8-14 for configuring the JESD analog page registers for the desired  
LMFS and programming appropriate DDC mode.  
4
JESD link is configured with LMFS = 8224 by default with no decimation.  
JESD  
analog page  
(JESD bank)  
Write address 6-017h with 40h.  
PLL reset.  
Write address 6-017h with 00h.  
PLL reset clear.  
Write address 4-003h with 00h and address 4-004h with 68h.  
Select the main digital page.  
See 8-14 for configuring the main digital page registers for the desired LMFS  
and programming appropriate DDC mode.  
JESD link is configured with LMFS = 8224 by default with no decimation.  
Main digital page  
(JESD bank)  
Pulse the PULSE RESET register bit. All settings programmed in the main  
digital page take effect only after this bit is pulsed.  
Write address 6-000h with 01h and address 6-000h with 00h.  
Write address 4-003h with 00h and address 4-004h with 69h.  
Select the JESD digital page.  
Set the value of K and the  
SYSREF signal frequency  
accordingly  
JESD  
digital page  
(JESD bank)  
5
Write address 6-006h with XXh (choose the value of K).  
See the SYSREF Signal section to choose the correct frequency for SYSREF.  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
 
ADS54J40  
www.ti.com.cn  
STEP  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
9-1. Initialization Sequence (continued)  
PAGE BEING  
SEQUENCE  
DESCRIPTION  
COMMENT  
PROGRAMMED  
Pull the SYNCB pin (pin 63) low.  
Pull the SYNCB pin high.  
Transmit K28.5 characters.  
6
JESD lane alignment  
After the receiver is synchronized, initiate an ILA phase and subsequent  
transmissions of ADC data.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
9.1.2 Hardware Reset  
9-1 and 9-2 show the timing for a hardware reset.  
Power Supplies  
t1  
RESET  
t2  
t3  
SEN  
9-1. Hardware Reset Timing Diagram  
9-2. Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
ms  
ns  
t1  
t2  
t3  
Power-on delay: delay from power-up to an active high RESET pulse  
Reset pulse duration: active high RESET pulse duration  
1
10  
Register write delay: delay from RESET disable to SEN active  
100  
ns  
9.1.3 SNR and Clock Jitter  
The signal-to-noise ratio (SNR) of the ADC is limited by three different factors: quantization noise, thermal noise,  
and jitter, as shown in 方程式 4. The quantization noise is typically not noticeable in pipeline converters and is 86  
dBFS for a 14-bit ADC. The thermal noise limits SNR at low input frequencies and the clock jitter sets SNR for  
higher input frequencies.  
(4)  
The SNR limitation resulting from sample clock jitter can be calculated by 方程式 5:  
(5)  
The total clock jitter (TJitter) has two components: the internal aperture jitter (130 fs) is set by the noise of the  
clock input buffer and the external clock jitter. TJitter can be calculated by 方程式 6:  
(6)  
External clock jitter can be minimized by using high-quality clock sources and jitter cleaners as well as band-  
pass filters at the clock input. A faster clock slew rate also improves the ADC aperture jitter.  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
The ADS54J40 has a thermal noise of approximately 71.1 dBFS and an internal aperture jitter of 120 fS. SNR,  
depending on the amount of external jitter for different input frequencies, is shown in 9-2.  
75  
35 fS  
50 fS  
100 fS  
150 fS  
200 fS  
73  
71  
69  
67  
65  
10  
100  
Input Frequency (MHz)  
D052  
9-2. SNR versus Input Frequency and External Clock Jitter  
9.1.4 DC Offset Correction Block in the ADS54J40  
The ADS54J40 employs eight dc offset correction blocks (four per channel, one per interleaving core). 9-3  
shows a dc correction block diagram.  
Input data, x(n)  
(250 MSPS data from each interleaving core)  
0
Output data, y(n)  
at 250 MSPS  
1
+
+
œ
DC Corrected data  
ALWAYS WRITE 1  
(Reg 68h, bit 1)  
0
DC Correction  
Engine  
BYPASS CORR  
1
FREEZE CORR  
ADCx_LOAD_EXT_EST[8:0]  
Internal Estimate  
Read back path  
EXT CORR EN  
ADCx_CORR_INT_EST[8:0]  
9-3. DC Offset Correction Block Diagram  
The purpose of the dc offset correction block is to correct the dc offset of interleaving cores that mainly arise the  
from amplifier in the first pipeline stage. Any mismatch in dc offset among interleaving cores results in spurs at  
fS / 4 and fS / 2. The dc offset correction blocks estimate and correct the dc offset of the individual core, to an  
ideal mid-code value, and thereby remove the effect of offset mismatch.  
The dc offset correction block can correct the dc offset of individual core up to ±1024 codes.  
In applications involving dc-coupling between the ADC and the driver, the dc offset correction block can either be  
bypassed or frozen because the block cannot distinguish the external dc signal from the internal dc offset. 9-4  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: ADS54J40  
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
shows that when bypassed, the internal dc mismatch appears at dc, and the fS / 4 and fS / 2 frequency points  
and can be as big as 40 dBFS.  
0
-20  
-40  
-60  
-80  
-100  
-120  
0
100  
200 300  
Frequency (MHz)  
400  
500  
D001  
9-4. FFT After Bypassing the DC Offset Correction Block  
9.1.4.1 Freezing the DC Offset Correction Block  
After the device is powered up, the dc offset correction block estimates the internal dc offset with the idle  
channel input before the block is frozen. When frozen, the correction block holds the last estimated value that  
belongs to the internal dc offset. After the correction block is frozen, an external signal can be applied.  
9.1.4.2 Effect of Temperature  
The internal dc offset of the individual cores changes with temperature, resulting in fS / 4 and fS / 2 spurs  
appearing again in the spectrum at a different temperature.  
9-5 shows the variation of the fS / 4 spur over temperature for a typical device.  
-40  
-50  
-60  
-70  
-80  
-90  
-40  
-15  
10 35  
Temperature (°C)  
60  
85  
D068  
The offset correction block was frozen at room temperature, then the temperature was varied from 40°C to +85°C.  
9-5. Variation of the fS / 4 Spur Over Temperature  
Although some systems can accept such a variation in the fS / 4 and fS / 2 spurs across temperature, other  
systems may require the internal dc offset profile to be calibrated with temperature. To achieve the calibration of  
internal dc offset, the device provides an option to read the internal estimate values from the correction block for  
each of the interleaving cores and also to load the values back to the correction block. For calibration, after  
power up, a temperature sweep can be performed with the idle channel input and the internal dc offset can be  
read back using the ADCx_CORR_INT_EST register bits for salient temperature points. Then during operation,  
when the temperature changes, corresponding estimates can be externally loaded to the correction block using  
the ADCx_LOAD_EXT_EST register bits.  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
The dc offset corrector block is enabled by default. For a given channel, the device can disable and freeze the  
block, read the block estimate, and load the external estimate.  
9-3 lists an example of the required SPI writes for reading an internal estimate of the dc offset correction  
block, and then loading the estimate back to the corrector.  
9-3. Format (16-Bit Address, 8-Bit Data)  
ADDRESS  
STEP  
DATA (Hex)  
COMMENT  
(Hex)(1)  
This setting disables broadcast mode (channel A and B can be individually  
programmed)  
4-005  
01  
4-004  
4-003  
4-002  
4-001  
61  
00  
00  
00  
Select the offset read page (61000000h)  
Data from offset read page can be read as below (keep the R/W bit = 1)  
E-074  
E-075  
E-076  
E-077  
E-078  
E-079  
E-07A  
E-07B  
F-074  
F-075  
F-076  
F-077  
F-078  
F-079  
F-07A  
F-07B  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
Reading the internal estimate [5:0] for core 0, channel A on the SDOUT pin  
Reading the internal estimate [8:6] for core 0, channel A on the SDOUT pin  
Reading the internal estimate [5:0] for core 1, channel A on the SDOUT pin  
Reading the internal estimate [8:6] for core 1, channel A on the SDOUT pin  
Reading the internal estimate [5:0] for core 2, channel A on the SDOUT pin  
Reading the internal estimate [8:6] for core 2, channel A on the SDOUT pin  
Reading the internal estimate [5:0] for core 3, channel A on the SDOUT pin  
Reading the internal estimate [8:6] for core 3, channel A on the SDOUT pin  
Reading the internal estimate [5:0] for core 0, channel B on the SDOUT pin  
Reading the internal estimate [8:6] for core 0, channel B on the SDOUT pin  
Reading the internal estimate [5:0] for core 1, channel B on the SDOUT pin  
Reading the internal estimate [8:6] for core 1, channel B on the SDOUT pin  
Reading the internal estimate [5:0] for core 2, channel B on the SDOUT pin  
Reading the internal estimate [8:6] for core 2, channel B on the SDOUT pin  
Reading the internal estimate [5:0] for core 3, channel B on the SDOUT pin  
Reading the internal estimate [8:6] for core 3, channel B on the SDOUT pin  
Reading an internal  
estimate from both  
channels  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
9-3. Format (16-Bit Address, 8-Bit Data) (continued)  
ADDRESS  
(Hex)(1)  
STEP  
DATA (Hex)  
COMMENT  
6-069  
7-069  
4-004  
4-003  
4-002  
4-001  
6-000  
6-001  
6-004  
6-005  
6-008  
6-009  
6-00C  
6-00D  
7-000  
7-001  
7-004  
7-005  
7-008  
7-009  
7-00C  
7-00D  
01  
01  
61  
00  
05  
00  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
Enables the external correction bit located in the offset read page for channel A  
Enables the external correction bit located in the offset read page for channel B  
Change the page to the offset load page (61000500h)  
Loading the external estimate [5:0] for core 0, channel A through SPI writes  
Loading the external estimate [8:6] for core 0, channel A through SPI writes  
Loading the external estimate [5:0] for core 1, channel A through SPI writes  
Loading the external estimate [8:6] for core 1, channel A through SPI writes  
Loading the external estimate [5:0] for core 2, channel A through SPI writes  
Loading the external estimate [8:6] for core 2, channel A through SPI writes  
Loading the external estimate [5:0] for core 3, channel A through SPI writes  
Loading the external estimate [8:6] for core 3, channel A through SPI writes  
Loading the external estimate [5:0] for core 0, channel B through SPI writes  
Loading the external estimate [8:6] for core 0, channel B through SPI writes  
Loading the external estimate [5:0] for core 1, channel B through SPI writes  
Loading the external estimate [8:6] for core 1, channel B through SPI writes  
Loading the external estimate [5:0] for core 2, channel B through SPI writes  
Loading the external estimate [8:6] for core 2, channel B through SPI writes  
Loading the external estimate [5:0] for core 3, channel B through SPI writes  
Loading the external estimate [8:6] for core 3, channel B through SPI writes  
Loading an external  
estimate to both  
channels  
(1) The address field is represented in four hex bits in a-bcd format, where a contains information about the R/W, M, P, and CH bits, and  
bcd contains the actual address of the register.  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
9.1.5 Idle Channel Histogram  
9-6 shows a histogram of output codes for when no signal is applied at the analog inputs of the ADS54J40 .  
9-7 shows that when the dc offset correction block of the device is bypassed, the output code histogram  
becomes multi-modal with as many as four peaks because the ADS54J40 is a 4-way interleaved ADC with each  
ADC core having a different internal dc offset.  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
2800  
2400  
2000  
1600  
1200  
800  
400  
0
8184  
8187  
8190  
8193  
Output Code  
8196  
8199  
8202  
8080 8100 8120 8140 8160 8180 8200 8220 8240 8260 8280  
Output Code  
D060  
D061  
9-6. Idle Channel Histogram (No Signal at  
9-7. Idle Channel Histogram (No Signal at  
Analog Inputs, DC Offset Correction is On)  
Analog Inputs, DC Offset Correction is Off)  
9-8 shows that when the dc offset correction block is frozen (instead of bypassed), the output code histogram  
improves (compared to when bypassed). However, when the temperature changes, the dc offset difference  
among interleaving cores may increase resulting in increased spacing between peaks in the histogram.  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
8180 8182 8184 8186 8188 8190 8192 8194 8196 8198 8200  
Output Code  
D062  
D107  
9-8. Idle Channel Histogram (No Signal at Analog Inputs, DC Offset Correction is Frozen)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: ADS54J40  
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
9.1.6 Interleaving (IL) Mismatch Compensation  
9.1.6.1 Introduction  
The ADC in ADS54J40 is an interleaved ADC, which is realized by interleaving the outputs of 4 component  
ADCs running at one-fourth of the final rate. Gain/timing mismatches between the 4 component ADCs give rise  
to images in the spectrum, located at Fin + kFs/4, k = 1,2,3, where Fin is the input frequency and Fs is the  
overall ADC sampling frequency. Note that the frequencies Fin + kFs/4 will alias and fall within [-Fs/2,Fs/2] when  
the ADC out is observed. The Interleaving (IL) mismatch corrector module in ADS54J40 compensates for these  
images.  
Digital Data To  
DDC/Output  
IL Mismatch Corrector  
ADC  
Input Analog Signal  
Digital Correction  
Parameters  
IL Mismatch Parameters  
Estimator  
Analog Correction Parameters  
9-9. Block diagram of Interleaving mismatch Compensation  
9.1.6.2 Features  
1. IL mismatch correction has 2 components Analog Correction component and Digital Correction  
component. The correction parameters are provided by the IL Mismatch Parameters Estimatorblock  
shown in Fig 1.  
2. Tracking of IL mismatch parameters happens continuously in the background, based on incoming data  
(except under certain specific conditions listed in item 5).  
3. IL mismatch estimation uses Nyquist band information programmed by the user, for proper estimation from  
the input signals. Note that for higher Nyquist signals, the IL spurs are at Fin_alias + kFs/4 (k = 1,2,3) where  
Fin_alias is the aliased input frequency between [-Fs/2,Fs/2]. This effectively gives the location of IL spurs at  
the ADC output.  
a. Any change in Nyquist band should be succeeded by a pulse reset. A pulse reset signal resets the  
internal IL mismatch estimation and correction and the JESD link. However; all other registers written  
into the IL engine or the status of the rest of the system is unaffected by a pulse reset. The IL mismatch  
parameters would be reestimated for the new Nyquist band after a pulse reset  
b. In typical use cases, signals would be present only within one Nyquist band. However, if there are  
signals across multiple Nyquist bands (for eg the desired bands in multiple Nyquist bands may not alias  
after sampling enabling them to be separated later), it is possible that IL performance may be degraded.  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
So it is advisable to disable IL engine to get raw IL performance. The typical raw IL performance is  
shown in 9-10.  
Typical raw IL Performance  
90  
86  
82  
78  
74  
70  
60  
56  
52  
48  
44  
40  
IL Enable  
IL Disable  
0
40 80 120 160 200 240 280 320 360 400 440 480  
Input Frequency (MHz)  
D500  
9-10. Typical raw IL Performance  
4. IL image performance starts to degrade gracefully for signal frequency components > 0.9 x Fs/2, for 1st  
Nyquist signals, as digital correction cannot accurately correct for signals very close to Nyquist band edge .  
a. For signals in higher Nyquist bands, the performance degrades gracefully for aliased frequency  
components <0.1Fs/2 or >0.9Fs/2  
5. IL correction accuracy will continue to be maintained unless any of the following conditions are hit:  
a. Persistent Signal absence: The IL estimator works on the input signals to estimate and track IL  
mismatch parameters over time. So if no input signal is present, then IL mismatch estimation is not  
possible. See item 5f for further details.  
No Estimation  
Signal not present  
OFF  
Time  
b. Persistent very weak signal only: As IL estimator works on input signals, it needs reasonable-powered  
signals present for some continuous period of time to get IL estimates properly. The signal power in  
atleast one frequency band of width Fs/256 has to be > -35 dBFs for proper IL estimation. Further such  
signal needs to be present in chunks of atleast 100 µs for an integrated ON period of at least 10 ms over  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
a total time of 100 ms for proper IL estimation. See item 5f for further details.  
Estimation Valid  
Signal ON time >  
10ms  
Signal OFF time  
ON  
OFF  
100 ms  
0 ms  
Time  
No Estimation  
Signal ON time <  
10ms  
Signal OFF time  
OFF  
ON  
0 ms  
100 ms  
Time  
Estimation Valid  
Integrated Signal ON time > 10ms, with individual ON times > 100us  
ON  
0 ms  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
100 ms  
Time  
No Estimation  
Integrated Signal ON time > 10ms, BUT individual ON times < 100us  
O OF O OF O OF O OF O OF O OF O OF O OF O OF O OF O OF O OF O OF O OF  
N
N
F
N
F
N
F
N
F
N
F
N
F
N
F
N
F
N
F
F
N
F
N
F
N
F
N
F
0 ms  
100 ms  
Time  
c. Consistent Signal saturation: Whenever signal is saturated, signal gets distorted and IL estimation is no  
longer possible. IL estimation is possible if signal amplitude is < -0.5 dBFs for more than 100 µs in one  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
chunk and such chunks make up atleast 10 ms in a 100 ms window. See item 5f for further details.  
No Estimation  
Signal not saturated for >  
10ms  
Signal Saturated  
Normal  
Sat  
0 ms  
100 ms  
Time  
No Estimation  
Signal not saturated for <  
10ms  
Signal Saturated  
Normal  
Sat  
0 ms  
100 ms  
Time  
Estimation Valid  
Non-saturated(normal) time blocks > 100us with total normal block time > 10ms  
Nor  
mal  
Nor  
mal  
Nor  
mal  
Nor  
mal  
Nor  
mal  
Nor  
mal  
Nor  
mal  
Nor  
mal  
Sat  
Sat  
Sat  
Sat  
Sat  
Sat  
Sat  
0 ms  
100 ms  
Time  
No Estimation  
Non-saturated(normal) time blocks < 100us with total normal block time > 10ms  
No  
rm Sat  
al  
No  
rm Sat rm Sat  
al al  
No  
No  
rm Sat  
al  
No  
rm Sat  
al  
No No  
rm Sat rm Sat  
No  
rm Sat  
al  
No  
rm Sat  
al  
No  
rm Sat rm Sat  
al al  
No  
No  
rm Sat  
al  
al  
al  
0 ms  
100 ms  
Time  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
d. Signal presence in a very small band only around kfs/8: If input signal is present only within 5e-7 x Fs of  
kFs/8 (k = 0,1,2,3), then no IL estimation is possible as the IL signal and IL image are not separable.  
No Estimation  
Signal only  
around kfs/8  
+/-500Hz around fs/4  
Fs/4  
Fs/2 = 512 MHz  
See item 5f for further details.  
e. Presence of high power signal component in the IL image band: In some cases, the signal component  
(such as Sig1) may be present in the IL image band of other components of the signal (such as Sig0).  
This signal component in IL image band (Sig1) acts as an interferer for IL estimation of the first  
component (Sig0). If the ratio of the power of the signal component causing IL mismatch (power of Sig0)  
to the power of the signal component in the IL image band (power of Sig1) is less than 25 dB, then IL  
estimation cannot be done for that signal component (Sig0). See item 5f for further details  
No Estimation  
Estimation Valid  
Sig0  
Pwr_diff_dB <  
25 dB  
Sig0  
Pwr_diff_dB >  
25 dB  
Sig1  
IL image  
Sig1  
IL image  
IL image  
of Sig1  
IL image of  
Sig0  
IL image of  
Sig0  
IL image of  
Sig1  
Frequency  
Frequency  
f. In the normal course of operation, old IL mismatch estimates are retained and used for correction even if  
there are no current IL mismatch estimates due to any of the conditions listed in 5a 5e. This enables  
good performance when any of the conditions in 5a-5e are present for a short duration. However if any  
of the conditions that prevent estimation listed in 5a 5e persist for a large time (>40s), then the  
estimated digital IL mismatch parameters are reset and the digital IL mismatch parameters are re-  
estimated when the conditions for estimation becomes favorable again.  
If the user knows apriori that such a condition will occur and would like the old IL correction to be  
retained, then a good option is to freeze the IL engine as in item 6. This freeze stops the IL engine  
and so the old IL estimates are not discarded.  
Digital IL mismatch estimates  
are reset  
IL mismatch estimates not available continuously for a long period  
No Estimation  
No Estimation  
…….  
No Estimation  
No Estimation  
No Estimation  
No Estimation  
40s  
0
Time  
g. Signal and IL image overlap: If signal component is present around kfs/8 (k = 0,1,2,3), then the IL image  
band will also overlap with the signal making it difficult to estimate IL mismatch parameters. Overlap of  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
signal and IL image bands around kfs/8 should be < Fs/256 MHz for 90% of the time for proper IL  
estimation. Note that if this condition cannot be ensured, then IL performance will be degraded. If this  
condition is violated in a known period, then the user can freeze IL engine when this condition occurs as  
described in section 6. Otherwise, user has to switch to options in items 6 or 7 to avoid performance  
Estimation Valid  
No Estimation  
Nonoverlap  
> 4 MHz  
Nonoverlap  
< 4 MHz  
IL  
image  
IL image  
kfs/8, k=1/  
2/3  
kfs/8, k=1/  
2/3  
Frequency  
Frequency  
degradation  
6. Freezing the IL Engine: If the user knows apriori that any of the conditions in item 5f occurs and would like  
the old IL correction to be retained, then a good option is to freeze the IL engine. Or, if the user knows that  
condition in 5g is violated at a known time, then also freezing the IL engine is a good option. Once IL engine  
is frozen, all past IL estimates/correction are retained and no updates are done to the IL estimates. Once the  
conditions described above are no longer present, then the IL engine can be unfrozen. The IL engine then  
starts updating the estimates as though the entire period for which it was frozen did not exist at all.  
9-4. IL Freeze  
SPI Address  
SPI Data  
Comments  
0x4005  
0x1  
Enable per channel writes  
Page Select  
0x4004  
0x68  
0x00  
0x00  
0x00  
0x01  
0x4003  
Page Select  
0x4002  
Page Select  
0x4001  
Page Select  
0x604D  
Validity for IL Freeze/Unfreeze for  
CHA  
0x704D  
0x01  
Validity for IL Freeze/Unfreeze for  
CHB  
0x6068  
0x7068  
0x4004  
0x4003  
0x4002  
0x4001  
0x6078  
0x04  
0x04  
0x61  
0x00  
0x05  
0x00  
0x00  
Freeze IL Engine for CHA  
Freeze IL Engine for CHB  
Page Select  
Page Select  
Page Select  
Page Select  
IL Engine Freeze Secondary  
Control for CHA  
0x7078  
0x00  
IL Engine Freeze Secondary  
Control for CHB  
0x4004  
0x4003  
0x68  
0x00  
Page Select  
Page Select  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
9-4. IL Freeze (continued)  
SPI Address  
0x4002  
SPI Data  
Comments  
0x00  
Page Select  
Page Select  
0x4001  
0x00  
9-5. IL Unfreeze  
SPI Address  
0x4005  
SPI Data  
Comments  
0x00  
Enable per channel writes  
Page Select  
0x4004  
0x68  
0x4003  
0x00  
Page Select  
0x4002  
0x00  
Page Select  
0x4001  
0x00  
Page Select  
0x604D  
0x01  
Validity for IL Freeze/Unfreeze for  
CHA  
0x704D  
0x01  
Validity for IL Freeze/Unfreeze for  
CHB  
0x6068  
0x7068  
0x00  
0x00  
Unfreeze IL Engine for CHA  
Unfreeze IL Engine for CHB  
7. In case the limitations in items 5 cannot be worked around in the user system and the limitations are  
permanent (eg a system where the entire band from [0,fs/2) is nearly fully occupied or signals present  
around kfs/8 with overlap < Fs/256), then there are 2 options  
a. Power up/Temp based IL calibration - Do calibration using a single tone (single tone frequency in  
[0.77fs/2, 0.9 x fs/2], single tone power in [-0.5, -25] dBFs), either one-time or whenever temperature  
changes by more than a desired threshold, and then freeze IL estimation module. During calibration, the  
normal input should be bypassed and the calibration signal should be input to ADS54J40 for 100 ms for  
high power signals (- 3 dBFs) and 500 ms for lower powered signals. Once the calibration time is  
complete, IL estimation should be frozen and normal signal may be input to ADS54J40. To determine the  
temperature change for which calibration needs to be done, the user can refer to typical variation of IL  
spur with temperature, under freeze conditions, as shown in 9-11 .  
Power Up Device  
Load Default Config  
Freeze IL Calibration  
Provide calib signal: Single  
tone @ Fin in [0.77fs/2,0.9fs/  
2]. Power in [-0.5,-25] dBFS  
Wait for calibration to  
complete: 100ms for high  
powers (>=-3dBFs) and  
500ms for lower powers  
Connect Regular Input Signal  
Flowchart For Powerup IL calibration  
9-11. Flowchart for Powerup IL Calibratuion  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
Replace regular input signal with  
calibration signal: Single tone @  
Fin in [0.77fs/2,0.9fs/2]. Power in  
[-0.5,-25] dBFS  
Freeze IL Calibration  
Unfreeze IL Calibration  
Wait for calibration to complete:  
100ms for high powers (>=-  
3dBFs) and 500ms for lower  
powers  
Connect Regular Input Signal  
Flowchart For IL Calibration whenever temperature changes  
significantly  
9-12. Flow chart for intermittent IL calibration  
b. Disable IL correction IL performance would be limited to raw IL performance as shown in figure in the  
data sheet. Note that the disable IL correction sequence includes pulse reset. A pulse reset signal  
resets the internal IL mismatch estimation and correction and the JESD link. Therefore, in case IL  
correction disable is desired, it is preferable to insert this sequence within the device bring up sequence,  
just before the final pulse reset is issued.  
9-6. IL Disable  
SPI Address  
0x4005  
SPI Data  
Comments  
0x0  
Enable single channel writes  
Selecting page  
0x4004  
0x68  
0x00  
0x00  
0x00  
0x04  
0x4003  
Selecting page  
0x4002  
Selecting page  
0x4001  
Selecting page  
0x604B  
Validity for IL Correction Disable  
for CHA  
0x704B  
0x04  
Validity for IL Correction Disable  
for CHB  
0x6040  
0x7040  
0x6000  
0x6000  
0x08  
0x08  
0x01  
0x00  
Disable IL Correction for CHA  
Disable IL Correction for CHB  
Pulse reset assert  
Pulse reset de-assert  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: ADS54J40  
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
9.1.6.3 Temperature variation  
IL mismatch parameters estimator tracks IL mismatch variations across temperature and gives good  
performance under normal conditions. However if IL mismatch estimation is frozen, the residual IL mismatch  
seen would vary with temperature as shown in 9-13. To reduce the residual IL mismatch below this level,  
customer may put the system in calibration mode whenever significant temperature change is detected or based  
on a certain time lapse from the last calibration.  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
fIN+3fS/4  
fIN+fS/2  
fIN+fS/4  
-95  
-100  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (C)  
D501  
9-13. Residual IL Spur for signal at 400 Mhz vs Temperature after freezing IL calibration at 25°C  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
9.2 Typical Application  
The ADS54J40 is designed for wideband receiver applications demanding excellent dynamic range over a large  
input frequency range. A typical schematic for an ac-coupled receiver is shown in 9-14.  
DVDD  
10 k  
5 W  
5 W  
50 W  
50 W  
Driver  
0.1 mF  
2 pF  
0.1 mF  
SPI Master  
GND  
GND  
IOVDD  
0.1 mF  
GND  
0.1 mF  
0.1 mF  
0.1 mF  
10nF  
GND  
AVDD3V  
AVDD  
AVDD  
AVDD3V  
DVDD  
100-W Differential  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
10 nF  
DB2P  
DB2M  
IOVDD  
DB1P  
DB1M  
DGND  
DB0P  
DB0M  
IOVDD  
SYNC  
DA0M  
DA0P  
DGND  
DA1M  
DA1P  
IOVDD  
DA2M  
DA2P  
NC  
NC  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
IOVDD  
10 nF  
GND  
NC  
10 nF  
VCM  
0.1 mF  
AGND  
AVDD3V  
AVDD  
AGND  
CLKINP  
CLKINM  
AGND  
AVDD  
AVDD3V  
AGND  
GND  
0.1 mF  
AVDD3V  
10 nF  
GND  
AVDD  
0.1 mF  
GND  
10 nF  
IOVDD  
0.1 mF  
GND  
GND Pad  
(Back Side)  
GND  
0.1 mF  
FPGA  
Low-Jitter Clock  
Generator  
10 nF  
AVDD3V  
0.1 mF  
GND  
GND  
SYSREFP  
SYSREFM  
AVDD  
100 W  
IOVDD  
10 nF  
10 nF  
GND  
AVDD  
AGND  
GND  
10 nF  
10 nF  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
100-W Differential  
AVDD3V  
DVDD  
AVDD  
AVDD  
AVDD3V  
0.1 mF  
GND  
GND  
0.1 mF  
GND  
IOVDD  
0.1 mF  
GND  
5 W  
5 W  
50 W  
50 W  
Driver  
0.1 mF  
0.1 mF  
2 pF  
GND  
NOTE: GND = AGND and DGND connected in the PCB layout.  
9-14. AC-Coupled Receiver  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: ADS54J40  
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
9.2.1 Design Requirements  
9.2.1.1 Transformer-Coupled Circuits  
Transformer-Coupled Circuits  
Typical applications involving transformer-coupled circuits are discussed in this section. To achieve good phase  
and amplitude balances at the ADC input, surface-mount transformers can be used (for example transformers  
such as ADT1-1WT or WBC1-1 can be used for frequencies up to 300 MHz and TC1-1-13M+ for higher  
frequencies) to achieve good phase and amplitude balances at the ADC inputs. When designing dc-driving  
circuits, the ADC input impedance must be considered. 9-15 and 9-16 show the impedance (ZIN = RIN ||  
CIN) across the ADC input pins.  
1.4  
1.2  
1
5
4.75  
4.5  
4.25  
4
0.8  
0.6  
0.4  
0.2  
0
3.75  
3.5  
3.25  
3
2.75  
2.5  
2.25  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
D102  
D103  
9-16. CIN vs Input Frequency  
9-15. RIN vs Input Frequency  
By using the simple drive circuit of 9-17, uniform performance can be obtained over a wide frequency range.  
The buffers present at the analog inputs of the device help isolate the external drive source from the switching  
currents of the sampling circuit.  
0.1 F  
T2  
CHx_INP  
T1  
5 ꢀ  
0.1 F  
25 ꢀ  
0.1 F  
RIN  
CIN  
25 ꢀ  
5 ꢀ  
0.1 F  
CHx_INM  
1:1  
1:1  
Device  
9-17. Input Drive Circuit  
9.2.2 Detailed Design Procedure  
For optimum performance, the analog inputs must be driven differentially. This architecture improves common-  
mode noise immunity and even-order harmonic rejection. A small resistor (5 Ω to 10 Ω) in series with each input  
pin is recommended to damp out ringing caused by package parasitics, as shown in 9-17.  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
9.2.3 Application Curves  
9-18 and 9-19 show the typical performance at 170 MHz and 230 MHz, respectively.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
100  
200 300  
Input Frequency (MHz)  
400  
500  
0
100  
200 300  
Input Frequency (MHz)  
400  
500  
D003  
D004  
SNR = 68.9 dBFS; SFDR = 86 dBc; IL spur = 84 dBc; non  
HD2, HD3 spur = 89 dBc  
SNR = 68.1 dBFS; SFDR = 84 dBc; IL spur = 86 dBc; non  
HD2, HD3 spur = 86 dBc  
9-18. FFT for 170-MHz Input Signal  
9-19. FFT for 230-MHz Input Signal  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: ADS54J40  
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
10 Power Supply Recommendations  
The device requires a 1.15-V nominal supply for IOVDD, a 1.9-V nominal supply for DVDD, a 1.9-V nominal  
supply for AVDD, and a 3.0-V nominal supply for AVDD3V. For detailed information regarding the operating  
voltage minimum and maximum specifications of different supplies, see the Recommended Operating  
Conditions table.  
10.1 Power Sequencing and Initialization  
10-1 shows the suggested power-up sequencing for the device. Note that the 1.15-V IOVDD supply must rise  
before the 1.9-V DVDD supply. If the 1.9-V DVDD supply rises before the 1.15-V IOVDD supply, then the internal  
default register settings may not load properly. The other supplies (the 3-V AVDD3V and the 1.9-V AVDD), can  
come up in any order during the power sequence. The power supplies can ramp up at any rate and there is no  
hard requirement for the time delay between IOVDD ramp up to DVDD ramp-up (can be in orders of  
microseconds but is recommend to be a few milliseconds).  
IOVDD = 1.15 V  
DVDD = 1.9 V  
AVDD = 1.9 V  
AVDD = 3 V  
10-1. Power Sequencing for the ADS54Jxx Family of Devices  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
11 Layout  
11.1 Layout Guidelines  
The device evaluation module (EVM) layout can be used as a reference layout to obtain the best performance. A  
layout diagram of the EVM top layer is provided in 11-1. The ADS54J40 EVM User's Guide, SLAU652,  
provides a complete layout of the EVM. Some important points to remember during board layout are:  
Analog inputs are located on opposite sides of the device pinout to ensure minimum crosstalk on the package  
level. To minimize crosstalk onboard, the analog inputs must exit the pinout in opposite directions, as  
illustrated in the reference layout of 11-1 as much as possible.  
In the device pinout, the sampling clock is located on a side perpendicular to the analog inputs in order to  
minimize coupling between them. This configuration is also maintained on the reference layout of 11-1 as  
much as possible.  
Keep digital outputs away from the analog inputs. When these digital outputs exit the pinout, the digital output  
traces must not be kept parallel to the analog input traces because this configuration can result in coupling  
from the digital outputs to the analog inputs and degrade performance. All digital output traces to the receiver  
[such as a field-programmable gate arrays (FPGAs) or an application-specific integrated circuits (ASICs)]  
must be matched in length to avoid skew among outputs.  
At each power-supply pin (AVDD, DVDD, or AVDDD3V), keep a 0.1-µF decoupling capacitor close to the  
device. A separate decoupling capacitor group consisting of a parallel combination of 10-µF, 1F, and 0.1-µF  
capacitors can be kept close to the supply source.  
The PDN and SDOUT traces must be routed away from the analog input traces. When the PDN and SDOUT  
pins are programmed to carry OVR information, the proximity of these pins to the analog traces may result in  
degradation of the ADC performance because of coupling. For best performance, the PDN and SDOUT  
traces must not overlap or cross the path of the analog input traces even if routed on different layers of the  
PCB.  
11.2 Layout Example  
11-1. ADS54J40 EVM Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: ADS54J40  
 
 
 
 
ADS54J40  
www.ti.com.cn  
ZHCSEA4C MAY 2015 REVISED DECEMBER 2020  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
ADS54J20 Dual-Channel, 12-Bit, 1.0-GSPS, Analog-to-Digital Converter  
ADS54J42 Dual-Channel, 14-Bit, 625-MSPS, Analog-to-Digital Converter  
ADS54J60 Dual-Channel, 16-Bit, 1.0-GSPS Analog-to-Digital Converter  
ADS54J66 Quad-Channel, 14-Bit, 500-MSPS ADC with Integrated DDC  
ADS54J69 Dual-Channel, 16-Bit, 500-MSPS, Analog-to-Digital Converter  
ADS54J40EVM User's Guide  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: ADS54J40  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS54J40IRMP  
ADS54J40IRMPT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RMP  
RMP  
72  
72  
168  
250  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
AZ54J40  
AZ54J40  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
ADS54J40IRMP  
RMP  
VQFNP  
72  
168  
8 X 21  
150  
315 135.9 7620 14.65  
11  
11.95  
Pack Materials-Page 1  
PACKAGE OUTLINE  
RMP0072A  
VQFN - 0.9 mm max height  
SCALE 1.700  
VQFN  
10.1  
9.9  
A
B
PIN 1 ID  
10.1  
9.9  
0.9 MAX  
0.05  
0.00  
C
SEATING PLANE  
0.08 C  
(0.2)  
4X (45 X0.42)  
19  
36  
18  
37  
SYMM  
4X  
8.5  
8.5 0.1  
PIN 1 ID  
(R0.2)  
1
54  
0.30  
0.18  
72X  
72  
55  
68X 0.5  
SYMM  
0.5  
0.3  
0.1  
C B  
A
72X  
0.05  
C
4221047/B 02/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RMP0072A  
VQFN - 0.9 mm max height  
VQFN  
(
8.5)  
SYMM  
72X (0.6)  
SEE DETAILS  
55  
72  
1
54  
72X (0.24)  
(0.25) TYP  
SYMM  
(9.8)  
(1.315) TYP  
68X (0.5)  
(
0.2) TYP  
VIA  
37  
18  
19  
36  
(1.315) TYP  
(9.8)  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221047/B 02/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see QFN/SON PCB application report  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RMP0072A  
VQFN - 0.9 mm max height  
VQFN  
(9.8)  
72X (0.6)  
(1.315) TYP  
72  
55  
1
54  
72X (0.24)  
(1.315)  
TYP  
(0.25) TYP  
SYMM  
(9.8)  
(1.315)  
TYP  
68X (0.5)  
METAL  
TYP  
37  
18  
(
0.2) TYP  
VIA  
19  
36  
36X ( 1.115)  
(1.315) TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
62% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
4221047/B 02/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ADS54J40IRMPT

双通道、14 位、1.0GSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J42

双通道、14 位、625MSPS 模数转换器 (ADC)
TI

ADS54J42IRMP

双通道、14 位、625MSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J42IRMPT

双通道、14 位、625MSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J54

四通道、14 位、500MSPS 模数转换器 (ADC)
TI

ADS54J54IRGCR

四通道、14 位、500MSPS 模数转换器 (ADC) | RGC | 64 | -40 to 85
TI

ADS54J54IRGCT

四通道、14 位、500MSPS 模数转换器 (ADC) | RGC | 64 | -40 to 85
TI

ADS54J60

双通道、16 位、1.0GSPS 模数转换器 (ADC)
TI

ADS54J60IRMP

双通道、16 位、1.0GSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J60IRMPT

双通道、16 位、1.0GSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J64

四通道 14 位 1GSPS 2 倍过采样模数转换器 (ADC)
TI

ADS54J64IRMP

四通道 14 位 1GSPS 2 倍过采样模数转换器 (ADC) | RMP | 72 | -40 to 85
TI