ADS54J42 [TI]

双通道、14 位、625MSPS 模数转换器 (ADC);
ADS54J42
型号: ADS54J42
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双通道、14 位、625MSPS 模数转换器 (ADC)

转换器 模数转换器
文件: 总82页 (文件大小:4727K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
ADS54J42  
双通道、14 位、625MSPS 模数转换器  
1 特性  
3 说明  
1
14 位分辨率、双通道、625MSPS 模数转换器  
ADS54J42 是一款低功耗、高带宽 14 位、625MSPS  
(ADC)  
双通道模数转换器 (ADC)。该器件经设计具有高  
SNR,可提供 -157dBFS/Hz 的噪底,从而 协助应用  
在宽瞬时带宽内 实现最高动态范围。该器件支持  
JESD204B 串行接口,数据速率最高可达 6.25Gbps。  
经缓冲的模拟输入可在较宽频率范围内提供统一的输入  
阻抗,并最大限度地降低采样和保持毛刺脉冲能量。可  
选择将每个 ADC 通道连接至数字下变频器 (DDC) 模  
块。ADS54J42 以超低功耗在宽输入频率范围内提供  
出色的无杂散动态范围 (SFDR)。  
噪底:–157dBFS/Hz  
频谱性能(–1dBFS 时的 fIN = 170MHz):  
信噪比 (SNR)71.0dBFS  
噪声频谱密度 (NSD)–155.9dBFS/Hz  
无杂散动态范围 (SFDR)85dBc  
SFDR93dBc(不包括 HD2HD3 和交错音  
调)  
频谱性能(–1dBFS 时的 fIN = 350MHz):  
SNR69dBFS  
JESD204B 接口减少了接口线路数,从而实现高系统  
集成度。内部锁相环 (PLL) 会将 ADC 采样时钟加倍,  
以获得对各通道的 14 位数据进行串行化所使用的位时  
钟。  
NSD–153.9dBFS/Hz  
SFDR76dBc  
SFDR90dBc(不包括 HD2HD3 和交错音  
调)  
通道隔离:fIN = 170MHz 时为 100dBc  
输入满量程:1.9 VPP  
器件信息  
器件型号  
ADS54J42  
封装  
封装尺寸(标称值)  
VQFNP (72)  
10.00mm x 10.00mm  
输入带宽 (3dB)1.2GHz  
片上抖动  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
集成宽带数字下变频器 (DDC) 模块  
支持 JESD204B 子类 1 接口:  
6.25Gbps 时每个 ADC 具有 2 条通道  
3.125Gbps 时每个 ADC 具有 4 条通道  
支持多芯片同步  
170MHz 输入信号的快速傅立叶变换 (FFT)  
0
SNR = 71 dBFS  
SFDR = 85 dBc  
Non HD2,HD3 Spur = 93 dBc  
-20  
-40  
功耗:625MSPS 时每通道为 970mW  
封装:72 引脚超薄型四方扁平无引线 (10mm ×  
10mm)  
-60  
2 应用  
-80  
雷达和天线阵列  
-100  
-120  
无线宽带  
电缆 CMTSDOCSIS 3.1 接收器  
通信测试设备  
0
62.5  
125  
187.5  
250  
312.5  
Input Frequency (MHz)  
D101  
微波接收器  
软件定义无线电 (SDR)  
数字转换器  
医疗成像和诊断功能  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS756  
 
 
 
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 25  
8.3 Feature Description................................................. 26  
8.4 Device Functional Modes........................................ 33  
8.5 Register Maps......................................................... 43  
Application and Implementation ........................ 66  
9.1 Application Information............................................ 66  
9.2 Typical Application .................................................. 71  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 AC Characteristics .................................................... 8  
7.7 Digital Characteristics ............................................. 11  
7.8 Timing Characteristics............................................. 12  
7.9 Typical Characteristics............................................ 14  
7.10 Typical Characteristics: Contour ........................... 23  
Detailed Description ............................................ 25  
8.1 Overview ................................................................. 25  
9
10 Power Supply Recommendations ..................... 73  
11 Layout................................................................... 73  
11.1 Layout Guidelines ................................................. 73  
11.2 Layout Example .................................................... 74  
12 器件和文档支持 ..................................................... 75  
12.1 文档支持................................................................ 75  
12.2 社区资源................................................................ 75  
12.3 ....................................................................... 75  
12.4 静电放电警告......................................................... 75  
12.5 Glossary................................................................ 75  
13 机械、封装和可订购信息....................................... 75  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (February 2016) to Revision A  
Page  
更改了标题页图................................................................................................................................................................... 1  
Changed AC Characteristics table: changes made throughout table..................................................................................... 8  
Changed conditions of Typical Characteristics section ........................................................................................................ 14  
Changed Figure 9................................................................................................................................................................. 15  
Changed Figure 19 and Figure 20 ...................................................................................................................................... 16  
Changed Figure 21 .............................................................................................................................................................. 17  
Added note to Figure 45 and Figure 46 .............................................................................................................................. 21  
Added Typical Characteristics: Contour section................................................................................................................... 23  
Changed description of Eye Diagrams section for clarification ............................................................................................ 42  
Changed steps 4 and 5 in Table 66 ..................................................................................................................................... 68  
Changed Figure 132............................................................................................................................................................. 70  
2
Copyright © 2016, Texas Instruments Incorporated  
 
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
5 Device Comparison Table  
PART NUMBER  
ADS54J42  
ADS54J60  
ADS54J40  
ADS54J66  
ADS54J69  
SPEED GRADE (MSPS)  
RESOLUTION (Bits)  
CHANNEL  
625  
1000  
1000  
500  
14  
16  
14  
14  
16  
2
2
2
4
2
500  
6 Pin Configuration and Functions  
RMP Package  
72-Pin VQFNP  
Top View  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
1
2
54  
DB3M  
DB3P  
DA3M  
DA3P  
DGND  
IOVDD  
PDN  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
3
DGND  
IOVDD  
SDIN  
4
5
6
SCLK  
RES  
7
SEN  
RESET  
DVDD  
AVDD  
AVDD3V  
AVDD  
AVDD  
INAP  
8
DVDD  
AVDD  
AVDD3V  
SDOUT  
AVDD  
INBP  
9
GND Pad  
(Back Side)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
INBM  
INAM  
AVDD  
AVDD3V  
AVDD  
AGND  
AVDD  
AVDD3V  
AVDD  
AGND  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Copyright © 2016, Texas Instruments Incorporated  
3
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
CLOCK, SYSREF  
CLKINM  
28  
27  
34  
33  
I
I
I
I
Negative differential clock input for the ADC  
Positive differential clock input for the ADC  
Negative external SYSREF input  
CLKINP  
SYSREFM  
SYSREFP  
Positive external SYSREF input  
CONTROL, SERIAL  
Power-down. Can be configured via an SPI register setting.  
Can be configured to fast overrange output for channel A via the SPI.  
PDN  
50  
I/O  
RESET  
SCLK  
SDIN  
48  
6
I
I
I
Hardware reset; active high. This pin has an internal 20-kΩ pulldown resistor.  
Serial interface clock input  
5
Serial interface data input  
Serial interface data output.  
Can be configured to fast overrange output for channel B via the SPI.  
SDOUT  
11  
7
O
I
SEN  
Serial interface enable  
DATA INTERFACE  
DA0M  
DA1M  
DA2M  
DA3M  
DA0P  
62  
59  
56  
54  
61  
58  
55  
53  
65  
68  
71  
1
O
O
O
JESD204B serial data negative outputs for channel A  
DA1P  
JESD204B serial data positive outputs for channel A  
JESD204B serial data negative outputs for channel B  
DA2P  
DA3P  
DB0M  
DB1M  
DB2M  
DB3M  
DB0P  
66  
69  
72  
2
DB1P  
O
I
JESD204B serial data positive outputs for channel B  
Synchronization input for the JESD204B port  
DB2P  
DB3P  
SYNC  
INPUT, COMMON MODE  
INAM  
63  
41  
42  
14  
13  
I
I
I
I
Differential analog negative input for channel A  
Differential analog positive input for channel A  
Differential analog negative input for channel B  
Differential analog positive input for channel B  
Common-mode voltage, 2.1 V.  
INAP  
INBM  
INBP  
VCM  
22  
O
Note that analog inputs are internally biased to this pin through 600 Ω (effective), no external  
connection from the VCM pin to the INxP or INxM pin is required.  
POWER SUPPLY  
AGND  
AVDD  
18, 23, 26, 29, 32, 36, 37  
I
I
Analog ground  
9, 12, 15, 17, 25, 30, 35, 38,  
40, 43, 44, 46  
Analog 1.9-V power supply  
AVDD3V  
DGND  
DVDD  
IOVDD  
NC, RES  
NC  
10, 16, 24, 31, 39, 45  
3, 52, 60, 67  
8, 47  
I
I
I
I
Analog 3.0-V power supply for the analog buffer  
Digital ground  
Digital 1.9-V power supply  
4, 51, 57, 64, 70  
Digital 1.15-V power supply for the JESD204B transmitter  
19-21  
49  
I
Unused pins, do not connect  
RES  
Reserved pin. Connect to DGND.  
4
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.2  
–0.3  
–0.3  
–0.3  
–0.3  
–0.2  
–65  
MAX  
UNIT  
V
AVDD3V  
3.6  
AVDD  
Supply voltage range  
DVDD  
2.1  
2.1  
IOVDD  
Voltage between AGND and DGND  
INAP, INBP, INAM, INBM  
1.4  
0.3  
3
V
CLKINP, CLKINM  
Voltage applied to input pins  
AVDD + 0.3  
AVDD + 0.3  
2.1  
V
SYSREFP, SYSREFM  
SCLK, SEN, SDIN, RESET, SYNC, PDN  
Storage temperature, Tstg  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V HBM allows safe manufacturing with a standard ESD control process.  
Copyright © 2016, Texas Instruments Incorporated  
5
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
2.85  
1.8  
NOM  
3.0  
MAX  
UNIT  
AVDD3V  
3.6  
2.0  
2.0  
1.2  
AVDD  
Supply voltage range  
DVDD  
1.9  
V
1.7  
1.9  
IOVDD  
1.1  
1.15  
1.9  
Differential input voltage range  
VPP  
V
Input common-mode voltage  
2.0  
Analog inputs  
Maximum analog input frequency for a 1.9-VPP input  
amplitude(3)(4)  
400  
MHz  
MHz  
Input clock frequency, device clock frequency  
300(5)  
0.75  
0.8  
625  
Sine wave, ac-coupled  
1.5  
1.6  
Input clock amplitude differential  
Clock inputs  
Temperature  
LVPECL, ac-coupled  
LVDS, ac-coupled  
VPP  
(VCLKP – VCLKM  
)
0.7  
Input device clock duty cycle  
Operating free-air, TA  
45%  
–40  
50%  
55%  
85  
ºC  
Operating junction, TJ  
105(6)  
125  
(1) SYSREF must be applied for the device to initialize; see the SYSREF Signal section for details.  
(2) After power-up, always use a hardware reset to reset the device for the first time; see Table 66 for details.  
(3) Operating 0.5 dB below the maximum-supported amplitude is recommended to accommodate gain mismatch in interleaving ADCs.  
(4) At high frequencies, the maximum supported input amplitude reduces; see Figure 36 for details.  
(5) See Table 9.  
(6) Prolonged use above the nominal junction temperature can increase the device failure-in-time (FIT) rate.  
7.4 Thermal Information  
ADS54J42  
THERMAL METRIC(1)  
RMP (VQFNP)  
UNIT  
72 PINS  
22.3  
5.1  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
2.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
2.3  
RθJC(bot)  
0.4  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
7.5 Electrical Characteristics  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 625 MSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, and –1-dBFS differential input (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GENERAL  
ADC sampling rate  
Resolution  
625 MSPS  
Bits  
14  
POWER SUPPLIES  
AVDD3V  
AVDD  
3.0-V analog supply  
2.85  
1.8  
3.0  
1.9  
3.6  
2.0  
V
V
1.9-V analog supply  
DVDD  
IOVDD  
IAVDD3V  
IAVDD  
1.9-V digital supply  
1.7  
1.9  
2.0  
V
1.15-V SERDES supply  
3.0-V analog supply current  
1.9-V analog supply current  
1.1  
1.15  
247  
260  
1.2  
V
VIN = full-scale on both channels  
VIN = full-scale on both channels  
310  
410  
mA  
mA  
Eight lanes active  
(LMFS = 8224)  
IDVDD  
IIOVDD  
Pdis  
1.9-V digital supply current  
1.15-V SERDES supply current  
Total power dissipation  
137  
382  
1.94  
130  
404  
1.95  
129  
400  
210  
720  
mA  
mA  
W
Eight lanes active  
(LMFS = 8224)  
Eight lanes active  
(LMFS = 8224)  
2.68  
Four lanes active (LMFS = 4222),  
2X decimation  
IDVDD  
IIOVDD  
Pdis  
1.9-V digital supply current  
1.15-V SERDES supply current  
Total power dissipation  
mA  
mA  
W
Four lanes active (LMFS = 4222),  
2X decimation  
Four lanes active (LMFS = 4222),  
2X decimation  
Two lanes active (LMFS = 2221),  
4X decimation  
IDVDD  
IIOVDD  
1.9-V digital supply current  
1.15-V SERDES supply current  
mA  
mA  
Two lanes active (LMFS = 2221),  
4X decimation  
Two lanes active (LMFS = 2221),  
4X decimation  
(1)  
Pdis  
Total power dissipation  
1.94  
285  
W
Global power-down power dissipation  
315  
mW  
ANALOG INPUTS (INAP, INAM, INBP, INBM)  
Differential input full-scale voltage  
1.9  
2.0  
0.6  
4.7  
VPP  
V
VIC  
RIN  
CIN  
Common-mode input voltage  
Differential input resistance  
Differential input capacitance  
At 170-MHz input frequency  
At 170-MHz input frequency  
kΩ  
pF  
50-Ω source driving ADC inputs  
terminated with 50 Ω  
Analog input bandwidth (3 dB)  
1.2  
GHz  
CLOCK INPUT (CLKINP, CLKINM)  
CLKINP and CLKINM are  
connected to internal biasing  
voltage through 400 Ω  
Internal clock biasing  
1.15  
V
(1) See the Power-Down Mode section for details.  
Copyright © 2016, Texas Instruments Incorporated  
7
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
7.6 AC Characteristics  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 625 MSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input amplitude, and  
0-dB digital gain (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz, AIN = –1 dBFS  
MIN  
TYP  
71.8  
71.5  
71  
MAX  
UNIT  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
67.2  
70.3  
69.9  
69.5  
68.7  
68.7  
67.9  
62.7  
156.7  
156.4  
155.9  
155.2  
154.8  
154.4  
153.6  
153.6  
152.8  
147.6  
71.7  
71.4  
70.8  
69.8  
69.7  
69.1  
67.4  
66.4  
65.8  
61  
SNR  
Signal-to-noise ratio  
dBFS  
AIN = –6 dBFS  
fIN = 720 MHz  
AIN = –6 dBFS, gain = 5 dB  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
154.2  
NSD  
Noise spectral density  
dBFS/Hz  
dBFS  
dBc  
AIN = –6 dBFS  
fIN = 720 MHz  
AIN = –6 dBFS, gain = 5 dB  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
67  
Signal-to-noise and distortion  
ratio  
SINAD  
AIN = –6 dBFS  
fIN = 720 MHz  
AIN = –6 dBFS, gain = 5 dB  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
90  
85  
76  
85  
80  
84  
Spurious-free dynamic range  
(excluding IL spurs)  
SFDR  
81  
73  
69  
AIN = –6 dBFS  
fIN = 720 MHz  
64  
AIN = –6 dBFS, gain = 5 dB  
65  
8
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
AC Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 625 MSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input amplitude, and  
0-dB digital gain (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz, AIN = –1 dBFS  
MIN  
TYP  
90  
MAX  
UNIT  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
98  
76  
95  
88  
85  
Second-order harmonic  
distortion  
HD2  
dBc  
81  
73  
70  
AIN = –6 dBFS  
fIN = 720 MHz  
64  
AIN = –6 dBFS, gain = 5 dB  
65  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
98  
85  
76  
85  
80  
84  
Third-order harmonic  
distortion  
HD3  
dBc  
dBFS  
Bits  
84  
80  
69  
AIN = –6 dBFS  
fIN = 720 MHz  
75  
AIN = –6 dBFS, gain = 5 dB  
77  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
96  
97  
79  
96  
94  
Non  
HD2,  
HD3  
Spurious-free dynamic range  
(excluding HD2, HD3, and IL  
spur)  
94  
93  
88  
90  
AIN = –6 dBFS  
fIN = 720 MHz  
82  
AIN = –6 dBFS, gain = 5 dB  
83  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
11.6  
11.6  
11.5  
11.3  
11.3  
11.2  
11.0  
10.7  
10.6  
9.8  
10.8  
ENOB  
Effective number of bits  
AIN = –6 dBFS  
fIN = 720 MHz  
AIN = –6 dBFS, gain = 5 dB  
Copyright © 2016, Texas Instruments Incorporated  
9
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
AC Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 625 MSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input amplitude, and  
0-dB digital gain (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz, AIN = –1 dBFS  
MIN  
TYP  
89  
84  
84  
79  
81  
79  
72  
67  
63  
64  
91  
89.  
86.  
85  
85  
83  
84  
86  
82  
83  
MAX  
UNIT  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
73  
THD  
Total harmonic distortion  
dBc  
AIN = –6 dBFS  
fIN = 720 MHz  
AIN = –6 dBFS, gain = 5 dB  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
69  
SFDR_IL Interleaving spur  
dBc  
AIN = –6 dBFS  
fIN = 720 MHz  
AIN = –6 dBFS, gain = 5 dB  
fIN1 = 185 MHz, fIN2 = 190 MHz,  
AIN = –7 dBFS  
93  
78  
Two-tone, third-order  
IMD3  
fIN1 = 365 MHz, fIN2 = 370 MHz,  
AIN = –7 dBFS  
dBFS  
dB  
intermodulation distortion  
fIN1 = 465 MHz, fIN2 = 470 MHz,  
AIN = –7 dBFS  
71  
Crosstalk isolation between  
channel A and B  
Full-scale, 170-MHz signal on aggressor, idle  
channel is victim  
100  
10  
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
7.7 Digital Characteristics  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 625 MSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, and –1-dBFS differential input (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (RESET, SCLK, SEN, SDIN, SYNC, PDN)(1)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
All digital inputs support 1.2-V and 1.8-V logic levels  
All digital inputs support 1.2-V and 1.8-V logic levels  
SEN  
0.8  
V
V
0.4  
0
50  
50  
0
IIH  
High-level input current  
Low-level input current  
µA  
µA  
RESET, SCLK, SDIN, PDN, SYNC  
SEN  
IIL  
RESET, SCLK, SDIN, PDN, SYNC  
DIGITAL INPUTS (SYSREFP, SYSREFM)  
VD  
Differential input voltage  
Common-mode voltage for SYSREF(2)  
0.35  
0.45  
1.3  
1.4  
V
V
V(CM_DIG)  
DIGITAL OUTPUTS (SDOUT, PDN(2)  
)
DVDD –  
0.1  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
DVDD  
V
V
0.1  
DIGITAL OUTPUTS (JESD204B Interface: DxP, DxM)(3)  
VOD  
VOC  
Output differential voltage  
With default swing setting  
700  
450  
mVPP  
mV  
Output common-mode voltage  
Transmitter pins shorted to any voltage between  
–0.25 V and 1.45 V  
Transmitter short-circuit current  
Single-ended output impedance  
Output capacitance  
–100  
100  
mA  
Ω
zos  
50  
2
Output capacitance inside the device,  
from either output to ground  
pF  
(1) The RESET, SCLK, SDIN, and PDN pins have a 20-kΩ (typical) internal pulldown resistor to ground, and the SEN pin has a 20-kΩ  
(typical) pullup resistor to IOVDD.  
(2) When functioning as an OVR pin for channel B.  
(3) 100-Ω differential termination.  
Copyright © 2016, Texas Instruments Incorporated  
11  
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
7.8 Timing Characteristics  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 625 MSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, and –1-dBFS differential input (unless  
otherwise noted)  
MIN  
TYP  
MAX  
UNITS  
SAMPLE TIMING  
Aperture delay  
0.75  
1.6  
ns  
ps  
Aperture delay matching between two channels on the same device  
Aperture delay matching between two devices at the same temperature and supply voltage  
Aperture jitter  
±70  
±270  
120  
ps  
fS rms  
WAKE-UP TIMING  
Wake-up time to valid data after coming out of global power-down  
150  
134  
µs  
LATENCY  
Input  
clock  
Data latency(1): ADC sample to digital output  
cycles  
Input  
clock  
cycles  
OVR latency: ADC sample to OVR bit  
62  
4
tPD  
Propagation delay: logic gates and output buffers delay (does not change with fS)  
ns  
SYSREF TIMING  
tSU_SYSREF Setup time for SYSREF, referenced to the input clock falling edge  
300  
100  
900  
ps  
ps  
tH_SYSREF  
Hold time for SYSREF, referenced to the input clock falling edge  
JESD OUTPUT INTERFACE TIMING CHARACTERISTICS  
Unit interval  
160  
2.5  
400  
ps  
Gbps  
ps  
Serial output data rate  
6.25  
Total jitter for BER of 1E-15 and lane rate = 6.25 Gbps  
Random jitter for BER of 1E-15 and lane rate = 6.25 Gbps  
Deterministic jitter for BER of 1E-15 and lane rate = 6.25 Gbps  
26  
0.75  
12  
ps rms  
ps, pk-pk  
Data rise time, data fall time: rise and fall times are measured from 20% to 80%,  
differential output waveform, 2.5 Gbps bit rate 6.25 Gbps  
tR, tF  
35  
ps  
(1) Overall ADC latency = data latency + tPDI  
.
Sample N  
ts_min  
ts_max  
CLKIN  
625 MSPS  
SYSREF  
Figure 1. SYSREF Timing  
12  
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
N+1  
N+2  
N
N+3  
Sample  
tPD  
Data Latency: 134 Clock Cycles  
CLKINM  
CLKINP  
D
20  
D
11  
D
20  
D
11  
D
20  
DA0P, DA0M,  
DB0P, DB0M  
Sample N-1  
Sample N  
Sample N+1  
Sample N+2  
D
10  
D
1
D
10  
D
1
D
10  
DA1P, DA1M,  
DB1P, DB1M  
Sample N-1  
Sample N  
Sample N+1  
Sample N+2  
Figure 2. Sample Timing Requirements  
Copyright © 2016, Texas Instruments Incorporated  
13  
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
7.9 Typical Characteristics  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 625 MSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
62.5  
125  
187.5  
250  
312.5  
D101  
0
62.5  
125  
187.5  
250  
312.5  
D102  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 71.9 dBFS, SINAD = 71.86 dBFS,  
SNR = 71.3 dBFS, SINAD = 71.1 dBFS,  
THD = 93 dBc, IL spur = 94 dBc, SFDR = 94 dBc,  
non HD2, HD3 spur = 94 dBc  
SFDR = 86 dBc, THD = 85 dBc, IL spur = 87 dBc,  
non HD2, HD3 spur = 95 dBc  
Figure 3. FFT for 10-MHz Input Signal  
Figure 4. FFT for 140-MHz Input Signal  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
62.5  
125  
187.5  
250  
312.5  
D103  
0
62.5  
125  
187.5  
250  
312.5  
D104  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 71 dBFS, SINAD = 70.9 dBFS,  
SNR = 70.4 dBFS, SINAD = 69.9 dBFS,  
SFDR = 85 dBc, THD = 84 dBc, IL spur = 87 dBc,  
non HD2, HD3 spur = 93 dBc  
IL spur = 89 dBc, SFDR = 80 dBc, THD = 79 dBc,  
non HD2, HD3 spur = 91 dBc  
Figure 5. FFT for 170-MHz Input Signal  
Figure 6. FFT for 230-MHz Input Signal  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
62.5  
125  
187.5  
250  
312.5  
D105  
0
62.5  
125  
187.5  
250  
312.5  
D106  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 69.5 dBFS, SINAD = 69.1 dBFS,  
IL spur = 81 dBc, SFDR = 80 dBc, THD = 79 dBc,  
non HD2, HD3 spur = 90 dBc  
SNR = 68.8 dBFS, SINAD = 67.3 dBFS,  
SFDR = 73 dBc, THD = 72 dBc,  
IL spur = 81 dBc, non HD2, HD3 spur = 89 dBc  
Figure 7. FFT for 300-MHz Input Signal  
Figure 8. FFT for 370-MHz Input Signal  
14  
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 625 MSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
62.5  
125  
187.5  
250  
312.5  
D107  
0
62.5  
125  
187.5  
250  
312.5  
D108  
Input Frequency (MHz)  
Input Frequency (MHz)  
Fundamental amplitude = –3 dBFS, SNR = 68.4 dBFS,  
SINAD = 66.1 dBFS, SFDR = 68 dBc, THD = 67 dBc,  
IL spur = 89 dBc, non HD2, HD3 spur = 85 dBc  
fIN1 = 185 MHz, fIN2 = 190 MHz, each tone at –7 dBFS,  
IMD = 89 dBFS  
Figure 9. FFT for 470-MHz Input Signal  
Figure 10. FFT for Two-Tone Input Signal (–7 dBFS)  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
62.5  
125  
187.5  
250  
312.5  
D109  
0
62.5  
125  
187.5  
250  
312.5  
D110  
Input Frequency (MHz)  
Input Frequency (MHz)  
fIN1 = 185 MHz, fIN2 = 190 MHz, each tone at –36 dBFS,  
IMD = 107 dBFS  
fIN1 = 370 MHz, fIN2 = 365 MHz, each tone at –7 dBFS,  
IMD = 78 dBFS  
Figure 11. FFT for Two-Tone Input Signal (–36 dBFS)  
Figure 12. FFT for Two-Tone Input Signal (–7 dBFS)  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
62.5  
125  
187.5  
250  
312.5  
0
62.5  
125  
187.5  
250  
312.5  
Input Frequency (MHz)  
Input Frequency (MHz)  
D111  
D112  
fIN1 = 370 MHz, fIN2 = 365 MHz, each tone at –36 dBFS,  
IMD = 109 dBFS  
fIN1 = 470 MHz, fIN2 = 465 MHz, each tone at –7 dBFS,  
IMD = 71 dBFS  
Figure 13. FFT for Two-Tone Input Signal (–36 dBFS)  
Figure 14. FFT for Two-Tone Input Signal (–7 dBFS)  
Copyright © 2016, Texas Instruments Incorporated  
15  
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 625 MSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
0
-82  
-86  
-20  
-90  
-40  
-94  
-60  
-98  
-80  
-102  
-106  
-110  
-100  
-120  
0
62.5  
125  
187.5  
250  
312.5  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Input Frequency (MHz)  
Each Tone Amplitude (dBFS)  
D113  
D114  
fIN1 = 470 MHz, fIN2 = 465 MHz, each tone at –36 dBFS,  
IMD = 107 dBFS  
fIN1 = 185 MHz, fIN2 = 190 MHz  
Figure 15. FFT for Two-Tone Input Signal  
(–36 dBFS)  
Figure 16. Intermodulation Distortion vs Input Amplitude  
(185 MHz and 190 MHz)  
-76  
-80  
-70  
-74  
-78  
-84  
-82  
-88  
-86  
-92  
-90  
-96  
-94  
-100  
-104  
-108  
-98  
-102  
-106  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D115  
D116  
fIN1 = 365 MHz, fIN2 = 370 MHz  
fIN1 = 465 MHz, fIN2 = 470 MHz  
Figure 17. Intermodulation Distortion vs Input Amplitude  
(365 MHz and 370 MHz)  
Figure 18. Intermodulation Distortion vs Input Amplitude  
(465 MHz and 470 MHz)  
95  
95  
91  
87  
83  
79  
75  
AIN = -1 dBFS  
AIN = -3 dBFS  
AIN = -6 dBFS  
90  
85  
80  
75  
70  
65  
60  
55  
0
100  
200  
300  
400  
500  
600  
700  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D017  
D018  
Figure 19. Spurious-Free Dynamic Range vs  
Input Frequency  
Figure 20. Interleaving Spur vs Input Frequency  
16  
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 625 MSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
73  
72  
71  
70  
69  
68  
67  
72.5  
AIN = -1 dBFS  
AIN = -3 dBFS  
AIN = -6 dBFS  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
72  
71.5  
71  
70.5  
70  
69.5  
0
100  
200  
300  
400  
500  
600  
700  
-40  
-15  
10  
35  
60  
85  
Input Frequency (MHz)  
Temperature (°C)  
D019  
D120  
fIN = 170 MHz  
Figure 21. Signal-to-Noise Ratio vs Input Frequency  
Figure 22. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature  
96  
73  
72  
71  
70  
69  
68  
67  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
94  
92  
90  
88  
86  
84  
82  
80  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D121  
D122  
fIN = 170 MHz  
fIN = 350 MHz  
Figure 23. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature  
Figure 24. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature  
80  
79  
78  
77  
76  
75  
74  
72  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
2
71.6  
71.2  
70.8  
70.4  
70  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D123  
D124  
fIN = 350 MHz  
fIN = 170 MHz  
Figure 25. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature  
Figure 26. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature  
Copyright © 2016, Texas Instruments Incorporated  
17  
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 625 MSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
94  
92  
90  
88  
86  
84  
72  
71  
70  
69  
68  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
2
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D125  
D126  
fIN = 170 MHz  
fIN = 350 MHz  
Figure 27. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature  
Figure 28. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature  
72.2  
71.8  
71.4  
71  
82  
80  
78  
76  
74  
72  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
70.6  
70.2  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D127  
D128  
fIN = 350 MHz  
fIN = 170 MHz  
Figure 29. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature  
Figure 30. Signal-to-Noise Ratio vs  
AVDD3V Supply and Temperature  
94  
92  
90  
88  
86  
84  
73  
72  
71  
70  
69  
68  
67  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D129  
D130  
fIN = 170 MHz  
fIN = 350 MHz  
Figure 31. Spurious-Free Dynamic Range vs  
AVDD3V Supply and Temperature  
Figure 32. Signal-to-Noise Ratio vs  
AVDD3V Supply and Temperature  
18  
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 625 MSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
75  
73  
71  
69  
67  
65  
150  
125  
100  
75  
84  
82  
80  
78  
76  
74  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
50  
25  
-40  
-15  
10  
35  
60  
85  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Temperature (°C)  
Amplitude (dBFS)  
D031  
D132  
fIN = 350 MHz  
fIN = 170 MHz  
Figure 33. Spurious-Free Dynamic Range vs  
AVDD3V Supply and Temperature  
Figure 34. Performance vs Amplitude  
76  
74  
72  
70  
68  
66  
110  
75  
73.5  
72  
180  
SNR (dBFS)  
SNR  
SFDR  
SFDR (dBc)  
150  
120  
90  
60  
30  
0
SFDR (dBFS)  
100  
90  
70.5  
69  
80  
70  
67.5  
66  
60  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
0.2  
0.6  
1
1.4  
1.8  
2.2  
Amplitude (dBFS)  
Differential Clock Amplitude (Vpp)  
D133  
D134  
fIN = 350 MHz  
fIN = 170 MHz  
Figure 35. Performance vs Amplitude  
Figure 36. Performance vs Differential Clock Amplitude  
80  
77  
74  
71  
68  
65  
125  
73  
72  
71  
70  
69  
68  
95  
90  
85  
80  
75  
70  
SNR  
SFDR  
SNR  
SFDR  
100  
75  
50  
25  
0
0.2  
0.6  
1
1.4  
1.8  
2.2  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Differential Clock Amplitude (Vpp)  
Input Clock Duty Cycle (%)  
D135  
D136  
fIN = 350 MHz  
fIN = 170 MHz  
Figure 37. Performance vs Differential Clock Amplitude  
Figure 38. Performance vs Input Clock Duty Cycle  
Copyright © 2016, Texas Instruments Incorporated  
19  
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 625 MSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
72  
71  
70  
69  
68  
67  
66  
65  
90  
87  
84  
81  
78  
75  
72  
69  
PSRR with 50-mVPP Signal on AVDD  
PSRR with 50-mVPP Signal on AVDD3V  
SNR  
SFDR  
30  
35  
40  
45  
50  
55  
60  
65  
70  
0
50  
100  
150  
200  
250  
300  
Input Clock Duty Cycle (%)  
Frequency of Signal on Supply (MHz)  
D137  
D138  
fIN = 350 MHz  
Figure 39. Performance vs Input Clock Duty Cycle  
Figure 40. Power-Supply Rejection Ratio vs  
Test Signal on AVDD  
0
-20  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-40  
-60  
-80  
-100  
-120  
0
62.5  
125  
187.5  
250  
312.5  
D139  
0
50  
100  
150  
200  
250  
300  
Input Frequency (MHz)  
Frequency of Input Common-Mode Signal (MHz)  
D140  
fIN = 170 MHz, AIN = –1 dBFS,  
fPSRR = 5 MHz, APSRR= 50 mVPP, PSRR (AVDD supply) = 51 dB  
Figure 41. Power-Supply Rejection Ratio FFT  
for Test Signal on the AVDD Supply  
Figure 42. Common-Mode Rejection Ratio vs  
Common-Mode Signal  
2
0
0
-20  
-2  
-40  
-4  
-60  
-6  
-80  
-8  
-100  
-120  
-10  
0
100 200 300 400 500 600 700 800 900 1000  
0
62.5  
125  
187.5  
250  
312.5  
Input Frequency (MHz)  
Input Frequency (MHz)  
D046  
D141  
fIN = 170 MHz, AIN = –1 dBFS,  
fCMRR = 5 MHz, ACMRR= 50 mVPP, CMRR = 40 dB  
Figure 43. Common-Mode Rejection Ratio FFT  
Figure 44. Maximum-Supported Amplitude vs  
Input Frequency  
20  
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 625 MSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
110  
105  
100  
95  
85  
80  
75  
70  
65  
60  
55  
Gain = 0 dB  
Gain = 2 dB  
Gain = 4 dB  
Gain = 6 dB  
Gain = 8 dB  
Gain = 10 dB  
Gain = 12 dB  
Gain = 0 dB  
Gain = 2 dB  
Gain = 4 dB  
Gain = 6 dB  
Gain = 8 dB  
Gain = 10 dB  
Gain = 12 dB  
90  
85  
80  
75  
70  
65  
60  
0
80  
160  
240  
320  
400  
480  
0
80  
160  
240  
320  
400  
480  
Input Frequency (MHz)  
D044  
Input Frequency (MHz)  
D043  
NOTE: ADC output amplitude is –1 dBFS, input amplitude is  
scaled down by the amount of programmed digital gain.  
NOTE: ADC output amplitude is –1 dBFS, input amplitude is  
scaled down by the amount of programmed digital gain.  
Figure 46. Spurious-Free Dynamic Range vs  
Gain and Input Frequency  
Figure 45. Signal-to-Noise Ratio vs  
Gain and Input Frequency  
3
0
AVDD  
IOVDD  
DVDD  
AVDD3V  
TOTAL POWER  
2.5  
2
-20  
-40  
1.5  
1
-60  
-80  
0.5  
0
-100  
-120  
275  
325  
375  
425  
475  
525  
575  
625  
0
31.25  
62.5  
93.75  
125  
156.25  
D146  
Sampling Speed (MSPS)  
Input Frequency (MHz)  
D045  
SNR = 74.1 dBFS, SINAD = 74.09 dBFS,  
SFDR = 98 dBc, THD = 93 dBc, non HD2, HD3 spur = 99 dBc  
Figure 48. FFT for 185-MHz Input Signal in  
Decimate-by-2 Mode  
Figure 47. Power Consumption vs Sampling Speed  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
31.25  
62.5  
93.75  
125  
156.25  
D146  
0
15.625  
31.25  
46.875  
62.5  
78.125  
D148  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 72 dBFS, SINAD = 71.8 dBFS,  
SNR = 77.6 dBFS, SINAD = 77.5 dBFS,  
SFDR = 84 dBc, THD = 83 dBc, non HD2, HD3 spur = 98 dBc  
SFDR = 93 dBc, THD = 92 dBc, non HD2, HD3 spur = 106 dBc  
Figure 49. FFT for 350-MHz Input Signal in  
Decimate-by-2 Mode  
Figure 50. FFT for 10-MHz Input Signal in  
Decimate-by-4 Mode  
Copyright © 2016, Texas Instruments Incorporated  
21  
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 625 MSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
15.625  
31.25  
46.875  
62.5  
78.125  
D149  
0
15.625  
31.25  
46.875  
62.5  
78.125  
D150  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 77.4 dBFS, SINAD = 77.3 dBFS,  
SNR = 76.7 dBFS, SINAD = 76.6 dBFS,  
SFDR = 105 dBc, THD = 102 dBc, non HD2, HD3 spur = 105 dBc  
SFDR = 96 dBc, THD = 98 dBc, non HD2, HD3 spur = 96 dBc  
Figure 51. FFT for 70-MHz Input Signal in  
Figure 52. FFT for 170-MHz Input Signal in  
Decimate-by-4 Mode  
Decimate-by-4 Mode  
0
-20  
-40  
-60  
-80  
-100  
-120  
0
15.625  
31.25  
46.875  
62.5  
78.125  
D151  
Input Frequency (MHz)  
SNR = 74.9 dBFS, SINAD = 74.8 dBFS,  
SFDR = 93 dBc, THD = 92 dBc,  
non HD2, HD3 spur = 93 dBc  
Figure 53. FFT for 270-MHz Input Signal in  
Decimate-by-4 Mode  
22  
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
7.10 Typical Characteristics: Contour  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 625 MSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
600  
71.2  
70.8  
70.4  
69.6 69.2 68.8  
68.4  
70  
68  
550  
500  
450  
400  
350  
300  
71.2  
70.8  
70.4  
69.6 69.2 68.8 68.4  
70  
68  
71.2  
70.8  
70.4  
69.6 69.2 68.8 68.4  
70  
68  
50  
100  
150  
200  
250  
300  
350  
400  
450  
Input Frequency, MHz  
68  
68.5  
69  
69.5  
70  
70.5  
71  
Figure 54. Signal-to-Noise-Ratio with 0-dB Digital Gain  
600  
63.8  
65.4  
64.2  
64.6  
65  
63.4  
550  
500  
450  
400  
350  
300  
63  
64.2  
63.8  
65.4  
64.6  
63.4  
65  
63  
64.2  
63.8  
63.4  
65.4  
64.6  
65  
100  
63  
200  
300  
400  
500  
600  
700  
Input Frequency, MHz  
63.5  
64  
64.5  
65  
Figure 55. Signal-to-Noise-Ratio with  
6-dB Digital Gain  
Copyright © 2016, Texas Instruments Incorporated  
23  
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics: Contour (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 625 MSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
80  
600  
80  
70  
85  
75  
80  
550  
500  
450  
400  
350  
300  
90  
85  
80  
70  
75  
80  
80  
80  
90  
80  
75  
85  
70  
50  
100  
150  
200  
250  
300  
350  
400  
450  
Input Frequency, MHz  
70  
75  
80  
85  
90  
Figure 56. Spurious-Free-Dynamic-Range with  
0-dB Digital Gain  
600  
550  
500  
450  
400  
350  
300  
84  
88  
80  
76  
72  
68  
88  
84  
80  
76  
72  
76  
72  
88  
84  
80  
100  
200  
300  
400  
500  
600  
700  
Input Frequency, MHz  
65  
70  
75  
80  
85  
Figure 57. Spurious-Free-Dynamic-Range with  
6-dB Digital Gain  
24  
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
8 Detailed Description  
8.1 Overview  
The ADS54J42 is a low-power, wide-bandwidth, 14-bit, 625-MSPS, dual-channel, analog-to-digital converter  
(ADC). The ADS54J42 employs four interleaving ADCs for each channel to achieve a noise floor of  
–157 dBFS/Hz. The ADS54J42 uses TI's proprietary interleaving and dither algorithms to achieve a clean  
spectrum with a high spurious-free dynamic range (SFDR). The device also offers various programmable  
decimation filtering options for systems requiring higher signal-to-noise ratio (SNR) and SFDR over a wide range  
of frequencies.  
Analog input buffers isolate the ADC driver from glitch energy generated from sampling process, thereby simplify  
the driving network on-board. The JESD204B interface reduces the number of interface lines with two-lane and  
four-lane options, allowing a high system integration density. The JESD204B interface operates in subclass 1,  
enabling multi-chip synchronization with the SYSREF input.  
8.2 Functional Block Diagram  
DA0P, DA0M,  
DA1P, DA1M  
DDC Block:  
2X, 4X Decimation  
Mixer: fS / 16, fS / 4  
Buffer  
Digital Block  
ADC  
Interleaving  
Correction  
INAP, INAM  
DA2P, DA2M,  
DA3P, DA3M  
PLL:  
x20  
x40  
Divide-  
by-4  
CLKINP,  
CLKINM  
SYNC  
SYSREFP,  
SYSREFM  
DDC Block:  
2X, 4X Decimation  
Mixer: fS / 16, fS / 4  
DB0P, DB0M,  
DB1P, DB1M  
Buffer  
Digital Block  
ADC  
Interleaving  
Correction  
INBP, INBM  
DB2P, DB2M,  
DB3P, DB3M  
FOVR  
/ontrol and {ꢀL  
Common  
Mode  
VCM  
Copyright © 2016, Texas Instruments Incorporated  
25  
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Analog Inputs  
The ADS54J42 analog signal inputs are designed to be driven differentially. The analog input pins have internal  
analog buffers that drive the sampling circuit. As a result of the analog buffer, the input pins present a high  
impedance input across a very wide frequency range to the external driving source that enables great flexibility in  
the external analog filter design as well as excellent 50-matching for RF applications. The buffer also helps  
isolate the external driving circuit from the internal switching currents of the sampling circuit, resulting in a more  
constant SFDR performance across input frequencies.  
The common-mode voltage of the signal inputs is internally biased to VCM using 600-Ω resistors, allowing for ac-  
coupling of the input drive network. Each input pin (INP, INM) must swing symmetrically between (VCM +  
0.475 V) and (VCM – 0.475 V), resulting in a 1.9-VPP (default) differential input swing. The input sampling circuit  
has a 3-dB bandwidth that extends up to 1.2 GHz. An equivalent analog input network diagram is shown in  
Figure 58.  
0.77 W  
1 W  
3.3 W  
2 nH  
0.6 W  
150 fF  
200 fF  
3 pF  
375 fF  
375 fF  
375 fF  
375 fF  
INP  
40 W  
500 fF  
150 fF  
0.77 W  
1 W  
3.3 W  
600 W  
150 fF  
200 fF  
3 pF  
VCM  
40 W  
600 W  
0.77 W  
1 W  
3.3 W  
150 fF  
200 fF  
3 pF  
2 nH  
0.6 W  
INM  
40 W  
500 fF  
150 fF  
0.77 W  
1 W  
3.3 W  
150 fF  
200 fF  
3 pF  
40 W  
Figure 58. Analog Input Network  
26  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
Feature Description (continued)  
The input bandwidth shown in Figure 59 is measured with respect to a 50-Ω differential input termination at the  
ADC input pins.  
0
-3  
-6  
-9  
-12  
-15  
-18  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Input Frequency (MHz)  
D056  
Figure 59. Transfer Function versus Frequency  
8.3.2 DDC Block  
The ADS54J42 has an optional DDC block that can be enabled via an SPI register write. Each ADC channel is  
followed by a DDC block consisting of three different decimate-by-2 and decimate-by-4 finite impulse response  
(FIR) half-band filter options. The different decimation filter options can be selected via SPI programming.  
Figure 60 shows the signal processing done inside the DDC block of the ADS54J42.  
Default 14-Bit Data (At 625 MSPS)  
Decimate-by-2 Data (At 312.5 MSPS)  
LPF  
BPF  
2
4
Decimate-by-4 Data (At 156.25 MSPS)  
Interleaving  
Engine,  
Digital  
Features  
625 MSPS  
Data, x(n)  
Ch X  
To JESD  
Encoder  
4
LPF  
Decimate-by-4, I-Data (At 156.25 MSPS)  
cos(2 n Œ fmix / fS)(1)  
sin(2 n Œ fmix / fS)(1)  
Decimate-by-4 Q-Data (At 156.25 MSPS)  
4
LPF  
Mode Selection Using  
DECFIL MODE[3:0]  
Register Bits  
(1) In IQ decimate-by-4 mode, the mixer frequency is fixed at fmix = fS / 4. For fS = 625 MSPS and fmix = 156.25 MHz.  
Figure 60. DDC Block  
Copyright © 2016, Texas Instruments Incorporated  
27  
 
 
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Feature Description (continued)  
8.3.2.1 Decimate-by-2 Filter  
This decimation filter has 41 taps. The stop-band attenuation is approximately 90 dB and the pass-band flatness  
is ±0.05 dB. Table 1 shows corner frequencies for the low-pass and high-pass filter options.  
Table 1. Corner Frequencies for the Decimate-by-2 Filter  
CORNERS (dB)  
LOW PASS  
0.202 × fS  
0.210 × fS  
0.215 × fS  
0.227 × fS  
HIGH PASS  
0.298 × fS  
0.290 × fS  
0.285 × fS  
0.273 × fS  
–0.1  
–0.5  
–1  
–3  
Figure 61 and Figure 62 show the frequency response of the decimate-by-2 filter from dc to fS / 2.  
5
-20  
0.5  
0
-0.5  
-1  
-45  
-1.5  
-2  
-70  
-95  
-2.5  
-3  
-120  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Frequency Response  
0
0.05  
0.1  
0.15  
0.2  
0.25  
Frequency Response  
D013  
D014  
Figure 61. Decimate-by-2 Filter Response  
Figure 62. Decimate-by-2 Filter Response (Zoomed)  
28  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
8.3.2.2 Decimate-by-4 Filter Using a Digital Mixer  
This band-pass decimation filter consists of a digital mixer and three concatenated FIR filters with a combined  
latency of approximately 28 output clock cycles. The alias band attenuation is approximately 55 dB and the pass-  
band flatness is ±0.1 dB. By default after reset, the band-pass filter is centered at fS / 16. Using the SPI, the  
center frequency can be programmed at N × fS / 16 (where N = 1, 3, 5, or 7). Table 2 shows corner frequencies  
for two extreme options.  
Table 2. Corner frequencies for the Decimate-by-4 Filter  
CORNER FREQUENCY AT LOWER SIDE  
(Center Frequency fS / 16)  
CORNER FREQUENCY AT HIGHER SIDE  
(Center Frequency fS / 16)  
CORNERS (dB)  
–0.1  
–0.5  
–1  
0.011 × fS  
0.010 × fS  
0.008 × fS  
0.006 × fS  
0.114 × fS  
0.116 × fS  
0.117 × fS  
0.120 × fS  
–3  
Figure 63 and Figure 64 show the frequency response of the decimate-by-4 filter for center frequencies fS / 16  
and 3 × fS / 16 (N = 1 and N = 3, respectively).  
10  
0
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Frequency Response  
0
0.05  
0.1  
0.15  
0.2  
0.25  
Frequency Response  
D015  
D016  
Figure 63. Decimate-by-4 Filter Response  
Figure 64. Decimate-by-4 Filter Response (Zoomed)  
8.3.2.3 Decimate-by-4 Filter with IQ Outputs  
In this configuration, the DDC block includes a fixed digital fS / 4 mixer. Thus, the IQ pass band is approximately  
±0.11 fS, centered at fS / 4. This decimation filter has 41 taps with a latency of approximately ten output clock  
cycles. The stop-band attenuation is approximately 90 dB and the pass-band flatness is ±0.05 dB. Table 3 shows  
the corner frequencies for a low-pass, decimate-by-4 IQ filter.  
Table 3. Corner Frequencies for a Decimate-by-4 IQ Output Filter  
CORNERS (dB)  
LOW PASS  
0.107 × fS  
0.112 × fS  
0.115 × fS  
0.120 × fS  
–0.1  
–0.5  
–1  
–3  
Copyright © 2016, Texas Instruments Incorporated  
29  
 
 
 
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Figure 65 and Figure 66 show the frequency response of a decimate-by-4 IQ output filter from dc to fS / 2.  
5
-20  
0.5  
0
-0.5  
-1  
-45  
-1.5  
-2  
-70  
-95  
-2.5  
-3  
-120  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Frequency Response  
0
0.025  
0.05  
0.075  
0.1  
0.125  
D012  
Frequency Response  
D011  
Figure 65. Decimate-by-4 IQ Output Filter Response  
Figure 66. Decimate-by-4 IQ Output Filter Response  
(Zoomed)  
8.3.3 SYSREF Signal  
The SYSREF signal is a periodic signal that is sampled by the ADS54J42 device clock and used to align the  
boundary of the local multi-frame clock inside the data converter. SYSREF is required to be a sub-harmonic of  
the local multiframe clock (LMFC) internal timing. To meet this requirement, the timing of SYSREF is dependent  
on the device clock frequency and the LMFC frequency, as determined by the selected DDC decimation and  
frames per multi-frame settings. The SYSREF signal is recommended to be a low-frequency signal in the range  
of 1 MHz to 5 MHz to reduce coupling to the signal path both on the printed circuit board (PCB) as well as  
internal to the device.  
The external SYSREF signal must be a sub-harmonic of the internal LMFC clock, as shown in Equation 1 and  
Table 4.  
SYSREF = LMFC / 2N  
where  
N = 0, 1, 2, and so forth  
(1)  
Table 4. LMFSC Clock Frequency  
LMFS CONFIGURATION  
DECIMATION  
LMFC CLOCK(1)(2)  
fS / K  
4211  
4244  
8224  
4222  
2242  
2221  
2441  
4421  
1241  
(fS / 4) / K  
(fS / 4) / K  
(fS / 4) / K  
(fS / 4) / K  
(fS / 4) / K  
(fS / 4) / K  
(fS / 4) / K  
(fS / 4) / K  
2X  
2X  
4X  
4X (IQ)  
4X (IQ)  
4X  
(1) K = Number of frames per multi-frame (JESD digital page 6900h, address 06h, bits 4-0).  
(2) fS = sampling (device) clock frequency.  
For example, if LMFS = 8224, the default value of K is 8 + 1 = 9 (the actual value for K = the value set in the SPI  
register + 1). If the device clock frequency is fS = 625 MSPS, then the local multi-frame clock frequency becomes  
(625 / 4) / 9 = 17.361111 MHz. The SYSREF signal frequency can be chosen as LMFC frequency / 8 =  
2.1701389 MHz.  
30  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
 
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
8.3.4 Overrange Indication  
The ADS54J42 provides a fast overrange indication that can be presented in the digital output data stream via  
SPI configuration. Alternatively, if not used, the SDOUT (pin 11) and PDN (pin 50) pins can be configured via the  
SPI to output the fast OVR indicator.  
The JESD 8b, 10b encoder receives 16-bit data that is formed by 14-bit ADC data padded with two 0s as LSBs.  
When the FOVR indication is embedded in the output data stream, the LSB of the 16-bit data stream going to the  
8b, 10b encoder is replaced, as shown in Figure 67.  
16-Bit Data Output (14-Bit ADC Data Padded with Two 0s)  
0,  
OVR  
D13 D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
16-Bit Data Going to the 8b, 10b Encoder  
Figure 67. Overrange Indication in a Data Stream  
8.3.4.1 Fast OVR  
The fast OVR is triggered if the input voltage exceeds the programmable overrange threshold and is presented  
after only seven clock cycles, thus enabling a quicker reaction to an overrange event.  
The input voltage level that the overload is detected at is referred to as the threshold. The threshold is  
programmable using the FOVR THRESHOLD bits, as shown in Figure 68. The FOVR is triggered seven output  
clock cycles after the overload condition occurs.  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
0
32  
64  
96  
128  
160  
192  
224  
255  
Threshold Decimal Value  
D055  
Figure 68. Programming Fast OVR Thresholds  
The input voltage level that the fast OVR is triggered at is defined by Equation 2:  
Full-Scale × [Decimal Value of the FOVR Threshold Bits] / 255)  
(2)  
(3)  
The default threshold is E3h (227d), corresponding to a threshold of –1 dBFS.  
In terms of full-scale input, the fast OVR threshold can be calculated as Equation 3:  
20log (FOVR Threshold / 255)  
Copyright © 2016, Texas Instruments Incorporated  
31  
 
 
 
 
 
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.3.5 Power-Down Mode  
The ADS54J42 provides a highly-configurable power-down mode. Power-down can be enabled using the PDN  
pin or SPI register writes.  
A power-down mask can be configured that allows a trade-off between wake-up time and power consumption in  
power-down mode. Two independent power-down masks can be configured: MASK 1 and MASK 2, as shown in  
Table 5. See the master page registers in Table 14 for further details.  
Table 5. Register Addresses for Power-Down Modes  
REGISTER  
ADDRESS  
REGISTER DATA  
COMMENT  
A[7:0] (Hex)  
MASTER PAGE (80h)  
20  
7
6
5
4
3
2
1
0
PDN ADC CHA  
PDN BUFFER CHB  
PDN ADC CHA  
PDN BUFFER CHB  
GLOBAL OVERRIDE  
PDN ADC CHB  
MASK 1  
21  
23  
24  
PDN BUFFER CHA  
PDN BUFFER CHA  
0
0
0
0
PDN ADC CHB  
MASK 2  
CONFIG  
0
0
0
0
0
0
0
0
PDN MASK  
26  
0
PDN  
PDN PIN  
SEL  
MASK  
SYSREF  
53  
55  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PDN MASK  
To save power, the device can be put in complete power-down by using the GLOBAL PDN register bit. However,  
when JESD is required to remain active when putting the device in power-down, the ADC and analog buffer can  
be powered down by using the PDN ADC CHx and PDN BUFFER CHx register bits after enabling the PDN  
MASK register bit. The PDN MASK SEL register bit can be used to select between MASK 1 or MASK 2. Table 6  
shows the power consumption for different combinations of the GLOBAL PDN, PDN ADC CHx, and PDN BUFF  
CHx register bits.  
Table 6. Power Consumption in Different Power-Down Settings  
TOTAL  
IAVDD3V  
(mA)  
IAVDD  
(mA)  
IDVDD  
(mA)  
IIOVDD  
(mA)  
POWER  
(W)  
REGISTER BIT  
Default  
COMMENT  
After reset, with a full-scale input signal to both  
channels  
247  
3
260  
6
137  
23  
382  
192  
1.94  
0.28  
GBL PDN = 1  
The device is in a complete power-down state  
GBL PDN = 0,  
PDN ADC CHx = 1  
(x = A or B)  
The ADC of one channel is powered down  
206  
195  
166  
258  
97  
367  
381  
1.54  
1.78  
GBL PDN = 0,  
PDN BUFF CHx = 1  
(x = A or B)  
The input buffer of one channel is powered down  
137  
GBL PDN = 0,  
PDN ADC CHx = 1,  
PDN BUFF CHx = 1  
(x = A or B)  
The ADC and input buffer of one channel are  
powered down  
152  
55  
166  
70  
97  
56  
363  
356  
1.37  
0.81  
GBL PDN = 0,  
PDN ADC CHx = 1,  
PDN BUFF CHx = 1  
(x = A and B)  
The ADC and input buffer of both channels are  
powered down  
32  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
8.4 Device Functional Modes  
8.4.1 Device Configuration  
The ADS54J42 can be configured by using a serial programming interface, as described in the Serial Interface  
section. In addition, the device has one dedicated parallel pin (PDN) for controlling the power-down mode.  
The ADS54J42 supports a 24-bit (16-bit address, 8-bit data) SPI operation and uses paging (see the Register  
Maps section) to access all register bits.  
8.4.1.1 Serial Interface  
The ADC has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock), and SDIN (serial interface data) pins, as shown in Figure 69. SPI  
bits in Figure 69 are explained in Table 7. Serially shifting bits into the device is enabled when SEN is low. Serial  
data on SDIN are latched at every SCLK rising edge when SEN is active (low). The interface can function with  
SCLK frequencies from 2 MHz down to very low speeds (of a few hertz) and also with a non-50% SCLK duty  
cycle.  
Register Address[11:0]  
Register Data[7:0]  
SDIN  
R/W  
M
P
CH  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
tDH  
D0  
tSCLK  
tDSU  
SCLK  
SEN  
tSLOADS  
tSLOADH  
RESET  
Figure 69. SPI Timing Diagram  
Table 7. SPI Timing Diagram Legend  
SPI BITS  
DESCRIPTION  
BIT SETTINGS  
0 = SPI write  
1 = SPI read back  
R/W  
Read/write bit  
0 = Analog SPI bank (master and ADC pages)  
1 = JESD SPI bank (main digital, JESD analog, and  
JESD digital pages)  
M
SPI bank access  
JESD page selection bit  
0 = Page access  
1 = Register access  
P
0 = Channel A  
1 = Channel B  
By default, both channels are being addressed.  
SPI access for a specific channel of the JESD SPI  
bank  
CH  
A[11:0]  
D[7:0]  
SPI address bits  
SPI data bits  
Copyright © 2016, Texas Instruments Incorporated  
33  
 
 
 
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Table 8 shows the timing requirements for the serial interface signals in Figure 69.  
Table 8. SPI Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
SCLK frequency (equal to 1 / tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDIN setup time  
)
> dc  
100  
100  
100  
100  
2
ns  
ns  
tDH  
SDIN hold time  
ns  
8.4.1.2 Serial Register Write: Analog Bank  
The analog SPI bank contains two pages (the master and ADC pages). The internal register of the ADS54J42  
analog SPI bank can be programmed by:  
1. Driving the SEN pin low.  
2. Initiating a serial interface cycle specifying the page address of the register whose content must be written.  
Master page: write address 0011h with 80h.  
ADC page: write address 0011h with 0Fh.  
3. Writing the register content as shown in Figure 70. When a page is selected, multiple writes into the same  
page can be done.  
Register Address[11:0]  
Register Data[7:0]  
0
0
0
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10  
A9  
A8  
A7 A6 A5 A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5 D4 D3 D2  
D1  
D0  
SEN  
RESET  
Figure 70. Serial Register Write Timing Diagram  
34  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
8.4.1.3 Serial Register Readout: Analog Bank  
The content from one of the two analog banks can be read out by:  
1. Driving the SEN pin low.  
2. Selecting the page address of the register whose content must be read.  
Master page: write address 0011h with 80h.  
ADC page: write address 0011h with 0Fh.  
3. Setting the R/W bit to 1 and writing the address to be read back.  
4. Reading back the register content on the SDOUT pin, as shown in Figure 71. When a page is selected,  
multiple read backs from the same page can be done.  
Register Address[11:0]  
Register Data[7:0] = XX  
1
0
0
0
SDIN  
SCLK  
R/W  
M
P
CH  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN  
RESET  
SDOUT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDOUT[7:0]  
Figure 71. Serial Register Read Timing Diagram  
8.4.1.4 JESD Bank SPI Page Selection  
The JESD SPI bank contains four pages (main digital, JESD digital, and JESD analog pages). The individual  
pages can be selected by:  
1. Driving the SEN pin low.  
2. Setting the M bit to 1 and specifying the page with two register writes. Note that the P bit must be set to 0, as  
shown in Figure 72.  
Write address 4003h with 00h (LSB byte of the page address).  
Write address 4004h with the MSB byte of the page address.  
For the main digital page: write address 4004h with 68h.  
For the JESD digital page: write address 4004h with 69h.  
For the JESD analog page: write address 4004h with 6Ah.  
Register Address[11:0]  
Register Data[7:0]  
D5 D4 D3 D2  
0
1
0
0
SDIN  
R/W  
M
P
CH A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D1  
D0  
SCLK  
SEN  
RESET  
Figure 72. SPI Page Selection  
Copyright © 2016, Texas Instruments Incorporated  
35  
 
 
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.4.1.5 Serial Register Write: JESD Bank  
The ADS54J42 is a dual-channel device and the JESD204B portion is configured individually for each channel by  
using the CH bit. Note that the P bit must be set to 1 for register writes.  
1. Drive the SEN pin low.  
2. Select the JESD bank page. Note that the M bit = 1 and the P bit = 0.  
Write address 4003h with 00h.  
Write address 4005h with 01h to enable separate control for both channels.  
For the main digital page: write address 4004h with 68h.  
For the JESD digital page: write address 4004h with 69h.  
For the JESD analog page: write address 4004h with 6Ah.  
3. Set the M and P bits to 1, select channel A (CH = 0) or channel B (CH = 1), and write the register content as  
shown in Figure 73. When a page is selected, multiple writes into the same page can be done.  
Register Address[11:0]  
Register Data[7:0]  
0
1
1
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10  
A9  
A8  
A7 A6 A5 A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5 D4 D3 D2  
D1  
D0  
SEN  
RESET  
Figure 73. JESD Serial Register Write Timing Diagram  
8.4.1.5.1 Individual Channel Programming  
By default, register writes are applied to both channels. To enable individual channel writes, write address 4005h  
with 01h (default is 00h).  
8.4.1.6 Serial Register Readout: JESD Bank  
The content from one of the pages of the JESD bank can be read out by:  
1. Driving the SEN pin low.  
2. Selecting the JESD bank page. Note that the M bit = 1 and the P bit = 0.  
Write address 4003h with 00h.  
Write address 4005h with 01h to enable separate control for both channels.  
For the main digital page: write address 4004h with 68h.  
For the JESD digital page: write address 4004h with 69h.  
For the JESD analog page: write address 4004h with 6Ah.  
3. Setting the R/W, M, and P bits to 1, selecting channel A or channel B, and writing the address to be read  
back.  
4. Reading back the register content on the SDOUT pin; see Figure 74. When a page is selected, multiple read  
backs from the same page can be done.  
36  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
Register Address[11:0]  
A7 A6 A5 A4  
Register Data[7:0] = XX  
1
1
1
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10 A9  
A8  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN  
RESET  
SDOUT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDOUT[7:0]  
Figure 74. JESD Serial Register Read Timing Diagram  
8.4.2 JESD204B Interface  
The ADS54J42 supports device subclass 1 with a maximum output data rate of 6.25 Gbps for each serial  
transmitter.  
An external SYSREF signal is used to align all internal clock phases and the local multi-frame clock to a specific  
sampling clock edge, allowing synchronization of multiple devices in a system and minimizing timing and  
alignment uncertainty. The SYNC input is used to control the JESD204B SERDES blocks.  
Depending on the ADC output data rate, the JESD204B output interface can be operated with either two or four  
lanes per single ADC, as shown in Figure 75. The JESD204B setup and configuration of the frame assembly  
parameters is controlled via the SPI interface.  
SYSREF  
SYNC  
JESD204B  
DA[3:0]  
INA  
INB  
JESD204B  
JESD204B  
JESD204B  
DB[3:0]  
Sample Clock  
Figure 75. ADS54J42 Block Diagram  
Copyright © 2016, Texas Instruments Incorporated  
37  
 
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
The JESD204B transmitter block shown in Figure 76 consists of the transport layer, the data scrambler, and the  
link layer. The transport layer maps the ADC output data into the selected JESD204B frame data format. The link  
layer performs the 8b, 10b data encoding as well as the synchronization and initial lane alignment using the  
SYNC input signal. Optionally, data from the transport layer can be scrambled.  
JESD204B Block  
Transport Layer  
Link Layer  
8b, 10b  
Encoding  
Frame Data  
Mapping  
Scrambler  
1 + x14 + x15  
D[3:0]  
Comma Characters,  
Initial Lane Alignment  
SYNC  
Figure 76. JESD204B Transmitter Block  
8.4.2.1 JESD204B Initial Lane Alignment (ILA)  
The initial lane alignment process is started when the receiving device de-asserts the SYNC signal, as shown in  
Figure 77. When a logic low is detected on the SYNC input pin, the ADS54J42 starts transmitting comma (K28.5)  
characters to establish a code group synchronization.  
When synchronization is complete, the receiving device asserts the SYNC signal and the ADS54J42 starts the  
initial lane alignment sequence with the next local multi-frame clock boundary. The ADS54J42 transmits four  
multi-frames, each containing K frames (K is SPI programmable). Each of the multi-frames contains the frame  
start and end symbols and the second multi-frame also contains the JESD204 link configuration data.  
SYSREF  
LMFC Clock  
LMFC Boundary  
Multi  
Frame  
SYNC  
Transmit Data  
xxx  
K28.5  
Code Group  
K28.5  
Initial Lane  
ILA  
ILA  
DATA  
DATA  
Data Transmission  
Synchronization  
Alignment  
Figure 77. Lane Alignment Sequence  
38  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
8.4.2.2 JESD204B Test Patterns  
There are three different test patterns available in the transport layer of the JESD204B interface. The ADS54J42  
supports a clock output, encoded, and a PRBS (215 – 1) pattern. These test patterns can be enabled via an SPI  
register write and are located in the JESD digital page of the JESD bank.  
8.4.2.3 JESD204B Frame  
The JESD204B standard defines the following parameters:  
L is the number of lanes per link.  
M is the number of converters per device.  
F is the number of octets per frame clock period, per lane.  
S is the number of samples per frame per converter.  
8.4.2.4 JESD204B Frame  
Table 9 lists the available JESD204B formats and valid ranges for the ADS54J42 when the decimation filter is  
not used. The ranges are limited by the SERDES lane rate and the maximum ADC sample frequency.  
NOTE  
The 16-bit data going to the JESD 8b, 10b encoder is formed by padding two 0s as LSBs  
into the 14-bit ADC data.  
Table 9. Default Interface Rates  
MINIMUM RATES  
MAXIMUM RATES  
L
M
F
S
DECIMATION  
SAMPLING  
RATE (MSPS)  
SERDES BIT  
RATE (Gbps)  
SAMPLING  
RATE (MSPS)  
SERDES BIT  
RATE (Gbps)  
4
4
8
2
2
2
1
4
2
1
4
4
Not used  
Not used  
Not used  
250  
250  
500  
2.5  
2.5  
2.5  
625  
625  
625  
6.25  
6.25  
3.125  
NOTE  
In the LMFS = 8224 row of Table 9, the sample order in lane DA2 and DA3 are swapped.  
The detailed frame assembly is shown in Table 10.  
Table 10. Default Frame Assembly  
PIN  
DA0  
DA1  
DA2  
DA3  
DB0  
DB1  
DB2  
DB3  
LMFS = 4211  
LMFS = 4244  
LMFS = 8224  
A3[15:8]  
A3[7:0]  
A2[7:0]  
A0[7:0]  
A1[7:0]  
B3[7:0]  
B2[7:0]  
B0[7:0]  
B1[7:0]  
A0[7:0]  
A2[15:8]  
A0[15:8]  
A2[7:0]  
A3[15:8]  
A1[15:8]  
A3[7:0]  
A1[7:0]  
A2[15:8]  
A0[15:8]  
A1[15:8]  
B3[15:8]  
B2[15:8]  
B0[15:8]  
B1[15:8]  
A0[15:8]  
A0[7:0]  
B0[7:0]  
B2[15:8]  
B0[15:8]  
B2[7:0]  
B0[7:0]  
B3[15:8]  
B1[15:8]  
B3[7:0]  
B1[7:0]  
B0[15:8]  
Copyright © 2016, Texas Instruments Incorporated  
39  
 
 
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.4.2.5 JESD204B Frame Assembly with Decimation  
Table 11 lists the available JESD204B formats and valid ranges for the ADS54J42 when enabling the decimation  
filter. The ranges are limited by the SERDES lane rate (2.5 Gbps to 6.25 Gbps) and the ADC sample frequency  
(300 MSPS to 625 MSPS).  
Table 11. Interface Rates with Decimation Filter  
MINIMUM RATES  
MAXIMUM RATES  
DEVICE  
CLOCK  
FREQUENCY  
(MSPS)  
DEVICE  
CLOCK  
FREQUENCY  
(MSPS)  
OUTPUT  
SAMPLE  
RATE (MSPS)  
OUTPUT  
SAMPLE  
RATE (MSPS)  
L
M
F
S
DECIMATION  
SERDES BIT  
RATE (Gbps)  
SERDES BIT  
RATE (Gbps)  
4
4
2
2
2
1
4
2
2
2
4
2
2
2
4
2
4
4
1
2
2
1
1
1
4X (IQ)  
2X  
500  
500  
300  
500  
300  
300  
125  
250  
150  
125  
75  
2.5  
2.5  
3
625  
625  
625  
625  
625  
625  
156.25  
312.5  
3.125  
3.125  
6.25  
2X  
312.5  
4X  
2.5  
3
156.25  
156.25  
156.25  
3.125  
6.25  
4X (IQ)  
4X  
75  
3
6.25  
Table 12 lists the detailed frame assembly with different decimation options.  
Table 12. Frame Assembly with Decimation Filter  
LMFS = 4222, 2X  
DECIMATION  
LMFS = 2242, 2X  
DECIMATION  
LMFS = 2221, 4X  
DECIMATION  
LMFS = 2441, 4X  
DECIMATION (IQ)  
LMFS = 4421, 4X  
DECIMATION (IQ)  
LMFS = 1241, 4X  
DECIMATION  
PIN  
DA0  
DA1  
A1  
A1  
AQ0  
[15:8]  
AQ0  
[7:0]  
[15:8]  
[7:0]  
A0  
A0  
A0  
A0  
A1  
A1  
A0  
A0  
AI0  
AI0  
AQ0 AQ0  
AI0  
AI0  
A0  
A0  
B0  
B0  
[15:8]  
[7:0]  
[15:8] [7:0] [15:8] [7:0]  
[15:8]  
[7:0]  
[15:8] [7:0] [15:8] [7:0]  
[15:8]  
[7:0]  
[15:8] [7:0] [15:8] [7:0]  
DA2  
DA3  
B1  
[15:8]  
B1  
[7:0]  
BQ0  
[15:8]  
BQ0  
[7:0]  
DB0  
DB1  
B0  
[15:8]  
B0  
[7:0]  
B0  
B0  
B1  
B1  
B0  
[15:8]  
B0  
[7:0]  
BI0  
BI0  
BQ0 BQ0  
BI0  
[15:8]  
BI0  
[7:0]  
[15:8] [7:0] [15:8] [7:0]  
[15:8] [7:0] [15:8] [7:0]  
DB2  
DB3  
40  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
Appropriate register bits must be programmed to enable different options when the decimation filter is enabled. Table 13 summarizes all the decimation  
filter options available in the DDC block, the corresponding JESD link parameters (L, M, F, and S), and the register bits required to be programmed for  
each option.  
Table 13. Program Summary of DDC Modes and JESD Link Configuration(1)(2)  
LMFS OPTIONS  
DDC MODES PROGRAMMING  
JESD LINK (LMFS) PROGRAMMING  
DECIMATION  
OPTIONS  
DEC MODE EN,  
JESD PLL  
MODE(7)  
DA_BUS_  
DB_BUS_  
BUS_REORDER BUS_REORDER  
L
M
F
S
DECFIL MODE[3:0](4)  
JESD FILTER(5)  
JESD MODE(6)  
LANE SHARE(8)  
DECFIL EN(3)  
REORDER(9)  
REORDER(10)  
EN1(11)  
EN2(12)  
4
4
2
2
1
4
1
4
No decimation  
No decimation  
00  
00  
00  
00  
000  
000  
100  
010  
10  
10  
0
0
00h  
00h  
00h  
00h  
0
0
0
0
No decimation  
(Default after  
reset)  
8
2
2
4
00  
00  
000  
001  
00  
0
00h  
00h  
0
0
4
4
2
4
2
2
2
2
4
1
2
2
4X (IQ)  
2X  
11  
11  
11  
0011 (LPF with fS / 4 mixer)  
0010 (LPF) or 0110 (HPF)  
0010 (LPF) or 0110 (HPF)  
111  
110  
110  
001  
001  
010  
00  
00  
10  
0
0
0
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
1
1
1
1
1
1
2X  
0000, 0100, 1000, or 1100  
(all BPFs with different  
center frequencies).  
2
2
1
2
4
2
2
4
4
1
1
1
4X  
4X (IQ)  
4X  
11  
11  
11  
100  
111  
100  
001  
010  
010  
00  
10  
10  
0
0
1
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
1
1
1
1
1
1
0011 (LPF with an fS / 4  
mixer)  
0000, 0100, 1000, or 1100  
(all BPFs with different  
center frequencies)  
(1) Keeping the same LMFS settings for both channels is recommended.  
(2) The PULSE RESET register bit must be pulsed after the registers in the main digital page are programmed.  
(3) The DEC MODE EN and DECFIL EN register bits are located in the main digital page, register 04Dh (bit 3) and register 041h (bit 4).  
(4) The DECFIL MODE[3:0] register bits are located in the main digital page, register 041h (bits 5 and 2-0).  
(5) The JESD FILTER register bits are located in the JESD digital page, register 001h (bits 5-3).  
(6) The JESD MODE register bits are located in the JESD digital page, register 001h (bits 2:0).  
(7) The JESD PLL MODE register bits are located in the JESD analog page, register 016h (bits 1-0).  
(8) The LANE SHARE register bit is located in the JESD digital page, register 016h (bit 4).  
(9) The DA_BUS_REORDER register bits are located in the JESD digital page, register 031h (bits 7-0).  
(10) The DB_BUS_REORDER register bits are located in the JESD digital page, register 032h (bits 7-0).  
(11) The BUS_REORDER EN1 register bit is located in the main digital page, register 052h (bit 7).  
(12) The BUS_REORDER EN2 register bit is located in the main digital page, register 072h (bit 3).  
Copyright © 2016, Texas Instruments Incorporated  
41  
 
 
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.4.2.5.1 JESD Transmitter Interface  
Each of the 6.25-Gbps SERDES JESD transmitter outputs requires ac-coupling between the transmitter and  
receiver. The differential pair must be terminated with 100-Ω resistors as close to the receiving device as  
possible to avoid unwanted reflections and signal degradation, as shown in Figure 78.  
0.1 mF  
DA[3:0]P,  
DB[3:0]P  
Rt = ZO  
Transmission Line, Zo  
VCM  
Receiver  
Rt = ZO  
DA[3:0]M,  
DB[3:0]M  
0.1 mF  
Figure 78. Output Connection to Receiver  
8.4.2.5.2 Eye Diagrams  
Figure 79 and Figure 80 show the serial output eye diagrams of the ADS54J42 at 6.25 Gbps and 2.5 Gbps  
(respectively) with default output voltage swings against the JESD204B mask.  
Figure 79. Eye Diagram at 6.25-Gbps Bit Rate with  
Default Output Swing  
Figure 80. Eye Diagram at 2.5-Gbps Bit Rate with  
Default Output Swing  
42  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
8.5 Register Maps  
Figure 81 shows a conceptual diagram of the serial registers.  
Initiate an SPI Cycle  
R/W, M, P, CH, Bits Decoder  
M = 0  
M = 1  
Analog Bank  
JESD Bank  
General Register  
General Register  
(Address 005h,  
Keep M = 1, P = 0)  
JESD Bank Page Selection  
(Address 003h and Address 004h,  
Keep M = 1, P = 0)  
Unused Registers  
(Address 01h, Address 02h.  
Keep M = 1, P = 0)  
Analog Bank Page Selection  
(Address 00h,  
(Address 011h, Keep M = 0, P = 0)  
Keep M = 0, P = 0)  
Value 80h  
Addr 5Fh  
Value 0Fh  
Value 6800h  
Value 6900h  
Value 6A00h  
Addr 0h  
Addr 20h  
Addr 0h  
Addr 12h  
Main  
Digital Page  
JESD  
ADC Page  
(Fast OVR)  
JESD  
Digital Page  
Master Page  
(PDN, OVR,  
DC Coupling)  
Analog Page  
(PLL Configuration,  
Output Swing,  
(Nyquist Zone,  
Gain,  
OVR, Filter)  
Keep  
M = 0, P = 0  
(JESD  
Configuration)  
Pre-Emphasis)  
Keep  
M = 0, P = 0  
Keep M = 1,  
P = 1  
Keep M = 1,  
P = 1  
Keep M = 1,  
P = 1  
Addr F7h  
Addr 59h  
Addr 32h  
Addr 1Bh  
Figure 81. Serial Interface Registers  
Copyright © 2016, Texas Instruments Incorporated  
43  
 
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.5.1 Detailed Register Info  
The ADS54J42 contains two main SPI banks. The analog SPI bank provides access to the ADC analog blocks  
and the digital SPI bank controls the interleaving engine and anything related to the JESD204B serial interface.  
The analog SPI bank is divided into two pages (master and ADC) and the digital SPI bank is divided into three  
pages (main digital, JESD digital, and JESD analog). Table 14 lists a register map for the ADS54J42.  
Table 14. Register Map  
REGISTER  
ADDRESS  
REGISTER DATA  
A[11:0] (Hex)  
7
6
5
4
3
2
1
0
GENERAL REGISTERS  
0
3
4
RESET  
0
0
0
0
0
0
RESET  
JESD BANK PAGE SEL[7:0]  
JESD BANK PAGE SEL[15:8]  
DISABLE  
BROADCAST  
5
0
0
0
0
0
0
0
11  
ANALOG BANK PAGE SEL  
MASTER PAGE (80h)  
20  
21  
23  
24  
PDN ADC CHA  
PDN ADC CHA  
PDN ADC CHB  
PDN ADC CHB  
PDN BUFFER CHB  
PDN BUFFER CHB  
PDN BUFFER CHA  
PDN BUFFER CHA  
0
0
0
0
0
0
0
0
0
0
0
0
OVERRIDE  
PDN MASK  
26  
GLOBAL PDN  
0
PDN PIN  
SEL  
39  
3A  
HIGH FREQ 1  
0
HIGH FREQ 0  
HIGH FREQ 2  
0
0
0
0
0
0
0
0
0
0
0
0
EN INPUT DC  
COUPLING  
4F  
53  
0
0
0
0
0
0
0
0
0
0
0
0
EN SYSREF  
DC COUPLING  
MASK SYSREF  
0
55  
56  
0
0
0
0
0
0
PDN MASK  
0
0
0
0
0
0
0
0
HIGH FREQ 3  
ALWAYS  
WRITE 1  
59  
FOVR CHB  
0
0
0
0
0
0
ADC PAGE (0Fh)  
5F  
FOVR THRESHOLD PROG  
MAIN DIGITAL PAGE (6800h)  
0
0
0
0
0
0
0
0
0
0
0
0
PULSE RESET  
FORMAT SEL  
DECFIL  
MODE[3]  
41  
DECFIL EN  
DECFIL MODE[2:0]  
42  
43  
44  
4B  
4D  
0
0
0
0
0
0
0
0
0
0
0
0
NYQUIST ZONE  
0
0
DIGITAL GAIN  
0
0
0
FORMAT EN  
0
0
0
0
0
0
0
0
0
DEC MODE EN  
CTRL  
NYQUIST  
4E  
52  
0
0
0
0
0
0
0
0
0
0
0
0
0
BUS_  
REORDER  
EN1  
DIG GAIN EN  
BUS_  
REORDER  
EN2  
72  
0
0
0
0
0
0
0
0
AB  
AD  
F7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LSB SEL EN  
LSB SELECT  
DIG RESET  
0
44  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
Table 14. Register Map (continued)  
REGISTER  
ADDRESS  
REGISTER DATA  
A[11:0] (Hex)  
7
6
5
4
3
2
1
0
JESD DIGITAL PAGE (6900h)  
TESTMODE  
EN  
FLIP ADC  
DATA  
0
1
2
CTRL K  
0
0
LANE ALIGN  
FRAME ALIGN  
JESD MODE  
0
TX LINK DIS  
SYNC REG  
SYNC REG EN  
JESD FILTER  
LINK LAYER  
RPAT  
LMFC MASK  
RESET  
LINK LAYER TESTMODE  
0
0
0
FORCE LMFC  
3
5
LMFC COUNT INIT  
0
RELEASE ILANE SEQ  
COUNT  
SCRAMBLE  
EN  
0
0
0
0
0
6
0
0
1
0
0
0
0
0
0
FRAMES PER MULTI FRAME (K)  
7
0
SUBCLASS  
0
0
0
0
0
0
16  
31  
32  
LANE SHARE  
0
DA_BUS_REORDER[7:0]  
DB_BUS_REORDER[7:0]  
JESD ANALOG PAGE (6A00h)  
12  
13  
14  
15  
SEL EMP LANE 1  
0
0
0
0
0
0
0
0
SEL EMP LANE 0  
SEL EMP LANE 2  
SEL EMP LANE 3  
16  
17  
1A  
1B  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
JESD PLL MODE  
PLL RESET  
0
0
0
0
0
0
0
0
0
FOVR CHA  
0
JESD SWING  
FOVR CHA EN  
Copyright © 2016, Texas Instruments Incorporated  
45  
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.5.2 Example Register Writes  
This section provides three different example register writes. Table 15 describes a global power-down register  
write, Table 16 describes the register writes when the default lane setting (eight active lanes per device) is  
changed to four active lanes (LMFS = 4211), and Table 17 describes the register writes for 2X decimation with  
four active lanes (LMFS = 4222).  
Table 15. Global Power Down  
ADDRESS (Hex)  
0-011h  
DATA (Hex)  
80h  
COMMENT  
Set the master page  
0-026h  
C0h  
Set the global power-down  
Table 16. Two Lanes per Channel Mode (LMFS = 4211)  
ADDRESS (Hex)  
4-004h  
DATA (Hex)  
69h  
COMMENT  
Select the JESD digital page  
Select the JESD digital page  
Select the digital to 40X mode  
Select the JESD analog page  
Set the SERDES PLL to 40X mode  
4-003h  
00h  
6-001h  
02h  
4-004h  
6Ah  
6-016h  
02h  
Table 17. 2X Decimation (LPF for Both Channels) with Four Active Lanes (LMFS = 4222)  
ADDRESS (Hex)  
4-004h  
DATA (Hex)  
68h  
COMMENT  
Select the main digital page (6800h)  
Select the main digital page (6800h)  
Set decimate-by-2 (low-pass filter)  
Enable decimation filter control  
BUS_REORDER EN2  
4-003h  
00h  
6-041h  
12h  
6-04Dh  
6-072h  
08h  
08h  
6-052h  
80h  
BUS_REORDER EN1  
6-000h  
01h  
Pulse the PULSE RESET bit (so that register writes to the main digital page go into effect).  
6-000h  
00h  
4-004h  
69h  
Select the JESD digital page (6900h)  
4-003h  
00h  
Select the JESD digital page (6900h)  
6-031h  
0Ah  
Output bus reorder for channel A  
6-032h  
0Ah  
Output bus reorder for channel B  
6-001h  
31h  
Program the JESD MODE and JESD FILTER register bits for LMFS = 4222.  
46  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
8.5.3 Register Descriptions  
8.5.3.1 General Registers  
8.5.3.1.1 Register 0h (address = 0h)  
Figure 82. Register 0h  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
RESET  
W-0h  
RESET  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: W = Write only; -n = value after reset  
Table 18. Register 0h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESET  
W
0h  
0 = Normal operation  
1 = Internal software reset, clears back to 0  
6-1  
0
0
W
W
0h  
0h  
Must write 0  
RESET  
0 = Normal operation  
1 = Internal software reset, clears back to 0  
8.5.3.1.2 Register 3h (address = 3h)  
Figure 83. Register 3h  
7
6
5
4
3
2
1
0
JESD BANK PAGE SEL[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 19. Register 3h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
JESD BANK PAGE SEL[7:0]  
R/W  
0h  
Program these bits to access the desired page in the JESD bank.  
6800h = Main digital page selected  
6900h = JESD digital page selected  
6A00h = JESD analog page selected  
8.5.3.1.3 Register 4h (address = 4h)  
Figure 84. Register 4h  
7
6
5
4
3
2
1
0
JESD BANK PAGE SEL[15:8]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 20. Register 4h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
JESD BANK PAGE SEL[15:8]  
R/W  
0h  
Program these bits to access the desired page in the JESD bank.  
6800h = Main digital page selected  
6900h = JESD digital page selected  
6A00h = JESD analog page selected  
Copyright © 2016, Texas Instruments Incorporated  
47  
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.5.3.1.4 Register 5h (address = 5h)  
Figure 85. Register 5h  
7
0
6
0
5
0
4
3
0
2
1
0
0
0
0
DISABLE BROADCAST  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 21. Register 5h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
DISABLE BROADCAST  
R/W  
0h  
0 = Normal operation; channel A and B are programmed as a pair  
1 = Channel A and B can be individually programmed based on the  
CH bit  
8.5.3.1.5 Register 11h (address = 11h)  
Figure 86. Register 11h  
7
6
5
4
3
2
1
0
ANALOG PAGE SELECTION  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 22. Register 11h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
ANALOG BANK PAGE SEL  
R/W  
0h  
Program these bits to access the desired page in the analog bank.  
Master page = 80h  
ADC page = 0Fh  
8.5.3.2 Master Page (080h) Registers  
8.5.3.2.1 Register 20h (address = 20h), Master Page (080h)  
Figure 87. Register 20h  
7
6
5
4
3
2
1
0
PDN ADC CHA  
R/W-0h  
PDN ADC CHB  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 23. Registers 20h Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
PDN ADC CHA  
PDN ADC CHB  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. The power-down mask 1  
or mask 2 are selected via register bit 5 in address 26h.  
Power-down mask 1: addresses 20h and 21h.  
0h  
Power-down mask 2: addresses 23h and 24h.  
48  
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
8.5.3.2.2 Register 21h (address = 21h), Master Page (080h)  
Figure 88. Register 21h  
7
6
5
4
3
0
2
0
1
0
0
0
PDN BUFFER CHB  
R/W-0h  
PDN BUFFER CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 24. Register 21h Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
PDN BUFFER CHB  
PDN BUFFER CHA  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. The power-down mask 1  
or mask 2 are selected via register address 26h, bit 5.  
Power-down mask 1: addresses 20h and 21h.  
0h  
Power-down mask 2: addresses 23h and 24h.  
3-0  
0
W
0h  
Must write 0.  
8.5.3.2.3 Register 23h (address = 23h), Master Page (080h)  
Figure 89. Register 23h  
7
6
5
4
3
2
1
0
PDN ADC CHA  
R/W-0h  
PDN ADC CHB  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 25. Register 23h Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
PDN ADC CHA  
PDN ADC CHB  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. The power-down mask 1  
or mask 2 are selected via register address 26h, bit 5.  
Power-down mask 1: addresses 20h and 21h.  
0h  
Power-down mask 2: addresses 23h and 24h.  
8.5.3.2.4 Register 24h (address = 24h), Master Page (080h)  
Figure 90. Register 24h  
7
6
5
4
3
2
0
1
0
0
0
PDN BUFFER CHB  
R/W-0h  
PDN BUFFER CHA  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 26. Register 24h Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
PDN BUFFER CHB  
PDN BUFFER CHA  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. The power-down mask 1  
or mask 2 are selected via register address 26h, bit 5.  
Power-down mask 1: addresses 20h and 21h.  
0h  
Power-down mask 2: addresses 23h and 24h.  
3-0  
0
W
0h  
Must write 0.  
Copyright © 2016, Texas Instruments Incorporated  
49  
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.5.3.2.5 Register 26h (address = 26h), Master Page (080h)  
Figure 91. Register 26h  
7
6
5
4
0
3
0
2
0
1
0
0
0
OVERRIDE  
PDN PIN  
PDN MASK  
SEL  
GLOBAL PDN  
R/W-0h  
R/W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 27. Register 26h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GLOBAL PDN  
R/W  
0h  
Bit 6 (OVERRIDE PDN PIN) must be set before this bit can be  
programmed.  
0 = Normal operation  
1 = Global power-down via the SPI  
6
5
OVERRIDE PDN PIN  
R/W  
R/W  
W
0h  
0h  
0h  
This bit ignores the power-down pin control.  
0 = Normal operation  
1 = Ignores inputs on the power-down pin  
PDN MASK SEL  
0
This bit selects power-down mask 1 or mask 2.  
0 = Power-down mask 1  
1 = Power-down mask 2  
4-0  
Must write 0  
8.5.3.2.6 Register 39h (address = 39h), Master Page (080h)  
Figure 92. Register 39h  
7
6
5
0
4
3
2
0
1
0
0
0
HIGH FREQ 1 HIGH FREQ 0  
R/W-0h R/W-0h  
0
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 28. Register 39h Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
W
Reset  
0h  
Description  
HIGH FREQ 1  
HIGH FREQ 0  
0
Set these bits (and the HIGH FREQ[3:2] bits) high when the  
input frequency > 400 MHz.  
6
0h  
5-0  
0h  
Must write 0  
8.5.3.2.7 Register 3Ah (address = 3Ah), Master Page (080h)  
Figure 93. Register 3Ah  
7
0
6
5
0
4
3
2
0
1
0
0
0
HIGH FREQ 2  
R/W-0h  
0
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 29. Register 3Ah Field Descriptions  
Bit  
7
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
6
HIGH FREQ 2  
R/W  
0h  
Set this bit (and the HIGH FREQ 3 and HIGH FREQ[1:0] bits)  
high when the input frequency > 400 MHz.  
5-0  
0
W
0h  
Must write 0  
50  
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
8.5.3.2.8 Register 4Fh (address = 4Fh), Master Page (080h)  
Figure 94. Register 4Fh  
7
0
6
0
5
0
4
3
2
1
0
0
0
0
0
EN INPUT DC COUPLING  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 30. Register 4Fh Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
EN INPUT DC COUPLING  
R/W  
0h  
This bit enables dc-coupling between the analog inputs and the  
driver by changing the internal biasing resistor between the  
analog inputs and VCM from 600 Ω to 5 kΩ.  
0 = The dc-coupling support is disabled  
1 = The dc-coupling support is enabled  
8.5.3.2.9 Register 53h (address = 53h), Master Page (080h)  
Figure 95. Register 53h  
7
0
6
5
0
4
3
2
0
1
0
0
MASK  
SYSREF  
EN SYSREF  
DC COUPLING  
0
0
W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 31. Register 53h Field Descriptions  
Bit  
7
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
6
MASK SYSREF  
R/W  
0h  
0 = Normal operation  
1 = Ignores the SYSREF input  
5-2  
1
0
W
0h  
0h  
Must write 0  
EN SYSREF DC COUPLING  
R/W  
This bit enables a higher common-mode voltage input on the  
SYSREF signal (up to 1.6 V).  
0 = Normal operation  
1 = Enables a higher SYSREF common-mode voltage support  
0
0
W
0h  
Must write 0  
8.5.3.2.10 Register 55h (address = 55h), Master Page (080h)  
Figure 96. Register 55h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
PDN MASK  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 32. Register 55h Field Descriptions  
Bit  
7-5  
4
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
PDN MASK  
R/W  
0h  
This bit enables power-down via a register bit.  
0 = Normal operation  
1 = Power-down is enabled by powering down the internal  
blocks as specified in the selected power-down mask  
3-0  
0
W
0h  
Must write 0  
Copyright © 2016, Texas Instruments Incorporated  
51  
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.5.3.2.11 Register 56h (address = 56h), Master Page (080h)  
Figure 97. Register 56h  
7
0
6
0
5
0
4
0
3
0
2
1
0
0
0
HIGH FREQ 3  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 33. Register 56h Field Descriptions  
Bit  
7-3  
2
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
HIGH FREQ 3  
R/W  
0h  
Set this bit (and the HIGH FREQ[2:0] bits) high when the input  
frequency > 400 MHz.  
1-0  
0
W
0h  
Must write 0  
8.5.3.2.12 Register 59h (address = 59h), Master Page (080h)  
Figure 98. Register 59h  
7
6
0
5
4
0
3
0
2
0
1
0
0
0
FOVR CHB  
W-0h  
ALWAYS WRITE 1  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 34. Register 59h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FOVR CHB  
W
0h  
This bit outputs the FOVR signal for channel B on the SDOUT pin.  
0 = Normal operation  
1 = The FOVR signal is available on the SDOUT pin  
6
5
0
W
0h  
0h  
0h  
Must write 0  
Must write 1  
Must write 0  
ALWAYS WRITE 1  
0
R/W  
W
4-0  
8.5.3.3 ADC Page (0Fh) Register  
8.5.3.3.1 Register 5F (addresses = 5F), ADC Page (0Fh)  
Figure 99. Register 5F  
7
6
5
4
3
2
1
0
FOVR THRESHOLD PROG  
R/W-E3h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 35. Register 5F Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
FOVR THRESHOLD PROG  
R/W  
E3h  
Program the fast OVR thresholds together for channel A and B,  
as described in the Overrange Indication section.  
52  
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
8.5.3.4 Main Digital Page (6800h) Registers  
8.5.3.4.1 Register 0h (address = 0h), Main Digital Page (6800h)  
Figure 100. Register 0h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
PULSE RESET  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 36. Register 0h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
PULSE RESET  
R/W  
0h  
This bit must be pulsed after power-up or after configuring  
registers in the main digital page of the JESD bank. Any register  
bits in the main digital page (6800h) take effect only after this bit  
is pulsed; see the Start-Up Sequence section for the correct  
sequence.  
0 = Normal operation  
0 1 0 = This bit is pulsed  
8.5.3.4.2 Register 41h (address = 41h), Main Digital Page (6800h)  
Figure 101. Register 41h  
7
0
6
0
5
4
3
2
1
0
DECFIL MODE[3]  
R/W-0h  
DECFIL EN  
R/W-0h  
0
DECFIL MODE[2:0]  
R/W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 37. Register 41h Field Descriptions  
Bit  
7-6  
5
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
DECFIL MODE[3]  
R/W  
0h  
This bit selects the decimation filter mode. Table 38 lists the bit settings.  
The decimation filter control (DEC MODE EN, register 4Dh, bit 3) and  
decimation filter enable (DECFIL EN, register 41h, bit 4) must be enabled.  
4
DECFIL EN  
R/W  
0h  
This bit enables the digital decimation filter.  
0 = Normal operation, full rate output  
1 = Digital decimation enabled  
3
0
W
0h  
0h  
Must write 0  
2-0  
DECFIL MODE[2:0]  
R/W  
These bits select the decimation filter mode. Table 38 lists the bit settings.  
The decimation filter control (DEC MODE EN, register 4Dh, bit 3) and  
decimation filter enable (DECFIL EN, register 41h, bit 4) must be enabled.  
Table 38. DECFIL MODE Bit Settings  
BITS (5, 2-0)  
FILTER MODE  
DECIMATION  
0000  
0100  
1000  
1100  
0010  
0110  
0011  
Band-pass filter centered on 3 × fS / 16  
Band-pass filter centered on 5 × fS / 16  
4X  
4X  
Band-pass filter centered on 1 × fS / 16  
Band-pass filter centered on 7 × fS / 16  
Low-pass filter  
4X  
4X  
2X  
High-pass filter  
2X  
Low-pass filter with fS / 4 mixer  
4X (IQ)  
Copyright © 2016, Texas Instruments Incorporated  
53  
 
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.5.3.4.3 Register 42h (address = 42h), Main Digital Page (6800h)  
Figure 102. Register 42h  
7
0
6
0
5
0
4
0
3
0
2
1
0
NYQUIST ZONE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 39. Register 42h Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
NYQUIST ZONE  
R/W  
0h  
The Nyquist zone must be selected for proper interleaving  
correction. Nyquist refers to the device clock / 2. For a 625-  
MSPS device clock, the Nyquist frequency is 312.5 MHz. The  
CTRL NYQUIST register bit (register 4Eh, bit 7) must also be  
set.  
000 = First Nyquist zone (0 MHz to 312.5 MHz)  
001 = Second Nyquist zone (312.5 MHz to 625 MHz)  
010 = Third Nyquist zone (625 MHz to 937.5 MHz)  
All others = Not used  
8.5.3.4.4 Register 43h (address = 43h), Main Digital Page (6800h)  
Figure 103. Register 43h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
FORMAT SEL  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 40. Register 43h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
FORMAT SEL  
R/W  
0h  
This bit changes the output format. Set the FORMAT EN bit to  
enable control using this bit.  
0 = Twos complement  
1 = Offset binary  
8.5.3.4.5 Register 44h (address = 44h), Main Digital Page (6800h)  
Figure 104. Register 44h  
7
0
6
5
4
3
2
1
0
DIGITAL GAIN  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 41. Register 44h Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
6-0  
DIGITAL GAIN  
0h  
These bits set the digital gain setting. The DIG GAIN EN register  
bit (register 52h, bit 0) must be enabled to use these bits.  
Gain in dB = 20log (digital gain / 32).  
7Fh = 127 equals a digital gain of 9.5 dB.  
54  
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
8.5.3.4.6 Register 4Bh (address = 4Bh), Main Digital Page (6800h)  
Figure 105. Register 4Bh  
7
0
6
0
5
4
0
3
0
2
0
1
0
0
0
FORMAT EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 42. Register 4Bh Field Descriptions  
Bit  
7-6  
5
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
FORMAT EN  
R/W  
0h  
This bit enables control for data format selection using the FORMAT  
SEL register bit.  
0 = Default, output is in twos complement format  
1 = Output is in offset binary format after the FORMAT SEL bit is set  
4-0  
0
W
0h  
Must write 0  
8.5.3.4.7 Register 4Dh (address = 4Dh), Main Digital Page (6800h)  
Figure 106. Register 4Dh  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
DEC MOD EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 43. Register 4Dh Field Descriptions  
Bit  
7-4  
3
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
DEC MOD EN  
R/W  
0h  
This bit enables control of the decimation filter mode via the  
DECFIL MODE[3:0] register bits.  
0 = Default  
1 = Decimation mode control is enabled  
2-0  
0
W
0h  
Must write 0  
Copyright © 2016, Texas Instruments Incorporated  
55  
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.5.3.4.8 Register 4Eh (address = 4Eh), Main Digital Page (6800h)  
Figure 107. Register 4Eh  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
CTRL NYQUIST  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 44. Register 4Eh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CTRL NYQUIST  
R/W  
0h  
This bit enables selecting the Nyquist zone using register 42h, bits 2-0.  
0 = Selection disabled  
1 = Selection enabled  
6-0  
0
W
0h  
Must write 0  
8.5.3.4.9 Register 52h (address = 52h), Main Digital Page (6800h)  
Figure 108. Register 52h  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
BUS_REORDER EN1  
W-0h  
DIG GAIN EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 45. Register 52h Field Descriptions  
Bit  
7
Field  
Type  
R/W  
W
Reset  
0h  
Description  
BUS_REORDER EN1  
Must write 1 in DDC mode only.  
Must write 0  
6-1  
0
0
0h  
DIG GAIN EN  
R/W  
0h  
This bit enables selecting the digital gain for register 44h.  
0 = Digital gain disabled  
1 = Digital gain enabled  
8.5.3.4.10 Register 72h (address = 72h), Main Digital Page (6800h)  
Figure 109. Register 72h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
BUS_REORDER EN2  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 46. Register 72h Field Descriptions  
Bit  
7-4  
3
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
BUS_REORDER EN2  
0
R/W  
W
0h  
Must write 1 in DDC mode only.  
Must write 0  
2-0  
0h  
56  
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
8.5.3.4.11 Register ABh (address = ABh), Main Digital Page (6800h)  
Figure 110. Register ABh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
LSB SEL EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 47. Register ABh Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
LSB SEL EN  
R/W  
0h  
This bit enables control for the LSB SELECT register bit.  
0 = Default  
1 = LSB of the 16-bit data (14-bit ADC data padded with two 0s  
as the LSBs) can be programmed as fast OVR using the LSB  
SELECT register bit.  
8.5.3.4.12 Register ADh (address = ADh), Main Digital Page (6800h)  
Figure 111. Register ADh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
LSB SELECT  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 48. Register ADh Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
LSB SELECT  
R/W  
0h  
These bits enable the output of the FOVR flag instead of the output data  
LSB. Ensure that the LSB SEL EN register bit is set to 1.  
00 = Output is 16-bit data (14-bit ADC data padded with two 0s as the  
LSBs)  
11 = The LSB of the 16-bit output data is replaced by the FOVR  
information for each channel  
8.5.3.4.13 Register F7h (address = F7h), Main Digital Page (6800h)  
Figure 112. Register F7h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIG RESET  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: W = Write only; -n = value after reset  
Table 49. Register F7h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
DIG RESET  
W
0h  
This bit is the self-clearing reset for the digital block and does  
not include interleaving correction.  
0 = Normal operation  
1 = Digital reset  
Copyright © 2016, Texas Instruments Incorporated  
57  
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.5.3.5 JESD Digital Page (6900h) Registers  
8.5.3.5.1 Register 0h (address = 0h), JESD Digital Page (6900h)  
Figure 113. Register 0h  
7
6
0
5
0
4
3
2
1
0
TESTMODE  
EN  
FLIP ADC  
DATA  
CTRL K  
R/W-0h  
LANE ALIGN  
R/W-0h  
FRAME ALIGN  
R/W-0h  
TX LINK DIS  
R/W-0h  
W-0h  
W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 50. Register 0h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CTRL K  
R/W  
0h  
This bit is the enable bit for a number of frames per multi-frame.  
0 = Default is five frames per multi-frame  
1 = Frames per multi-frame can be set in register 06h  
6-5  
4
0
W
0h  
0h  
Must write 0  
TESTMODE EN  
R/W  
This bit generates the long transport layer test pattern mode, as  
per section 5.1.6.3 of the JESD204B specification.  
0 = Test mode disabled  
1 = Test mode enabled  
3
2
FLIP ADC DATA  
LANE ALIGN  
R/W  
R/W  
0h  
0h  
0 = Normal operation  
1 = Output data order is reversed: MSB to LSB.  
This bit inserts the lane alignment character (K28.3) for the  
receiver to align to the lane boundary, as per section 5.3.3.5 of  
the JESD204B specification.  
0 = Normal operation  
1 = Inserts lane alignment characters  
1
0
FRAME ALIGN  
TX LINK DIS  
R/W  
R/W  
0h  
0h  
This bit inserts the lane alignment character (K28.7) for the  
receiver to align to the lane boundary, as per section 5.3.3.5 of  
the JESD204B specification.  
0 = Normal operation  
1 = Inserts frame alignment characters  
This bit disables sending the initial link alignment (ILA) sequence  
when SYNC is de-asserted.  
0 = Normal operation  
1 = ILA disabled  
58  
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
8.5.3.5.2 Register 1h (address = 1h), JESD Digital Page (6900h)  
Figure 114. Register 1h  
7
6
5
4
3
2
1
0
SYNC REG  
R/W-0h  
SYNC REG EN  
R/W-0h  
JESD FILTER  
R/W-0h  
JESD MODE  
R/W-01h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 51. Register 1h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SYNC REG  
R/W  
0h  
This bit is the register control for the sync request.  
0 = Normal operation  
1 = ADC output data are replaced with K28.5 characters; the SYNC  
REG EN register bit must also be set to 1  
6
SYNC REG EN  
JESD FILTER  
R/W  
R/W  
0h  
0h  
This bit enables register control for the sync request.  
0 = Use the SYNC pin for sync requests  
1 = Use the SYNC REG register bit for sync requests  
5-3  
These bits and the JESD MODE bits set the correct LMFS  
configuration for the JESD interface. The JESD FILTER setting  
must match the configuration in the decimation filter page.  
000 = Filter bypass mode  
See Table 52 for valid combinations for register bits JESD FILTER  
along with JESD MODE.  
2-0  
JESD MODE  
R/W  
01h  
These bits select the number of serial JESD output lanes per ADC.  
The JESD PLL MODE register bit located in the JESD analog page  
must also be set accordingly.  
001 = Default after reset(Eight active lanes)  
See Table 52 for valid combinations for register bits JESD FILTER  
along with JESD MODE.  
Table 52. Valid Combinations for JESD FILTER and JESD MODE Bits  
NUMBER OF ACTIVE LANES  
PER DEVICE  
REGISTER BIT JESD FILTER  
REGISTER BIT JESD MODE  
DECIMATION FACTOR  
000  
000  
100  
010  
No decimation  
No decimation  
Four lanes are active  
Four lanes are active  
No decimation  
(default after reset)  
000  
001  
Eight lanes are active  
111  
110  
110  
100  
111  
100  
001  
001  
010  
001  
010  
010  
4X (IQ)  
2X  
Four lanes are active  
Four lanes are active  
Two lanes are active  
Two lanes are active  
Two lanes are active  
One lane is active  
2X  
4X  
4X (IQ)  
4X  
Copyright © 2016, Texas Instruments Incorporated  
59  
 
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.5.3.5.3 Register 2h (address = 2h), JESD Digital Page (6900h)  
Figure 115. Register 2h  
7
6
5
4
3
2
0
1
0
0
0
LINK LAYER TESTMODE  
R/W-0h  
LINK LAYER RPAT  
R/W-0h  
LMFC MASK RESET  
R/W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 53. Register 2h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
LINK LAYER TESTMODE  
R/W  
0h  
These bits generate a pattern as per section 5.3.3.8.2 of the  
JESD204B document.  
000 = Normal ADC data  
001 = D21.5 (high-frequency jitter pattern)  
010 = K28.5 (mixed-frequency jitter pattern)  
011 = Repeat initial lane alignment (generates a K28.5 character  
and continuously repeats lane alignment sequences)  
100 = 12-octet RPAT jitter pattern  
All others = Not used  
4
LINK LAYER RPAT  
R/W  
0h  
This bit changes the running disparity in the modified RPAT pattern  
test mode (only when the link layer test mode = 100).  
0 = Normal operation  
1 = Changes disparity  
3
LMFC MASK RESET  
0
R/W  
W
0h  
0h  
This bit masks the LMFC reset coming to the digital block.  
0 = LMFC reset is not masked  
1 = Ignore the LMFC reset request  
2-0  
Must write 0  
60  
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
8.5.3.5.4 Register 3h (address = 3h), JESD Digital Page (6900h)  
Figure 116. Register 3h  
7
6
5
4
3
2
1
0
FORCE LMFC COUNT  
R/W-0h  
LMFC COUNT INIT  
R/W-0h  
RELEASE ILANE SEQ  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 54. Register 3h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FORCE LMFC COUNT  
R/W  
0h  
This bit forces the LMFC count.  
0 = Normal operation  
1 = Enables using a different starting value for the LMFC counter  
6-2  
1-0  
MASK SYSREF  
R/W  
R/W  
0h  
0h  
When SYSREF transmits to the digital block, the LMFC count resets to  
0 and K28.5 stops transmitting when the LMFC count reaches 31. The  
initial value that the LMFC count resets to can be set using LMFC  
COUNT INIT. In this manner, the receiver can be synchronized early  
because the LANE ALIGNMENT SEQUENCE is received early. The  
FORCE LMFC COUNT register bit must be enabled.  
RELEASE ILANE SEQ  
These bits delay the generation of the lane alignment sequence by 0, 1,  
2, or 3 multi-frames after the code group synchronization.  
00 = 0  
01 = 1  
10 = 2  
11 = 3  
8.5.3.5.5 Register 5h (address = 5h), JESD Digital Page (6900h)  
Figure 117. Register 5h  
7
6
0
5
4
3
2
0
1
0
0
0
SCRAMBLE EN  
R/W-Undefined  
0
0
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 55. Register 5h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SCRAMBLE EN  
R/W  
Undefined This bit is the scramble enable bit in the JESD204B interface.  
0 = Scrambling disabled  
1 = Scrambling enabled  
6-0  
0
W
0h  
Must write 0  
Copyright © 2016, Texas Instruments Incorporated  
61  
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.5.3.5.6 Register 6h (address = 6h), JESD Digital Page (6900h)  
Figure 118. Register 6h  
7
0
6
0
5
0
4
3
2
1
0
FRAMES PER MULTI FRAME (K)  
R/W-8h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 56. Register 6h Field Descriptions  
Bit  
7-5  
4-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
FRAMES PER MULTI FRAME (K)  
R/W  
8h  
These bits set the number of multi-frames.  
Actual K is the value in hex + 1 (that is, 0Fh is K = 16).  
8.5.3.5.7 Register 7h (address = 7h), JESD Digital Page (6900h)  
Figure 119. Register 7h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
SUBCLASS  
R/W-1h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 57. Register 7h Field Descriptions  
Bit  
7-4  
3
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
SUBCLASS  
R/W  
1h  
This bit sets the JESD204B subclass.  
000 = Subclass 0 is backward compatible with JESD204A  
001 = Subclass 1 deterministic latency using the SYSREF signal  
2-0  
0
W
0h  
Must write 0  
8.5.3.5.8 Register 16h (address = 16h), JESD Digital Page (6900h)  
Figure 120. Register 16h  
7
1
6
0
5
0
4
3
0
2
0
1
0
0
0
LANE SHARE  
W-0h  
W-1h  
W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 58. Register 16h Field Descriptions  
Bit  
7
Field  
Type  
W
Reset  
1h  
Description  
Must write 1  
Must write 0  
1
6-5  
4
0
W
0h  
LANE SHARE  
R/W  
0h  
When using decimate-by-4, the data of both channels are output  
over one lane (LMFS = 1241).  
0 = Normal operation (each channel uses one lane)  
1 = Lane sharing is enabled, both channels share one lane  
(LMFS = 1241)  
3-0  
0
W
0h  
Must write 0  
62  
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
8.5.3.5.9 Register 31h (address = 31h), JESD Digital Page (6900h)  
Figure 121. Register 31h  
7
6
5
4
3
2
1
0
DA_BUS_REORDER[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 59. Register 31h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DA_BUS_REORDER[7:0]  
R/W  
0h  
Use these bits to program output connections between data  
streams and output lanes in decimate-by-2 and decimate-by-4  
mode. Table 13 lists the supported combinations of these bits.  
8.5.3.5.10 Register 32h (address = 32h), JESD Digital Page (6900h)  
Figure 122. Register 32h  
7
6
5
4
3
2
1
0
DB_BUS_REORDER[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 60. Register 32h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DB_BUS_REORDER[7:0]  
R/W  
0h  
Use these bits to program output connections between data  
streams and output lanes in decimate-by-2 and decimate-by-4  
mode. Table 13 lists the supported combinations of these bits.  
Copyright © 2016, Texas Instruments Incorporated  
63  
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.5.3.6 JESD Analog Page (6A00h) Registers  
8.5.3.6.1 Registers 12h-5h (addresses = 12h-5h), JESD Analog Page (6A00h)  
Figure 123. Register 12h  
7
6
5
4
3
2
2
2
2
1
0
0
0
SEL EMP LANE 1  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
W-0h  
W-0h  
Figure 124. Register 13h  
7
6
5
4
3
1
0
0
0
SEL EMP LANE 0  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
W-0h  
W-0h  
Figure 125. Register 14h  
7
6
5
4
3
1
0
0
0
SEL EMP LANE 2  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
W-0h  
W-0h  
Figure 126. Register 15h  
7
6
5
4
3
1
0
0
0
SEL EMP LANE 3  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
W-0h  
W-0h  
Table 61. Registers 12h-15h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
SEL EMP LANE x  
R/W  
0h  
These bits select the amount of de-emphasis for the JESD  
(where x = 1, 0, 2, or 3)  
output transmitter. The de-emphasis value in decibels (dB) is  
measured as the ratio between the peak value after the signal  
transition to the settled value of the voltage in one bit period.  
0 = 0 dB  
1 = –1 dB  
3 = –2 dB  
7 = –4.1 dB  
15 = –6.2 dB  
31 = –8.2 dB  
63 = –11.5 dB  
1-0  
0
W-0h  
0h  
Must write 0  
64  
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
8.5.3.6.2 Register 16h (address = 16h), JESD Analog Page (6A00h)  
Figure 127. Register 16h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
JESD PLL MODE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 62. Register 16h Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
JESD PLL MODE  
R/W  
0h  
These bits select the JESD PLL multiplication factor and must  
match the JESD MODE setting.  
00 = 20X mode  
01 = Not used  
10 = 40X mode  
11 = Not used  
Refer to Table 13 for Programming Summary of DDC modes  
and JESD Link Configuration.  
8.5.3.6.3 Register 17h (address = 17h), JESD Analog Page (6A00h)  
Figure 128. Register 17h  
7
0
6
5
0
4
0
3
0
2
0
1
0
0
0
PLL RESET  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 63. Register 17h Field Descriptions  
Bit  
7
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
6
PLL RESET  
R/W  
0h  
Pulse this bit after powering up the device; see Table 66.  
0 = Default  
0 1 0 = The PLL RESET bit is pulsed.  
5-0  
0
W
0h  
Must write 0  
8.5.3.6.4 Register 1Ah (address = 1Ah), JESD Analog Page (6A00h)  
Figure 129. Register 1Ah  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
FOVR CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 64. Register 1Ah Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
FOVR CHA  
R/W  
0h  
This bit outputs the FOVR signal for channel A on the PDN pin.  
FOVR CHA EN (register 1Bh, bit 3) must be enabled for this bit  
to function.  
0 = Normal operation  
1 = The FOVR signal of channel A is available on the PDN pin  
0
0
W
0h  
Must write 0  
Copyright © 2016, Texas Instruments Incorporated  
65  
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.5.3.6.5 Register 1Bh (address = 1Bh), JESD Analog Page (6A00h)  
Figure 130. Register 1Bh  
7
6
5
4
0
3
2
0
1
0
0
0
JESD SWING  
R/W-0h  
FOVR CHA EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 65. Register 1Bh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
JESD SWING  
R/W  
0h  
These bits select the output amplitude VOD (mVPP) of the JESD  
transmitter (for all lanes).  
0 = 860 mVPP  
1 = 810 mVPP  
2 = 770 mVPP  
3 = 745 mVPP  
4 = 960 mVPP  
5 = 930 mVPP  
6 = 905 mVPP  
7 = 880 mVPP  
4
3
0
W
0h  
0h  
Must write 0  
FOVR CHA EN  
R/W  
This bit enables overwrites of the PDN pin with the FOVR signal  
from channel A.  
0 = Normal operation  
1 = PDN is overwritten  
2-0  
0
W
0h  
Must write 0  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Start-Up Sequence  
The steps described in Table 66 are recommended as the power-up sequence with the ADS54J42 in 20X mode  
(LMFS = 8224).  
66  
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
Table 66. Initialization Sequence  
PAGE BEING  
PROGRAMMED  
STEP  
1
SEQUENCE  
Power-up the device  
DESCRIPTION  
COMMENT  
Bring up the supplies to IOVDD = 1.15 V, DVDD = AVDD = 1.9 V, and  
AVDD3V = 3.0 V.  
These supplies can be brought up in any order.  
Hardware reset  
Apply a hardware reset by pulsing pin 48 (low high low).  
Register writes are equivalent to a hardware reset.  
A hardware reset clears all registers to their default values.  
Reset registers in the ADC and master pages of the analog bank.  
This bit is a self-clearing bit.  
Write address 0-000h with 81h.  
General register  
2
Reset the device  
Write address 4-001h with 00h and address 4-002h with 00h.  
Write address 4-003h with 00h and address 4-004h with 68h.  
Unused page  
Clear any unwanted content from the unused pages of the JESD bank.  
Select the main digital page of the JESD bank.  
Use the DIG RESET register bit to reset all pages in the JESD bank.  
This bit is a self-clearing bit.  
Write address 6-0F7h with 01h for channel A.  
Main digital page  
(JESD bank)  
Write address 6-000h with 01h, then address 6-000h with 00h.  
Write address 0-011h with 80h.  
Pulse the PULSE RESET register bit for channel A.  
Select the master page of the analog bank.  
Set the ALWAYS WRITE 1 bit.  
Write address 0-059h with 20h.  
3
Performance modes  
Master page  
(analog bank)  
Write address 0-039h with C0h.  
Write address 0-03Ah with 40h.  
Write address 0-056h with 04h.  
HIGH FREQ[3:0].  
Set these register bits for better SFDR when input frequency > 400 MHz.  
Default register writes for DDC modes and JESD link configuration (LMFS 8224).  
Write address 4-003h with 00h and address 4-004h with 69h.  
Write address 6-000h with 80h.  
Select the JESD digital page.  
Set the CTRL K bit for both channels by programming K according to the  
SYSREF signal later on in the sequence.  
JESD  
digital page  
(JESD bank)  
See Table 13 for configuring the JESD digital page registers for the desired  
LMFS and programming appropriate DDC mode.  
JESD link is configured with LMFS = 8224 by default with no decimation.  
Write address 4-003h with 00h and address 4-004h with 6Ah.  
Select the JESD analog page.  
Program desired registers for  
decimation options and  
JESD link configuration  
See Table 13 for configuring the JESD analog page registers for the desired  
LMFS and programming appropriate DDC mode.  
4
JESD link is configured with LMFS = 8224 by default with no decimation.  
JESD  
analog page  
(JESD bank)  
Write address 6-017h with 40h.  
PLL reset.  
Write address 6-017h with 00h.  
PLL reset.  
Write address 4-003h with 00h and address 4-004h with 68h.  
Select the main digital page.  
See Table 13 for configuring the main digital page registers for the desired  
LMFS and programming appropriate DDC mode.  
JESD link is configured with LMFS = 8224 by default with no decimation.  
Write address 6-000h with 01h and address 6-000h with 00h.  
Main digital page  
(JESD bank)  
Pulse the PULSE RESET register bit. All settings programmed in the main  
digital page take effect only after this bit is pulsed.  
Copyright © 2016, Texas Instruments Incorporated  
67  
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Table 66. Initialization Sequence (continued)  
PAGE BEING  
STEP  
SEQUENCE  
DESCRIPTION  
PROGRAMMED  
COMMENT  
Write address 4-003h with 00h and address 4-004h with 69h.  
Select the JESD digital page.  
Set the value of K and the  
SYSREF signal frequency  
accordingly  
JESD  
digital page  
(JESD bank)  
5
Write address 6-006h with XXh (choose the value of K).  
See the SYSREF Signal section to choose the correct frequency for SYSREF.  
Pull the SYNCB pin (pin 63) low.  
Pull the SYNCB pin high.  
Transmit K28.5 characters.  
6
JESD lane alignment  
After the receiver is synchronized, initiate an ILA phase and subsequent  
transmissions of ADC data.  
68  
Copyright © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
9.1.2 Hardware Reset  
Figure 131 and Table 67 show the timing for a hardware reset.  
Power Supplies  
t1  
RESET  
t2  
t3  
SEN  
Figure 131. Hardware Reset Timing Diagram  
Table 67. Timing Requirements for Figure 131  
MIN  
TYP  
MAX  
UNIT  
ms  
ns  
t1  
t2  
t3  
Power-on delay: delay from power-up to an active high RESET pulse  
1
10  
Reset pulse duration: active high RESET pulse duration  
Register write delay from RESET disable to SEN active  
100  
ns  
9.1.3 SNR and Clock Jitter  
The signal-to-noise ratio (SNR) of the ADC is limited by three different factors: quantization noise, thermal noise,  
and jitter, as shown in Equation 4. The quantization noise is typically not noticeable in pipeline converters and is  
86 dBFS for a 14-bit ADC. The thermal noise limits SNR at low input frequencies and the clock jitter sets SNR for  
higher input frequencies.  
(4)  
The SNR limitation resulting from sample clock jitter can be calculated by Equation 5:  
(5)  
The total clock jitter (TJitter) has two components: the internal aperture jitter (130 fs) is set by the noise of the  
clock input buffer and the external clock jitter. TJitter can be calculated by Equation 6:  
(6)  
External clock jitter can be minimized by using high-quality clock sources and jitter cleaners as well as band-pass  
filters at the clock input. A faster clock slew rate also improves the ADC aperture jitter.  
Copyright © 2016, Texas Instruments Incorporated  
69  
 
 
 
 
 
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
The ADS54J42 has a thermal noise of approximately 71.1 dBFS and an internal aperture jitter of 120 fS. SNR,  
depending on the amount of external jitter for different input frequencies, is shown in Figure 132.  
75  
35 fS  
50 fS  
100 fS  
150 fS  
200 fS  
73  
71  
69  
67  
65  
10  
100  
Input Frequency (MHz)  
D052  
Figure 132. SNR versus Input Frequency and External Clock Jitter  
70  
Copyright © 2016, Texas Instruments Incorporated  
 
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
9.2 Typical Application  
The ADS54J42 is designed for wideband receiver applications demanding excellent dynamic range over a large  
input frequency range. A typical schematic for an ac-coupled receiver is shown in Figure 133.  
DVDD  
10 k  
5 W  
5 W  
50 W  
50 W  
Driver  
0.1 mF  
2 pF  
0.1 mF  
SPI Master  
GND  
GND  
IOVDD GND  
0.1 mF  
0.1 mF  
0.1 mF  
10nF  
GND  
0.1 mF  
AVDD3V  
AVDD  
AVDD  
AVDD3V  
DVDD  
100-W Differential  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
10 nF  
DB2P  
DB2M  
IOVDD  
DB1P  
DB1M  
DGND  
DB0P  
DB0M  
IOVDD  
SYNC  
DA0M  
DA0P  
DGND  
DA1M  
DA1P  
IOVDD  
DA2M  
DA2P  
NC  
NC  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
IOVDD  
10 nF  
GND  
NC  
10 nF  
10 nF  
VCM  
0.1 mF  
AGND  
AVDD3V  
AVDD  
AGND  
CLKINP  
CLKINM  
AGND  
AVDD  
AVDD3V  
AGND  
GND  
0.1 mF  
AVDD3V  
GND  
AVDD  
0.1 mF  
GND  
10 nF  
IOVDD  
0.1 mF  
GND  
GND Pad  
(Back Side)  
GND  
0.1 mF  
FPGA  
Low-Jitter Clock  
Generator  
AVDD3V  
0.1 mF  
GND  
10 nF  
10 nF  
GND  
SYSREFP  
SYSREFM  
AVDD  
100 W  
IOVDD  
10 nF  
GND  
AVDD  
AGND  
GND  
10 nF  
10 nF  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
100-W Differential  
AVDD3V  
DVDD  
AVDD  
AVDD  
AVDD3V  
0.1 mF  
GND  
GND  
0.1 mF  
IOVDD GND  
0.1 mF  
GND  
5 W  
5 W  
50 W  
50 W  
Driver  
0.1 mF  
0.1 mF  
2 pF  
GND  
NOTE: GND = AGND and DGND are connected in the PCB layout.  
Figure 133. AC-Coupled Receiver  
Copyright © 2016, Texas Instruments Incorporated  
71  
 
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Typical Application (continued)  
9.2.1 Design Requirements  
9.2.1.1 Transformer-Coupled Circuits  
Typical applications involving transformer-coupled circuits are discussed in this section. Transformers (such as  
ADT1-1WT or WBC1-1) can be used up to 300 MHz to achieve good phase and amplitude balances at the ADC  
inputs. When designing dc-driving circuits, the ADC input impedance must be considered. Figure 134 and  
Figure 135 show the impedance (ZIN = RIN || CIN) across the ADC input pins.  
5
4.75  
4.5  
1.4  
1.2  
1
4.25  
4
0.8  
0.6  
0.4  
0.2  
0
3.75  
3.5  
3.25  
3
2.75  
2.5  
2.25  
0
100 200 300 400 500 600 700 800 900 1000  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
Frequency (MHz)  
D103  
D102  
Figure 134. RIN vs Input Frequency  
Figure 135. CIN vs Input Frequency  
By using the simple drive circuit of Figure 136, uniform performance can be obtained over a wide frequency  
range. The buffers present at the analog inputs of the device help isolate the external drive source from the  
switching currents of the sampling circuit.  
0.1 F  
T2  
CHx_INP  
T1  
5 ꢀ  
0.1 F  
25 ꢀ  
0.1 F  
RIN  
CIN  
25 ꢀ  
5 ꢀ  
0.1 F  
CHx_INM  
1:1  
1:1  
Device  
Figure 136. Input Drive Circuit  
9.2.2 Detailed Design Procedure  
For optimum performance, the analog inputs must be driven differentially. This architecture improves common-  
mode noise immunity and even-order harmonic rejection. A small resistor (5 Ω to 10 Ω) in series with each input  
pin is recommended to damp out ringing caused by package parasitics, as shown in Figure 136.  
72  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
Typical Application (continued)  
9.2.3 Application Curves  
Figure 137 and Figure 138 show the typical performance at 170 MHz and 230 MHz, respectively.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
62.5  
125  
187.5  
250  
312.5  
D103  
0
62.5  
125  
187.5  
250  
312.5  
D104  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 71 dBFS, SINAD = 70.9 dBFS,  
SNR = 70.4 dBFS, SINAD = 69.9 dBFS,  
SFDR = 85 dBc, THD = 84 dBc, IL spur = 87 dBc,  
non HD2, HD3 spur = 93 dBc  
IL spur = 89 dBc, SFDR = 80 dBc, THD = 79 dBc,  
non HD2, HD3 spur = 91 dBc  
Figure 137. FFT for 170-MHz Input Signal  
Figure 138. FFT for 230-MHz Input Signal  
10 Power Supply Recommendations  
The device requires a 1.9-V nominal supply for DVDD, a 1.9-V nominal supply for AVDD, and a 3.0-V nominal  
supply for AVDD3V. There is no specific sequence for power-supply requirements during device power-up.  
AVDD, DVDD, and AVDD3V can power-up in any order.  
11 Layout  
11.1 Layout Guidelines  
The device evaluation module (EVM) layout can be used as a reference layout to obtain the best performance. A  
layout diagram of the EVM top layer is provided in Figure 139. The ADS54J42EVM User's Guide (SLAU674),  
provides a complete layout of the EVM. Some important points to remember during board layout are:  
Analog inputs are located on opposite sides of the device pinout to ensure minimum crosstalk on the package  
level. To minimize crosstalk onboard, the analog inputs must exit the pinout in opposite directions, as  
illustrated in the reference layout of Figure 139 as much as possible.  
In the device pinout, the sampling clock is located on a side perpendicular to the analog inputs in order to  
minimize coupling between them. This configuration is also maintained on the reference layout of Figure 139  
as much as possible.  
Keep digital outputs away from the analog inputs. When these digital outputs exit the pinout, the digital output  
traces must not be kept parallel to the analog input traces because this configuration can result in coupling  
from the digital outputs to the analog inputs and degrade performance. All digital output traces to the receiver  
[such as a field-programmable gate arrays (FPGAs) or application-specific integrated circuits (ASICs)] must  
be matched in length to avoid skew among outputs.  
At each power-supply pin (AVDD, DVDD, or AVDDD3V), keep a 0.1-µF decoupling capacitor close to the  
device. A separate decoupling capacitor group consisting of a parallel combination of 10-µF, 1-µF, and 0.1-µF  
capacitors can be kept close to the supply source.  
Copyright © 2016, Texas Instruments Incorporated  
73  
 
ADS54J42  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
11.2 Layout Example  
Figure 139. ADS54J42EVM Layout  
74  
版权 © 2016, Texas Instruments Incorporated  
ADS54J42  
www.ti.com.cn  
ZHCSEP7A FEBRUARY 2016REVISED MARCH 2016  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
ADS54J60 数据表》,SBAS706  
ADS54J40 数据表》,SBAS714  
ADS54J66 数据表》,SBAS745  
ADS54J69 数据表》,SBAS713  
ADS54J42EVM 用户指南》,SLAU674  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
75  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS54J42IRMP  
ADS54J42IRMPT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RMP  
RMP  
72  
72  
168  
250  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
AZ54J42  
AZ54J42  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
ADS54J42IRMP  
RMP  
VQFNP  
72  
168  
8 X 21  
150  
315 135.9 7620 14.65  
11  
11.95  
Pack Materials-Page 1  
PACKAGE OUTLINE  
RMP0072A  
VQFN - 0.9 mm max height  
SCALE 1.700  
VQFN  
10.1  
9.9  
A
B
PIN 1 ID  
10.1  
9.9  
0.9 MAX  
0.05  
0.00  
C
SEATING PLANE  
0.08 C  
(0.2)  
4X (45 X0.42)  
19  
36  
18  
37  
SYMM  
4X  
8.5  
8.5 0.1  
PIN 1 ID  
(R0.2)  
1
54  
0.30  
0.18  
72X  
72  
55  
68X 0.5  
SYMM  
0.5  
0.3  
0.1  
C B  
A
72X  
0.05  
C
4221047/B 02/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RMP0072A  
VQFN - 0.9 mm max height  
VQFN  
(
8.5)  
SYMM  
72X (0.6)  
SEE DETAILS  
55  
72  
1
54  
72X (0.24)  
(0.25) TYP  
SYMM  
(9.8)  
(1.315) TYP  
68X (0.5)  
(
0.2) TYP  
VIA  
37  
18  
19  
36  
(1.315) TYP  
(9.8)  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221047/B 02/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see QFN/SON PCB application report  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RMP0072A  
VQFN - 0.9 mm max height  
VQFN  
(9.8)  
72X (0.6)  
(1.315) TYP  
72  
55  
1
54  
72X (0.24)  
(1.315)  
TYP  
(0.25) TYP  
SYMM  
(9.8)  
(1.315)  
TYP  
68X (0.5)  
METAL  
TYP  
37  
18  
(
0.2) TYP  
VIA  
19  
36  
36X ( 1.115)  
(1.315) TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
62% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
4221047/B 02/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ADS54J42IRMP

双通道、14 位、625MSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J42IRMPT

双通道、14 位、625MSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J54

四通道、14 位、500MSPS 模数转换器 (ADC)
TI

ADS54J54IRGCR

四通道、14 位、500MSPS 模数转换器 (ADC) | RGC | 64 | -40 to 85
TI

ADS54J54IRGCT

四通道、14 位、500MSPS 模数转换器 (ADC) | RGC | 64 | -40 to 85
TI

ADS54J60

双通道、16 位、1.0GSPS 模数转换器 (ADC)
TI

ADS54J60IRMP

双通道、16 位、1.0GSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J60IRMPT

双通道、16 位、1.0GSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J64

四通道 14 位 1GSPS 2 倍过采样模数转换器 (ADC)
TI

ADS54J64IRMP

四通道 14 位 1GSPS 2 倍过采样模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J64IRMPT

四通道 14 位 1GSPS 2 倍过采样模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J66

四通道、14 位、500MSPS 模数转换器 (ADC)
TI