ADS54J60 [TI]

双通道、16 位、1.0GSPS 模数转换器 (ADC);
ADS54J60
型号: ADS54J60
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双通道、16 位、1.0GSPS 模数转换器 (ADC)

转换器 模数转换器
文件: 总96页 (文件大小:5036K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
ADS54J60 双通道 16 1.0GSPS 模数转换器  
1 特性  
3 说明  
1
16 位分辨率、双通道、1GSPS ADC  
ADS54J60 是一款低功耗、高带宽 16 位、1.0GSPS  
双通道模数转换器 (ADC)。该器件经设计具有高信噪  
(SNR),可提供 -159dBFS/Hz 的噪底,从而 协助应  
用在宽瞬时带宽内 实现最高动态范围。该器件支持  
JESD204B 串行接口,数据传输速率高达 10Gbps,每  
ADC 可支持 2 4 条通道。已缓冲模拟输入在大  
大减少采样保持毛刺脉冲能量的同时,在宽频率范围内  
提供统一的输入阻抗。可选择将每个 ADC 通道连接至  
数字下变频器 (DDC) 模块。ADS54J60 以超低功耗在  
宽输入频率范围内提供出色的无杂散动态范围  
(SFDR)。  
本底噪声:–159dBFS/Hz  
频谱性能(fIN = 170MHz–1dBFS):  
信噪比 (SNR)70dBFS  
噪声频谱密度 (NSD)–157dBFS/Hz  
SFDR86dBc(包括交错音调)  
SFDR89dBc(不包括 HD2HD3 和交错音  
调)  
频谱性能(fIN = 350MHz–1dBFS):  
SNR67.5dBFS  
NSD–154.5dBFS/Hz  
SFDR75dBc  
JESD204B 接口减少了接口线路数,从而实现高系统  
集成度。内部锁相环 (PLL) 会将 ADC 采样时钟加倍,  
以获得串行化各通道的 16 位数据时所使用的位时钟。  
SFDR85dBc(不包括 HD2HD3 和交错音  
调)  
通道隔离:fIN = 170MHz 时为 100dBc  
输入满标度:1.9VPP  
器件信息  
器件型号  
ADS54J60  
封装  
封装尺寸(标称值)  
输入带宽 (3dB)1.2GHz  
片上抖动  
VQFNP (72)  
10.00mm x 10.00mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
集成宽带 DDC 块  
支持子类 1 JESD204B 接口:  
10.0Gbps 时每个 ADC 具有 2 条信道  
5.0Gbps 时每个 ADC 具有 4 条信道  
支持多芯片同步  
170MHz 输入信号的 FFT  
0
功耗:1GSPS 时为 1.35W/通道  
SNR = 70 dBFS  
SFDR = 86 dBc  
Non HD2,HD3 = 89 dBc  
封装:72 引脚 VQFNP (10mm × 10mm)  
-20  
2 应用  
-40  
-60  
雷达和天线阵列  
无线宽带  
电缆 CMTSDOCSIS 3.1 接收器  
通信测试设备  
-80  
-100  
-120  
微波接收器  
软件定义无线电 (SDR)  
数字转换器  
0
100  
200  
300  
400  
500  
Input Frequency (MHz)  
D000  
医疗成像和诊断  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS706  
 
 
 
 
 
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 26  
8.4 Device Functional Modes........................................ 34  
8.5 Register Maps......................................................... 45  
Application and Implementation ........................ 74  
9.1 Application Information............................................ 74  
9.2 Typical Application .................................................. 83  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 5  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information.................................................. 8  
7.5 Electrical Characteristics........................................... 8  
7.6 AC Characteristics .................................................... 9  
7.7 Digital Characteristics ............................................. 12  
7.8 Timing Requirements.............................................. 13  
7.9 Typical Characteristics............................................ 15  
7.10 Typical Characteristics: Contour ........................... 24  
Detailed Description ............................................ 25  
8.1 Overview ................................................................. 25  
8.2 Functional Block Diagram ....................................... 25  
9
10 Power Supply Recommendations ..................... 85  
10.1 Power Sequencing and Initialization..................... 86  
11 Layout................................................................... 87  
11.1 Layout Guidelines ................................................. 87  
11.2 Layout Example .................................................... 88  
12 器件和文档支持 ..................................................... 89  
12.1 文档支持................................................................ 89  
12.2 接收文档更新通知 ................................................. 89  
12.3 社区资源................................................................ 89  
12.4 ....................................................................... 89  
12.5 静电放电警告......................................................... 89  
12.6 术语表 ................................................................... 89  
13 机械、封装和可订购信息....................................... 89  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (January 2017) to Revision D  
Page  
已更改 170MHz 输入信号的 FFT ....................................................................................................................................... 1  
Changed the description of the CLKINM, CLKINP, SYSREFM, SYSREFP, and PDN pins in Pin Functions table .............. 6  
Changed typical values across parameters in AC Characteristics table................................................................................ 9  
Changed value of AIN from –1 dBFS to –3 dBFS in 470 MHz test condition across all parameters in AC  
Characteristics table ............................................................................................................................................................... 9  
Added ENOB parameter to AC Characteristics table .......................................................................................................... 11  
Changed the first footnote in Timing Characteristics table................................................................................................... 13  
Changed the typical value of FOVR latency from 18 + 4 ns to 18 in Timing Characteristics table ..................................... 13  
Changed parameter name from tPD to tPDI in Timing Characteristics table .......................................................................... 13  
Changed FFT for 170-MHz Input Signal figure .................................................................................................................... 15  
Changed FFT for 470-MHz Input Signal at –3 dBFS figure, title, and conditions ................................................................ 16  
Changed conditions of FFT for 720-MHz Input Signal at –6 dBFS figure............................................................................ 16  
Changed Spurious-Free Dynamic Range vs Input Frequency figure................................................................................... 17  
Changed DDC Block figure .................................................................................................................................................. 27  
Deleted register address 53 from Register Address for Power-Down Modes table............................................................. 33  
Added last sentence to Step 4 in Serial Register Readout: Analog Bank section ............................................................... 36  
Added last sentence to Step 4 in Serial Register Readout: JESD Bank section ................................................................ 37  
Added SDOUT Timing Diagram figure ................................................................................................................................. 38  
Deleted unrelated patterns in in JESD204B Test Patterns section...................................................................................... 40  
Changed Serial Interface Registers figure............................................................................................................................ 45  
Added register addresses 1h and 2h and their descriptions to GENERAL REGISTERS in Register Map section............. 46  
Changed the name of MASTER PAGE (80h) to MASTER PAGE (ANALOG BANK PAGE SEL= 80h in Register Map  
table...................................................................................................................................................................................... 46  
Changed register 53h and 54h, and their descriptions to MASTER PAGE (ANALOG BANK PAGE SEL = 80h) in  
2
版权 © 2015–2019, Texas Instruments Incorporated  
 
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
修订历史记录 (接下页)  
Register Map section............................................................................................................................................................ 46  
Changed the name of ADC PAGE (0Fh) to ADC PAGE (ANALOG BANK PAGE SEL= 0Fh) in Register Map table......... 46  
Changed the name of MAIN DIGITAL PAGE (6800h) to MAIN DIGITAL PAGE (JESD BANK PAGE SEL=6800h) in  
Register Map table ............................................................................................................................................................... 46  
Changed bit 5, register 4E of MAIN DIGITAL PAGE (JESD BANK PAGE SEL = 6800h) from 0 to IMPROVE IL  
PERF ................................................................................................................................................................................... 46  
Changed the name of JESD DIGITAL PAGE (6900h) to JESD DIGITAL PAGE (JESD BANK PAGE SEL=6900h) in  
Register Map table ............................................................................................................................................................... 47  
Changed the name of JESD ANALOG PAGE (6A00h) to JESD ANALOG PAGE (JESD BANK PAGE SEL=6A00h)  
in Register Map table............................................................................................................................................................ 47  
Changed bit 1, register 12 of JESD ANALOG PAGE (6A00h) from 0 to ALWAYS WRITE 1 ............................................. 47  
Changed bits 5 and 3, register 17 of JESD ANALOG PAGE (JESD BANK PAGE SEL = 6A00h) from 0 to LANE  
PDN 1 and from 0 to LANE PDN 0 respectively .................................................................................................................. 47  
Added OFFSET READ Page and OFFSET LOAD Page registers to Register Map table................................................... 47  
Added ADS54J60 Access Type Codes table, deleted legends from Register Descriptions section ................................... 49  
Added register 1h and 2h to Register Descriptions section ................................................................................................ 50  
Changed description of Registers 3h and 4h (address = 3h and 4h) in General Registers Page....................................... 51  
Changed description of bit 0 in Register 4Fh (address = 4Fh), Master Page (080h) .......................................................... 55  
Changed the description of registers 53h and 54h .............................................................................................................. 56  
Changed 9.5 dB to 12 dB in description of bits 6-0 in Register 44h (address = 44h), Main Digital Page (6800h).............. 59  
Changed bit 5 from 0 the IMPROVE IL PERF and changed Register 4Eh Field Descriptions table in Register 4Eh  
(address = 4Eh), Main Digital Page (6800h) ........................................................................................................................ 61  
Changed bit 1 from 0 to ALWAYS WRITE 1 in Register 12h (address = 12h), JESD Analog Page (6A00h) ..................... 68  
Changed bit 1 from ALWAYS WRITE 1 to 0 in register 15h bit register ............................................................................. 69  
Added x (where x = 0, 2, or 3) to bits 7-2 in Register 13h-15h Field Descriptions table of Registers 13h-15h  
(address = 13h-15h), JESD Analog Page (6A00h) .............................................................................................................. 69  
Changed bit 6 from W to R/W, bit 5 from 0 to LANE PDN 1 and from W to R/W, and changed bit 3 from 0 to LANE  
PDN 0 and from W to R/W in Register 17h bit register table of Register 17h (address = 17h), JESD Analog Page  
(6A00h)................................................................................................................................................................................. 70  
Changed bits 5-0 of Register 17h Field Descriptions table in Register 17h (address = 17h), JESD Analog Page  
(6A00h)................................................................................................................................................................................. 70  
Added Offset Read Page Register and Offset Load Page Register sections to Register Descriptions section .................. 72  
Added DC Offset Correction Block in the ADS54J60 section .............................................................................................. 78  
Changed ±512 codes to ±1024 codes in DC Offset Correction Block in the ADS54J60 section......................................... 78  
Added Idle Channel Histogram section ................................................................................................................................ 82  
Added transformer TC1-1-13M+ to Transformer-Coupled Circuits section.......................................................................... 84  
Added note to Layout Guidelines section............................................................................................................................. 87  
Changes from Revision B (August 2015) to Revision C  
Page  
已更改 频谱性能特性要点的 最后一个 子要点中的 SFDR .................................................................................................. 1  
已更改 器件信息.................................................................................................................................................................. 1  
Added CDM row to ESD Ratings table................................................................................................................................... 7  
Changed the minimum value for the input clock frequency in the Recommended Operating Conditions table ................... 7  
Added minimum value to the ADC sampling rate parameter in the Electrical Characteristics table...................................... 8  
Added 720 -MHz test condition rows to SNR, NSD, SINAD, SFDR, HD2, HD3, Non HD2, HD3, THD, and SFDR_IL  
parameters of AC Characteristics table.................................................................................................................................. 9  
Changed typical specification of SFDR parameter in AC Characteristics table................................................................... 10  
版权 © 2015–2019, Texas Instruments Incorporated  
3
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
Changed Sample Timing, Aperture jitter parameter typical specification in Timing Characteristics section........................ 13  
Added the FOVR latency parameter to the Timing Characteristics table............................................................................. 13  
Added FFT for 720-MHz Input Signal at –6 dBFS figure ..................................................................................................... 16  
Added Typical Characteristics: Contour section................................................................................................................... 24  
Changed Overview section .................................................................................................................................................. 25  
Changed Functional Block Diagram section: changed Control and SPI block and added dashed outline to FOVR traces 25  
Added Figure 60 and text reference to Analog Inputs section ............................................................................................. 27  
Changed SYSREF Signal section: changed Table 4 and added last paragraph................................................................. 30  
Added SYSREF Not Present (Subclass 0, 2) section .......................................................................................................... 31  
Changed the number of clock cycles in the Fast OVR section ............................................................................................ 32  
Changed Table 10 and Table 11.......................................................................................................................................... 41  
Changed Table 12 and Table 13.......................................................................................................................................... 42  
Deleted Lane Enable with Decimation subsection .............................................................................................................. 42  
Added the Program Summary of DDC Modes and JESD Link Configuration table............................................................. 43  
Added Figure 84 to Register Maps section .......................................................................................................................... 45  
Changed Table 15 ................................................................................................................................................................ 46  
Deleted register 39h, 3Ah, and 56h ..................................................................................................................................... 46  
Changed Example Register Writes section.......................................................................................................................... 49  
Updated register descriptions .............................................................................................................................................. 50  
Added Table 54 .................................................................................................................................................................... 64  
Deleted row for bit 1 in Table 64 as bit 1 is included in last table row ................................................................................ 69  
Changed Table 75 ................................................................................................................................................................ 75  
Changed internal aperture jitter value in SNR and Clock Jitter section ............................................................................... 78  
Changed Figure 141............................................................................................................................................................. 78  
Changed Power Supply Recommendations section ........................................................................................................... 85  
Added the Power Sequencing and Initialization section....................................................................................................... 86  
已添加 文档支持 接收文档更新通知 部分.......................................................................................................................... 89  
Changes from Revision A (May 2015) to Revision B  
Page  
已投入量产.............................................................................................................................................................................. 1  
4
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
5 Device Comparison Table  
PART NUMBER  
ADS54J20  
ADS54J42  
ADS54J40  
ADS54J60  
ADS54J66  
ADS54J69  
SPEED GRADE (MSPS)  
RESOLUTION (Bits)  
CHANNEL  
1000  
625  
12  
14  
14  
16  
14  
16  
2
2
2
2
4
2
1000  
1000  
500  
500  
6 Pin Configuration and Functions  
RMP Package  
72-Pin VQFNP  
Top View  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
1
2
54  
DB3M  
DB3P  
DA3M  
DA3P  
DGND  
IOVDD  
PDN  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
3
DGND  
IOVDD  
SDIN  
4
5
6
SCLK  
RES  
7
SEN  
RESET  
DVDD  
AVDD  
AVDD3V  
AVDD  
AVDD  
INAP  
8
DVDD  
AVDD  
AVDD3V  
SDOUT  
AVDD  
INBP  
9
GND Pad  
(Back Side)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
INBM  
INAM  
AVDD  
AVDD3V  
AVDD  
AGND  
AVDD  
AVDD3V  
AVDD  
AGND  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Copyright © 2015–2019, Texas Instruments Incorporated  
5
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
CLOCK, SYSREF  
Negative differential clock input for the ADC. The device has an internal 100-Ω termination  
resistor between the CLKINP and CLKINM pins.  
CLKINM  
CLKINP  
28  
27  
I
I
Positive differential clock input for the ADC. The device has an internal 100-Ω termination  
resistor between the CLKINP and CLKINM pins.  
SYSREFM  
34  
33  
I
I
Negative external SYSREF input. Connect this pin to GND if not used.  
Positive external SYSREF input. Connect this pin to 1.8 V if not used.  
SYSREFP  
CONTROL, SERIAL  
Power down, active low pin. Can be configured via an SPI register setting.  
Can be configured to fast overrange output for channel A via the SPI.  
PDN  
50  
I/O  
RESET  
SCLK  
SDIN  
48  
6
I
I
I
Hardware reset; active high. This pin has an internal 20-kΩ pulldown resistor.  
Serial interface clock input  
5
Serial interface data input  
Serial interface data output.  
Can be configured to fast overrange output for channel B via the SPI.  
SDOUT  
11  
7
O
I
SEN  
Serial interface enable  
DATA INTERFACE  
DA0M  
DA1M  
DA2M  
DA3M  
DA0P  
62  
59  
56  
54  
61  
58  
55  
53  
65  
68  
71  
1
O
O
O
JESD204B serial data negative outputs for channel A  
DA1P  
JESD204B serial data positive outputs for channel A  
JESD204B serial data negative outputs for channel B  
DA2P  
DA3P  
DB0M  
DB1M  
DB2M  
DB3M  
DB0P  
66  
69  
72  
2
DB1P  
O
I
JESD204B serial data positive outputs for channel B  
Synchronization input for JESD204B port  
DB2P  
DB3P  
SYNC  
INPUT, COMMON MODE  
INAM  
63  
41  
42  
14  
13  
I
I
I
I
Differential analog negative input for channel A  
Differential analog positive input for channel A  
Differential analog negative input for channel B  
Differential analog positive input for channel B  
INAP  
INBM  
INBP  
Common-mode voltage, 2.1 V.  
VCM  
22  
O
Note that analog inputs are internally biased to this pin through 600 Ω (effective), no external  
connection from the VCM pin to the INxP or INxM pin is required.  
POWER SUPPLY  
AGND  
AVDD  
18, 23, 26, 29, 32, 36, 37  
I
I
Analog ground  
9, 12, 15, 17, 25, 30, 35, 38,  
40, 43, 44, 46  
Analog 1.9-V power supply  
AVDD3V  
DGND  
DVDD  
IOVDD  
NC, RES  
NC  
10, 16, 24, 31, 39, 45  
3, 52, 60, 67  
8, 47  
I
I
I
I
Analog 3.0-V power supply for the analog buffer  
Digital ground  
Digital 1.9-V power supply  
4, 51, 57, 64, 70  
Digital 1.15-V power supply for the JESD204B transmitter  
19-21  
49  
I
Unused pins, do not connect  
RES  
Reserved pin. Connect to DGND.  
6
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.2  
–0.3  
–0.3  
–0.3  
–0.3  
–0.2  
–65  
MAX  
UNIT  
V
AVDD3V  
3.6  
AVDD  
Supply voltage range  
DVDD  
2.1  
2.1  
IOVDD  
Voltage between AGND and DGND  
INAP, INBP, INAM, INBM  
1.4  
0.3  
3
V
CLKINP, CLKINM  
Voltage applied to input pins  
AVDD + 0.3  
AVDD + 0.3  
2.1  
V
SYSREFP, SYSREFM  
SCLK, SEN, SDIN, RESET, SYNC, PDN  
Storage temperature, Tstg  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V HBM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
2.85  
1.8  
NOM  
3.0  
MAX  
3.6  
UNIT  
AVDD3V  
AVDD  
1.9  
2.0  
Supply voltage range  
Analog inputs  
V
DVDD  
1.7  
1.9  
2.0  
IOVDD  
1.1  
1.15  
1.9  
1.2  
Differential input voltage range  
Input common-mode voltage  
VPP  
V
2.0  
Maximum analog input frequency for 1.9-VPP input amplitude(3)(4)  
Input clock frequency, device clock frequency  
Sine wave, ac-coupled  
400  
MHz  
MHz  
250(5)  
0.75  
0.8  
1000  
1.5  
1.6  
Input clock amplitude differential  
Clock inputs  
Temperature  
LVPECL, ac-coupled  
VPP  
(VCLKP – VCLKM  
)
LVDS, ac-coupled  
0.7  
Input device clock duty cycle  
Operating free-air, TA  
45%  
–40  
50%  
55%  
85  
ºC  
Operating junction, TJ  
105(6)  
125  
(1) SYSREF must be applied for the device to initialize; see the SYSREF Signal section for details.  
(2) After power-up, always use a hardware reset to reset the device for the first time; see Table 75 for details.  
(3) Operating 0.5 dB below the maximum-supported amplitude is recommended to accommodate gain mismatch in interleaving ADCs.  
(4) At high frequencies, the maximum supported input amplitude reduces; see Figure 37 for details.  
(5) See Table 10.  
(6) Prolonged use above the nominal junction temperature can increase the device failure-in-time (FIT) rate.  
Copyright © 2015–2019, Texas Instruments Incorporated  
7
 
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
7.4 Thermal Information  
ADS54J60  
THERMAL METRIC(1)  
RMP (VQFNP)  
UNIT  
72 PINS  
22.3  
5.1  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
2.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
2.3  
RθJC(bot)  
0.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 1.0 GSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GENERAL  
ADC sampling rate  
Resolution  
250  
16  
1000 MSPS  
Bits  
POWER SUPPLIES  
AVDD3V  
AVDD  
DVDD  
IOVDD  
IAVDD3V  
IAVDD  
3.0-V analog supply  
2.85  
1.8  
3.0  
1.9  
3.6  
2.0  
V
V
1.9-V analog supply  
1.9-V digital supply  
1.7  
1.9  
2.0  
V
1.15-V SERDES supply  
3.0-V analog supply current  
1.9-V analog supply current  
1.9-V digital supply current  
1.15-V SERDES supply current  
Total power dissipation  
1.1  
1.15  
334  
359  
197  
566  
2.71  
211  
618  
2.80  
1.2  
V
VIN = full-scale on both channels  
VIN = full-scale on both channels  
Eight lanes active (LMFS = 8224)  
Eight lanes active (LMFS = 8224)  
Eight lanes active (LMFS = 8224)  
Four lanes active (LMFS = 4244)  
Four lanes active (LMFS = 4244)  
Four lanes active (LMFS = 4244)  
360  
510  
260  
920  
3.1  
mA  
mA  
mA  
mA  
W
IDVDD  
IIOVDD  
Pdis  
IDVDD  
1.9-V digital supply current  
1.15-V SERDES supply current  
Total power dissipation  
mA  
mA  
W
IIOVDD  
Pdis  
Four lanes active (LMFS = 4222),  
2X decimation  
IDVDD  
IIOVDD  
Pdis  
1.9-V digital supply current  
1.15-V SERDES supply current  
Total power dissipation  
197  
593  
2.74  
176  
562  
mA  
mA  
W
Four lanes active (LMFS = 4222),  
2X decimation  
Four lanes active (LMFS = 4222),  
2X decimation  
Two lanes active (LMFS = 2221),  
4X decimation  
IDVDD  
IIOVDD  
1.9-V digital supply current  
1.15-V SERDES supply current  
mA  
mA  
Two lanes active (LMFS = 2221),  
4X decimation  
Two lanes active (LMFS = 2221),  
4X decimation  
(1)  
Pdis  
Total power dissipation  
2.66  
139  
W
Global power-down power dissipation  
315  
mW  
(1) See the Power-Down Mode section for details.  
8
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
Electrical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 1.0 GSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
PARAMETER  
ANALOG INPUTS (INAP, INAM, INBP, INBM)  
Differential input full-scale voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1.9  
2.0  
0.6  
4.7  
VPP  
V
VIC  
RIN  
CIN  
Common-mode input voltage  
Differential input resistance  
Differential input capacitance  
At 170-MHz input frequency  
At 170-MHz input frequency  
kΩ  
pF  
50-Ω source driving ADC inputs  
terminated with 50-Ω  
Analog input bandwidth (3 dB)  
1.2  
GHz  
CLOCK INPUT (CLKINP, CLKINM)  
CLKINP and CLKINM are  
connected to internal biasing  
voltage through 400-Ω  
Internal clock biasing  
1.15  
V
7.6 AC Characteristics  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 1.0 GSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 720 MHz, AIN = –6 dBFS  
MIN  
TYP  
70.9  
70.6  
70  
MAX  
UNIT  
67.2  
69.2  
68.7  
68.1  
67.1  
67.6  
66  
SNR  
Signal-to-noise ratio  
dBFS  
fIN = 720 MHz, AIN = –6 dBFS,  
gain = 5 dB  
64.4  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 720 MHz, AIN = –6 dBFS  
157.9  
157.6  
157  
154.2  
156.2  
155.7  
155.1  
154.1  
154.6  
153  
NSD  
Noise spectral density  
dBFS/Hz  
fIN = 720 MHz, AIN = –6 dBFS,  
gain = 5 dB  
151.4  
Copyright © 2015–2019, Texas Instruments Incorporated  
9
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
AC Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 1.0 GSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 720 MHz, AIN = –6 dBFS  
MIN  
TYP  
70.7  
70.4  
69.8  
69.1  
68.3  
67.6  
66  
MAX  
UNIT  
67  
SINAD  
SFDR  
HD2  
Signal-to-noise and distortion ratio  
dBFS  
66.8  
65.2  
fIN = 720 MHz, AIN = –6 dBFS,  
gain = 5 dB  
64.3  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 720 MHz, AIN = –6 dBFS  
85  
84  
88  
86  
81  
78  
73  
72  
68  
78  
79  
82  
Spurious-free dynamic range  
(excluding IL spurs)  
dBc  
dBc  
dBc  
fIN = 720 MHz, AIN = –6 dBFS,  
gain = 5 dB  
72  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 720 MHz, AIN = –6 dBFS  
85  
92  
95  
86  
81  
81  
76  
72  
68  
Second-order harmonic distortion  
fIN = 720 MHz, AIN = –6 dBFS,  
gain = 5 dB  
72  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 720 MHz, AIN = –6 dBFS  
87  
84  
89  
92  
82  
78  
73  
70  
75  
HD3  
Third-order harmonic distortion  
fIN = 720 MHz, AIN = –6 dBFS,  
gain = 5 dB  
84  
10  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
AC Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 1.0 GSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 720 MHz, AIN = –6 dBFS  
MIN  
TYP  
94  
97  
93  
95  
95  
91  
85  
90  
90  
MAX  
UNIT  
79  
Non HD2, Spurious-free dynamic range  
dBFS  
HD3  
(excluding HD2, HD3, and IL spur)  
fIN = 720 MHz, AIN = –6 dBFS,  
gain = 5 dB  
96  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 720 MHz, AIN = –6 dBFS  
83  
83  
87  
84  
78  
76  
71  
71  
67  
74  
THD  
Total harmonic distortion  
dBc  
Bits  
dBc  
fIN = 720 MHz, AIN = –6 dBFS,  
gain = 5 dB  
71  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 720 MHz, AIN = –6 dBFS  
11.5  
11.4  
11.3  
11.2  
11.0  
10.9  
10.7  
10.8  
10.5  
ENOB  
Effective number of bits  
fIN = 720 MHz, AIN = –6 dBFS,  
gain = 5 dB  
10.4  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 100 MHz, AIN = –1 dBFS  
fIN = 170 MHz, AIN = –1 dBFS  
fIN = 230 MHz, AIN = –1 dBFS  
fIN = 270 MHz, AIN = –1 dBFS  
fIN = 300 MHz, AIN = –1 dBFS  
fIN = 370 MHz, AIN = –1 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 720 MHz, AIN = –6 dBFS  
88  
90  
87  
85  
84  
82  
82  
79  
79  
69  
SFDR_IL  
Interleaving spur  
fIN = 720 MHz, AIN = –6 dBFS,  
gain = 5 dB  
75  
Copyright © 2015–2019, Texas Instruments Incorporated  
11  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
AC Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 1.0 GSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fIN1 = 185 MHz, fIN2 = 190 MHz,  
AIN = –7 dBFS  
–88  
Two-tone, third-order  
intermodulation distortion  
fIN1 = 365 MHz, fIN2 = 370 MHz,  
AIN = –7 dBFS  
IMD3  
–79  
–75  
100  
dBFS  
fIN1 = 465 MHz, fIN2 = 470 MHz,  
AIN = –7 dBFS  
Crosstalk isolation between channel Full-scale, 170-MHz signal on  
A and B aggressor; idle channel is victim  
dB  
7.7 Digital Characteristics  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 1.0 GSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (RESET, SCLK, SEN, SDIN, SYNC, PDN)(1)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
All digital inputs support 1.2-V and 1.8-V logic levels  
All digital inputs support 1.2-V and 1.8-V logic levels  
SEN  
0.8  
V
V
0.4  
0
50  
50  
0
IIH  
High-level input current  
Low-level input current  
µA  
µA  
RESET, SCLK, SDIN, PDN, SYNC  
SEN  
IIL  
RESET, SCLK, SDIN, PDN, SYNC  
DIGITAL INPUTS (SYSREFP, SYSREFM)  
VD  
Differential input voltage  
0.35  
0.45  
1.3  
1.4  
V
V
V(CM_DIG)  
Common-mode voltage for SYSREF  
DIGITAL OUTPUTS (SDOUT, PDN(2)  
)
DVDD –  
0.1  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
DVDD  
V
V
0.1  
DIGITAL OUTPUTS (JESD204B Interface: DxP, DxM)(3)  
VOD  
VOC  
Output differential voltage  
With default swing setting  
700  
450  
mVPP  
mV  
Output common-mode voltage  
Transmitter pins shorted to any voltage between  
–0.25 V and 1.45 V  
Transmitter short-circuit current  
Single-ended output impedance  
Output capacitance  
–100  
100  
mA  
Ω
zos  
50  
2
Output capacitance inside the device,  
from either output to ground  
pF  
(1) The RESET, SCLK, SDIN, and PDN pins have a 20-kΩ (typical) internal pulldown resistor to ground, and the SEN pin has a 20-kΩ  
(typical) pullup resistor to IOVDD.  
(2) When functioning as an OVR pin for channel B.  
(3) 100-Ω differential termination.  
12  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
7.8 Timing Requirements  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 1.0 GSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, and –1-dBFS differential input (unless  
otherwise noted)  
MIN  
TYP  
MAX  
UNITS  
SAMPLE TIMING  
Aperture delay  
0.75  
1.6  
ns  
ps  
Aperture delay matching between two channels on the same device  
Aperture delay matching between two devices at the same temperature and supply voltage  
Aperture jitter  
±70  
±270  
120  
ps  
fS rms  
WAKE-UP TIMING  
Wake-up time to valid data after coming out of global power-down  
150  
µs  
(1)  
LATENCY  
Input  
clock  
cycles  
Data latency: ADC sample to digital output  
OVR latency: ADC sample to OVR bit  
134  
62  
Input  
clock  
cycles  
Input  
clock  
cycles  
FOVR latency: ADC sample to FOVR signal on pin  
18  
4
tPDI  
Propagation delay: logic gates and output buffers delay (does not change with fS)  
ns  
SYSREF TIMING  
tSU_SYSREF Setup time for SYSREF, referenced to the input clock falling edge  
300  
100  
900  
ps  
ps  
tH_SYSREF  
Hold time for SYSREF, referenced to the input clock falling edge  
JESD OUTPUT INTERFACE TIMING CHARACTERISTICS  
Unit interval  
100  
2.5  
400  
10  
ps  
Gbps  
ps  
Serial output data rate  
Total jitter for BER of 1E-15 and lane rate = 10 Gbps  
Random jitter for BER of 1E-15 and lane rate = 10 Gbps  
Deterministic jitter for BER of 1E-15 and lane rate = 10 Gbps  
26  
0.75  
12  
ps rms  
ps, pk-pk  
Data rise time, data fall time: rise and fall times are measured from 20% to 80%,  
differential output waveform, 2.5 Gbps bit rate 10 Gbps  
tR, tF  
35  
ps  
(1) Overall latency = latency + tPDI  
.
Sample N  
ts_min  
ts_max  
CLKIN  
1.0 GSPS  
SYSREF  
Figure 1. SYSREF Timing  
Copyright © 2015–2019, Texas Instruments Incorporated  
13  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
N+1  
N+2  
N
N+3  
Sample  
tPD  
Data Latency: 134 Clock Cycles  
CLKINM  
CLKINP  
D
20  
D
11  
D
20  
D
11  
D
20  
DA0P, DA0M,  
DB0P, DB0M  
Sample N-1  
Sample N  
Sample N+1  
Sample N+2  
D
10  
D
1
D
10  
D
1
D
10  
DA1P, DA1M,  
DB1P, DB1M  
Sample N-1  
Sample N  
Sample N+1  
Sample N+2  
Figure 2. Sample Timing Requirements Diagram  
14  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
7.9 Typical Characteristics  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 1.0 GSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, and –1-dBFS differential input (unless  
otherwise noted)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D001  
D002  
SNR = 71 dBFS; SFDR = 86 dBc;  
SNR = 70.3 dBFS; SFDR = 90 dBc;  
IL spur = 94 dBc; non HD2, HD3 spur = 89 dBc  
IL spur = 95 dBc; non HD2, HD3 spur = 94 dBc  
Figure 3. FFT for 10-MHz Input Signal  
Figure 4. FFT for 140-MHz Input Signal  
0
0
-20  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D003  
D004  
SNR = 69.8 dBFS; SFDR = 88 dBc;  
SNR = 68.9 dBFS; SFDR = 85 dBc;  
IL spur = 86 dBc; non HD2, HD3 spur = 89 dBc  
IL spur = 85 dBc; non HD2, HD3 spur = 86 dBc  
Figure 5. FFT for 170-MHz Input Signal  
Figure 6. FFT for 230-MHz Input Signal  
0
0
-20  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D005  
D006  
SNR = 68 dBFS; SFDR = 77 dBc;  
SNR = 66.7 dBFS; SFDR = 71 dBc;  
IL spur = 84 dBc; non HD2, HD3 spur = 85 dBc  
IL spur = 87 dBc; non HD2, HD3 spur = 78 dBc  
Figure 7. FFT for 300-MHz Input Signal  
Figure 8. FFT for 370-MHz Input Signal  
Copyright © 2015–2019, Texas Instruments Incorporated  
15  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 1.0 GSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, and –1-dBFS differential input (unless  
otherwise noted)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D058  
D007  
SNR = 66.3 dBFS, SINAD = 65.3 dBFS, THD = 70 dBc,  
IL spur = 84 dBc, SFDR = 73 dBc, non HD2, HD3 spur = 90 dBFS  
SNR = 67.9 dBFS; SFDR = 74 dBc;  
IL spur = 82 dBc; non HD2, HD3 spur = 89 dBc  
Figure 10. FFT for 720-MHz Input Signal at –6 dBFS  
Figure 9. FFT for 470-MHz Input Signal at –3 dBFS  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D008  
D009  
fIN1 = 185 MHz, fIN2 = 190 MHz, each tone at –7 dBFS,  
IMD3 = 88 dBFS  
fIN1 = 185 MHz, fIN2 = 190 MHz, each tone at –36 dBFS,  
IMD3 = 106 dBFS  
Figure 11. FFT for Two-Tone Input Signal (–7 dBFS)  
Figure 12. FFT for Two-Tone Input Signal (–36 dBFS)  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D010  
D011  
fIN1 = 365 MHz, fIN2 = 370 MHz, each tone at –7 dBFS,  
IMD3 = 80 dBFS  
fIN1 = 365 MHz, fIN2 = 370 MHz, each tone at –36 dBFS,  
IMD3 = 105 dBFS  
Figure 13. FFT for Two-Tone Input Signal (–7 dBFS)  
Figure 14. FFT for Two-Tone Input Signal (–36 dBFS)  
16  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 1.0 GSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, and –1-dBFS differential input (unless  
otherwise noted)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D012  
D013  
fIN1 = 465 MHz, fIN2 = 470 MHz, each tone at –7 dBFS,  
IMD3 = 75 dBFS  
fIN1 = 465 MHz, fIN2 = 470 MHz, each tone at –36 dBFS,  
IMD3 = 106 dBFS  
Figure 15. FFT for Two-Tone Input Signal (–7 dBFS)  
Figure 16. FFT for Two-Tone Input Signal (–36 dBFS)  
-82  
-76  
-80  
-84  
-86  
-90  
-88  
-94  
-92  
-98  
-96  
-102  
-106  
-110  
-100  
-104  
-108  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D014  
D015  
fIN1 = 185 MHz, fIN2 = 190 MHz  
fIN1 = 365 MHz, fIN2 = 370 MHz  
Figure 17. Intermodulation Distortion vs  
Input Tone Amplitude  
Figure 18. Intermodulation Distortion vs  
Input Tone Amplitude  
-70  
95  
90  
85  
80  
75  
70  
65  
60  
55  
AIN = -6 dBFS  
AIN = -3 dBFS  
AIN = -1 dBFS  
-74  
-78  
-82  
-86  
-90  
-94  
-98  
-102  
-106  
0
100  
200  
300  
400  
500  
600  
700  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Input Frequency (MHz)  
Each Tone Amplitude (dBFS)  
D043  
D016  
fIN1 = 465 MHz, fIN2 = 470 MHz  
Figure 20. Spurious-Free Dynamic Range vs  
Input Frequency  
Figure 19. Intermodulation Distortion vs  
Input Tone Amplitude  
Copyright © 2015–2019, Texas Instruments Incorporated  
17  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 1.0 GSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, and –1-dBFS differential input (unless  
otherwise noted)  
72  
71  
70  
69  
68  
67  
66  
95  
91  
87  
83  
79  
75  
AIN = -6 dBFS  
AIN = -3 dBFS  
AIN = -1 dBFS  
0
100  
200  
300  
400  
500  
600  
700  
0
40 80 120 160 200 240 280 320 360 400 440 480  
Input Frequency (MHz)  
Input Frequency (MHz)  
D042  
D018  
Figure 22. Signal-to-Noise Ratio vs Input Frequency  
Figure 21. IL Spur vs Input Frequency  
72  
96  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
71.5  
71  
94  
92  
90  
88  
86  
84  
82  
80  
70.5  
70  
69.5  
69  
68.5  
68  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D020  
D021  
fIN = 170 MHz  
fIN = 170 MHz  
Figure 23. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature  
Figure 24. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature  
72  
71  
70  
69  
68  
67  
66  
65  
64  
78  
77  
76  
75  
74  
73  
72  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.95 V  
AVDD = 2 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D022  
D023  
fIN = 350 MHz  
fIN = 350 MHz  
Figure 25. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature  
Figure 26. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature  
18  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 1.0 GSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, and –1-dBFS differential input (unless  
otherwise noted)  
72  
71.2  
70.4  
69.6  
68.8  
68  
94  
92  
90  
88  
86  
84  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D024  
D025  
fIN = 170 MHz  
fIN = 170 MHz  
Figure 27. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature  
Figure 28. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature  
72  
71  
70  
69  
68  
67  
66  
82  
80  
78  
76  
74  
72  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.95 V  
DVDD = 2 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D026  
D027  
fIN = 350 MHz  
fIN = 350 MHz  
Figure 29. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature  
Figure 30. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature  
72  
97  
95  
93  
91  
89  
87  
85  
83  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
71.5  
71  
70.5  
70  
69.5  
69  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D028  
D029  
fIN = 170 MHz  
fIN = 170 MHz  
Figure 31. Signal-to-Noise Ratio vs  
AVDD3V Supply and Temperature  
Figure 32. Spurious-Free Dynamic Range vs  
AVDD3V Supply and Temperature  
Copyright © 2015–2019, Texas Instruments Incorporated  
19  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 1.0 GSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, and –1-dBFS differential input (unless  
otherwise noted)  
72  
71  
70  
69  
68  
67  
66  
65  
82  
80  
78  
76  
74  
72  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
AVDD3V = 2.85 V  
AVDD3V = 3 V  
AVDD3V = 3.1 V  
AVDD3V = 3.2 V  
AVDD3V = 3.3 V  
AVDD3V = 3.4 V  
AVDD3V = 3.5 V  
AVDD3V = 3.6 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D030  
D031  
fIN = 350 MHz  
fIN = 350 MHz  
Figure 33. Signal-to-Noise Ratio vs  
AVDD3V Supply and Temperature  
Figure 34. Spurious-Free Dynamic Range vs  
AVDD3V Supply and Temperature  
110  
105  
100  
95  
85  
80  
75  
70  
65  
60  
55  
Gain = 0 dB  
Gain = 2 dB  
Gain = 4 dB  
Gain = 6 dB  
Gain = 8 dB  
Gain = 10 dB  
Gain = 12 dB  
Gain = 0 dB  
Gain = 2 dB  
Gain = 4 dB  
Gain = 6 dB  
Gain = 8 dB  
Gain = 10 dB  
Gain = 12 dB  
90  
85  
80  
75  
70  
65  
0
80  
160  
240  
320  
400  
480  
0
80  
160  
240  
320  
400  
480  
Input Frequency (MHz)  
Input Frequency (MHz)  
D053  
D054  
Figure 35. Signal-to-Noise Ratio vs  
Gain and Input Frequency  
Figure 36. Spurious-Free Dynamic Range vs  
Gain and Input Frequency  
75  
200  
2
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
0
-2  
73  
71  
69  
67  
65  
160  
120  
80  
-4  
-6  
40  
-8  
-10  
0
0
100 200 300 400 500 600 700 800 900 1000  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Input Frequency (MHz)  
Amplitude (dBFS)  
D046  
D032  
fIN = 170 MHz  
Figure 37. Maximum Supported Amplitude vs Frequency  
Figure 38. Performance vs Input Amplitude  
20  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 1.0 GSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, and –1-dBFS differential input (unless  
otherwise noted)  
76  
74  
72  
70  
68  
66  
110  
100  
90  
75  
73.5  
72  
180  
150  
120  
90  
SNR  
SFDR  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
70.5  
69  
80  
60  
70  
67.5  
30  
66  
0
60  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
0.2  
0.6  
1
1.4  
1.8  
2.2  
Amplitude (dBFS)  
Differential Clock Amplitude (Vpp)  
D033  
D034  
fIN = 350 MHz  
fIN = 170 MHz  
Figure 39. Performance vs Input Amplitude  
Figure 40. Performance vs Sampling Clock Amplitude  
75  
72  
69  
66  
63  
60  
125  
73  
100  
95  
90  
85  
80  
75  
SNR  
SFDR  
SNR  
SFDR  
100  
75  
50  
25  
0
72  
71  
70  
69  
68  
0.2  
0.6  
1
1.4  
1.8  
2.2  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Differential Clock Amplitude (Vpp)  
Input Clock Duty Cycle (%)  
D035  
D036  
fIN = 350 MHz  
fIN = 170 MHz  
Figure 41. Performance vs Sampling Clock Amplitude  
Figure 42. Performance vs Clock Duty Cycle  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
72  
88  
84  
80  
76  
72  
68  
64  
60  
PSRR with 50-mVPP Signal on AVDD  
PSRR with 50-mVPP Signal on AVDD3V  
SNR  
SFDR  
71  
70  
69  
68  
67  
66  
65  
30  
35  
40  
45  
50  
55  
60  
65  
70  
0
50  
100  
150  
200  
250  
300  
Input Clock Duty Cycle (%)  
Frequency of Signal on Supply (MHz)  
D037  
D038  
fIN = 350 MHz  
fIN = 170 MHz  
Figure 43. Performance vs Clock Duty Cycle  
Figure 44. Power-Supply Rejection Ratio vs  
Test Signal Frequency  
Copyright © 2015–2019, Texas Instruments Incorporated  
21  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 1.0 GSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, and –1-dBFS differential input (unless  
otherwise noted)  
0
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-20  
-40  
-60  
-80  
-100  
-120  
0
100  
200  
300  
400  
500  
Input Frequency (MHz)  
D039  
0
50  
100  
150  
200  
250  
300  
fIN = 170 MHz , AIN = –1 dBFS, SINAD = 67 dBFS,  
Frequency of Input Common-Mode Signal (MHz)  
D040  
SFDR = 79 dBc, fPSRR = 5 MHz, APSRR = 25 mVPP  
,
fIN = 170 MHz  
amplitude of fIN – fPSRR = –74 dBFS,  
amplitude of fIN + fPSRR = –76 dBFS  
Figure 46. Common-Mode Rejection Ratio vs  
Test Signal Frequency  
Figure 45. Power-Supply Rejection Ratio FFT for  
Test Signals on the AVDD Supply  
0
-20  
-40  
-60  
-80  
4
3.5  
3
2.5  
2
-100  
1.5  
-120  
0
100  
200  
300  
400  
500  
1
Input Frequency (MHz)  
D041  
500 550 600 650 700 750 800 850 900 950 1000  
fIN = 170 MHz , AIN = –1 dBFS, fCMRR = 5 MHz, ACMRR = 50 mVPP  
,
Sampling Speed (MSPS)  
D042  
SINAD = 69.1 dBFS, SFDR = 86 dBc,  
amplitude of fIN ± fCMRR= –80 dBFS  
Figure 48. Power vs Sampling Speed  
Figure 47. Common-Mode Rejection Ratio FFT  
0
800  
700  
600  
500  
400  
300  
200  
100  
2.78  
2.76  
2.74  
2.72  
2.7  
I DVDD (mA)  
I AVDD (mA)  
I IOVDD (mA)  
I AVDD3 (mA)  
Total Power (W)  
-20  
-40  
-60  
-80  
2.68  
2.66  
2.64  
-100  
-120  
-40  
-15  
10  
35  
60  
85  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Input Frequency (MHz)  
D045  
D047  
SNR = 76.4 dBFS, SFDR = 99 dBc  
Figure 49. Power vs Temperature  
Figure 50. FFT for 60-MHz Input Signal in  
Decimate-by-4 Mode  
22  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
Typical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 1.0 GSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, and –1-dBFS differential input (unless  
otherwise noted)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Input Frequency (MHz)  
Input Frequency (MHz)  
D048  
D049  
SNR = 75.2 dBFS, SFDR = 90 dBc  
SNR = 72.8 dBFS, SFDR = 91 dBc  
Figure 51. FFT for 170-MHz Input Signal in  
Decimate-by-4 Mode  
Figure 52. FFT for 300-MHz Input Signal in  
Decimate-by-4 Mode  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
25  
50  
75  
100  
125  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D050  
D051  
SNR = 69.6 dBFS, SFDR = 84 dBc  
SNR = 71.9 dBFS, SFDR = 89 dBc  
Figure 53. FFT for 450-MHz Input Signal in  
Decimate-by-4 Mode  
Figure 54. FFT for 170-MHz Input Signal in  
Decimate-by-2 Mode  
0
-20  
-40  
-60  
-80  
-100  
-120  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
D052  
SNR = 68.3 dBFS, SFDR = 80 dBc  
Figure 55. FFT for 350-MHz Input Signal in  
Decimate-by-2 Mode  
Copyright © 2015–2019, Texas Instruments Incorporated  
23  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
7.10 Typical Characteristics: Contour  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 1.0 GSPS,  
50% clock duty cycle, AVDD3V = 3.0 V, AVDD = DVDD = 1.9 V, IOVDD = 1.15 V, –1-dBFS differential input, and 0-dB digital  
gain (unless otherwise noted)  
1000  
950  
1000  
950  
66.4  
88  
8484  
88 88  
84  
80  
76  
72  
71.2  
70.4  
69.6  
68.8  
68.0 67.2  
900  
850  
800  
900  
850  
800  
71.2  
70.4  
69.6  
68.8  
68.0  
68.0  
67.2  
92  
88  
88 88 84  
80  
76  
72  
750  
700  
750  
700  
71.2  
150  
70.4  
69.6  
68.8  
350  
67.2  
450  
84  
76  
92 88  
50  
80  
72  
400  
50  
100  
200 250  
Input Frequency (MHz)  
300  
400  
100  
150  
200 300  
Input Frequency (MHz)  
250  
350  
450  
69.6  
65.6  
66.4  
67.2  
68.0  
68.8  
70.4  
71.2  
72.0  
88  
68  
72  
76  
80  
84  
92  
96  
Figure 57. Signal-to-Noise-Ratio  
Figure 56. Spurious Free Dynamic Range  
24  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
8 Detailed Description  
8.1 Overview  
The ADS54J60 is a low-power, wide-bandwidth, 16-bit, 1.0-GSPS, dual-channel, analog-to-digital converter  
(ADC). The ADS54J60 employs four interleaving ADCs for each channel to achieve a noise floor of  
–159 dBFS/Hz. The ADS54J60 uses TI's proprietary interleaving and dither algorithms to achieve a clean  
spectrum with a high spurious-free dynamic range (SFDR). The device also offers various programmable  
decimation filtering options for systems requiring higher signal-to-noise ratio (SNR) and SFDR over a wide range  
of frequencies.  
Analog input buffers isolate the ADC driver from glitch energy generated from sampling process, thereby simplify  
the driving network on-board. The JESD204B interface reduces the number of interface lines with two-lane and  
four-lane options, allowing a high system integration density. The JESD204B interface operates in subclass 1,  
enabling multi-chip synchronization with the SYSREF input.  
8.2 Functional Block Diagram  
DA0P, DA0M,  
DA1P, DA1M  
DDC Block:  
2x, 4x Decimation  
Mixer: fS / 16, fS / 4  
Buffer  
Digital Block  
ADC  
Interleaving  
Correction  
INAP, INAM  
DA2P, DA2M,  
DA3P, DA3M  
PLL:  
x20  
x40  
Divide-by-  
4
CLKINP,  
CLKINM  
SYNC  
SYSREFP,  
SYSREFM  
DDC Block:  
2X, 4X Decimation  
Mixer: fS / 16, fS / 4  
DB0P, DB0M,  
DB1P, DB1M  
Buffer  
Digital Block  
ADC  
Interleaving  
Correction  
INBP, INBM  
DB2P, DB2M,  
DB3P, DB3M  
FOVR  
Control and SPI  
Common  
Mode  
VCM  
Copyright © 2015–2019, Texas Instruments Incorporated  
25  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Analog Inputs  
The ADS54J60 analog signal inputs are designed to be driven differentially. The analog input pins have internal  
analog buffers that drive the sampling circuit. As a result of the analog buffer, the input pins present a high  
impedance input across a very wide frequency range to the external driving source, which enables great flexibility  
in the external analog filter design as well as excellent 50-matching for RF applications. The buffer also helps  
isolate the external driving circuit from the internal switching currents of the sampling circuit, resulting in a more  
constant SFDR performance across input frequencies.  
The common-mode voltage of the signal inputs is internally biased to VCM using 600-Ω resistors, allowing for ac-  
coupling of the input drive network. Each input pin (INP, INM) must swing symmetrically between (VCM +  
0.475 V) and (VCM – 0.475 V), resulting in a 1.9-VPP (default) differential input swing. The input sampling circuit  
has a 3-dB bandwidth that extends up to 1.2 GHz. An equivalent analog input network diagram is shown in  
Figure 58.  
0.77 W  
1 W  
3.3 W  
2 nH  
0.6 W  
150 fF  
200 fF  
3 pF  
375 fF  
375 fF  
375 fF  
375 fF  
INP  
40 W  
500 fF  
150 fF  
0.77 W  
1 W  
3.3 W  
600 W  
150 fF  
200 fF  
3 pF  
VCM  
40 W  
600 W  
0.77 W  
1 W  
3.3 W  
150 fF  
200 fF  
3 pF  
2 nH  
0.6 W  
INM  
40 W  
500 fF  
150 fF  
0.77 W  
1 W  
3.3 W  
150 fF  
200 fF  
3 pF  
40 W  
Figure 58. Analog Input Network  
26  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
Feature Description (continued)  
The input bandwidth shown in Figure 59 is measured with respect to a 50-Ω differential input termination at the  
ADC input pins. Figure 60 shows the signal processing done inside the DDC block of the ADS54J60.  
0
-3  
-6  
-9  
-12  
-15  
-18  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Input Frequency (MHz)  
D056  
Figure 59. Transfer Function versus Frequency  
Default 14-Bit Data (At 1 GSPS)  
Decimate-by-2 Data (At 500 MSPS)  
LPF  
BPF  
2
4
Decimate-by-4 Data (At 250 MSPS)  
Interleaving  
Engine,  
Digital  
Features  
Ch X  
1 GSPS Data,  
x(n)  
To JESD  
Encoder  
4
LPF  
Decimate-by-4, I-Data (At 250 MSPS)  
(1)  
cos(2 n Œ fmix / fS  
)
(1)  
sin(2 n Œ fmix / fS  
)
Decimate-by-4 Q-Data (At 250 MSPS)  
4
LPF  
Mode Selection Using DECFIL  
MODE[3:0] Register Bits  
(1) In IQ decimate-by-4 mode, the mixer frequency is fixed at fmix = fS / 4. For fS = 1 GSPS and fmix = 250 MHz.  
Figure 60. DDC Block  
Copyright © 2015–2019, Texas Instruments Incorporated  
27  
 
 
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
Feature Description (continued)  
8.3.2 DDC Block  
The ADS54J60 has an optional DDC block that can be enabled via an SPI register write. Each ADC channel is  
followed by a DDC block consisting of three different decimate-by-2 and by-4 finite impulse response (FIR) half-  
band filter options. The different decimation filter options can be selected via SPI programming.  
8.3.2.1 Decimate-by-2 Filter  
This decimation filter has 41 taps. The stop-band attenuation is approximately 90 dB and the pass-band flatness  
is ±0.05 dB. Table 1 shows corner frequencies for low-pass and high-pass filter options.  
Table 1. Corner Frequencies for the Decimate-by-2 Filter  
CORNERS (dB)  
LOW PASS  
0.202 × fS  
0.210 × fS  
0.215 × fS  
0.227 × fS  
HIGH PASS  
0.298 × fS  
0.290 × fS  
0.285 × fS  
0.273 × fS  
–0.1  
–0.5  
–1  
–3  
Figure 61 and Figure 62 show the frequency response of decimate-by-2 filter from dc to fS / 2.  
5
-20  
0.5  
0
-0.5  
-1  
-45  
-1.5  
-2  
-70  
-95  
-2.5  
-3  
-120  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Frequency Response  
0
0.05  
0.1  
0.15  
0.2  
0.25  
Frequency Response  
D013  
D014  
Figure 61. Decimate-by-2 Filter Response  
Figure 62. Decimate-by-2 Filter Response (Zoomed)  
28  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
 
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
8.3.2.2 Decimate-by-4 Filter Using a Digital Mixer  
This band-pass decimation filter consists of a digital mixer and three concatenated FIR filters with a combined  
latency of approximately 28 output clock cycles. The alias band attenuation is approximately  
55 dB and the pass-band flatness is ±0.1 dB. By default after reset, the band-pass filter is centered at fS / 16.  
Using the SPI, the center frequency can be programmed at N × fS / 16 (where N = 1, 3, 5, or 7). Table 2 shows  
corner frequencies for two extreme options. Figure 63 and Figure 64 show frequency response of decimate-by-4  
filter for center frequencies fS/16 and 3 × fS/16 (N =1 and 3).  
Table 2. Corner frequencies for the Decimate-by-4 Filter  
CORNER FREQUENCY AT LOWER SIDE  
(Center Frequency fS / 16)  
CORNER FREQUENCY AT HIGHER SIDE  
(Center Frequency fS / 16)  
CORNERS (dB)  
–0.1  
–0.5  
–1  
0.011 × fS  
0.010 × fS  
0.008 × fS  
0.006 × fS  
0.114 × fS  
0.116 × fS  
0.117 × fS  
0.120 × fS  
–3  
Figure 63 and Figure 64 show the frequency response of a decimate-by-4 filter from dc to fS / 2.  
10  
0
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Frequency Response  
0
0.05  
0.1  
0.15  
0.2  
0.25  
Frequency Response  
D015  
D016  
Figure 63. Decimate-by-4 Filter Response  
Figure 64. Decimate-by-4 Filter Response (Zoomed)  
8.3.2.3 Decimate-by-4 Filter with IQ Outputs  
In this configuration, the DDC block includes a fixed digital fS / 4 mixer. Thus, the IQ pass band is approximately  
±110 MHz, centered at fS / 4. This decimation filter has 41 taps with a latency of approximately ten output clock  
cycles. The stop-band attenuation is approximately 90 dB and the pass-band flatness is ±0.05 dB. Table 3 shows  
the corner frequencies for a low-pass decimate-by-4 with IQ filter.  
Table 3. Corner Frequencies for a Decimate-by-4 IQ Output Filter  
CORNERS (dB)  
LOW PASS  
0.107 × fS  
0.112 × fS  
0.115 × fS  
0.120 × fS  
–0.1  
–0.5  
–1  
–3  
Copyright © 2015–2019, Texas Instruments Incorporated  
29  
 
 
 
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
Figure 65 and Figure 66 show the frequency response of a decimate-by-4 IQ output filter from dc to fS / 2.  
5
-20  
0.5  
0
-0.5  
-1  
-45  
-1.5  
-2  
-70  
-95  
-2.5  
-3  
-120  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Frequency Response  
0
0.025  
0.05  
0.075  
0.1  
0.125  
D012  
Frequency Response  
D011  
Figure 65. Decimate-by-4 with IQ Outputs Filter Response  
Figure 66. Decimate-by-4 with IQ Outputs Filter Response  
(Zoomed)  
8.3.3 SYSREF Signal  
The SYSREF signal is a periodic signal that is sampled by the ADS54J60 device clock and used to align the  
boundary of the local multi-frame clock inside the data converter. SYSREF is required to be a sub-harmonic of  
the local multiframe clock (LMFC) internal timing. To meet this requirement, the timing of SYSREF is dependent  
on the device clock frequency and the LMFC frequency, as determined by the selected DDC decimation and  
frames per multi-frame settings. TI recommends that the SYSREF signal be a low-frequency signal in the range  
of 1 MHz to 5 MHz in order to reduce coupling to the signal path both on the printed circuit board (PCB) as well  
as internal in the device.  
The external SYSREF signal must be a sub-harmonic of the internal LMFC clock, as shown in Equation 1 and  
Table 4.  
SYSREF = LMFC / 2N  
where  
N = 0, 1, 2, and so forth.  
(1)  
Table 4. Local Multi-Frame Clock Frequency  
LMFS CONFIGURATION  
DECIMATION  
LMFC CLOCK(1)(2)  
fS / K  
4211  
4244  
8224  
4222  
2242  
2221  
2441  
4421  
1241  
(fS / 4) / K  
(fS / 4) / K  
(fS / 4) / K  
(fS / 4) / K  
(fS / 4) / K  
(fS / 4) / K  
(fS / 4) / K  
(fS / 4) / K  
2X  
2X  
4X  
4X (IQ)  
4X (IQ)  
4X  
(1) K = Number of frames per multi frame (JESD digital page 6900h, address 06h, bits 4-0).  
(2) fS = sampling (device) clock frequency.  
30  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
 
 
 
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
For example, if LMFS = 8224 then the programmed value of K is 9 (the actual value is 9 + 1 = 10 because the  
actual value for K = the value set in the SPI register +1). If the device clock frequency is fS = 1000 MSPS, then  
the local multi-frame clock frequency becomes (1000 / 4) / 10 = 25 MHz. The SYSREF signal frequency can be  
chosen as the LMFC frequency / 8 = 3.125 MHz.  
8.3.3.1 SYSREF Not Present (Subclass 0, 2)  
A SYSREF pulse is required by the ADS54J60 to reset internal counters. If SYSREF is not present, as can be  
the case in subclass 0 or 2, this pulse can be done by doing the following register writes shown in Table 5.  
Table 5. Internally Pulsing SYSREF Twice Using Register Writes  
ADDRESS (Hex)  
0-011h  
DATA (Hex)  
80h  
COMMENT  
Set the master page  
Enable manual SYSREF  
Set SYSREF high  
Set SYSREF low  
0-054h  
80h  
0-053h  
01h  
0-053h  
00h  
0-053h  
01h  
Set SYSREF high  
Set SYSREF low  
0-053h  
00h  
Copyright © 2015–2019, Texas Instruments Incorporated  
31  
 
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.3.4 Overrange Indication  
The ADS54J60 provides a fast overrange indication that can be presented in the digital output data stream via  
SPI configuration. Alternatively, if not used, the SDOUT (pin 11) and PDN (pin 50) pins can be configured via the  
SPI to output the fast OVR indicator.  
When the FOVR indication is embedded in the output data stream, it replaces the LSB of the 16-bit data stream  
going to the 8b/10b encoder, as shown in Figure 67.  
16-Bit Data Output  
D0/  
OVR  
D15  
D14  
D13 D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
16-Bit Data Going to 8b/10b Encoder  
Figure 67. Overrange Indication in a Data Stream  
8.3.4.1 Fast OVR  
The fast OVR is triggered if the input voltage exceeds the programmable overrange threshold and is presented  
after only 18 clock cycles + tPD (tPD of the gates and buffers is approximately 4 ns), thus enabling a quicker  
reaction to an overrange event.  
The input voltage level at which the overload is detected is referred to as the threshold. The threshold is  
programmable using the FOVR THRESHOLD bits, as shown in Figure 68. The FOVR is triggered 18 clock cycles  
+ tPD (tPD of the gates and buffers is approximately 4 ns) after the overload condition occurs.  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
0
32  
64  
96  
128  
160  
192  
224  
255  
Threshold Decimal Value  
D055  
Figure 68. Programming Fast OVR Thresholds  
The input voltage level at which the fast OVR is triggered is defined by Equation 2:  
Full-Scale × [Decimal Value of the FOVR Threshold Bits] / 255)  
(2)  
(3)  
The default threshold is E3h (227d), corresponding to a threshold of –1 dBFS.  
In terms of full-scale input, the fast OVR threshold can be calculated as Equation 3:  
20log (FOVR Threshold / 255)  
32  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
 
 
 
 
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
8.3.5 Power-Down Mode  
The ADS54J60 provides a highly-configurable power-down mode. Power-down can be enabled using the PDN  
pin or SPI register writes.  
A power-down mask can be configured, which allows a trade-off between wake-up time and power consumption  
in power-down mode. Two independent power-down masks can be configured: MASK 1 and MASK 2 as shown  
in Table 6. See the master page registers in Table 15 for further details.  
Table 6. Register Address for Power-Down Modes  
REGISTER  
ADDRESS  
REGISTER DATA  
COMMENT  
A[7:0] (Hex)  
MASTER PAGE (80h)  
20  
7
6
5
4
3
2
1
0
PDN ADC CHA  
PDN BUFFER CHB  
PDN ADC CHA  
PDN BUFFER CHB  
GLOBAL OVERRIDE  
PDN ADC CHB  
MASK 1  
21  
23  
24  
PDN BUFFER CHA  
PDN BUFFER CHA  
0
0
0
0
PDN ADC CHB  
MASK 2  
CONFIG  
0
0
0
0
0
0
0
0
0
0
0
0
PDN MASK  
26  
55  
0
PDN  
PDN PIN  
SEL  
0
0
0
PDN MASK  
To save power, the device can be put in complete power down by using the GLOBAL PDN register bit. However,  
when JESD must remain linked up while putting the device in power down, the ADC and analog buffer can be  
powered down by using the PDN ADC CHx and PDN BUFFER CHx register bits after enabling the PDN MASK  
register bit. The PDN MASK SEL register bit can be used to select between MASK 1 or MASK 2. Table 7 shows  
power consumption for different combinations of the GLOBAL PDN, PDN ADC CHx, and PDN BUFF CHx  
register bits.  
Table 7. Power Consumption in Different Power-Down Settings  
TOTAL  
IAVDD3V  
(mA)  
POWER  
(W)  
REGISTER BIT  
Default  
COMMENT  
IAVDD (mA) IDVDD (mA) IIOVDD (mA)  
After reset, with a full-scale input signal to  
both channels  
336  
2
358  
6
198  
22  
533  
199  
2.68  
0.29  
The device is in complete power-down  
state  
GBL PDN = 1  
GBL PDN = 0,  
PDN ADC CHx = 1  
(x = A or B)  
The ADC of one channel is powered down  
274  
262  
223  
352  
135  
194  
512  
545  
2.09  
2.45  
GBL PDN = 0,  
PDN BUFF CHx = 1  
(x = A or B)  
The input buffer of one channel is powered  
down  
GBL PDN = 0,  
PDN ADC CHx = 1,  
PDN BUFF CHx = 1  
(x = A or B)  
The ADC and input buffer of one channel  
is powered down  
198  
60  
222  
85  
132  
66  
508  
484  
1.85  
1.02  
GBL PDN = 0,  
PDN ADC CHx = 1,  
PDN BUFF CHx = 1  
(x = A and B)  
The ADC and input buffer of both channels  
are powered down  
Copyright © 2015–2019, Texas Instruments Incorporated  
33  
 
 
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Device Configuration  
The ADS54J60 can be configured by using a serial programming interface, as described in the Serial Interface  
section. In addition, the device has one dedicated parallel pin (PDN) for controlling the power-down mode.  
The ADS54J60 supports a 24-bit (16-bit address, 8-bit data) SPI operation and uses paging (see the Register  
Maps section) to access all register bits.  
8.4.1.1 Serial Interface  
The ADC has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock), and SDIN (serial interface data) pins, as shown in Figure 69.  
Legends used in Figure 69 are explained in Table 8. Serially shifting bits into the device is enabled when SEN is  
low. Serial data on SDIN are latched at every SCLK rising edge when SEN is active (low). The interface can  
function with SCLK frequencies from 2 MHz down to very low speeds (of a few Hertz) and also with a non-50%  
SCLK duty cycle.  
Register Address[11:0]  
Register Data[7:0]  
SDIN  
R/W  
M
P
CH  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
tDH  
D0  
tSCLK  
tDSU  
SCLK  
SEN  
tSLOADS  
tSLOADH  
RESET  
Figure 69. SPI Timing Diagram  
Table 8. SPI Timing Diagram Legend  
SPI BITS  
DESCRIPTION  
BIT SETTINGS  
0 = SPI write  
1 = SPI read back  
R/W  
Read/write bit  
0 = Analog SPI bank (master and ADC pages)  
1 = JESD SPI bank (main digital, JESD analog, and  
JESD digital pages)  
M
SPI bank access  
JESD page selection bit  
0 = Page access  
1 = Register access  
P
0 = Channel A  
1 = Channel B  
By default, both channels are being addressed.  
SPI access for a specific channel of the JESD SPI  
bank  
CH  
A[11:0]  
D[7:0]  
SPI address bits  
SPI data bits  
34  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
 
 
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
Table 9 shows the timing requirements for the serial interface signals in Figure 69.  
Table 9. SPI Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
SCLK frequency (equal to 1 / tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDIN setup time  
)
> dc  
100  
100  
100  
100  
2
ns  
ns  
tDH  
SDIN hold time  
ns  
8.4.1.2 Serial Register Write: Analog Bank  
The analog SPI bank contains of two pages (the master and ADC page). The internal register of the ADS54J60  
analog SPI bank can be programmed by:  
1. Driving the SEN pin low.  
2. Initiating a serial interface cycle specifying the page address of the register whose content must be written.  
Master page: write address 0011h with 80h.  
ADC page: write address 0011h with 0Fh.  
3. Writing the register content as shown in Figure 70. When a page is selected, multiple writes into the same  
page can be done.  
Register Address[11:0]  
Register Data[7:0]  
0
0
0
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10  
A9  
A8  
A7 A6 A5 A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5 D4 D3 D2  
D1  
D0  
SEN  
RESET  
Figure 70. Serial Register Write Timing Diagram  
Copyright © 2015–2019, Texas Instruments Incorporated  
35  
 
 
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.4.1.3 Serial Register Readout: Analog Bank  
The content from one of the two analog banks can be read out by:  
1. Driving the SEN pin low.  
2. Selecting the page address of the register whose content must be read.  
Master page: write address 0011h with 80h.  
ADC page: write address 0011h with 0Fh.  
3. Setting the R/W bit to 1 and write the address to be read back.  
4. Reading back the register content on the SDOUT pin, as shown in Figure 71. When a page is selected,  
multiple read backs from the same page can be done. SDOUT comes out at the SCLK falling edge with an  
approximate delay (tSD_DELAY) of 68 ns; see Figure 75.  
Register Address[11:0]  
Register Data[7:0] = XX  
1
0
0
0
SDIN  
SCLK  
R/W  
M
P
CH  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN  
RESET  
SDOUT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDOUT[7:0]  
Figure 71. Serial Register Read Timing Diagram  
8.4.1.4 JESD Bank SPI Page Selection  
The JESD SPI bank contains four pages (main digital, JESD digital, and JESD analog pages). The individual  
pages can be selected by:  
1. Driving the SEN pin low.  
2. Setting the M bit to 1 and specifying the page with two register writes. Note that the P bit must be set to 0, as  
shown in Figure 72.  
Write address 4003h with 00h (LSB byte of the page address).  
Write address 4004h with the MSB byte of the page address.  
For the main digital page: write address 4004h with 68h.  
For the JESD digital page: write address 4004h with 69h.  
For the JESD analog page: write address 4004h with 6Ah.  
Register Address[11:0]  
Register Data[7:0]  
D5 D4 D3 D2  
0
1
0
0
SDIN  
R/W  
M
P
CH A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D1  
D0  
SCLK  
SEN  
RESET  
Figure 72. SPI Page Selection  
36  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
 
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
8.4.1.5 Serial Register Write: JESD Bank  
The ADS54J60 is a dual-channel device and the JESD204B portion is configured individually for each channel by  
using the CH bit. Note that the P bit must be set to 1 for register writes.  
1. Drive the SEN pin low.  
2. Select the JESD bank page. Note that the M bit = 1 and the P bit = 0.  
Write address 4003h with 00h.  
Write address 4005h with 01h to enable separate control for both channels.  
For the main digital page: write address 4004h with 68h.  
For the JESD digital page: write address 4004h with 69h.  
For the JESD analog page: write address 4004h with 6Ah.  
3. Set the M and P bits to 1, select channel A (CH = 0) or channel B (CH = 1), and write the register content as  
shown in Figure 73. When a page is selected, multiple writes into the same page can be done.  
Register Address[11:0]  
Register Data[7:0]  
0
1
1
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10  
A9  
A8  
A7 A6 A5 A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5 D4 D3 D2  
D1  
D0  
SEN  
RESET  
Figure 73. JESD Serial Register Write Timing Diagram  
8.4.1.5.1 Individual Channel Programming  
By default, register writes are applied to both channels. To enable individual channel writes, write address 4005h  
with 01h (default is 00h).  
8.4.1.6 Serial Register Readout: JESD Bank  
The content from one of the pages of the JESD bank can be read out by:  
1. Driving the SEN pin low.  
2. Selecting the JESD bank page. Note that the M bit = 1 and the P bit = 0.  
Write address 4003h with 00h.  
Write address 4005h with 01h to enable separate control for both channels.  
For the main digital page: write address 4004h with 68h.  
For the JESD digital page: write address 4004h with 69h.  
For the JESD analog page: write address 4004h with 6Ah.  
3. Setting the R/W, M, and P bits to 1, selecting channel A or channel B, and writing the address to be read  
back.  
4. Reading back the register content on the SDOUT pin; see Figure 74. When a page is selected, multiple read  
backs from the same page can be done. SDOUT comes out at the SCLK falling edge with an approximate  
delay (tSD_DELAY) of 68 ns; see Figure 75.  
Copyright © 2015–2019, Texas Instruments Incorporated  
37  
 
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
Register Address[11:0]  
A7 A6 A5 A4  
Register Data[7:0] = XX  
D5 D4 D3 D2  
1
1
1
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10 A9  
A8  
A3  
A2  
A1  
A0  
D7  
D6  
D1  
D0  
SEN  
RESET  
SDOUT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDOUT[7:0]  
Figure 74. JESD Serial Register Read Timing Diagram  
SCLK  
tSD_DELAY  
SDOUT  
Figure 75. SDOUT Timing Diagram  
8.4.2 JESD204B Interface  
The ADS54J60 supports device subclass 1 with a maximum output data rate of 10.0 Gbps for each serial  
transmitter.  
An external SYSREF signal is used to align all internal clock phases and the local multi-frame clock to a specific  
sampling clock edge, allowing synchronization of multiple devices in a system and minimizing timing and  
alignment uncertainty. The SYNC input is used to control the JESD204B SERDES blocks.  
Depending on the ADC output data rate, the JESD204B output interface can be operated with either two or four  
lanes per single ADC; see Figure 76. The JESD204B setup and configuration of the frame assembly parameters  
is controlled via the SPI interface.  
38  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
SYSREF  
SYNC  
JESD204B  
DA[3:0]  
INA  
INB  
JESD204B  
JESD204B  
JESD204B  
DB[3:0]  
Sample Clock  
Figure 76. ADS54J60 Block Diagram  
The JESD204B transmitter block shown in Figure 77 consists of the transport layer, the data scrambler, and the  
link layer. The transport layer maps the ADC output data into the selected JESD204B frame data format. The link  
layer performs the 8b/10b data encoding as well as the synchronization and initial lane alignment using the  
SYNC input signal. Optionally, data from the transport layer can be scrambled.  
JESD204B Block  
Transport Layer  
Link Layer  
8b, 10b  
Encoding  
Frame Data  
Mapping  
Scrambler  
1 + x14 + x15  
D[3:0]  
Comma Characters,  
Initial Lane Alignment  
SYNC  
Figure 77. JESD204B Transmitter Block  
Copyright © 2015–2019, Texas Instruments Incorporated  
39  
 
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.4.2.1 JESD204B Initial Lane Alignment (ILA)  
The initial lane alignment process is started when the receiving device de-asserts the SYNC signal, as shown in  
Figure 78. When a logic low is detected on the SYNC input pin, the ADS54J60 starts transmitting comma (K28.5)  
characters to establish a code group synchronization.  
When synchronization is complete, the receiving device asserts the SYNC signal and the ADS54J60 starts the  
initial lane alignment sequence with the next local multi-frame clock boundary. The ADS54J60 transmits four  
multi-frames, each containing K frames (K is SPI programmable). Each of the multi-frames contains the frame  
start and end symbols and the second multi-frame also contains the JESD204 link configuration data.  
SYSREF  
LMFC Clock  
LMFC Boundary  
Multi  
Frame  
SYNC  
Transmit Data  
xxx  
K28.5  
Code Group  
K28.5  
Initial Lane  
ILA  
ILA  
DATA  
DATA  
Data Transmission  
Synchronization  
Alignment  
Figure 78. Lane Alignment Sequence  
8.4.2.2 JESD204B Test Patterns  
There are three different test patterns available in the transport layer of the JESD204B interface. The ADS54J60  
supports a clock output, encoded test pattern, and an 12-octet RPAT pattern. These test patterns can be  
enabled via an SPI register write and are located in the JESD digital page of the JESD bank.  
40  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
8.4.2.3 JESD204B Frame  
The JESD204B standard defines the following parameters:  
L is the number of lanes per link.  
M is the number of converters per device.  
F is the number of octets per frame clock period, per lane.  
S is the number of samples per frame per converter.  
8.4.2.4 JESD204B Frame  
Table 10 lists the available JESD204B formats and valid ranges for the ADS54J60 when the decimation filter is  
not used. The ranges are limited by the SERDES lane rate and the maximum ADC sample frequency.  
Table 10. Default Interface Rates  
MINIMUM RATES  
MAXIMUM RATES  
L
M
F
S
DECIMATION  
SAMPLING  
RATE (MSPS)  
SERDES BIT  
RATE (Gbps)  
SAMPLING  
RATE (MSPS)  
SERDES BIT  
RATE (Gbps)  
4
4
8
2
2
2
1
4
2
1
4
4
Not used  
Not used  
Not used  
250  
250  
500  
2.5  
2.5  
2.5  
1000  
10.0  
10.0  
5.0  
1000  
1000  
NOTE  
In the LMFS = 8224 row of Table 10, the sample order in lane DA2 and DA3 are  
swapped.  
The detailed frame assembly is shown in Table 11.  
Table 11. Default Frame Assembly  
PIN  
DA0  
DA1  
DA2  
DA3  
DB0  
DB1  
DB2  
DB3  
LMFS = 4211  
LMFS = 4244  
LMFS = 8224  
A3[15:8]  
A3[7:0]  
A2[7:0]  
A0[7:0]  
A1[7:0]  
B3[7:0]  
B2[7:0]  
B0[7:0]  
B1[7:0]  
A0[7:0]  
A2[15:8]  
A0[15:8]  
A2[7:0]  
A3[15:8]  
A1[15:8]  
A3[7:0]  
A1[7:0]  
A2[15:8]  
A0[15:8]  
A1[15:8]  
B3[15:8]  
B2[15:8]  
B0[15:8]  
B1[15:8]  
A0[15:8]  
A0[7:0]  
B0[7:0]  
B2[15:8]  
B0[15:8]  
B2[7:0]  
B0[7:0]  
B3[15:8]  
B1[15:8]  
B3[7:0]  
B1[7:0]  
B0[15:8]  
Copyright © 2015–2019, Texas Instruments Incorporated  
41  
 
 
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.4.2.5 JESD204B Frame Assembly with Decimation  
Table 12 lists the available JESD204B formats and valid ranges for the ADS54J60 when enabling the decimation  
filter. The ranges are limited by the SERDES line rate and the maximum ADC sample frequency.  
Table 13 lists the detailed frame assembly with different decimation options.  
Table 12. Interface Rates with Decimation Filter  
MINIMUM RATES  
MAXIMUM RATES  
DEVICE  
CLOCK  
FREQUENCY  
(MSPS)  
DEVICE  
CLOCK  
FREQUENCY  
(MSPS)  
OUTPUT  
SAMPLE  
RATE (MSPS)  
OUTPUT  
SAMPLE  
RATE (MSPS)  
L
M
F
S
DECIMATION  
SERDES BIT  
RATE (Gbps)  
SERDES BIT  
RATE (Gbps)  
4
4
2
2
2
1
4
2
2
2
4
2
2
2
4
2
4
4
1
2
2
1
1
1
4X (IQ)  
2X  
500  
500  
300  
500  
300  
300  
125  
250  
150  
125  
75  
2.5  
2.5  
3
1000  
1000  
1000  
1000  
1000  
1000  
250  
500  
500  
250  
250  
250  
5.0  
5.0  
2X  
10.0  
5.0  
4X  
2.5  
3
4X (IQ)  
4X  
10.0  
10.0  
75  
3
Table 13. Frame Assembly with Decimation Filter  
LMFS = 4222, 2X  
DECIMATION  
LMFS = 2242, 2X  
DECIMATION  
LMFS = 2221, 4X  
DECIMATION  
LMFS = 2441, 4X  
DECIMATION (IQ)  
LMFS = 4421, 4X  
DECIMATION (IQ)  
LMFS = 1241, 4X  
DECIMATION  
PIN  
DA0  
DA1  
A1  
A1  
AQ0  
[15:8]  
AQ0  
[7:0]  
[15:8]  
[7:0]  
A0  
A0  
A0  
A0  
A1  
A1  
A0  
A0  
AI0  
AI0  
AQ0 AQ0  
AI0  
AI0  
A0  
A0  
B0  
B0  
[15:8]  
[7:0]  
[15:8] [7:0] [15:8] [7:0]  
[15:8]  
[7:0]  
[15:8] [7:0] [15:8] [7:0]  
[15:8]  
[7:0]  
[15:8] [7:0] [15:8] [7:0]  
DA2  
DA3  
B1  
[15:8]  
B1  
[7:0]  
BQ0  
[15:8]  
BQ0  
[7:0]  
DB0  
DB1  
B0  
[15:8]  
B0  
[7:0]  
B0  
B0  
B1  
B1  
B0  
[15:8]  
B0  
[7:0]  
BI0  
BI0  
BQ0 BQ0  
BI0  
[15:8]  
BI0  
[7:0]  
[15:8] [7:0] [15:8] [7:0]  
[15:8] [7:0] [15:8] [7:0]  
DB2  
DB3  
42  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
 
ADS54J60  
www.ti.com.cn  
LMFS OPTIONS  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
Table 14. Program Summary of DDC Modes and JESD Link Configuration(1)(2)  
DDC MODES PROGRAMMING  
JESD LINK (LMFS) PROGRAMMING  
DECIMATION  
OPTIONS  
DEC MODE EN,  
JESD PLL  
MODE(7)  
DA_BUS_  
DB_BUS_  
BUS_REORDER BUS_REORDER  
L
M
F
S
DECFIL MODE[3:0](4)  
JESD FILTER(5)  
JESD MODE(6)  
LANE SHARE(8)  
DECFIL EN(3)  
REORDER(9)  
REORDER(10)  
EN1(11)  
EN2(12)  
4
4
2
2
1
4
1
4
No decimation  
No decimation  
00  
00  
00  
00  
000  
000  
100  
010  
10  
10  
0
0
00h  
00h  
00h  
00h  
0
0
0
0
No decimation  
(default after  
reset)  
8
2
2
4
00  
00  
000  
001  
00  
0
00h  
00h  
0
0
4
4
2
4
2
2
2
2
4
1
2
2
4X (IQ)  
2X  
11  
11  
11  
0011 (LPF with fS / 4 mixer)  
0010 (LPF) or 0110 (HPF)  
0010 (LPF) or 0110 (HPF)  
111  
110  
110  
001  
001  
010  
00  
00  
10  
0
0
0
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
1
1
1
1
1
1
2X  
0000, 0100, 1000, or 1100  
(all BPFs with different  
center frequencies).  
2
2
1
2
4
2
2
4
4
1
1
1
4X  
4X (IQ)  
4X  
11  
11  
11  
100  
111  
100  
001  
010  
010  
00  
10  
10  
0
0
1
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
1
1
1
1
1
1
0011 (LPF with an fS / 4  
mixer)  
0000, 0100, 1000, or 1100  
(all BPFs with different  
center frequencies)  
(1) Keeping the same LMFS settings for both channels is recommended.  
(2) The PULSE RESET register bit must be pulsed after the registers in the main digital page are programmed.  
(3) The DEC MODE EN and DECFIL EN register bits are located in the main digital page, register 04Dh (bit 3) and register 041h (bit 4).  
(4) The DECFIL MODE[3:0] register bits are located in the main digital page, register 041h (bits 5 and 2-0).  
(5) The JESD FILTER register bits are located in the JESD digital page, register 001h (bits 5-3).  
(6) The JESD MODE register bits are located in the JESD digital page, register 001h (bits 2:0).  
(7) The JESD PLL MODE register bits are located in the JESD analog page, register 016h (bits 1-0).  
(8) The LANE SHARE register bit is located in the JESD digital page, register 016h (bit 4).  
(9) The DA_BUS_REORDER register bits are located in the JESD digital page, register 031h (bits 7-0).  
(10) The DB_BUS_REORDER register bits are located in the JESD digital page, register 032h (bits 7-0).  
(11) The BUS_REORDER EN1 register bit is located in the main digital page, register 052h (bit 7).  
(12) The BUS_REORDER EN2 register bit is located in the main digital page, register 072h (bit 3).  
Copyright © 2015–2019, Texas Instruments Incorporated  
43  
 
 
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.4.2.5.1 JESD Transmitter Interface  
Each of the 10.0-Gbps SERDES JESD transmitter outputs requires ac coupling between the transmitter and  
receiver. The differential pair must be terminated with 100-Ω resistors as close to the receiving device as  
possible to avoid unwanted reflections and signal degradation, as shown in Figure 79.  
0.1 mF  
DA[3:0]P,  
DB[3:0]P  
Rt = ZO  
Transmission Line, Zo  
VCM  
Receiver  
Rt = ZO  
DA[3:0]M,  
DB[3:0]M  
0.1 mF  
Figure 79. Output Connection to Receiver  
8.4.2.5.2 Eye Diagram  
Figure 80 to Figure 83 show the serial output eye diagrams of the ADS54J60 at 5.0 Gbps and 10 Gbps with  
default and increased output voltage swing against the JESD204B mask.  
Figure 80. Eye at 5-Gbps Bit Rate with  
Default Output Swing  
Figure 81. Eye at 5-Gbps Bit Rate with  
Increased Output Swing  
Figure 83. Eye at 10-Gbps Bit Rate with  
Increased Output Swing  
Figure 82. Eye at 10-Gbps Bit Rate with  
Default Output Swing  
44  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
 
 
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
8.5 Register Maps  
Figure 84 shows a conceptual diagram of the serial registers.  
Initiate an SPI Cycle  
R/W, M, P, CH, Bits Decoder  
M = 0  
M = 1  
JESD Bank  
Analog Bank  
General Register  
(Address 00h,  
Keep M = 0, P = 0)  
General Register  
(Address 005h,  
Keep M = 1, P = 0)  
JESD Bank Page Selection  
(Address 003h and Address 004h,  
Keep M = 1, P = 0)  
Unused Registers  
(Address 01h, Address 02h.  
Keep M = 1, P = 0)  
Analog Bank Page Selection  
(Address 011h, Keep M = 0, P = 0)  
Value 80h  
Addr 5Fh  
Value 0Fh  
Value 6800h  
Value 6900h  
Value 6A00h  
Value 6100h  
Addr 0h  
Addr 20h  
Addr 0h  
Addr 12h  
JESD Bank Page Selection1  
(Address 001h and Address 002h,  
Keep M = 1, P = 0)  
Main  
Digital Page  
JESD  
ADC Page  
(Fast OVR)  
JESD  
Digital Page  
Value 0500h  
Value 0000h  
Master Page  
(PDN, OVR,  
DC Coupling)  
Analog Page  
(PLL Configuration,  
Output Swing,  
Addr 68h  
(Nyquist Zone,  
Gain,  
OVR, Filter)  
Addr 00h  
Keep  
M = 0, P = 0  
(JESD  
Configuration)  
Pre-Emphasis)  
Keep  
M = 0, P = 0  
Offset Read Page  
Keep M = 1,  
P = 1  
Keep M = 1,  
P = 1  
Keep M = 1,  
P = 1  
(Freeze, Bypass  
and read internal  
estimate of DC  
Offset correction  
block)  
Offset Load Page  
Addr F7h  
Addr 59h  
Addr 32h  
Addr 1Bh  
(Load external  
estimate into DC  
Offset correction  
block)  
Keep M = 1,  
P = 1  
Keep M = 1,  
P = 1  
R/W=0/1(1)  
Addr 7Bh  
Addr 0Dh  
(1) Set the R/W bit to 1 when reading an estimate of the dc offset correction block, otherwise keep this bit at 0.  
Figure 84. Serial Interface Registers  
The ADS54J60 contains two main SPI banks. The analog SPI bank gives access to the ADC analog blocks and the digital SPI bank controls the  
interleaving engine and anything related to the JESD204B serial interface. The analog SPI bank is divided into two pages (master and ADC) and the  
digital SPI bank is divided into three pages (main digital, JESD digital, and JESD analog). Table 15 lists a register map for the ADS54J60.  
Copyright © 2015–2019, Texas Instruments Incorporated  
45  
 
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 15. Register Map  
REGISTER  
ADDRESS  
REGISTER DATA  
4
A[11:0] (Hex)  
7
6
5
3
2
1
0
GENERAL REGISTERS  
0
1
2
3
4
RESET  
0
0
0
0
0
0
RESET  
JESD BANK PAGE SEL1[7:0]  
JESD BANK PAGE SEL1[15:8]  
JESD BANK PAGE SEL[7:0]  
JESD BANK PAGE SEL[15:8]  
DISABLE  
BROADCAST  
5
0
0
0
0
0
0
0
0
0
11  
ANALOG BANK PAGE SEL  
MASTER PAGE (ANALOG BANK PAGE SEL = 80h)  
20  
PDN ADC CHA  
PDN ADC CHA  
PDN ADC CHB  
PDN ADC CHB  
21  
23  
24  
26  
PDN BUFFER CHB  
PDN BUFFER CHA  
PDN BUFFER CHA  
0
0
0
PDN BUFFER CHB  
0
0
0
0
0
0
GLOBAL PDN  
0
OVERRIDE PDN PIN  
0
PDN MASK SEL  
0
0
0
0
0
EN INPUT DC  
COUPLING  
4F  
53  
54  
0
0
0
0
EN SYSREF DC  
COUPLING  
0
0
0
0
0
0
0
MANUAL SYSREF  
0
ENABLE MANUAL  
SYSREF  
MASK SYSREF  
0
55  
59  
0
0
0
0
PDN MASK  
0
0
0
0
0
0
0
0
0
FOVR CHB  
ALWAYS WRITE 1  
ADC PAGE (ANALOG BANK PAGE SEL = 0Fh)  
5F  
FOVR THRESHOLD PROG  
MAIN DIGITAL PAGE (JESD BANK PAGE SEL = 6800h)  
0
0
0
0
0
0
0
0
0
0
0
0
PULSE RESET  
FORMAT SEL  
41  
42  
43  
44  
4B  
4D  
4E  
0
DECFIL MODE[3]  
DECFIL EN  
0
DECFIL MODE[2:0]  
NYQUIST ZONE  
0
0
0
0
0
0
0
0
0
0
DIGITAL GAIN  
0
0
0
0
FORMAT EN  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DEC MODE EN  
0
CTRL NYQUIST  
IMPROVE IL PERF  
46  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
Register Maps (continued)  
Table 15. Register Map (continued)  
REGISTER  
ADDRESS  
REGISTER DATA  
A[11:0] (Hex)  
7
6
5
4
3
2
1
0
BUS_  
REORDER EN1  
52  
0
0
0
0
0
0
DIG GAIN EN  
BUS_  
REORDER EN2  
72  
0
0
0
0
0
0
0
0
AB  
AD  
F7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LSB SEL EN  
LSB SELECT  
0
DIG RESET  
TX LINK DIS  
0
JESD DIGITAL PAGE (JESD BANK PAGE SEL = 6900h)  
0
1
2
CTRL K  
0
0
TESTMODE EN  
JESD FILTER  
FLIP ADC DATA  
LANE ALIGN  
0
FRAME ALIGN  
JESD MODE  
0
SYNC REG  
SYNC REG EN  
LINK LAYER TESTMODE  
LINK LAYER RPAT  
LMFC MASK RESET  
FORCE LMFC  
COUNT  
3
LMFC COUNT INIT  
0
RELEASE ILANE SEQ  
5
6
SCRAMBLE EN  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
FRAMES PER MULTI FRAME (K)  
7
0
SUBCLASS  
0
0
0
0
0
0
0
16  
31  
32  
LANE SHARE  
DA_BUS_REORDER[7:0]  
DB_BUS_REORDER[7:0]  
JESD ANALOG PAGE (JESD BANK PAGE SEL = 6A00h)  
12  
13  
14  
15  
SEL EMP LANE 1  
SEL EMP LANE 0  
SEL EMP LANE 2  
SEL EMP LANE 3  
ALWAYS WRITE 1  
0
0
0
0
0
0
0
16  
17  
1A  
1B  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
JESD PLL MODE  
PLL RESET  
0
LANE PDN 1  
0
LANE PDN 0  
0
0
0
0
0
FOVR CHA  
0
JESD SWING  
FOVR CHA EN  
OFFSET READ PAGE (JESD BANK PAGE SEL = 6100h, JESD BANK PAGE SEL1 = 0000h)  
68  
69  
74  
75  
76  
FREEZE CORR  
0
DC OFFSET CORR BW  
BYPASS CORR  
0
ALWAYS WRITE 1  
0
0
0
0
0
0
0
0
EXT CORR EN  
ADC0_CORR_INT_EST[7:0]  
0
0
0
ADC0_CORR_INT_EST[10:8]  
ADC1_CORR_INT_EST[7:0]  
Copyright © 2015–2019, Texas Instruments Incorporated  
47  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 15. Register Map (continued)  
REGISTER  
ADDRESS  
REGISTER DATA  
A[11:0] (Hex)  
7
6
5
4
3
2
1
0
77  
78  
79  
7A  
7B  
0
0
0
0
0
ADC1_CORR_INT_EST[10:8]  
ADC2_CORR_INT_EST[7:0]  
0
0
0
0
0
ADC2_CORR_INT_EST[10:8]  
ADC3_CORR_INT_EST[10:8]  
ADC3_CORR_INT_EST[7:0]  
0
0
0
0
0
OFFSET LOAD PAGE (JESD BANK PAGE SEL = 6100h, JESD BANK PAGE SEL1 = 0500h)  
00  
ADC0_LOAD_INT_EST[7:0]  
01  
04  
05  
08  
09  
0C  
0D  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ADC0_CORR_INT_EST[10:8]  
ADC1_CORR_INT_EST[10:8]  
ADC2_CORR_INT_EST[10:8]  
ADC3_CORR_INT_EST[10:8]  
ADC1_LOAD_INT_EST[7:0]  
0
0
ADC2_LOAD_INT_EST[7:0]  
0
0
ADC3_LOAD_INT_EST[7:0]  
0
0
48  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
8.5.1 Example Register Writes  
This section provides three different example register writes. Table 16 describes a global power-down register  
write, Table 17 describes the register writes when the default lane setting (eight active lanes per device) is  
changed to four active lanes (LMFS = 4211), and Table 18 describes the register writes for 2X decimation with  
four active lanes (LMFS = 4222).  
Table 16. Global Power Down  
ADDRESS (Hex)  
0-011h  
DATA (Hex)  
80h  
COMMENT  
Set the master page  
0-026h  
C0h  
Set the global power-down  
Table 17. Two Lanes per Channel Mode (LMFS = 4211)  
ADDRESS (Hex)  
4-004h  
DATA (Hex)  
69h  
COMMENT  
Select the JESD digital page  
Select the JESD digital page  
Select the digital to 40X mode  
Select the JESD analog page  
Set the SERDES PLL to 40X mode  
4-003h  
00h  
6-001h  
02h  
4-004h  
6Ah  
6-016h  
02h  
Table 18. 2X Decimation (LPF for Both Channels) with Four Active Lanes (LMFS = 4222)  
ADDRESS (Hex)  
4-004h  
DATA (Hex)  
68h  
COMMENT  
Select the main digital page (6800h)  
Select the main digital page (6800h)  
Set decimate-by-2 (low-pass filter)  
Enable decimation filter control  
BUS_REORDER EN2  
4-003h  
00h  
6-041h  
12h  
6-04Dh  
6-072h  
08h  
08h  
6-052h  
80h  
BUS_REORDER EN1  
6-000h  
01h  
Pulse the PULSE RESET bit (so that register writes to the main digital page go into effect).  
6-000h  
00h  
4-004h  
69h  
Select the JESD digital page (6900h)  
4-003h  
00h  
Select the JESD digital page (6900h)  
6-031h  
0Ah  
Output bus reorder for channel A  
6-032h  
0Ah  
Output bus reorder for channel B  
6-001h  
31h  
Program the JESD MODE and JESD FILTER register bits for LMFS = 4222.  
Table 19 lists the access codes for the ADS54J60 registers.  
Table 19. ADS54J60 Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
R/W  
R-W  
Read or write  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default value  
Copyright © 2015–2019, Texas Instruments Incorporated  
49  
 
 
 
 
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.5.2 Register Descriptions  
8.5.2.1 General Registers  
8.5.2.1.1 Register 0h (address = 0h)  
Figure 85. Register 0h  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
RESET  
W-0h  
RESET  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 20. Register 0h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESET  
W
0h  
0 = Normal operation  
1 = Internal software reset, clears back to 0  
6-1  
0
0
W
W
0h  
0h  
Must write 0  
RESET  
0 = Normal operation  
1 = Internal software reset, clears back to 0  
8.5.2.1.2 Register 1h (address = 1h)  
Figure 86. Register 1h  
7
6
5
4
3
2
1
0
JESD BANK PAGE SEL1[7:0]  
R/W-0h  
Table 21. Register 1h Field Descriptions  
Bit  
Field  
JESD BANK PAGE SEL1[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Program these bits to access the desired page in the JESD  
bank.  
0000h = OFFSET READ Page  
0500h = OFFSET LOAD Page  
8.5.2.1.3 Register 2h (address = 2h)  
Figure 87. Register 2h  
7
6
5
4
3
2
1
0
JESD BANK PAGE SEL1[15:8]  
R/W-0h  
Table 22. Register 2h Field Descriptions  
Bit  
Field  
JESD BANK PAGE SEL1[15:8]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Program these bits to access the desired page in the JESD  
bank.  
0000h = OFFSET READ Page  
0500h = OFFSET LOAD Page  
50  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
8.5.2.1.4 Register 3h (address = 3h)  
Figure 88. Register 3h  
7
6
5
4
3
2
1
0
JESD BANK PAGE SEL[7:0]  
R/W-0h  
Table 23. Register 3h Field Descriptions  
Bit  
Field  
JESD BANK PAGE SEL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Program these bits to access the desired page in the JESD  
bank.  
6800h = Main digital page selected  
6900h = JESD digital page selected  
6A00h = JESD analog page selected  
6100h = OFFSET READ or LOAD Page  
8.5.2.1.5 Register 4h (address = 4h)  
Figure 89. Register 4h  
7
6
5
4
3
2
1
0
JESD BANK PAGE SEL[15:8]  
R/W-0h  
Table 24. Register 4h Field Descriptions  
Bit  
Field  
JESD BANK PAGE SEL[15:8]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Program these bits to access the desired page in the JESD  
bank.  
6800h = Main digital page selected  
6900h = JESD digital page selected  
6A00h = JESD analog page selected  
6100h = OFFSET READ or LOAD Page  
8.5.2.1.6 Register 5h (address = 5h)  
Figure 90. Register 5h  
7
0
6
0
5
0
4
3
0
2
1
0
0
0
0
DISABLE BROADCAST  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 25. Register 5h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
7-1  
0
0
Must write 0  
DISABLE BROADCAST  
R/W  
0h  
0 = Normal operation. Channel A and B are programmed as a pair.  
1 = Channel A and B can be individually programmed based on the  
CH bit.  
Copyright © 2015–2019, Texas Instruments Incorporated  
51  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.5.2.1.7 Register 11h (address = 11h)  
Figure 91. Register 11h  
7
6
5
4
3
2
1
0
ANALOG PAGE SEL  
R/W-0h  
Table 26. Register 11h Field Descriptions  
Bit  
Field  
ANALOG BANK PAGE SEL  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Program these bits to access the desired page in the analog bank.  
Master page = 80h  
ADC page = 0Fh  
8.5.2.2 Master Page (080h) Registers  
8.5.2.2.1 Register 20h (address = 20h), Master Page (080h)  
Figure 92. Register 20h  
7
6
5
4
3
2
1
0
PDN ADC CHA  
R/W-0h  
PDN ADC CHB  
R/W-0h  
Table 27. Registers 20h Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
PDN ADC CHA  
PDN ADC CHB  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. The power-down mask 1  
or mask 2 are selected via register bit 5 in address 26h.  
Power-down mask 1: addresses 20h and 21h.  
Power-down mask 2: addresses 23h and 24h.  
0Fh = Power-down CHB only.  
0h  
F0h = Power-down CHA only.  
FFh = Power-down both.  
52  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
8.5.2.2.2 Register 21h (address = 21h), Master Page (080h)  
Figure 93. Register 21h  
7
6
5
4
3
0
2
0
1
0
0
0
PDN BUFFER CHB  
R/W-0h  
PDN BUFFER CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 28. Register 21h Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
7-6  
5-4  
PDN BUFFER CHB  
PDN BUFFER CHA  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. The power-down mask 1  
or mask 2 are selected via register address 26h, bit 5.  
Power-down mask 1: addresses 20h and 21h.  
Power-down mask 2: addresses 23h and 24h.  
There are two buffers per channel. One buffer drives two ADC  
cores.  
0h  
PDN BUFFER CHx:  
00 = Both buffers of a channel are active.  
11 = Both buffers are powered down.  
01–10 = Do not use.  
3-0  
0
W
0h  
Must write 0.  
8.5.2.2.3 Register 23h (address = 23h), Master Page (080h)  
Figure 94. Register 23h  
7
6
5
4
3
2
1
0
PDN ADC CHA  
R/W-0h  
PDN ADC CHB  
R/W-0h  
Table 29. Register 23h Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
PDN ADC CHA  
PDN ADC CHB  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. The power-down mask 1  
or mask 2 are selected via register address 26h, bit 5.  
Power-down mask 1: addresses 20h and 21h.  
Power-down mask 2: addresses 23h and 24h.  
0Fh = Power-down CHB only.  
0h  
F0h = Power-down CHA only.  
FFh = Power-down both.  
Copyright © 2015–2019, Texas Instruments Incorporated  
53  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.5.2.2.4 Register 24h (address = 24h), Master Page (080h)  
Figure 95. Register 24h  
7
6
5
4
3
0
2
0
1
0
0
0
PDN BUFFER CHB  
R/W-0h  
PDN BUFFER CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 30. Register 24h Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
7-6  
5-4  
PDN BUFFER CHB  
PDN BUFFER CHA  
There are two power-down masks that are controlled via the  
PDN mask register bit in address 55h. The power-down mask 1  
or mask 2 are selected via register address 26h, bit 5.  
Power-down mask 1: addresses 20h and 21h.  
Power-down mask 2: addresses 23h and 24h.  
Power-down mask 2: addresses 23h and 24h.  
There are two buffers per channel. One buffer drives two ADC  
cores.  
0h  
PDN BUFFER CHx:  
00 = Both buffers of a channel are active.  
11 = Both buffers are powered down.  
01–10 = Do not use.  
3-0  
0
W
0h  
Must write 0.  
54  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
8.5.2.2.5 Register 26h (address = 26h), Master Page (080h)  
Figure 96. Register 26h  
7
6
5
4
0
3
0
2
0
1
0
0
0
OVERRIDE  
PDN PIN  
PDN MASK  
SEL  
GLOBAL PDN  
R/W-0h  
R/W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 31. Register 26h Field Descriptions  
Bit  
Field  
GLOBAL PDN  
Type  
Reset  
Description  
7
R/W  
0h  
Bit 6 (OVERRIDE PDN PIN) must be set before this bit can be  
programmed.  
0 = Normal operation  
1 = Global power-down via the SPI  
6
5
OVERRIDE PDN PIN  
R/W  
R/W  
W
0h  
0h  
0h  
This bit ignores the power-down pin control.  
0 = Normal operation  
1 = Ignores inputs on the power-down pin  
PDN MASK SEL  
0
This bit selects power-down mask 1 or mask 2.  
0 = Power-down mask 1  
1 = Power-down mask 2  
4-0  
Must write 0  
8.5.2.2.6 Register 4Fh (address = 4Fh), Master Page (080h)  
Figure 97. Register 4Fh  
7
0
6
0
5
0
4
3
2
1
0
0
0
0
0
EN INPUT DC COUPLING  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 32. Register 4Fh Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
EN INPUT DC COUPLING  
R/W  
0h  
The device has an internal biasing resistor of 600 Ω from VCM  
to the INP and INM pins. A small common-mode current flows  
through these resistors causing approximately a 100-mV drop.  
To compensate for the drop, the device raises the VCM voltage  
by 100 mV by default. This compensation is particularly helpful  
in AC-coupling applications where the common-mode voltage on  
the INP and INM pins is established by internal biasing resistors.  
In DC-coupling applications, because the common-mode voltage  
is established by external circuit, there is no need to raise VCM  
by 100 mV.  
0 = Device raises VCM voltage by 100 mV, useful in AC-  
coupling applications  
1 = Device does not raise the VCM voltage, useful in DC-  
coupling applications  
Copyright © 2015–2019, Texas Instruments Incorporated  
55  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.5.2.2.7 Register 53h (address = 53h), Master Page (080h)  
Figure 98. Register 53h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
EN SYSREF  
DC COUPLING  
MANUAL  
SYSREF  
W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
R/W-0h  
Table 33. Register 53h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
7-2  
1
0
Must write 0  
EN SYSREF DC COUPLING  
R/W  
0h  
Enables a higher common-mode voltage input on the SYSREF  
signal (up to 1.6 V).  
0 = Normal operation  
1 = Enables a higher SYSREF common-mode voltage support  
0
MANUAL SYSREF  
R/W  
0h  
The device has a feature to apply the SYSREF signal manually  
through the serial interface instead of the SYREFP, SYREFM  
pins. This application can be done by first setting the ENABLE  
MANUAL SYSREF register bit, then using the MANUAL  
SYSREF bit to set the SYSREF signal high or low.  
0 = Set SYSREF low  
1 = Set SYSREF high  
8.5.2.2.8 Register 54h (address = 54h), Master Page (080h)  
Figure 99. Register 54h  
7
6
0
5
4
3
2
0
1
0
0
0
ENABLE  
MANUAL  
SYSREF  
MASK SYSREF  
R/W-0h  
0
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 34. Register 54h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ENABLE MANUAL SYSREF  
R/W  
0h  
Enables the SYSREF input from the serial interface, thus  
disabling pin control. Use the MANUAL SYSREF register bit to  
apply SYSREF manually.  
6
0
W
0h  
0h  
Must write 0  
5-4  
MASK SYSREF  
R/W  
00 = Normal operation  
11 = The SYSREF signal is ignored by the device irrespective of  
how the signal was applied (through a pin or manually by the  
serial interface)  
3-0  
0
W
0h  
Must write 0  
56  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
8.5.2.2.9 Register 55h (address = 55h), Master Page (080h)  
Figure 100. Register 55h  
7
0
6
0
5
0
4
3
0
2
0
1
0
0
0
PDN MASK  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 35. Register 55h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
7-5  
4
0
Must write 0  
PDN MASK  
R/W  
0h  
This bit enables power-down via a register bit.  
0 = Normal operation  
1 = Power-down is enabled by powering down internal blocks as  
specified in the selected power-down mask  
3-0  
0
W
0h  
Must write 0  
8.5.2.2.10 Register 59h (address = 59h), Master Page (080h)  
Figure 101. Register 59h  
7
6
0
5
4
0
3
0
2
0
1
0
0
0
FOVR CHB  
W-0h  
ALWAYS WRITE 1  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 36. Register 59h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FOVR CHB  
W
0h  
Outputs FOVR signal for channel B on the SDOUT pin.  
0 = normal operation  
1 = FOVR on SDOUT pin  
6
5
0
W
0h  
0h  
0h  
Must write 0  
Must write 1  
Must write 0  
ALWAYS WRITE 1  
0
R/W  
W
4-0  
8.5.2.3 ADC Page (0Fh) Register  
8.5.2.3.1 Register 5F (address = 5F), ADC Page (0Fh)  
Figure 102. Register 5F  
7
6
5
4
3
2
1
0
FOVR THRESHOLD PROG  
R/W-E3h  
Table 37. Register 5F Field Descriptions  
Bit  
Field  
FOVR THRESHOLD PROG  
Type  
Reset  
Description  
7-0  
R/W  
E3h  
Program the fast OVR thresholds together for channel A and B,  
as described in the Overrange Indication section.  
Copyright © 2015–2019, Texas Instruments Incorporated  
57  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.5.2.4 Main Digital Page (6800h) Registers  
8.5.2.4.1 Register 0h (address = 0h), Main Digital Page (6800h)  
Figure 103. Register 0h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
PULSE RESET  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 38. Register 0h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
7-1  
0
0
Must write 0  
PULSE RESET  
R/W  
0h  
Must be pulsed after power-up or after configuring registers in  
the main digital page of the JESD bank. Any register bits in the  
main digital page (6800h) take effect only after this bit is pulsed;  
see the Start-Up Sequence section for the correct sequence.  
0 = Normal operation  
0 1 0 = Bit is pulsed  
8.5.2.4.2 Register 41h (address = 41h), Main Digital Page (6800h)  
Figure 104. Register 41h  
7
0
6
0
5
4
3
2
1
0
DECFIL MODE[3]  
R/W-0h  
DECFIL EN  
R/W-0h  
0
DECFIL MODE[2:0]  
R/W-0h  
W-0h  
W-0h  
W-0h  
Table 39. Register 41h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
7-6  
5
0
Must write 0  
DECFIL MODE[3]  
R/W  
0h  
This bit selects the decimation filter mode. Table 40 lists the bit  
settings.  
The decimation filter control (DEC MODE EN, register 4Dh, bit 3) and  
decimation filter enable (DECFIL EN, register 41h, bit 4) must be  
enabled.  
4
DECFIL EN  
R/W  
0h  
Enables the digital decimation filter  
0 = Normal operation, full rate output  
1 = Digital decimation enabled  
3
0
W
0h  
0h  
Must write 0  
2-0  
DECFIL MODE[2:0]  
R/W  
These bits select the decimation filter mode. Table 40 lists the bit  
settings.  
The decimation filter control (DEC MODE EN, register 4Dh, bit 3) and  
decimation filter enable (DECFIL EN, register 41h, bit 4) must be  
enabled.  
Table 40. DECFIL MODE Bit Settings  
BITS (5, 2-0)  
FILTER MODE  
DECIMATION  
0000  
0100  
1000  
1100  
0010  
0110  
0011  
Band-pass filter centered on 3 × fS / 16  
4X  
4X  
Band-pass filter centered on 5 × fS / 16  
Band-pass filter centered on 1 × fS / 16  
Band-pass filter centered on 7 × fS / 16  
Low-pass filter  
4X  
4X  
2X  
High-pass filter  
2X  
Low-pass filter with fS / 4 mixer  
4X (IQ)  
58  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
8.5.2.4.3 Register 42h (address = 42h), Main Digital Page (6800h)  
Figure 105. Register 42h  
7
0
6
0
5
0
4
0
3
0
2
1
0
NYQUIST ZONE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 41. Register 42h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
7-3  
2-0  
0
Must write 0  
NYQUIST ZONE  
R/W  
0h  
The Nyquist zone must be selected for proper interleaving  
correction. Control must be enabled (register 4Eh, bit 7).  
000 = 1st Nyquist zone (0 MHz to 500 MHz)  
001 = 2nd Nyquist zone (500 MHz to 1000 MHz)  
010 = 3rd Nyquist zone (1000 MHz to 1500 MHz)  
All others = Not used  
8.5.2.4.4 Register 43h (address = 43h), Main Digital Page (6800h)  
Figure 106. Register 43h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
FORMAT SEL  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 42. Register 43h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
7-1  
0
0
Must write 0  
FORMAT SEL  
R/W  
0h  
Changes the output format. Set the FORMAT EN bit to enable  
control using this bit.  
0 = Twos complement  
1 = Offset binary  
8.5.2.4.5 Register 44h (address = 44h), Main Digital Page (6800h)  
Figure 107. Register 44h  
7
0
6
5
4
3
2
1
0
DIGITAL GAIN  
R/W-0h  
R/W-0h  
Table 43. Register 44h Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must write 0  
6-0  
DIGITAL GAIN  
0h  
Digital gain setting. Digital gain must be enabled (register 52h,  
bit 0).  
Gain in dB = 20log (digital gain / 32)  
7Fh = 127 which equals digital gain of 12 dB  
Copyright © 2015–2019, Texas Instruments Incorporated  
59  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.5.2.4.6 Register 4Bh (address = 4Bh), Main Digital Page (6800h)  
Figure 108. Register 4Bh  
7
0
6
0
5
4
0
3
0
2
0
1
0
0
0
FORMAT EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 44. Register 4Bh Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
7-6  
5
0
Must write 0  
FORMAT EN  
R/W  
0h  
This bit enables control for data format selection using the  
FORMAT SEL register bit.  
0 = Default, output is in twos complement format  
1 = Output is in offset binary format after FORMAT SEL bit is  
also set  
4-0  
0
W
0h  
Must write 0  
8.5.2.4.7 Register 4Dh (address = 4Dh), Main Digital Page (6800h)  
Figure 109. Register 4Dh  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
DEC MOD EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 45. Register 4Dh Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
7-4  
3
0
Must write 0  
DEC MOD EN  
R/W  
0h  
This bit enables control of decimation filter mode via the DECFIL  
MODE[3:0] register bits.  
0 = Default  
1 = Decimation modes control is enabled  
2-0  
0
W
0h  
Must write 0  
60  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
8.5.2.4.8 Register 4Eh (address = 4Eh), Main Digital Page (6800h)  
Figure 110. Register 4Eh  
7
6
0
5
4
0
3
0
2
0
1
0
0
0
CTRL NYQUIST  
IMPROVE IL  
PERF  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 46. Register 4Eh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CTRL NYQUIST  
R/W  
0h  
This bit enables selecting the Nyquist zone using register 42h,  
bits 2-0.  
0 = Selection disabled  
1 = Selection enabled  
6
5
0
W
0h  
0h  
Must write 0  
IMPROVE IL PERF  
R/W  
Improves interleaving performance. Effective only for input  
frequencies that are within ± fS / 64 band centered at n × fS / 8  
(n = 1, 2, 3, or 4). For example, at a 1-Gsps sampling rate, this  
bit may improve IL performance when input frequencies fall  
within the ±15.625-MHz band located at 125 MHz, 250 MHz,  
375 MHz, and 500 MHz.  
0 = Default  
1 = Improves IL performance for certain input frequencies  
4-0  
0
W
0h  
Must write 0  
8.5.2.4.9 Register 52h (address = 52h), Main Digital Page (6800h)  
Figure 111. Register 52h  
7
6
0
5
0
4
3
2
0
1
0
0
BUS_REORDER_EN1  
W-0h  
0
0
DIG GAIN EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 47. Register 52h Field Descriptions  
Bit  
7
Field  
Type  
R/W  
W
Reset  
0h  
Description  
BUS_REORDER_EN1  
Must write 1 in DDC mode only  
Must write 0  
6-1  
0
0
0h  
DIG GAIN EN  
R/W  
0h  
Enables selecting the digital gain for register 44h.  
0 = Digital gain disabled  
1 = Digital gain enabled  
8.5.2.4.10 Register 72h (address = 72h), Main Digital Page (6800h)  
Figure 112. Register 72h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
BUS_REORDER_EN2  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 48. Register 72h Field Descriptions  
Bit  
7-4  
3
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
BUS_REORDER_EN2  
0
R/W  
W
0h  
Must write a 1 in DDC mode only  
Must write 0  
2-0  
0h  
Copyright © 2015–2019, Texas Instruments Incorporated  
61  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.5.2.4.11 Register ABh (address = ABh), Main Digital Page (6800h)  
Figure 113. Register ABh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
LSB SEL EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 49. Register ABh Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
7-1  
0
0
Must write 0  
LSB SEL EN  
R/W  
0h  
Enable control for the LSB SELECT register bit.  
0 = Default  
1 = The LSB of 16-bit ADC data can be programmed as fast  
OVR using the LSB SELECT bit.  
8.5.2.4.12 Register ADh (address = ADh), Main Digital Page (6800h)  
Figure 114. Register ADh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
LSB SELECT  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 50. Register ADh Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
7-2  
1-0  
0
Must write 0  
LSB SELECT  
R/W  
0h  
Enables output of the FOVR flag instead of the output data LSB.  
00 = Output is 16-bit data  
11 = Output data LSB is replaced by the FOVR information for  
each channel  
8.5.2.4.13 Register F7h (address = F7h), Main Digital Page (6800h)  
Figure 115. Register F7h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIG RESET  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 51. Register F7h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
7-1  
0
0
Must write 0  
DIG RESET  
W
0h  
Self-clearing reset for the digital block. Does not include the  
interleaving correction.  
0 = Normal operation  
1 = Digital reset  
62  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
8.5.2.5 JESD Digital Page (6900h) Registers  
8.5.2.5.1 Register 0h (address = 0h), JESD Digital Page (6900h)  
Figure 116. Register 0h  
7
6
0
5
0
4
3
2
1
0
TESTMODE  
EN  
FLIP ADC  
DATA  
CTRL K  
R/W-0h  
LANE ALIGN  
R/W-0h  
FRAME ALIGN  
R/W-0h  
TX LINK DIS  
R/W-0h  
W-0h  
W-0h  
R/W-0h  
R/W-0h  
Table 52. Register 0h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CTRL K  
R/W  
0h  
Enable bit for a number of frames per multi frame.  
0 = Default is five frames per multi frame  
1 = Frames per multi frame can be set in register 06h  
6-5  
4
0
W
0h  
0h  
Must write 0  
TESTMODE EN  
R/W  
This bit generates the long transport layer test pattern mode, as  
per section 5.1.6.3 of the JESD204B specification.  
0 = Test mode disabled  
1 = Test mode enabled  
3
2
FLIP ADC DATA  
LANE ALIGN  
R/W  
R/W  
0h  
0h  
0 = Normal operation  
1 = Output data order is reversed: MSB to LSB.  
This bit inserts the lane alignment character (K28.3) for the  
receiver to align to lane boundary, as per section 5.3.3.5 of the  
JESD204B specification.  
0 = Normal operation  
1 = Inserts lane alignment characters  
1
0
FRAME ALIGN  
TX LINK DIS  
R/W  
R/W  
0h  
0h  
This bit inserts the lane alignment character (K28.7) for the  
receiver to align to lane boundary, as per section 5.3.3.5 of the  
JESD204B specification.  
0 = Normal operation  
1 = Inserts frame alignment characters  
This bit disables sending the initial link alignment (ILA) sequence  
when SYNC is de-asserted.  
0 = Normal operation  
1 = ILA disabled  
Copyright © 2015–2019, Texas Instruments Incorporated  
63  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.5.2.5.2 Register 1h (address = 1h), JESD Digital Page (6900h)  
Figure 117. Register 1h  
7
6
5
4
3
2
1
0
SYNC REG  
R/W-0h  
SYNC REG EN  
R/W-0h  
JESD FILTER  
R/W-0h  
JESD MODE  
R/W-01h  
Table 53. Register 1h Field Descriptions  
Bit  
Field  
SYNC REG  
Type  
Reset  
Description  
7
R/W  
0h  
Register control for sync request.  
0 = Normal operation  
1 = ADC output data are replaced with K28.5 characters. Register  
bit SYNC REG EN must also be set to 1.  
6
SYNC REG EN  
JESD FILTER  
R/W  
R/W  
0h  
0h  
Enables register control for sync request.  
0 = Use the SYNC pin for sync requests  
1 = Use the SYNC REG register bit for sync requests  
5-3  
These bits and the JESD MODE bits set the correct LMFS  
configuration for the JESD interface. The JESD FILTER setting  
must match the configuration in the decimation filter page.  
000 = Filter bypass mode  
See Table 54 for valid combinations for register bits JESD FILTER  
along with JESD MODE.  
2-0  
JESD MODE  
R/W  
01h  
These bits select the number of serial JESD output lanes per ADC.  
The JESD PLL MODE register bit located in the JESD analog page  
must also be set accordingly.  
001 = Default after reset(Eight active lanes)  
See Table 54 for valid combinations for register bits JESD FILTER  
along with JESD MODE.  
Table 54. Valid Combinations for JESD FILTER and JESD MODE Bits  
NUMBER OF ACTIVE LANES  
PER DEVICE  
REGISTER BIT JESD FILTER  
REGISTER BIT JESD MODE  
DECIMATION FACTOR  
000  
000  
100  
010  
No decimation  
No decimation  
Four lanes are active  
Four lanes are active  
No decimation  
(default after reset)  
000  
001  
Eight lanes are active  
111  
110  
110  
100  
111  
100  
001  
001  
010  
001  
010  
010  
4X (IQ)  
2X  
Four lanes are active  
Four lanes are active  
Two lanes are active  
Two lanes are active  
Two lanes are active  
One lane is active  
2X  
4X  
4X (IQ)  
4X  
64  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
8.5.2.5.3 Register 2h (address = 2h), JESD Digital Page (6900h)  
Figure 118. Register 2h  
7
6
5
4
3
2
0
1
0
0
0
LINK LAYER TESTMODE  
R/W-0h  
LINK LAYER RPAT  
R/W-0h  
LMFC MASK RESET  
R/W-0h  
W-0h  
W-0h  
W-0h  
Table 55. Register 2h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
LINK LAYER TESTMODE  
R/W  
0h  
These bits generate a pattern according to clause 5.3.3.8.2 of the  
JESD204B document.  
000 = Normal ADC data  
001 = D21.5 (high-frequency jitter pattern)  
010 = K28.5 (mixed-frequency jitter pattern)  
011 = Repeat initial lane alignment (generates a K28.5 character  
and continuously repeats lane alignment sequences)  
100 = 12 octet RPAT jitter pattern  
All others = Not used  
4
LINK LAYER RPAT  
R/W  
0h  
This bit changes the running disparity in the modified RPAT pattern  
test mode (only when the link layer test mode = 100).  
0 = Normal operation  
1 = Changes disparity  
3
LMFC MASK RESET  
0
R/W  
W
0h  
0h  
Mask LMFC reset coming to digital block.  
0 = LMFC reset is not masked  
1 = Ignore LMFC reset request  
2-0  
Must write 0  
Copyright © 2015–2019, Texas Instruments Incorporated  
65  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.5.2.5.4 Register 3h (address = 3h), JESD Digital Page (6900h)  
Figure 119. Register 3h  
7
6
5
4
3
2
1
0
FORCE LMFC  
COUNT  
LMFC COUNT INIT  
R/W-0h  
RELEASE ILANE SEQ  
R/W-0h  
R/W-0h  
Table 56. Register 3h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FORCE LMFC COUNT  
R/W  
0h  
This bit forces the LMFC count.  
0 = Normal operation  
1 = Enables using a different starting value for the LMFC  
counter  
6-2  
1-0  
LMFC COUNT INIT  
R/W  
R/W  
0h  
0h  
When SYSREF transmits to the digital block, the LMFC count  
resets to 0 and K28.5 stops transmitting when the LMFC count  
reaches 31. The initial value that the LMFC count resets to can  
be set using LMFC COUNT INIT. In this manner, the receiver  
can be synchronized early because it receives the LANE  
ALIGNMENT SEQUENCE early. The FORCE LMFC COUNT  
register bit must be enabled.  
RELEASE ILANE SEQ  
These bits delay the generation of the lane alignment sequence  
by 0, 1, 2 or 3 multi frames after the code group synchronization.  
00 = 0  
01 = 1  
10 = 2  
11 = 3  
8.5.2.5.5 Register 5h (address = 5h), JESD Digital Page (6900h)  
Figure 120. Register 5h  
7
6
0
5
4
3
2
0
1
0
0
0
SCRAMBLE EN  
R/W-Undefined  
0
0
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 57. Register 5h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SCRAMBLE EN  
R/W  
Undefined Scramble enable bit in the JESD204B interface.  
0 = Scrambling disabled  
1 = Scrambling enabled  
6-0  
0
W
0h  
Must write 0  
66  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
8.5.2.5.6 Register 6h (address = 6h), JESD Digital Page (6900h)  
Figure 121. Register 6h  
7
0
6
0
5
0
4
3
2
1
0
FRAMES PER MULTI FRAME (K)  
R/W-8h  
W-0h  
W-0h  
W-0h  
Table 58. Register 6h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
7-5  
4-0  
0
Must write 0  
FRAMES PER MULTI FRAME (K)  
R/W  
8h  
These bits set the number of multi frames.  
Actual K is the value in hex + 1 (that is, 0Fh is K = 16).  
8.5.2.5.7 Register 7h (address = 7h), JESD Digital Page (6900h)  
Figure 122. Register 7h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
SUBCLASS  
R/W-1h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 59. Register 7h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
7-4  
3
0
Must write 0  
SUBCLASS  
R/W  
1h  
This bit sets the JESD204B subclass.  
000 = Subclass 0 backward compatible with JESD204A  
001 = Subclass 1 deterministic latency using the SYSREF signal  
2-0  
0
W
0h  
Must write 0  
8.5.2.5.8 Register 16h (address = 16h), JESD Digital Page (6900h)  
Figure 123. Register 16h  
7
1
6
0
5
0
4
3
0
2
0
1
0
0
0
LANE SHARE  
W-0h  
W-1h  
W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 60. Register 16h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
1h  
Description  
Must write 1  
Must write 0  
7
6-5  
4
1
0
W
0h  
LANE SHARE  
R/W  
0h  
When using decimate-by-4, the data of both channels are output  
over one lane (LMFS = 1241).  
0 = Normal operation (each channel uses one lane)  
1 = Lane sharing is enabled, both channels share one lane  
(LMFS = 1241)  
3-0  
0
W
0h  
Must write 0  
Copyright © 2015–2019, Texas Instruments Incorporated  
67  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.5.2.5.9 Register 31h (address = 31h), JESD Digital Page (6900h)  
Figure 124. Register 31h  
7
6
5
4
3
2
1
0
DA_BUS_REORDER[7:0]  
R/W-0h  
Table 61. Register 31h Field Descriptions  
Bit  
Field  
DA_BUS_REORDER[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Use these bits to program output connections between data  
streams and output lanes in decimate-by-2 and decimate-by-4  
mode. Table 14 lists the supported combinations of these bits.  
8.5.2.5.10 Register 32h (address = 32h), JESD Digital Page (6900h)  
Figure 125. Register 32h  
7
6
5
4
3
2
1
0
DB_BUS_REORDER[7:0]  
R/W-0h  
Table 62. Register 32h Field Descriptions  
Bit  
Field  
DB_BUS_REORDER[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Use these bits to program output connections between data  
streams and output lanes in decimate-by-2 and decimate-by-4  
mode. Table 14 lists the supported combinations of these bits.  
8.5.2.6 JESD Analog Page (6A00h) Registers  
8.5.2.6.1 Register 12h (address = 12h), JESD Analog Page (6A00h)  
Figure 126. Register 12h  
7
6
5
4
3
2
1
0
0
SEL EMP LANE 1  
ALWAYS  
WRITE 1  
R/W-0h  
W-0h  
W-0h  
Table 63. Register 12h-15h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
SEL EMP LANE 1  
R/W  
0h  
Selects the amount of de-emphasis for the JESD output  
transmitter. The de-emphasis value in dB is measured as the  
ratio between the peak value after the signal transition to the  
settled value of the voltage in one bit period.  
000000 = 0 dB  
000001 = –1 dB  
000011 = –2 dB  
000111 = –4.1 dB  
001111 = –6.2 dB  
011111 = –8.2 dB  
111111 = –11.5 dB  
1
0
ALWAYS WRITE 1  
0
W
W
0h  
0h  
1 = Always write 1  
0 = Must write 0  
68  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
8.5.2.6.2 Registers 13h-15h (address = 13h-15h), JESD Analog Page (6A00h)  
Figure 127. Register 13h  
7
7
7
6
6
6
5
4
3
2
2
2
1
0
0
0
SEL EMP LANE 0  
R/W-0h  
W-0h  
W-0h  
Figure 128. Register 14h  
5
4
3
1
0
0
0
SEL EMP LANE 2  
R/W-0h  
W-0h  
W-0h  
Figure 129. Register 15h  
5
4
3
1
0
0
0
SEL EMP LANE 3  
R/W-0h  
W-0h  
W-0h  
Table 64. Register 13h-15h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
SEL EMP LANE x (where x = 0, 2,  
or 3)  
R/W  
0h  
Selects the amount of de-emphasis for the JESD output  
transmitter. The de-emphasis value in dB is measured as the  
ratio between the peak value after the signal transition to the  
settled value of the voltage in one bit period.  
000000 = 0 dB  
000001 = –1 dB  
000011 = –2 dB  
000111 = –4.1 dB  
001111 = –6.2 dB  
011111 = –8.2 dB  
111111 = –11.5 dB  
1-0  
0
W
0h  
0 = Must write 0  
Copyright © 2015–2019, Texas Instruments Incorporated  
69  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.5.2.6.3 Register 16h (address = 16h), JESD Analog Page (6A00h)  
Figure 130. Register 16h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
JESD PLL MODE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 65. Register 16h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
7-2  
1-0  
0
Must write 0  
JESD PLL MODE  
R/W  
0h  
These bits select the JESD PLL multiplication factor and must  
match the JESD MODE setting.  
00 = 20X mode, four lanes per ADC  
01 = Not used  
10 = 40X mode  
11 = Not used  
Table 14 lists a programming summary of the DDC modes and  
JESD link configuration.  
8.5.2.6.4 Register 17h (address = 17h), JESD Analog Page (6A00h)  
Figure 131. Register 17h  
7
0
6
5
4
0
3
2
0
1
0
0
0
PLL RESET  
R/W-0h  
LANE PDN 1  
R/W-0h  
LANE PDN 0  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 66. Register 17h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
7
6
0
Must write 0  
PLL RESET  
R/W  
0h  
Pulse this bit after powering up the device; see Table 75.  
0 = Default  
0 1 0 = The PLL RESET bit is pulsed.  
5
LANE PDN 1  
R/W  
0h  
This bit powers down unused SERDES lanes DA0, DA3, DB0,  
and DB3 in certain LMFS settings (applicable for LMFS = 4244,  
2242, 2441, 4211, and 2221). Powering down unused lanes puts  
the SERDES buffers in tri-state mode and saves approximately  
15-mA current on the IOVDD supply.  
00 : Default  
11 : DA0, DB0, DA3, and DB3 are powered down  
Others: Do not use  
4
3
0
W
0h  
0h  
Must write 0  
LANE PDN 0  
R/W  
This bit powers down unused SERDES lanes DA0, DA3, DB0,  
and DB3 in certain LMFS settings (applicable for LMFS = 4244,  
2242, 2441, 4211, and 2221). Powering down unused lanes puts  
the SERDES buffers in tri-state mode and saves approximately  
15-mA current on the IOVDD supply.  
00 : Default  
11 : DA0, DB0, DA3, and DB3 are powered down  
Others: Do not use  
2-0  
0
W
0h  
Must write 0  
70  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
8.5.2.6.5 Register 1Ah (address = 1Ah), JESD Analog Page (6A00h)  
Figure 132. Register 1Ah  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
FOVR CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 67. Register 1Ah Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
7-2  
1
0
Must write 0  
FOVR CHA  
R/W  
0h  
Outputs FOVR signal for channel A on the PDN pin. FOVR CHA  
EN (register 1Bh, bit 3) must be enabled.  
0 = Normal operation  
1 = FOVR on the PDN pin  
0
0
W
0h  
Must write 0  
8.5.2.6.6 Register 1Bh (address = 1Bh), JESD Analog Page (6A00h)  
Figure 133. Register 1Bh  
7
6
5
4
0
3
2
0
1
0
0
0
JESD SWING  
R/W-0h  
FOVR CHA EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 68. Register 1Bh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
JESD SWING  
R/W  
0h  
Selects output amplitude VOD (mVpp) of the JESD transmitter  
(for all lanes)  
0 = 860 mVpp  
1 = 810 mVpp  
2 = 770 mVpp  
3 = 745 mVpp  
4 = 960 mVpp  
5 = 930 mVpp  
6 = 905 mVpp  
7 = 880 mVpp  
4
3
0
W
0h  
0h  
Must write 0  
FOVR CHA EN  
R/W  
Enables overwrite of PDN pin with the FOVR signal from ChA.  
0 = Normal operation  
1 = PDN is being overwritten  
2-0  
0
R/W  
0h  
Must write 0  
Copyright © 2015–2019, Texas Instruments Incorporated  
71  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.5.2.7 Offset Read Page (JESD BANK PAGE SEL = 6100h, JESD BANK PAGE SEL1 = 0000h) Registers  
8.5.2.7.1 Register 068h (address = 068h), Offset Read Page  
Figure 134. Register 068h  
7
6
5
4
3
2
1
0
0
FREEZE  
CORR  
DC OFFSET CORR BW  
BYPASS  
CORR  
ALWAYS  
WRITE 1  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
W-0h  
Table 69. Register 068h Field Descriptions  
Bit  
Field  
Type Reset  
Description  
Offset correction block is enabled by default. Set this bit to freeze the block.  
0 = Default after reset  
1 = Offset correction block is frozen  
7
FREEZE CORR  
R/W 0h  
See the DC Offset Correction Block in the ADS54J60 section for details.  
DC OFFSET CORR BW  
These bits allow the user to program the 3-dB bandwidth of the notch filter centered  
around k × fS / 4 (k = 0, 1, 2). The notch filter is a first-order digital filter with 3-dB  
bandwidth:  
3-dB bandwidth normalized to fS  
0 = 2.99479E-07  
1 = 1.4974E-07  
2 = 7.48698E-08  
3 = 3.74349E-08  
4 = 1.87174E-08  
5 = 9.35872E-09  
6-3  
R/W 0h  
6 = 4.67936E-09  
7 = 2.33968E-09  
8 = 1.16984E-09  
9 = 5.8492E-10  
10 = 2.9246E-10  
11 = 1.4623E-10  
For example, at fS = 1 GSPS, if DC OFFSET CORR BW is set to 1, the notch filter has  
a 3-dB bandwidth of 149.74 Hz.  
0 = Default after reset  
2
BYPASS CORR  
R/W 0h  
R/W 0h  
1 = Offset correction block is bypassed  
See the DC Offset Correction Block in the ADS54J60 section for details.  
1
0
ALWAYS WRITE 1  
0
Always write 1  
Must write 0  
W
0h  
8.5.2.7.2 Register 069h (address = 069h), Offset Read Page  
Figure 135. Register 069h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
EXT CORR EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 70. Register 069h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
W
0h  
Must write 0  
Enables loading of external estimate into offset correction block.  
0 = Default after reset (device uses internal estimate for offset  
correction)  
0
EXT CORR EN  
R/W  
0h  
1 = External estimate can be loaded by using the  
ADCx_LOAD_EXT_EST register bits  
See the DC Offset Correction Block in the ADS54J60 section for  
details.  
72  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
8.5.2.7.3 Registers 074h, 076h, 078h, 7Ah (address = 074h, 076h, 078h, 7Ah), Offset Read Page  
Figure 136. Registers 074h, 076h, 078h, 7Ah  
7
6
5
4
3
2
1
0
ADCx_CORR_INT_EST[7:0]  
R/W-0h  
Table 71. Registers 074h, 076h, 078h, 7Ah Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Internal estimate for all four interleaving ADC cores of the dc  
offset corrector block can be read from these bits.  
Keep the R/W bit set to 1 when reading from these registers.  
See the DC Offset Correction Block in the ADS54J60 section for  
details.  
7-0  
ADCx_CORR_INT_EST[7:0]  
R/W  
0h  
8.5.2.7.4 Registers 075h, 077h, 079h, 7Bh (address = 075h, 077h, 079h, 7Bh), Offset Read Page  
Figure 137. Registers 075h, 077h, 079h, 7Bh  
7
0
6
0
5
0
4
0
3
0
2
1
0
ADCx_CORR_INT_EST[10:8]  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 72. Registers 075h, 077h, 079h, 7Bh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
0
W
0h  
Must write 0  
Internal estimate for all four interleaving ADC cores of the dc  
offset corrector block can be read from these bits.  
Keep the R/W bit set to 1 when reading from these registers.  
See the DC Offset Correction Block in the ADS54J60 section for  
details.  
2-0  
ADCx_CORR_INT_EST[10:8]  
R/W  
0h  
8.5.2.8 Offset Load Page (JESD BANK PAGE SEL= 6100h, JESD BANK PAGE SEL1 = 0500h) Registers  
8.5.2.8.1 Registers 00h, 04h, 08h, 0Ch (address = 00h, 04h, 08h, 0Ch), Offset Load Page  
Figure 138. Registers 00h, 04h, 08h, 0Ch  
7
6
5
4
3
2
1
0
ADCx_LOAD_EXT_EST[7:0]  
R/W-0h  
Table 73. Registers 00h, 04h, 08h, 0Ch Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
External estimate can be loaded into the dc offset corrector  
blocks for all four interleaving ADC cores.  
See the DC Offset Correction Block in the ADS54J60 section for  
details.  
7-0  
ADCx_LOAD_EXT_EST[7:0]  
R/W  
0h  
Copyright © 2015–2019, Texas Instruments Incorporated  
73  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
8.5.2.8.2 Registers 01h, 05h, 09h, 0Dh (address = 01h, 05h, 09h, 0Dh), Offset Load Page  
Figure 139. Registers 01h, 05h, 09h, 0Dh  
7
0
6
0
5
0
4
0
3
0
2
1
0
ADCx_LOAD_EXT_EST[10:8]  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
Table 74. Registers 01h, 05h, 09h, 0Dh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
0
W
0h  
Must write 0  
External estimate can be loaded into the dc offset corrector  
blocks for all four interleaving ADC cores.  
See the DC Offset Correction Block in the ADS54J60 section for  
details.  
2-0  
ADCx_CORR_INT_EST[10:8]  
R/W  
0h  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Start-Up Sequence  
The steps described in Table 75 are recommended as the power-up sequence with the ADS54J60 in 20X mode  
(LMFS = 8224).  
74  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
Table 75. Initialization Sequence  
PAGE BEING  
PROGRAMMED  
STEP  
1
SEQUENCE  
Power-up the device  
DESCRIPTION  
COMMENT  
Bring up IOVDD to 1.15 V before applying power to DVDD. Bring up  
DVDD to 1.9 V, AVDD to 1.9 V, and AVDD3V to 3.0 V.  
See the Power Sequencing and Initialization section for power sequence  
requirements.  
Hardware reset  
Apply a hardware reset by pulsing pin 48 (low high low).  
Register writes are equivalent to a hardware reset.  
A hardware reset clears all registers to their default values.  
Reset registers in the ADC and master pages of the analog bank.  
This bit is a self-clearing bit.  
Write address 0-000h with 81h.  
General register  
2
Reset the device  
Write address 4-001h with 00h and address 4-002h with 00h.  
Write address 4-003h with 00h and address 4-004h with 68h.  
Unused page  
Clear any unwanted content from the unused pages of the JESD bank.  
Select the main digital page of the JESD bank.  
Use the DIG RESET register bit to reset all pages in the JESD bank.  
This bit is a self-clearing bit.  
Write address 6-0F7h with 01h for channel A.  
Main digital page  
(JESD bank)  
Write address 6-000h with 01h, then address 6-000h with 00h.  
Write address 0-011h with 80h.  
Pulse the PULSE RESET register bit for channel A.  
Select the master page of the analog bank.  
3
Performance modes  
Master page  
(analog bank)  
Write address 0-059h with 20h.  
Set the ALWAYS WRITE 1 bit.  
Default register writes for DDC modes and JESD link configuration (LMFS 8224).  
Write address 4-003h with 00h and address 4-004h with 69h.  
Write address 6-000h with 80h.  
Select the JESD digital page.  
Set the CTRL K bit for both channels by programming K according to the  
SYSREF signal later on in the sequence.  
JESD  
digital page  
(JESD bank)  
See Table 14 for configuring the JESD digital page registers for the desired  
LMFS and programming appropriate DDC mode.  
JESD link is configured with LMFS = 8224 by default with no decimation.  
Write address 4-003h with 00h and address 4-004h with 6Ah.  
Select the JESD analog page.  
Program desired registers for  
decimation options and  
JESD link configuration  
See Table 14 for configuring the JESD analog page registers for the desired  
LMFS and programming appropriate DDC mode.  
4
JESD link is configured with LMFS = 8224 by default with no decimation.  
JESD  
analog page  
(JESD bank)  
Write address 6-017h with 40h.  
PLL reset.  
Write address 6-017h with 00h.  
PLL reset clear.  
Write address 4-003h with 00h and address 4-004h with 68h.  
Select the main digital page.  
See Table 14 for configuring the main digital page registers for the desired  
LMFS and programming appropriate DDC mode.  
JESD link is configured with LMFS = 8224 by default with no decimation.  
Write address 6-000h with 01h and address 6-000h with 00h.  
Main digital page  
(JESD bank)  
Pulse the PULSE RESET register bit. All settings programmed in the main  
digital page take effect only after this bit is pulsed.  
Copyright © 2015–2019, Texas Instruments Incorporated  
75  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
Table 75. Initialization Sequence (continued)  
PAGE BEING  
STEP  
SEQUENCE  
DESCRIPTION  
PROGRAMMED  
COMMENT  
Write address 4-003h with 00h and address 4-004h with 69h.  
Select the JESD digital page.  
Set the value of K and the  
SYSREF signal frequency  
accordingly  
JESD  
digital page  
(JESD bank)  
5
Write address 6-006h with XXh (choose the value of K).  
See the SYSREF Signal section to choose the correct frequency for SYSREF.  
Pull the SYNCB pin (pin 63) low.  
Pull the SYNCB pin high.  
Transmit K28.5 characters.  
6
JESD lane alignment  
After the receiver is synchronized, initiate an ILA phase and subsequent  
transmissions of ADC data.  
76  
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
9.1.2 Hardware Reset  
Figure 140 and Table 76 show the timing for a hardware reset.  
Power Supplies  
t1  
RESET  
t2  
t3  
SEN  
Figure 140. Hardware Reset Timing Diagram  
Table 76. Timing Requirements for Figure 140  
MIN  
TYP  
MAX  
UNIT  
ms  
ns  
t1  
t2  
t3  
Power-on delay: delay from power up to active high RESET pulse  
1
10  
Reset pulse duration: active high RESET pulse duration  
Register write delay: delay from RESET disable to SEN active  
100  
ns  
9.1.3 SNR and Clock Jitter  
The signal-to-noise ratio (SNR) of the ADC is limited by three different factors: quantization noise, thermal noise,  
and jitter, as shown in Equation 4. The quantization noise is typically not noticeable in pipeline converters and is  
98 dB for a 16-bit ADC. The thermal noise limits the SNR at low input frequencies and the clock jitter sets the  
SNR for higher input frequencies.  
(4)  
The SNR limitation resulting from sample clock jitter can be calculated by Equation 5:  
(5)  
The total clock jitter (TJitter) has two components: the internal aperture jitter (130 fs) is set by the noise of the  
clock input buffer and the external clock jitter. TJitter can be calculated by Equation 6:  
(6)  
External clock jitter can be minimized by using high-quality clock sources and jitter cleaners as well as band-pass  
filters at the clock input. A faster clock slew rate also improves the ADC aperture jitter.  
Copyright © 2015–2019, Texas Instruments Incorporated  
77  
 
 
 
 
 
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
The ADS54J60 has a thermal noise of approximately 71.1 dBFS and an internal aperture jitter of 120 fs. The  
SNR, depending on the amount of external jitter for different input frequencies, is shown in Figure 141.  
75  
35 fS  
50 fS  
100 fS  
150 fS  
200 fS  
73  
71  
69  
67  
65  
10  
100  
Input Frequency (MHz)  
D052  
Figure 141. SNR versus Input Frequency and External Clock Jitter  
9.1.4 DC Offset Correction Block in the ADS54J60  
The ADS54J60 employs eight dc offset correction blocks (four per channel, one per interleaving core).  
Figure 142 shows a dc correction block diagram.  
Input data, x(n)  
(250 MSPS data from each interleaving core)  
0
Output data, y(n)  
at 250 MSPS  
1
+
+
œ
DC Corrected data  
ALWAYS WRITE 1  
(Reg 68h, bit 1)  
0
DC Correction  
Engine  
BYPASS CORR  
1
FREEZE CORR  
ADCx_LOAD_EXT_EST[10:0]  
Internal Estimate  
Read back path  
EXT CORR EN  
ADCx_CORR_INT_EST[10:0]  
Figure 142. DC Offset Correction Block Diagram  
The purpose of the dc offset correction block is to correct the dc offset of interleaving cores that mainly arise  
from the amplifier in the first pipeline stage. Any mismatch in dc offset among interleaving cores results in spurs  
at fS / 4 and fS / 2. The dc offset correction blocks estimate and correct the dc offset of an individual core, to the  
ideal mid-code value, and thereby remove the effect of offset mismatch.  
The dc offset correction block can correct the dc offset of an individual core up to ±1024 codes.  
78  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
 
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
In applications involving dc-coupling between the ADC and the driver, the dc offset correction block can either be  
bypassed or frozen because the block cannot distinguish the external dc signal from the internal dc offset.  
Figure 143 shows that when bypassed, the internal dc mismatch appears at dc, fS / 4, and fS / 2 frequency points  
and can be as big as –40 dBFS.  
0
-20  
-40  
-60  
-80  
-100  
-120  
0
100  
200  
300  
400  
500  
Frequency (MHz)  
D001  
Figure 143. FFT After Bypassing the DC Offset Correction Block  
9.1.4.1 Freezing the DC Offset Correction Block  
After device is powered up, the dc offset correction block estimates the internal dc offset with the idle channel  
input before the block is frozen. When frozen, the correction block holds the last estimated value that belongs to  
the internal dc offset. After the correction block is frozen, an external signal can be applied.  
9.1.4.2 Effect of Temperature  
The internal dc offset of the individual cores changes with temperature, resulting in fS / 4 and fS / 2 spurs  
appearing again in the spectrum at a different temperature.  
Figure 144 shows a variation of the fS / 4 spur over temperature for a typical device.  
-40  
-50  
-60  
-70  
-80  
-90  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
D068  
NOTE: The offset correction block was frozen at room temperature, then the temperature was varied from –40°C to +85°C.  
Figure 144. Variation of the fS / 4 Spur Over Temperature  
Copyright © 2015–2019, Texas Instruments Incorporated  
79  
 
 
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
Although some systems can accept such a variation in the fS / 4 and fS / 2 spurs across temperature, other  
systems may require the internal dc offset profile to be calibrated with temperature. To achieve this calibration,  
the device provides an option to read the internal estimate values from the correction block for each of the  
interleaving cores and also to load the values back to the correction block. For calibration, after power up, a  
temperature sweep can be performed with the idle channel input and the internal dc offset can be read back  
using the ADCx_CORR_INT_EST register bits for salient temperature points. Then during operation, when  
temperature changes, the corresponding estimates can be externally loaded to the correction block using the  
ADCx_LOAD_EXT_EST register bits.  
The dc offset corrector block is enabled by default. For a given channel, the device can disable and freeze the  
block, read the estimate of the block, and load the external estimate.  
Table 77 lists an example of required SPI writes for reading an internal estimate of the dc offset correction block,  
and then loading the estimate back to the corrector.  
Table 77. Format (16-Bit Address, 8-Bit Data)  
ADDRESS  
STEP  
DATA (Hex)  
COMMENT  
(Hex)(1)  
This setting disables broadcast mode (channel A and B can be individually  
programmed)  
4-005  
01  
4-004  
4-003  
4-002  
4-001  
61  
00  
00  
00  
Selects offset read page (61000000h)  
Data from the offset read page can be read as below (keep the R/W bit = 1)  
E-074  
E-075  
E-076  
E-077  
E-078  
E-079  
E-07A  
E-07B  
F-074  
F-075  
F-076  
F-077  
F-078  
F-079  
F-07A  
F-07B  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
Reading the internal estimate [7:0] for core 0, channel A on the SDOUT pin  
Reading the internal estimate [10:8] for core 0, channel A on the SDOUT pin  
Reading the internal estimate [7:0] for core 1, channel A on the SDOUT pin  
Reading the internal estimate [10:8] for core 1, channel A on the SDOUT pin  
Reading the internal estimate [7:0] for core 2, channel A on the SDOUT pin  
Reading the internal estimate [10:8] for core 2, channel A on the SDOUT pin  
Reading the internal estimate [7:0] for core 3, channel A on the SDOUT pin  
Reading the internal estimate [10:8] for core 3, channel A on the SDOUT pin  
Reading the internal estimate [7:0] for core 0, channel B on the SDOUT pin  
Reading the internal estimate [10:8] for core 0, channel B on the SDOUT pin  
Reading the internal estimate [7:0] for core 1, channel B on the SDOUT pin  
Reading the internal estimate [10:8] for core 1, channel B on the SDOUT pin  
Reading the internal estimate [7:0] for core 2, channel B on the SDOUT pin  
Reading the internal estimate [10:8] for core 2, channel B on the SDOUT pin  
Reading the internal estimate [7:0] for core 3, channel B on the SDOUT pin  
Reading the internal estimate [10:8] for core 3, channel B on the SDOUT pin  
Reading an  
internal estimate  
from both channels  
(1) The address field is represented in four hex bits in a-bcd format, where a contains information about the R/W, M, P, and CH bits, and  
bcd contain the actual address of the register.  
80  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
ADS54J60  
www.ti.com.cn  
STEP  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
Table 77. Format (16-Bit Address, 8-Bit Data) (continued)  
ADDRESS  
(Hex)(1)  
DATA (Hex)  
COMMENT  
6-069  
7-069  
4-004  
4-003  
4-002  
4-001  
6-000  
6-001  
6-004  
6-005  
6-008  
6-009  
6-00C  
6-00D  
7-000  
7-001  
7-004  
7-005  
7-008  
7-009  
7-00C  
7-00D  
01  
01  
61  
00  
05  
00  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
Enables the external correction bit located in the offset read page for channel A  
Enables the external correction bit located in the offset read page for channel B  
Change page to offset load page (61000500h)  
Loading the external estimate [7:0] for core 0, channel A through SPI writes  
Loading the external estimate [10:8] for core 0, channel A through SPI writes  
Loading the external estimate [7:0] for core 1, channel A through SPI writes  
Loading the external estimate [10:8] for core 1, channel A through SPI writes  
Loading the external estimate [7:0] for core 2, channel A through SPI writes  
Loading the external estimate [10:8] for core 2, channel A through SPI writes  
Loading the external estimate [7:0] for core 3, channel A through SPI writes  
Loading the external estimate [10:8] for core 3, channel A through SPI writes  
Loading the external estimate [7:0] for core 0, channel B through SPI writes  
Loading the external estimate [10:8] for core 0, channel B through SPI writes  
Loading the external estimate [7:0] for core 1, channel B through SPI writes  
Loading the external estimate [10:8] for core 1, channel B through SPI writes  
Loading the external estimate [7:0] for core 2, channel B through SPI writes  
Loading the external estimate [10:8] for core 2, channel B through SPI writes  
Loading the external estimate [7:0] for core 3, channel B through SPI writes  
Loading the external estimate [10:8] for core 3, channel B through SPI writes  
Loading an  
external estimate  
to both channels  
Copyright © 2015–2019, Texas Instruments Incorporated  
81  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
9.1.5 Idle Channel Histogram  
Figure 145 shows a histogram of output codes when no signal is applied at the analog inputs of the ADS54J60.  
When the dc offset correction block of the device is bypassed, Figure 146 shows that the output code histogram  
becomes multi-modal with as many as four peaks because the ADS54J60 is a 4-way interleaved ADC with each  
ADC core having a different internal dc offset.  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
700  
600  
500  
400  
300  
200  
100  
0
500  
250  
0
32350 32450 32550 32650 32750 32850 32950 33050 33150  
32740  
32750  
32760  
32770  
32780  
32790  
Output Code  
Output Code  
D065  
D064  
Figure 146. Idle Channel Histogram  
(No Signal at Analog Inputs, DC Offset Correction is Off)  
Figure 145. Idle Channel Histogram  
(No Signal at Analog Inputs, DC Offset Correction is On)  
When the dc offset correction block is frozen (instead of being bypassed), as shown in Figure 147, the output  
code histogram improves (compared to when bypassed). However, when temperature changes, the dc offset  
difference among interleaving cores may increase, resulting in increased spacing between peaks in the  
histogram.  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0
32740  
32750  
32760  
32770  
32780  
32790  
Output Code  
D066  
Figure 147. Idle Channel Histogram  
(No Signal at Analog Inputs, DC Offset Correction is Frozen)  
82  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
 
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
9.2 Typical Application  
The ADS54J60 is designed for wideband receiver applications demanding excellent dynamic range over a large  
input frequency range. A typical schematic for an ac-coupled receiver is shown in Figure 148.  
DVDD  
10 k  
5 W  
5 W  
50 W  
50 W  
Driver  
0.1 mF  
2 pF  
0.1 mF  
SPI Master  
GND  
GND  
IOVDD GND  
0.1 mF  
0.1 mF  
0.1 mF  
10nF  
GND  
0.1 mF  
AVDD3V  
AVDD  
AVDD  
AVDD3V  
DVDD  
100-W Differential  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
10 nF  
DB2P  
DB2M  
IOVDD  
DB1P  
DB1M  
DGND  
DB0P  
DB0M  
IOVDD  
SYNC  
DA0M  
DA0P  
DGND  
DA1M  
DA1P  
IOVDD  
DA2M  
DA2P  
NC  
NC  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
IOVDD  
10 nF  
GND  
NC  
10 nF  
10 nF  
VCM  
0.1 mF  
AGND  
AVDD3V  
AVDD  
AGND  
CLKINP  
CLKINM  
AGND  
AVDD  
AVDD3V  
AGND  
GND  
0.1 mF  
AVDD3V  
GND  
AVDD  
0.1 mF  
GND  
10 nF  
IOVDD  
0.1 mF  
GND  
GND Pad  
(Back Side)  
GND  
0.1 mF  
FPGA  
Low-Jitter Clock  
Generator  
AVDD3V  
0.1 mF  
GND  
10 nF  
10 nF  
GND  
SYSREFP  
SYSREFM  
AVDD  
100 W  
IOVDD  
10 nF  
GND  
AVDD  
AGND  
GND  
10 nF  
10 nF  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
100-W Differential  
AVDD3V  
DVDD  
AVDD  
AVDD  
AVDD3V  
0.1 mF  
GND  
GND  
0.1 mF  
IOVDD GND  
0.1 mF  
GND  
5 W  
5 W  
50 W  
50 W  
Driver  
0.1 mF  
0.1 mF  
2 pF  
GND  
NOTE: GND = AGND and DGND connected in the PCB layout.  
Figure 148. AC-Coupled Receiver  
Copyright © 2015–2019, Texas Instruments Incorporated  
83  
 
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
Typical Application (continued)  
9.2.1 Design Requirements  
9.2.1.1 Transformer-Coupled Circuits  
Typical applications involving transformer-coupled circuits are discussed in this section. To achieve good phase  
and amplitude balances at the ADC inputs, surface-mount transformers can be used (for example, for  
frequencies up to 300 MHz, ADT1-1WT or WBC1-1 can be used and for higher input frequencies TC1-1-13M+  
can be used). When designing dc driving circuits, the ADC input impedance must be considered. Figure 149 and  
Figure 150 show the impedance (ZIN = RIN || CIN) across the ADC input pins.  
5
4.75  
4.5  
1.4  
1.2  
1
4.25  
4
0.8  
0.6  
0.4  
0.2  
0
3.75  
3.5  
3.25  
3
2.75  
2.5  
2.25  
0
100 200 300 400 500 600 700 800 900 1000  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
Frequency (MHz)  
D103  
D102  
Figure 149. RIN vs Input Frequency  
Figure 150. CIN vs Input Frequency  
By using the simple drive circuit of Figure 151, uniform performance can be obtained over a wide frequency  
range. The buffers present at the analog inputs of the device help isolate the external drive source from the  
switching currents of the sampling circuit.  
0.1 F  
T2  
CHx_INP  
T1  
5 ꢀ  
0.1 F  
25 ꢀ  
0.1 F  
RIN  
CIN  
25 ꢀ  
5 ꢀ  
0.1 F  
CHx_INM  
1:1  
1:1  
Device  
Figure 151. Input Drive Circuit  
9.2.2 Detailed Design Procedure  
For optimum performance, the analog inputs must be driven differentially. This architecture improves common-  
mode noise immunity and even-order harmonic rejection. A small resistor (5 Ω to 10 Ω) in series with each input  
pin is recommended to damp out ringing caused by package parasitics, as shown in Figure 151.  
84  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
 
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
Typical Application (continued)  
9.2.3 Application Curves  
Figure 152 and Figure 153 show the typical performance at 170 MHz and 230 MHz, respectively.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D003  
D004  
SNR = 69.8 dBFS; SFDR = 88 dBc;  
SNR = 68.9 dBFS; SFDR = 85 dBc;  
IL spur = 86 dBc; non HD2, HD3 spur = 89 dBc  
IL spur = 85 dBc; non HD2, HD3 spur = 86 dBc  
Figure 152. FFT for 170-MHz Input Signal  
Figure 153. FFT for 230-MHz Input Signal  
10 Power Supply Recommendations  
The device requires a 1.15-V nominal supply for IOVDD, a 1.9-V nominal supply for DVDD, a 1.9-V nominal  
supply for AVDD, and a 3.0-V nominal supply for AVDD3V. For detailed information regarding the operating  
voltage minimum and maximum specifications of different supplies, see the Recommended Operating Conditions  
table.  
Copyright © 2015–2019, Texas Instruments Incorporated  
85  
 
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
10.1 Power Sequencing and Initialization  
Figure 154 shows the suggested power-up sequencing for the device. Note that the 1.15-V IOVDD supply must  
rise before the 1.9-V DVDD supply. If the 1.9-V DVDD supply rises before the 1.15-V IOVDD supply, then the  
internal default register settings may not load properly. The other supplies (the 3-V AVDD3V and the 1.9-V  
AVDD), can come up in any order during the power sequence. The power supplies can ramp up at any rate and  
there is no hard requirement for the time delay between IOVDD ramp up to DVDD ramp-up (can be in orders of  
microseconds but is recommend to be a few milliseconds).  
IOVDD = 1.15 V  
DVDD = 1.9 V  
AVDD = 1.9 V  
AVDD = 3 V  
Figure 154. Power Sequencing for the ADS54Jxx Family of Devices  
86  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
11 Layout  
11.1 Layout Guidelines  
The device evaluation module (EVM) layout can be used as a reference layout to obtain the best performance. A  
layout diagram of the EVM top layer is provided in Figure 155. A complete layout of the EVM is available at the  
ADS54J60 EVM folder. Some important points to remember during board layout are:  
Analog inputs are located on opposite sides of the device pinout to ensure minimum crosstalk on the package  
level. To minimize crosstalk onboard, the analog inputs must exit the pinout in opposite directions, as  
illustrated in the reference layout of Figure 155 as much as possible.  
In the device pinout, the sampling clock is located on a side perpendicular to the analog inputs in order to  
minimize coupling between them. This configuration is also maintained on the reference layout of Figure 155  
as much as possible.  
Keep digital outputs away from the analog inputs. When these digital outputs exit the pinout, the digital output  
traces must not be kept parallel to the analog input traces because this configuration can result in coupling  
from the digital outputs to the analog inputs and degrade performance. All digital output traces to the receiver  
[such as a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)] must be  
matched in length to avoid skew among outputs.  
At each power-supply pin (AVDD, DVDD, or AVDDD3V), keep a 0.1-µF decoupling capacitor close to the  
device. A separate decoupling capacitor group consisting of a parallel combination of 10-µF, 1-µF, and 0.1-µF  
capacitors can be kept close to the supply source.  
NOTE  
The PDN and SDOUT traces must be routed away from the analog input traces. When the  
PDN and SDOUT pins are programmed to carry OVR information, the proximity of these  
pins to the analog input traces may result in degradation of ADC performance because of  
coupling. For best performance, the PDN and SDOUT traces must not overlap or cross  
the path of the analog input traces even if routed on different layers of the PCB.  
版权 © 2015–2019, Texas Instruments Incorporated  
87  
ADS54J60  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
www.ti.com.cn  
11.2 Layout Example  
Figure 155. ADS54J60 EVM layout  
88  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J60  
www.ti.com.cn  
ZHCSE42D APRIL 2015REVISED APRIL 2019  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)ADS54J20 双通道 12 1.0GSPS 模数转换器》数据表  
德州仪器 (TI)ADS54J40 双通道 14 1.0GSPS 模数转换器》数据表  
德州仪器 (TI)ADS54J42 双通道 14 625MSPS 模数转换器》数据表  
德州仪器 (TI)《具有集成 DDC ADS54J66 四通道 14 500MSPS ADC数据表  
德州仪器 (TI)ADS54J69 双通道 16 500MSPS 模数转换器》数据表  
德州仪器 (TI)ADS54J60EVM 用户指南》  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015–2019, Texas Instruments Incorporated  
89  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS54J60IRMP  
ADS54J60IRMPT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RMP  
RMP  
72  
72  
168  
250  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
AZ54J60  
AZ54J60  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
ADS54J60IRMP  
RMP  
VQFNP  
72  
168  
8 X 21  
150  
315 135.9 7620 14.65  
11  
11.95  
Pack Materials-Page 1  
PACKAGE OUTLINE  
RMP0072A  
VQFN - 0.9 mm max height  
SCALE 1.700  
VQFN  
10.1  
9.9  
A
B
PIN 1 ID  
10.1  
9.9  
0.9 MAX  
0.05  
0.00  
C
SEATING PLANE  
0.08 C  
(0.2)  
4X (45 X0.42)  
19  
36  
18  
37  
SYMM  
4X  
8.5  
8.5 0.1  
PIN 1 ID  
(R0.2)  
1
54  
0.30  
0.18  
72X  
72  
55  
68X 0.5  
SYMM  
0.5  
0.3  
0.1  
C B  
A
72X  
0.05  
C
4221047/B 02/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RMP0072A  
VQFN - 0.9 mm max height  
VQFN  
(
8.5)  
SYMM  
72X (0.6)  
SEE DETAILS  
55  
72  
1
54  
72X (0.24)  
(0.25) TYP  
SYMM  
(9.8)  
(1.315) TYP  
68X (0.5)  
(
0.2) TYP  
VIA  
37  
18  
19  
36  
(1.315) TYP  
(9.8)  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221047/B 02/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see QFN/SON PCB application report  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RMP0072A  
VQFN - 0.9 mm max height  
VQFN  
(9.8)  
72X (0.6)  
(1.315) TYP  
72  
55  
1
54  
72X (0.24)  
(1.315)  
TYP  
(0.25) TYP  
SYMM  
(9.8)  
(1.315)  
TYP  
68X (0.5)  
METAL  
TYP  
37  
18  
(
0.2) TYP  
VIA  
19  
36  
36X ( 1.115)  
(1.315) TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
62% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
4221047/B 02/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ADS54J60IRMP

双通道、16 位、1.0GSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J60IRMPT

双通道、16 位、1.0GSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J64

四通道 14 位 1GSPS 2 倍过采样模数转换器 (ADC)
TI

ADS54J64IRMP

四通道 14 位 1GSPS 2 倍过采样模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J64IRMPT

四通道 14 位 1GSPS 2 倍过采样模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J66

四通道、14 位、500MSPS 模数转换器 (ADC)
TI

ADS54J66IRMP

四通道、14 位、500MSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J66IRMPT

四通道、14 位、500MSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J69

双通道、16 位、500MSPS 模数转换器 (ADC)
TI

ADS54J69IRMP

双通道、16 位、500MSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J69IRMPT

双通道、16 位、500MSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54RF63

12-Bit, 500-/550-MSPS Analog-to-Digital Converters
TI