ADS54J54IRGCR [TI]

四通道、14 位、500MSPS 模数转换器 (ADC) | RGC | 64 | -40 to 85;
ADS54J54IRGCR
型号: ADS54J54IRGCR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

四通道、14 位、500MSPS 模数转换器 (ADC) | RGC | 64 | -40 to 85

转换器 模数转换器
文件: 总67页 (文件大小:3535K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
ADS54J54 四通道 14 500MSPS ADC  
1 特性  
3 说明  
1
4 通道、14 500MSPS 模数转换器 (ADC)  
ADS54J54 是一款低功耗、高带宽 14 位、500MSPS  
四通道模数转换器 (ADC)。该器件支持 JESD204B 串  
行接口,数据传输速率高达 5Gbps,每个 ADC 可支持  
1 2 条通道。已缓冲模拟输入在大大减少采样保持  
毛刺脉冲能量的同时,在宽频率范围内提供统一的输入  
阻抗。采样时钟分频器可实现更灵活的系统时钟架构设  
计。ADS54J54 以超低功耗在宽输入频率范围内提供  
出色的无杂散动态范围 (SFDR)。该器件具有可选 2x  
抽取滤波器,可提供高通或低通滤波器两种模式。  
模拟输入缓冲器,具有高阻抗输入  
灵活的输入时钟缓冲器,支持 1 分频、2 分频和 4  
分频  
1.25VPP 差分满量程输入  
JESD204B 串行接口  
符合子类 1,速率高达 5Gbps  
每个 ADC 一条通道,速率高达 250Msps  
每个 ADC 两条通道,速率高达 500Msps  
64 引脚四方扁平无引线 (QFN) 封装 (9mm x 9mm)  
器件信息(1)  
主要规格:  
器件型号  
ADS54J54  
封装  
封装尺寸(标称值)  
功率耗散:875mW/ch  
输入带宽 (3dB)900MHz  
孔径抖动:98fs rms  
通道隔离:85dB  
VQFN (64)  
9.00mm x 9.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
ƒin = 170MHz1.25 VPP  
单通道、2x 抽取滤波器、–1dBFS 条件下的性  
OVRA  
Digital Block  
14-bit  
ADC  
Optional 2x  
Decimination  
JESD204B  
JESD204B  
INAP/M  
INBP/M  
DA[0,1]P/M  
信噪比 (SNR)67.2dBFS  
Digital Block  
Optional 2x  
Decimination  
14-bit  
ADC  
无杂散动态范围 (SFDR)85dBc  
HD2HD3);95dBFS(非  
HD2HD3)  
DB[0,1]P/M  
OVRB  
SYSREFABP/M  
CLKINP/M  
SYNCbAB  
SYNCbCD  
ƒin = 370MHz1.25 VPP  
Divide by  
1, 2, 4  
PLL  
x10/x20  
双通道、无抽取滤波器、–1dBFS 条件下的性能  
SYSREFCDP/M  
SNR64.7dBFS  
OVRC  
SFDR75dBcHD2HD3);83dBFS  
(非 HD2HD3)  
Digital Block  
Optional 2x  
Decimination  
14-bit  
ADC  
JESD204B  
JESD204B  
DC[0,1]P/M  
INCP/M  
Digital Block  
Optional 2x  
Decimination  
2 应用  
14-bit  
ADC  
INDP/M  
VCM  
DD[0,1]P/M  
OVRD  
多载波、多模式、多频带蜂窝接收器  
Common  
Mode  
TDD-LTEFDD-LTECDMAWCMDA、  
CMDA2k GSM  
微波回程连线  
无线中继器  
分布式天线系统 (DAS)  
无线宽带  
超宽带软件定义无线电  
数据采集  
测试和测量仪表  
信号智能和干扰  
雷达和卫星系统  
电缆基础设施  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLASE67  
 
 
 
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
目录  
7.1 Overview ................................................................. 23  
7.2 Functional Block Diagram ....................................... 23  
7.3 Feature Description................................................. 24  
7.4 Device Functional Modes........................................ 33  
7.5 Programming........................................................... 35  
7.6 Register Maps......................................................... 36  
Application and Implementation ........................ 53  
8.1 Application Information............................................ 53  
8.2 Typical Application .................................................. 53  
8.3 Design Requirements.............................................. 54  
8.4 Detailed Design Procedure ..................................... 54  
8.5 Application Curves .................................................. 55  
Power Supply Recommendations...................... 56  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 7  
8
9
6.6 Electrical Characteristics: 250 MSPS Output, 2x  
Decimation Filter ........................................................ 8  
10 Layout................................................................... 56  
10.1 Layout Guidelines ................................................. 56  
10.2 Layout Example .................................................... 56  
11 器件和文档支持 ..................................................... 58  
11.1 ....................................................................... 58  
11.2 静电放电警告......................................................... 58  
11.3 Glossary................................................................ 58  
12 机械、封装和可订购信息....................................... 58  
6.7 Electrical Characteristics: 500 MSPS Output............ 9  
6.8 Electrical Characteristics: Sample Clock Timing  
Characteristics ........................................................... 9  
6.9 Electrical Characteristics: Digital Outputs............... 10  
6.10 Timing Requirements............................................ 10  
6.11 Reset Timing......................................................... 10  
6.12 Typical Characteristics.......................................... 13  
Detailed Description ............................................ 23  
7
4 修订历史记录  
Changes from Original (January 2015) to Revision A  
Page  
Added list item in Device and Register Initialization: "Write the data in 5 to.."................................................................ 33  
Added 5 ........................................................................................................................................................................... 33  
2
Copyright © 2015–2019, Texas Instruments Incorporated  
 
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
5 Pin Configuration and Functions  
ADS54J54  
RGC 64 Pin Package  
Top View  
SDOUT  
SDATA  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
SYNCbABM  
SYNCbABP  
DB0P  
2
SCLK  
3
SDENb  
4
DB0M  
SYSREFABM  
SYSREFABP  
AVDDC  
5
IOVDD  
6
DB1P  
7
DB1M  
CLKINM  
8
PLLVDD  
PLLVDD  
DD1M  
Thermal  
Pad  
CLKINP  
9
AVDDC  
10  
11  
12  
13  
14  
15  
16  
SYSREFCDP  
SYSREFCDM  
SRESETb  
ENABLE  
VREF  
DD1P  
IOVDD  
DD0  
DD0P  
SYNCbCDP  
SYNCbCDM  
VCM  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
INPUT OR REFERENCE  
INAP, INAM  
INBP, INBM  
INCP, INCM  
INDP, INDM  
VCM  
63, 62  
I
I
Differential analog input for channel A  
Differential analog input for channel B  
Differential analog input for channel C  
Differential analog input for channel D  
58, 59  
18, 19  
23, 22  
16  
I
I
O
O
Common mode output voltage to bias analog inputs, Vcm = 2.0 V  
VREF  
15  
Voltage reference output. A 0.1-µF bypass capacitor to ground close to the pin is recommended  
CLOCK/SYNC  
CLKINP,  
CLKINM  
9, 8  
6, 5  
I
I
I
Differential clock input for channel  
SYSREFABP,  
SYSREFABM  
LVDS input with internal 100-Ω termination. External SYSREF input for channels A, B, C, and D  
SYSREFCDP,  
SYSREFCDM  
LVDS input with internal 100-Ω termination. External SYSREF input for channels C and D if output  
rate of channel A/B is different from channel C/D.  
11, 12  
Copyright © 2015–2019, Texas Instruments Incorporated  
3
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
CONTROL OR SERIAL  
Chip enable. Active high. Power down functionality can be configured through SPI register setting  
and exercised using the ENABLE pin. Internal 51-kΩ pulldown resistor.  
ENABLE  
14  
I
I
SCLK  
3
2
4
1
Serial interface clock input  
SDATA  
SDENb  
SDOUT  
I/O Bidirectional serial data in 3-pin mode. In 4-pin interface, the SDATA pin is an input only.  
I
Serial interface enable  
O
Serial interface data output  
Hardware reset. Active low. Initializes internal registers during high to low transition. This pin has  
an internal 51-kΩ pullup resistor.  
SRESETb  
13  
I
DATA OUTPUT INTERFACE  
DA[0,1]P,  
55, 54, 52, 51  
DA[0,1]M  
O
O
O
O
JESD204B output interface for channel A  
JESD204B output interface for channel B  
JESD204B output interface for channel C  
JESD204B output interface for channel D  
DB[0,1]P,  
46, 45, 43, 42  
DB[0,1]M  
DC[0,1]P,  
26, 27, 29, 30  
DC[0,1]M  
DD[0,1]P,  
35, 36, 38, 39  
DD[0,1]M  
OVRA  
OVRB  
OVRC  
OVRD  
50  
49  
31  
32  
I/O Fast over-range indicator channel A.  
Fast over-range indicator channel B.  
I/O Fast over-range indicator channel C.  
O
O
Fast over-range indicator channel D.  
SYNCbABP,  
SYNCbABM  
47, 48  
34, 33  
I
SYNCb input for JESD204B interface for channel A/B, internal 100-Ω termination  
SYNCbCDP,  
SYNCbCDM  
I
SYNCb input for JESD204B interface for channel C/D, internal 100-Ω termination  
POWER SUPPLY  
AVDDC  
7, 10  
I
I
I
I
I
I
I
Clock 1.8-V power supply  
Analog 1.9-V power supply  
Analog 3.3-V power supply  
Digital 1.8-V power supply  
Ground  
AVDD18  
AVDD33  
DVDD  
21, 24, 57, 60  
17, 20, 61, 64  
25, 56  
GND  
PowerPAD™  
28, 37, 44, 53  
40, 41  
IOVDD  
JESD204B output interface 1.8-V power supply  
PLL 1.8-V power supply  
PLLVDD  
4
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
UNIT  
AVDD33  
AVDD18  
3.6  
2.1  
AVDDC  
2.1  
Supply voltage  
DVDD  
V
2.1  
IOVDD  
PLLVDD  
2.1  
2.1  
Voltage between AGND and DGND  
0.3  
V
V
INAP, INBP, INCP, INDP, INAM, INBM, INCM, INDM  
3
CLKINP, CLKINM  
AVDD18 + 0.3 V  
AVDD18 + 0.3 V  
AVDD18 + 0.3 V  
DVDD + 0.5 V  
85  
Voltage applied to input pins SYNCbABP, SYNCbABM, SYNCbCDP, SYNCbCDM  
SYSREFABP, SYSREFABM, SYSREFCDP, SYSREFCDM  
SCLK, SDENb, SDATA, SRESETb, ENABLE  
Operating free-air temperature, TA  
ºC  
ºC  
°C  
(2)  
Operating junction temperature, TJ  
125  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed as absolute maximum ratings may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated as recommended operating conditions is  
not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Prolonged use at this junction temperature may increase the device failure-in-time (FIT) rate.  
6.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
250  
14  
NOM  
MAX  
500  
14  
UNIT  
MSPS  
bits  
ADC clock frequency  
Resolution  
AVDD33  
3.15  
1.8  
1.7  
1.7  
1.7  
1.7  
–40  
3.3  
1.9  
1.8  
1.8  
1.8  
1.8  
3.45  
2
AVDD18  
AVDDC  
1.9  
1.9  
1.9  
1.9  
85  
Supply  
V
DVDD  
IOVDD  
PLLVDD  
TA  
TJ  
Operating free-air temperature  
Operating junction temperature  
°C  
°C  
125  
6.4 Thermal Information  
Thermal Metric(1)  
RGC (64 PINS)  
UNIT  
°C/W  
RΘJA  
Junction-to-ambient thermal resistance  
23.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2015–2019, Texas Instruments Incorporated  
5
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
Thermal Information (continued)  
Thermal Metric(1)  
RGC (64 PINS)  
UNIT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RΘJC(top)  
RΘJB  
Junction-to-case, top  
7.0  
2.6  
0.1  
2.6  
0.3  
Junction-to-board thermal resistance  
Junction-to-top of package  
φJT  
φJB  
Junction-to-board characterization parameter  
Junction-to-case, bottom  
RΘJC(bot)  
6
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
6.5 Electrical Characteristics  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 500 MSPS, 50%  
clock duty cycle, AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, –1-dBFS differential input,  
unless otherwise noted.  
PARAMETER  
POWER SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IAVDD33  
IAVDD18  
IAVDDC  
3.3-V analog supply current  
1.9-V analog supply current  
1.8-V clock supply current  
500  
320  
18  
mA  
mA  
mA  
4-channel decimation filter  
323  
324  
4-channel bypass digital mode  
IDVDD  
1.8-V digital supply current  
mA  
2-channel decimation filter, 2-channel bypass digital  
mode  
324  
2 lanes per ADC  
1 lane per ADC  
373  
185  
42  
IIOVDD  
I/O voltage supply current  
PLL voltage supply current  
mA  
IPLLVDD  
mA  
3.7  
4-channel bypass digital mode  
4-channel decimation filter  
3.46  
3.34  
3.27  
Pdis  
Total power dissipation  
W
4-channel decimation filter, 1 lane per ADC  
2-channel decimation filter, 2-channel bypass digital  
mode  
3.51  
Deep sleep mode power  
791  
1.4  
1.68  
8
mW  
ms  
W
Wake-up time from deep sleep mode  
Light sleep mode power  
SNR > 60 dB  
SNR > 60 dB  
Wake-up time from light sleep mode  
ANALOG INPUTS  
µs  
Differential input full-scale  
1
1.25  
1.5 Vpp  
V
VCM  
±
Input common mode voltage  
50 mV  
Input  
Differential at DC  
resistance  
1
kΩ  
Input  
Each input to GND  
capacitance  
2.75  
pF  
VCM  
Common mode voltage output  
2.18  
900  
V
Analog input bandwidth (–3 dB)  
MHz  
LSB  
LSB  
INL  
Integral nonlinearity  
Dynamic nonlinearity  
±3  
DNL  
–1  
±0.9  
Gain error  
±2.24%  
±1.91  
Offset error  
mV  
dB  
CHANNEL-TO-CHANNEL ISOLATION  
Near channel  
Far channel  
ƒIN = 170 MHz  
ƒIN = 170 MHz  
85  
95  
Crosstalk(1)  
CLOCK INPUT  
Input clock frequency  
Input clock amplitude  
Input clock duty cycle  
Internal clock biasing  
250  
0.4  
2000(2) MHz  
1.5  
50%  
0.9  
Vpp  
45%  
55%  
V
(1) Crosstalk is measured with a –1-dBFS input signal on aggressor channel and no input on victim channel.  
(2) CLK / 4 mode  
Copyright © 2015–2019, Texas Instruments Incorporated  
7
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
6.6 Electrical Characteristics: 250 MSPS Output, 2x Decimation Filter  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 500 MSPS, 50%  
clock duty cycle, AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, –1-dBFS differential input,  
unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
ƒIN = 10 MHz  
MIN  
TYP  
68.3  
68.2  
67.2  
67.6  
66.8  
85  
MAX  
UNIT  
ƒIN = 100 MHz  
ƒIN = 170 MHz  
ƒIN = 310 MHz  
ƒIN = 450 MHz  
ƒIN = 10 MHz  
SNR  
HD2  
HD3  
Signal-to-noise ratio  
dBFS  
ƒIN = 100 MHz  
ƒIN = 170 MHz  
ƒIN = 310 MHz  
ƒIN = 450 MHz  
ƒIN = 10 MHz  
85  
Second harmonic distortion  
Third harmonic distortion  
85  
dBc  
dBc  
85  
75  
85  
ƒIN = 100 MHz  
ƒIN = 170 MHz  
ƒIN = 310 MHz  
ƒIN = 450 MHz  
ƒIN = 10 MHz  
85  
85  
85  
85  
95  
ƒIN = 100 MHz  
ƒIN = 170 MHz  
ƒIN = 310 MHz  
ƒIN = 450 MHz  
FIN = 169 and 171 MHz  
95  
SFDR  
(Non-HD2,  
Non-HD3)  
Spur free dynamic range  
(excluding HD2 and HD3)  
95  
dBc  
90  
85  
IMD3  
2F1-F2, 2F2-F1, Ain = –7 dBFS  
93  
dBFS  
8
Copyright © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
6.7 Electrical Characteristics: 500 MSPS Output  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 500 MSPS, 50%  
clock duty cycle, AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, –1-dBFS differential input,  
unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
ƒIN = 10 MHz  
MIN  
TYP  
65.3  
65.2  
64.9  
64.7  
64.6  
85  
MAX  
UNIT  
ƒIN = 100 MHz  
SNR  
HD2  
HD3  
Signal-to-Noise Ratio Bypass Digital Mode (14 bit) ƒIN = 170 MHz  
61  
dBFS  
ƒIN = 370 MHz  
ƒIN = 450 MHz  
ƒIN = 10 MHz  
ƒIN = 100 MHz  
85  
Second Harmonic Distortion  
Third Harmonic Distortion  
ƒIN = 170 MHz  
ƒIN = 370 MHz  
ƒIN = 450 MHz  
ƒIN = 10 MHz  
70  
70  
70  
85  
dBc  
dBc  
75  
75  
85  
ƒIN = 100 MHz  
ƒIN = 170 MHz  
ƒIN = 370 MHz  
ƒIN = 450 MHz  
ƒIN = 10 MHz  
85  
85  
85  
85  
85  
ƒIN = 100 MHz  
ƒIN = 170 MHz  
ƒIN = 370 MHz  
ƒIN = 450 MHz  
fIN = 169 and 171 MHz  
85  
SFDR  
(Non-HD2,  
Non-HD3)  
Spur Free Dynamic Range  
(excluding HD2 and HD3)  
85  
dBFS  
dBFS  
83  
83  
IMD3  
2F1-F2, 2F2-F1, Ain = –7 dBFS  
87  
6.8 Electrical Characteristics: Sample Clock Timing Characteristics  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 500 MSPS, 50%  
clock duty cycle, AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, –1 dBFS differential input,  
unless otherwise noted.  
PARAMETER  
MIN  
TYP  
98  
38  
6
MAX  
UNIT  
Aperture jitter, RMS  
Data latency  
fs rms  
Sample clock cycles  
ns  
Fast over-range (OVR) latency  
Clock aperture delay  
tPDI  
1.1  
Copyright © 2015–2019, Texas Instruments Incorporated  
9
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
6.9 Electrical Characteristics: Digital Outputs  
The DC specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level 0 or 1. AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V.  
PARAMETER  
DIGITAL OUTPUTS: JESD204B INTERFACE (DA[0,1], DB[0,1], DC[0,1], DD[0,1])  
Output differential voltage, |VOD|  
MIN  
TYP  
MAX  
UNIT  
450  
577  
45  
50  
2
750  
mV  
mA  
Ω
Transmitter terminals shorted to any voltage between  
Transmitter short circuit current  
–0.25 and 1.45 V  
Single ended output impedance  
Output capacitance inside the device, from either  
Output capacitance  
output to ground  
pF  
Unit interval, UI  
Rise and fall times  
Output jitter  
5.0 Gbps  
200  
110  
57  
ps  
ps  
ps  
Serial output data rate  
5.0  
Gbps  
6.10 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS: SRESETb, SCLK, SDENb, SDATA, ENABLE, OVRA, OVRC, SYSREFCDP, SYSREFCDM  
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
Input capacitance  
1.2  
V
All digital inputs support 1.8-V and 3.3-V logic  
levels  
0.4  
V
50  
–50  
4
µA  
µA  
pF  
DIGITAL OUTPUTS: SDOUT, OVRA, OVRB, OVRC, OVRD  
High-level output voltage  
Low-level output voltage  
DIGITAL INPUTS:  
ILoad = –100 µA  
DVDD – 0.2  
DVDD  
V
V
0.2  
SYNCbABP/M, SYNCbCDP/M, SYSREFABP/M, SYSREFCDP/M  
Input voltage VID  
250  
0.4  
350  
0.9  
450  
1.4  
mV  
V
Input common mode voltage VCM  
tS_SYSREFxx  
tH_SYSREFxx  
Referenced to rising edge of input clock  
100  
100  
ps  
ps  
Referenced to rising edge of input clock  
6.11 Reset Timing  
PARAMETER  
TEST CONDITIONS  
Delay from power up to active-low RESET pulse  
Active-low RESET pulse duration  
MIN  
3
TYP  
MAX  
UNIT  
ms  
ns  
t1  
t2  
t3  
Power-on delay  
Reset pulse duration  
Register write delay  
20  
Delay from RESET disable to SDENb active  
100  
ns  
10  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
Power Supplies  
t1  
SRESETb  
SDENb  
t2  
t3  
1. Reset Timing Diagram  
N + 1  
N + 2  
N
SAMPLE  
tPD  
Data Latency: 74 Clock Cycles  
CLKINM  
CLKINP  
DA0P/M  
DB0P/M  
DC0P/M  
DD0P/M  
D
20  
D
1
D
20  
SAMPLE N œ 1  
SAMPLE N  
SAMPLE N + 1  
A. tPD is the propagation delay from sample clock input edge to serial data output transition  
2. Timing Diagram: 250 MSPS Output Data Rate  
版权 © 2015–2019, Texas Instruments Incorporated  
11  
 
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
N +  
2
N + 1  
N
N + 3  
SAMPLE  
tPD  
Data Latency: 38 Clock Cycles  
CLKINM  
CLKINP  
DA0P/M  
DB0P/M  
DC0P/M  
DD0P/M  
D
20  
D
D
D
D
11 20  
11 20  
SAMPLE N œ 1  
SAMPLE N  
SAMPLE N + 1  
SAMPLE N + 2  
DA1P/M  
DB1P/M  
DC1P/M  
DD1P/M  
D
10  
D
1
D
10  
D
1
D
10  
SAMPLE N œ 1  
SAMPLE N  
SAMPLE N + 1  
SAMPLE N + 2  
B. tPD is the propagation delay from sample clock input edge to serial data output transition  
3. Timing Diagram: 500 MSPS Output Data Rate  
Sample N  
ts_SYSREFxx  
th_SYSREFxx  
CLKIN  
SYSREFxx  
4. Timing Using SYSREF (Subclass 1)  
12  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
6.12 Typical Characteristics  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz,  
Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD  
= 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Frequency (MHz)  
1-lane 2x decimation  
SNR = 65.29 dBFS  
Frequency (MHz)  
1-lane 2x decimation  
SNR = 65.40 dBFS  
D001  
D002  
Fin = 10 MHz  
Ain = –1 dBFS  
SFDR = 84.72 dBc  
Fin = 100 MHz  
Ain = –1 dBFS  
SFDR = 82.50 dBc  
5. FFT 10 MHz  
6. FFT 100 MHz  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
0
-120  
0
25  
50  
75  
100  
125  
25  
50  
75  
100  
125  
Frequency (MHz)  
1-lane 2x decimation  
SNR = 65.34 dBFS  
Frequency (MHz)  
1-lane 2x decimation  
SNR = 65.16 dBFS  
D003  
D004  
Fin = 170 MHz  
Ain = –1 dBFS  
SFDR = 91.62 dBc  
Fin = 230 MHz  
Ain = –1 dBFS  
SFDR = 76.83 dBc  
7. FFT 170 MHz  
8. FFT 230 MHz  
0
-20  
96  
93  
90  
87  
84  
81  
78  
75  
72  
69  
66  
63  
-40  
-60  
-80  
-100  
-120  
60  
65  
70  
75  
80  
85  
90  
95  
100  
0
100 200 300 400 500 600 700 800 900 1000  
Fin (MHz)  
Frequency (MHz)  
D005  
D0086  
Fin = 230 MHz  
1-lane 2x decimation  
SNR = 65.16 dBFS  
Ain = –1 dBFS  
SFDR = 76.83 dBc  
1-lane 2x decimation  
Ain = –1 dBFS  
9. 2-Tone FFT  
10. SFDR vs Frequency  
版权 © 2015–2019, Texas Instruments Incorporated  
13  
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz,  
Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD  
= 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768.  
110  
105  
100  
95  
70.0  
68.0  
66.0  
64.0  
62.0  
-40èC  
0èC  
25èC  
55èC  
85èC  
90  
85  
80  
75  
0
100 200 300 400 500 600 700 800 900 1000  
Fin (MHz)  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Input Amplitude (dBFS)  
D007  
D008  
1-lane 2x decimation  
Ain = –1 dBFS  
1-lane 2x decimation  
Fin = 170 MHz  
11. SNR vs. Frequency  
12. SFDR vs. Amplitude  
71  
70  
69  
68  
67  
66  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
-40èC  
0èC  
25èC  
55èC  
85èC  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
Input Amplitude (dBFS)  
VCM (V)  
D009  
D010  
1-lane 2x decimation  
Fin = 170 MHz  
1-lane 2x decimation  
Fin = 170 MHz  
13. SNR vs. Amplitude  
14. SFDR vs. VCM  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
100  
95  
90  
85  
80  
75  
70  
VREF=1.35V  
VREF=1.5V  
VREF=1.15V  
VREF=1.0V  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
0
100 200 300 400 500 600 700 800 900 1000  
Input Frequency (MHz)  
VCM (V)  
D011  
D012  
1-lane 2x decimation  
Fin = 170 MHz  
1-lane 2x decimation  
Ain = –1 dBFS  
15. SNR vs VCM  
16. SFDR vs. VREF  
14  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
Typical Characteristics (接下页)  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz,  
Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD  
= 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768.  
94  
92  
90  
88  
86  
84  
82  
80  
78  
72  
70  
68  
66  
64  
62  
-40èC  
0èC  
25èC  
55èC  
85èC  
VREF=1.25V  
VREF=1.35V  
VREF=1.5V  
VREF=1.15V  
VREF=1.0V  
0
100 200 300 400 500 600 700 800 900 1000  
Input Frequency (MHz)  
1.7  
1.8  
1.9  
2.0  
2.1  
AVDD18 Supply Voltage (V)  
D013  
D0174  
1-lane 2x decimation  
Ain = –1 dBFS  
1-lane 2x decimation  
Ain = –1 dBFS  
Fin = 170 MHz  
17. SNR vs. VREF  
18. SFDR vs. AVDD18  
70  
96  
-40èC  
0èC  
25èC  
55èC  
85èC  
-40èC  
0èC  
25èC  
55èC  
85èC  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
68  
66  
64  
62  
1.7  
1.8  
1.9  
2.0  
2.1  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
AVDD18 Supply Voltage (V)  
AVDD33 Supply Voltage (V)  
D015  
D016  
1-lane 2x decimation  
Ain = –1 dBFS  
Fin = 170 MHz  
1-lane 2x decimation  
Ain = –1 dBFS  
Fin = 170 MHz  
19. SNR vs. AVDD18  
20. SFDR vs. AVDD33  
70  
94  
-40èC  
0èC  
25èC  
55èC  
85èC  
-40èC  
92  
0èC  
25èC  
55èC  
85èC  
68  
66  
64  
62  
90  
88  
86  
84  
82  
80  
78  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
1.6  
1.7  
1.8  
1.9  
2.0  
AVDD33 Supply Voltage (V)  
PLLVDD Supply Voltage (V)  
D017  
D018  
1-lane 2x decimation  
Ain = –1 dBFS  
Fin = 170 MHz  
1-lane 2x decimation  
Ain = –1 dBFS  
Fin = 170 MHz  
21. SNR vs. AVDD33  
22. SFDR vs. PLLVDD  
版权 © 2015–2019, Texas Instruments Incorporated  
15  
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz,  
Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD  
= 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
70  
68  
66  
64  
-40èC  
0èC  
25èC  
55èC  
85èC  
1.6  
1.7  
1.8  
1.9  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
PLLVDD Supply Voltage (V)  
Clock Amplitude (V peak to peak)  
D019  
D020  
1-lane 2x decimation  
Ain = –1 dBFS  
Fin = 170 MHz  
1-lane 2x decimation  
Ain = –1 dBFS  
Fin = 170 MHz  
23. SNR vs PLLVDD  
24. SFDR vs. Clock Amplitude  
80  
70  
60  
50  
40  
30  
20  
4.5  
4.0  
3.5  
3.0  
2.5  
2x Decimation  
Digital Bypass  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
250.0  
300.0  
350.0  
400.0  
450.0  
500.0  
550.0  
Clock Amplitude (V peak to peak)  
Sample Frequency (MHz)  
AVDD33 = 3.3 V  
Fin = 170 MHz  
D021  
D022  
1-lane 2x decimation  
Ain = –1 dBFS  
Fin = 170 MHz  
AVDD18 = 1.9 V  
Ain = –1 dBFS  
Other supplies = 1.8 V  
25. SNR vs. Clock Amplitude  
26. Power vs Sample Frequency  
0
-10  
0
-20  
-20  
-30  
-40  
-40  
-50  
-60  
-60  
-70  
-80  
-80  
-90  
-100  
-110  
-120  
-130  
-100  
-120  
B
A
C
D
C
D
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (MHz)  
hA  
hB  
o C  
C t  
Ch  
hA  
o C  
D t  
Ch  
hB  
o C  
D t  
Ch  
hD  
o C  
C t  
Ch  
hC  
o C  
D t  
Ch  
Ch  
Ch  
Ch  
Ch  
Ch  
Ch  
o C  
D023  
D024  
A to  
Ch  
B to  
Ch  
A to  
A to  
Ch  
B to  
Ch  
B to  
Ch  
C t  
Ch  
Ch  
2-lane no decimation  
SNR = 65.27 dBFS  
Ain = –1 dBFS  
Fin = 10 MHz  
Channel to Channel  
SFDR = 86.63 dBc  
1-lane 2x decimation  
Ain = –1 dBFS  
Fin = 170 MHz  
28. FFT 10 MHz  
27. Crosstalk by Channel  
16  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
Typical Characteristics (接下页)  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz,  
Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD  
= 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768.  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (MHz)  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (MHz)  
D025  
D026  
2-lane no decimation  
SNR = 65.41 dBFS  
Ain = –1 dBFS  
Fin = 100 MHz  
2-lane no decimation  
SNR = 65.26 dBFS  
Ain = –1 dBFS  
Fin = 170 MHz  
SFDR = 83.25 dBc  
SFDR = 90.42 dBc  
29. FFT 100 MHz  
30. FFT 170 MHz  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
25  
50  
75 100 125 150 175 200 225 250  
Frequency (MHz)  
150  
155  
160  
165  
170  
175  
180  
185  
190  
Frequency (MHz)  
D027  
D028  
2-lane no decimation  
SNR = 64.91 dBFS  
Ain = –1 dBFS  
Fin = 230 MHz  
2-lane no decimation  
Fin = 170 MHz  
Ain = –1 dBFS  
SFDR = 83.29 dBc  
31. FFT 230 MHz  
32. 2-Tone FFT  
92  
88  
84  
80  
76  
72  
68  
64  
66.0  
65.0  
64.0  
63.0  
62.0  
0
100 200 300 400 500 600 700 800 900 1000  
Fin (MHz)  
0
100 200 300 400 500 600 700 800 900 1000  
Fin (MHz)  
D02096  
D030  
2-lane no decimation  
Ain = –1 dBFS  
2-lane no decimation  
Ain = –1 dBFS  
33. SDFR vs Frequency  
34. SNR vs Frequency  
版权 © 2015–2019, Texas Instruments Incorporated  
17  
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz,  
Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD  
= 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768.  
105  
100  
95  
68  
67  
66  
65  
64  
63  
62  
-40èC  
0èC  
25èC  
55èC  
85èC  
-40èC  
0èC  
25èC  
55èC  
85èC  
90  
85  
80  
75  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
D031  
D032  
2-lane no decimation  
Fin = 170 MHz  
2-lane no decimation  
Fin = 170 MHz  
35. SFDR vs Amplitude  
36. SNR vs Amplitude  
68  
67  
66  
65  
64  
63  
62  
61  
60  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
VCM (V)  
VCM (V)  
D033  
D034  
2-lane no decimation  
Fin = 170 MHz  
2-lane no decimation  
Fin = 170 MHz  
37. SFDR vs VCM  
38. SNR vs VCM  
92  
68  
66  
64  
62  
60  
58  
VREF=1.00V  
VREF=1.15V  
VREF=1.25V  
VREF=1.35V  
VREF=1.5V  
VREF=1.00V  
VREF=1.15V  
VREF=1.25V  
VREF=1.35V  
VREF=1.50V  
88  
84  
80  
76  
72  
68  
64  
0
100 200 300 400 500 600 700 800 900 1000  
Input Frequency (MHz)  
0
100 200 300 400 500 600 700 800 900 1000  
Input Frequency (MHz)  
D035  
D036  
2-lane no decimation  
Ain = –1 dBFS  
2-lane no decimation  
Ain = –1 dBFS  
39. SFDR vs Input Frequency  
40. SNR vs Input Frequency  
18  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
Typical Characteristics (接下页)  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz,  
Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD  
= 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768.  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
68  
66  
64  
62  
60  
-40èC  
0èC  
25èC  
55èC  
85èC  
-40èC  
0èC  
25èC  
55èC  
85èC  
1.7  
1.8  
1.9  
2.0  
2.1  
1.7  
1.8  
1.9  
2.0  
2.1  
AVDD18 Supply Voltage (V)  
AVDD18 Supply Voltage (V)  
D037  
D038  
2-lane no decimation  
Ain = –1 dBFS  
Fin = 170 MHz  
2-lane no decimation  
Ain = –1 dBFS  
Fin = 170 MHz  
41. SFDR vs AVDD18 Supply Voltage  
42. SNR vs AVDD18 Supply Voltage  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
68  
66  
64  
62  
60  
-40èC  
0èC  
25èC  
55èC  
85èC  
-40èC  
0èC  
25èC  
55èC  
85èC  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
AVDD33 Supply Voltage (V)  
AVDD33 Supply Voltage (V)  
D039  
D040  
2-lane no decimation  
Ain = –1 dBFS  
Fin = 170 MHz  
2-lane no decimation  
Ain = –1 dBFS  
Fin = 170 MHz  
43. SFDR vs AVDD33 Supply Voltage  
44. SNR vs AVDD33 Supply Voltage  
90  
88  
86  
84  
82  
80  
78  
68  
67  
66  
65  
64  
63  
62  
-40èC  
0èC  
25èC  
55èC  
85èC  
-40èC  
0èC  
25èC  
55èC  
85èC  
1.6  
1.7  
1.8  
1.9  
2.0  
1.6  
1.7  
1.8  
1.9  
2.0  
PLLVDD Supply Voltage (V)  
PLLVDD Supply Voltage (V)  
D041  
D042  
2-lane no decimation  
Ain = –1 dBFS  
Fin = 170 MHz  
2-lane no decimation  
Ain = –1 dBFS  
Fin = 170 MHz  
45. SFDR vs PLLVDD Supply Voltage  
46. SNR vs PLLVDD Supply Voltage  
版权 © 2015–2019, Texas Instruments Incorporated  
19  
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz,  
Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD  
= 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Clock Amplitude (V peak to peak)  
Clock Amplitude (V peak to peak)  
D043  
D044  
2-lane no decimation  
Ain = –1 dBFS  
Fin = 170 MHz  
2-lane no decimation  
Ain = –1 dBFS  
Fin = 170 MHz  
47. SFDR vs Clock Amplitude  
48. SNR vs Clock Amplitude  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
B
A
C
D
C
D
hA  
hB  
o C  
C t  
Ch  
hA  
o C  
D t  
Ch  
hB  
o C  
D t  
Ch  
hD  
o C  
C t  
Ch  
hC  
o C  
D t  
Ch  
Ch  
Ch  
Ch  
Ch  
Ch  
Ch  
o C  
D04253  
A to  
Ch  
B to  
Ch  
A to  
A to  
B to  
B to  
C t  
Ch  
Ch  
Ch  
Ch  
Ch  
Channel to Channel  
2-lane no decimation  
Ain = –1 dBFS  
Fin = 170 MHz  
49. Crosstalk by Channel  
20  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
Typical Characteristics (接下页)  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz,  
Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD  
= 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768.  
2lane no decimation  
50. SNR Contour Plot  
2lane no decimation  
51. SFDR Contour Plot  
版权 © 2015–2019, Texas Instruments Incorporated  
21  
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz,  
Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD  
= 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768.  
d
d
d
n
n
n
a
a
a
B
B
B
n
o
n
n
i
d
n
t
i
o
i
o
i
t
s
a
t
i
i
n
B
s
a
s
r
n
n
n
T
a
o
a
i
r
r
r
t
e
i
T
T
t
l
s
n
a
r
i
r
e
t
F
e
t
l
i
r
T
l
i
F
F
r
e
t
l
i
F
1lane 2x decimation  
52. SNR Contour Plot  
d
n
a
d
d
n
n
B
a
a
d
n
n
B
B
o
i
n
a
B
n
t
i
o
o
i
i
t
t
i
s
i
n
o
n
s
s
i
t
n
a
n
r
i
a
a
r
T
s
n
a
r
T
r
T
r
e
t
e
r
r
T
t
l
l
e
t
i
i
r
l
i
F
F
e
t
F
l
i
F
1lane 2x decimation  
53. SFDR Contour Plot  
22  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
7 Detailed Description  
7.1 Overview  
The ADS54J54 is a low power, wide bandwidth 14-bit 500 MSPS quad channel ADC. It supports the JESD204B  
serial interface with data rates up to 5.0 Gbps supporting 1 or 2 lanes per channel. The buffered analog input  
provides uniform input impedance across a wide frequency range while minimizing sample-and-hold glitch  
energy. A sampling clock divider allows more flexibility for system clock architecture design. The ADS54J54  
provides excellent SFDR over a large input frequency range with low power consumption.  
7.2 Functional Block Diagram  
OVRA  
Digital Block  
Optional 2x  
Decimination  
14-bit  
ADC  
JESD204B  
JESD204B  
INAP/M  
INBP/M  
DA[0,1]P/M  
Digital Block  
Optional 2x  
Decimination  
14-bit  
ADC  
DB[0,1]P/M  
OVRB  
SYSREFABP/M  
CLKINP/M  
SYNCbAB  
SYNCbCD  
Divide  
by 1,2,4  
PLL  
x10/x20  
SYSREFCDP/M  
OVRC  
Digital Block  
Optional 2x  
Decimination  
14-bit  
ADC  
JESD204B  
JESD204B  
DC[0,1]P/M  
INCP/M  
Digital Block  
Optional 2x  
Decimination  
14-bit  
ADC  
INDP/M  
VCM  
DD[0,1]P/M  
OVRD  
Common  
Mode  
版权 © 2015–2019, Texas Instruments Incorporated  
23  
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Decimation by 2 (250 MSPS Output)  
Each channel has a digital filter in the data path as shown in 54. The filter can be programmed as a low-pass  
or high-pass filter and the normalized frequency response of both filters is shown in 55.  
Lowpass/  
Highpass  
500 MSPS  
selection  
Low Latency Filter  
250 MSPS  
ADC  
2
0, Fs/2  
54. 2x Decimation Filter  
The decimation filter response has a 0.1-dB pass band ripple with approximately 41% pass-band bandwidth. The  
stop-band attenuation is approximately 40 dB.  
10  
0
0.1  
0.05  
0
-10  
-20  
-30  
-40  
-50  
-60  
-0.05  
-0.1  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
0
0.06 0.12 0.18 0.24  
0.3  
0.36 0.42 0.48  
D00C  
D00D  
55. Decimation Filter Response  
56. Decimation Filter Response Passband Ripple Detail  
7.3.2 Over-Range Indication  
The ADS54J54 provides a fast over-range indication on the OVRA, OVRB, OVRC, and OVRD pins. The fast  
OVR is triggered if the input voltage exceeds the programmable over-range threshold and is output after just 6  
clock cycles, enabling a quicker reaction to an over-range event. The OVR threshold can be configured using  
SPI register writes.  
The input voltage level at which the overload is detected is referred to as the threshold and is programmable  
using the over-range threshold bits.  
The threshold at which fast OVR is triggered is (full-scale × [the decimal value of the FAST OVR THRESH bits] /  
8). After reset, the default value of the over-range threshold is set to 7 (decimal), which corresponds to a  
threshold of 1.12 dB below full scale (20 × log(7/8)).  
24  
版权 © 2015–2019, Texas Instruments Incorporated  
 
 
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
1. Fast Over Range  
Threshold Settings  
OVR Setting  
(decimal)  
OVR Threshold  
(dBFS)  
1
–18.1  
–12.0  
–8.5  
–6.0  
–4.1  
–2.5  
–1.1  
2
3
4
5
6
7 (default)  
Because the fast over-range indicator is single-ended LVCMOS logic, the ADS54J54 device can be configured  
through the SPI register write to keep the over-range indicator asserted high for an extra one, two, or four clock  
cycles. This longer assertion of the signal ensures the processor can capture the over-range event.  
Sampling  
Clock  
Internal  
Over-Range  
Event  
OVRA, OVRB,  
OVRC, OVR D  
Terminal Output  
Normal  
Hold 1 extra clock cycle  
Hold 2 extra clock cycles  
57. Fast Over Range Output Timing  
The ADS54J54 device also provides the fast over-range indication bit in the JESD204B output data stream.  
14-Bit Data Output  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OVR  
0
16-bit data going into 8b/10b encoder  
58. Sample Data and Status Bit Format  
7.3.3 JESD204B Interface  
The ADS54J54 supports device subclass 1 with a maximum output data rate of 5 Gbps for each serial  
transmitter. It allows independent JESD204B format configuration for channel A and B and channel C and D.  
An external SYSREF signal is used to align all internal clock phases and the local multi-frame clock to a specific  
sampling clock edge. This allows synchronization of multiple devices in a system and minimizes timing and  
alignment uncertainty. SYNCbAB input is used to control all the JESD204B SerDes blocks for channel A and B  
while SYNCbCD is used to control channel C and D. If the same LMFS configuration is used for all four  
channels, the SYNCbAB and SYNCbCD signals can be tied together externally and driven from the same  
source.  
版权 © 2015–2019, Texas Instruments Incorporated  
25  
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
Depending on the channel output data rate, the JESD204B output interface can be operated with either 1 or 2  
lanes per single channel. The JESD204B setup and configuration of the frame assembly parameters are  
controlled via SPI interface.  
The JESD204B transmitter block consists of the transport layer, the data scrambler and the link layer. The  
transport layer maps the channel output data into the selected JESD204B frame data format and manages if the  
channel output data or test patterns are being transmitted. The link layer performs the 8b/10b data encoding as  
well as the synchronization and initial lane alignment using the SYNCb input signal. Optionally, data from the  
transport layer can be scrambled.  
SYNCb  
AB  
SYSREF  
AB  
JESD204B  
D0/D1  
JESD  
204B  
INA  
INB  
JESD204B  
D0/D1  
JESD  
204B  
Sample  
Clock  
JESD204B  
D0/D1  
JESD  
204B  
INC  
IND  
JESD204B  
D0/D1  
JESD  
204B  
SYNCb  
CD  
SYSREF  
CD  
59. JESD204B Lane Assignment  
Transport Layer  
Link Layer  
Frame Data  
Mapping  
8b/10b  
encoding  
D0  
D1  
Scrambler  
1+x14+x15  
Comma characters  
Initial lane alignment  
Test Patterns  
SYNCb  
60. JESD204B Block  
26  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
7.3.3.1 JESD204B Initial Lane Alignment (ILA)  
The ILA process is started by the receiving device by deasserting the SYNCb signal. Upon detecting a logic low  
on the SYNCbAB input pins, the ADS54J54 device starts transmitting comma (K28.5) characters on channels A  
and B to establish code group synchronization. Upon detecting a logic high on the SYNCbCD input pins, the  
ADS54J54 device starts transmitting comma (K28.5) characters on channels C and D to establish code group  
synchronization.  
After synchronization is completed, the receiving device asserts the SYNCb signal and the ADS54J54 starts the  
ILA sequence with the next local multi-frame clock boundary. The ADS54J54 device transmits 4 multi-frames  
each containing K frames (K is SPI programmable). Each of the multi-frames contains the frame start and end  
symbols and the second multi-frame also contains the JESD204 link configuration data.  
SYSREF  
LMFC Clock  
LMFC Boundary  
Multi  
Frame  
SYNCb  
Transmit Data  
xxx  
K28.5  
Code Group  
Synchronization  
61. Initial Lane Assignment Format  
K28.5  
Initial Lane  
Alignment  
ILA  
ILA  
DATA  
Data Transmission  
DATA  
7.3.3.2 JESD204B Test Patterns  
There are three different test patterns available in the transport layer of the JESD204B interface. The ADS54J54  
supports a RAMP, 1555/2AAA and different PRBS patterns. They can be enabled through SPI register write and  
are located in address 0x1D and 0x32/33.  
7.3.3.3 JESD204B Frame Assembly  
The JESD204B standard defines the following parameters:  
L = number of lanes per link  
M = number of converters for device  
F = number of octets per frame clock period  
S = number of samples per frame  
HD = high density mode  
The ADS54J54 supports independent configuration of the JESD204B format for channel A and B and channel C  
and D. 2 lists the available JESD204B formats and valid ranges for the ADS54J54. The ranges are limited by  
the SerDes line rate and the maximum channel sample frequency.  
2. Permissible LMFS Settings  
Max Channel  
Max ƒSerDes  
L
M
F
S
HD  
Output Rate  
(MSPS)  
(Gsps)  
8
4
4
4
1
2
1
1
1
0
500  
250  
5.0  
5.0  
版权 © 2015–2019, Texas Instruments Incorporated  
27  
 
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
The detailed frame assembly is shown in 3.  
3. LMFS Data Formats  
LMFS = 8411  
A1[13:6] A2[13:6]  
LMFS = 4421  
A0[5:0], 00 A1[13:6]  
Lane  
DA0  
A0[13:6]  
A3[13:6]  
A0[13:6]  
B0[13:6]  
C0[13:6]  
D0[13:6]  
A1[5:0], 00 A2[13:6]  
B1[5:0], 00 B2[13:6]  
C1[5:0], 00 C2[13:6]  
D1[5:0], 00 D2[13:6]  
A2[5:0], 00  
B2[5:0], 00  
C2[5:0], 00  
D2[5:0], 00  
Lane  
DA1  
A0[5:0], 00 A1[5:0], 00 A2[5:0], 00 A3[5:0], 00  
B0[13:6] B1[13:6] B2[13:6] B3[13:6]  
B0[5:0], 00 B1[5:0], 00 B2[5:0], 00 B3[5:0], 00  
C0[13:6] C1[13:6] C2[13:6] C3[13:6]  
C0[5:0], 00 C1[5:0], 00 C2[5:0], 00 C3[5:0], 00  
D0[13:6] D1[13:6] D2[13:6] D3[13:6]  
D0[5:0], 00 D1[5:0], 00 D2[5:0], 00 D3[5:0], 00  
Lane  
DB0  
B0[5:0], 00 B1[13:6]  
C0[5:0], 00 C1[13:6]  
D0[5:0], 00 D1[13:6]  
Lane  
DB1  
Lane  
DC0  
Lane  
DC1  
Lane  
DD0  
Lane  
DD1  
7.3.4 SYSREF Clocking Schemes  
Periodic: The SYSREF signal is always on. This mode is supported, but not recommended as the continuous  
SYSREF signal appears like an additional clock input, which can cause clock mixing spurs in the channel output  
spectrum.  
Gapped-Periodic (recommended): A periodic SYSREF signal is presented to the ADS54J54 SYSREF inputs  
for a very short period of time. This configuration requires a DC-coupled SYSREF connection for proper  
operation. Most of the time the SYSREF signal is in a logic-low state, and thus cannot cause any glitches and  
spurs in the channel output spectrum.  
Pulse/One Shot (recommended): A single SYSREF reset pulse is used to synchronize the ADS54J54. The  
ADS54J54 device requires a minimum of 3 SYSREF pulses to complete the synchronization phase. The  
SYSREF signal is in a logic-low state most of the time, and thus cannot cause any glitches and spurs in the  
channel output spectrum. Special attention should be given to ensure the single pulse meets required the  
SYSREF input setup and hold time.  
7.3.5 Split-Mode Operation  
The ADS54J54 provides several different options to interface it to the digital processor or processors. If the  
ADS54J54 device is operated in split sampling rate (2 channels at 500-MSPS output rate and 2 channels at 250-  
MSPS output rate), then it requires dual SYSREF (SYSREFAB and SYSREFCD) and dual SYNC (SYNCbAB  
and SYNCbCD).  
Subclass 1 – Deterministic Latency: The device clock and synchronous SYSREF signal are provided by the  
timing unit to the ADS54J54 and the processor. The processor controls the SYNCb input signals for the  
JESD204B state machine for all four channels. In case the ADS54J54 is connected to two different processors,  
the differential SYNCb inputs of the ADS54J54 can be configured to two single-ended inputs where each pin  
controls the JESD204B state machine of the two corresponding channels.  
28  
版权 © 2015–2019, Texas Instruments Incorporated  
 
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
CLKIN  
SYSREF  
JESD204B  
D0/D1  
JESD204B  
D0/D1  
FPGA  
ASIC  
DSP  
JESD  
204B  
JESD  
204B  
INA  
INB  
INA  
JESD  
204B  
JESD  
204B  
INB  
SYSREFAB  
CLKIN  
SYSREFAB  
CLKIN  
SYNCbAB  
SYNCbCD  
SYNCbAB  
SYNCbCD  
ADS54J54  
ADS54J54  
FPGA  
ASIC  
DSP  
JESD  
204B  
JESD  
204B  
INC  
IND  
INC  
IND  
JESD  
204B  
JESD  
204B  
FPGA  
ASIC  
DSP  
CLKIN  
CLKIN  
Timing Unit  
For Example  
LMK04828  
Timing Unit  
For Example  
LMK04828  
SYSREF  
SYSREF  
62. Four Channel and Dual Two Channel Usage  
Split Mode Operation: If the ADS54J54 device is operated with 2-channel output at 500 MSPS and 2-channel  
output at 250 MSPS, then dual SYSREF (SYSREFAB for channel A and B, SYSREFCD for channel C and D) as  
well as dual SYNC (SYNCbAB for channel A and B, SYNCbCD for channel C and D) is required to ensure  
normal operation because the JESD204B link configuration is different for the two channel pairs.  
JESD204B  
D0/D1  
JESD  
204B  
INA  
JESD  
204B  
INB  
SYSREFAB  
SYNCbAB  
SYNCbCD  
FPGA  
ASIC  
DSP  
ADS54J54  
JESD  
INC  
IND  
204B  
JESD  
204B  
SYSREF  
CLKIN  
Timing Unit  
For Example  
LMK04828  
63. Dual SYSREF Usage  
版权 © 2015–2019, Texas Instruments Incorporated  
29  
 
 
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
7.3.6 Eye Diagram Information  
64 and 65 is the measured eye diagram at 2.5 and 5 Gbps output data rate, respectively. These are  
overlaid with the JESD204B LV-OIF-6G-SR specification.  
800 mV  
800 mV  
0 mV  
0 mV  
œ800 mV  
œ800 mV  
400 ps  
666.67 ps  
200 ps  
333.33 ps  
0 ps  
133.33 ps  
266.67 ps  
533.33 ps  
0 ps  
66.67 ps  
133.33 ps  
266.67 ps  
64. 2.5 Gbps Eye Diagram  
65. 5.0 Gbps Eye Diagram  
7.3.7 Analog Inputs  
The ADS54J54 analog signal inputs are designed to be driven differentially. The analog input pins have internal  
analog buffers that drive the sampling circuit. As a result of the analog buffer, the input pins present a high-  
impedance input across a wide frequency range to the external driving source, which enables great flexibility in  
the external analog filter design as well as excellent 50-matching for RF applications. The buffer also helps  
isolate the external driving circuit from the internal switching currents of the sampling circuit, which results in a  
more constant SFDR performance across input frequencies.  
The common-mode voltage of the signal inputs is internally biased to 2 V using 500-resistors, which allows for  
AC coupling of the input drive network. Each input pin (INP, INM) must swing symmetrically between (VCM +  
0.3125 V) and (VCM – 0.3125 V), resulting in a 1.25-Vpp (default) differential input swing. The input sampling  
circuit has a 3-dB bandwidth that extends up to 900 MHz.  
2
1 nH  
0.1  
30 ꢀ  
INxP  
0
360 fF  
3.4 pF  
500 ꢀ  
-2  
Vcm  
1 nH  
0.1 ꢀ  
30 ꢀ  
500 ꢀ  
-4  
INxM  
-6  
360 fF  
3.4 pF  
-8  
-10  
-12  
1E+7 2E+7  
5E+7 1E+8 2E+8  
5E+8 1E+9 2E+9  
5E+9  
Input Frequency (Hz)  
D00E  
66. Normalized Input Bandwidth  
67. Equivalent Analog Input Circuit  
30  
版权 © 2015–2019, Texas Instruments Incorporated  
 
 
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
7.3.8 Clock Inputs  
The ADS54J54 clock input can be driven differentially with a sine wave or LVPECL source with little or no  
difference in performance. The common mode voltage of the clock input is set to 0.9 V using internal 2-kΩ  
resistors. This allows for AC coupling of the clock inputs. The termination resistors should be placed as close as  
possible to the clock inputs in order to minimize signal reflections and jitter degradation.  
CLKINP  
2 k  
0.9 V  
2 kꢀ  
CLKINN  
68. Equivalent Clock Input Circuit  
7.3.9 Input Clock Divider  
The ADS54J54 is equipped with two internal dividers on the clock input – one on channel AB and one on  
channel CD. The clock divider allows operation with a faster input clock simplifying the system clock distribution  
design. The clock dividers can be bypassed (/1) for operation with a 500-MHz clock while /2 option supports a  
maximum input clock of 1 GHz and the /4 option a maximum input clock frequency of 2 GHz. Different divider  
options can be selected for channel AB and channel CD clock output. By default the divider output of channel AB  
block is routed to all 4 channels but the configuration can be customized with different SPI register settings to  
use either the channel AB or CD divider blocks for any two channels.  
ChAB  
ADC A  
ADC B  
Divide by  
1, 2, 4  
Phase Select  
CLKIN  
Divide by  
1, 2, 4  
Phase Select  
ADC C  
ADC D  
ChCD  
69. Input Clock Divider  
7.3.10 Power-Down Control  
The power down functions of the ADS54J54 can be controlled either through the parallel control pin (ENABLE) or  
through a SPI register setting. Power-down modes for the different channels as well as for the JESD204B  
interface are supported.  
The ADS54J54 supports the following power-down modes. The analog sleep mode configurations are in register  
0x05/06 and the JESD204b sleep mode configurations are in register 0x1E and 0x1F.  
版权 © 2015–2019, Texas Instruments Incorporated  
31  
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
4. Low-Power Mode Power Consumption and Wake-Up Times  
Configuration  
Global power down  
Standby  
Power Consumption  
24 mW  
Wake-Up Time  
Needs JESD resynch  
Needs JESD resynch  
1.4 ms  
31 mW  
Deep sleep  
791 mW  
Light sleep  
1.68 W  
8 µs  
Control power-down function through ENABLE pin:  
1. Configure power-down mode in register 0x05 and 0x1E  
2. Normal operation: ENABLE pin high  
3. Power-down mode: ENABLE pin low  
Control power-down function through SPI (ENABLE pin always high):  
1. Assign power-down mode in register 0x06 and 0x1F  
2. Normal operation: 0x06 and 0x1F are 0xFFFF  
3. Power-down mode: configure power down mode in register 0x06 and 0x1F  
7.3.11 Device Configuration  
The serial interface (SIF) included in the ADS54J54 is a simple 3- or 4-pin interface. In normal mode, 3 pins are  
used to communicate with the device. There is an enable (SDENb), a clock (SCLK), and a bidirectional IO port  
(SDATA). If the user would like to use the 4-pin interface, one write must be implemented in the 3-pin mode to  
enable 4-pin communications. In this mode, the SDOUT pin becomes the dedicated output. The serial interface  
has an 8-bit address word and a 16-bit data word. The first rising edge of SCLK after SDENb goes low will latch  
the read or write bit. If a high is registered, then a read is requested, if it is low, then a write is requested. SDENb  
must be brought high again before another transfer can be requested.  
7.3.12 JESD204B Interface Initialization Sequence  
After power-up, the internal JESD204B digital block must be initialized with the following sequence of steps:  
1. Set JESD RESET AB/CD and JESD INIT AB/CD to 0 (address 0x0D, value 0x0000)  
2. Set JESD INIT AB/CD to 1 (0x0D, 0x0202)  
3. Set JESD RESET AB/CD to 1 (0x0D, 0x0303)  
4. Configure all other JESD register and clock settings. If those settings change later on, this initialization  
sequence must be repeated.  
5. Set JESD RESET AB/CD to 0 (0x0D, 0x0202)  
6. Set JESD RESET AB/CD to 1 (0x0D, 0x0303)  
7. Wait for two SYSREF pulses  
8. Set JESD INIT AB/CD to 0 (0x0D, 0x0101)  
32  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
7.3.13 Device and Register Initialization  
After power-up, the internal registers must be initialized to their default values through a hardware reset by  
applying a low pulse on the SRESETb pin (of width greater than 10 ns), as shown in 1. If required later during  
operation, the serial interface registers can be cleared by applying:  
Another hardware reset using the SRESETb pin  
A software reset (bit D0 in register 0x00). This setting resets the internal registers to the default values and  
then self-resets the RESET bit (D0) back to 0. In this case, the RESET pin is kept high.  
Write the data in 5 to the following registers after every device power-up or reset for optimum AC  
performance:  
5. AC Performance  
ADDRESS  
0x06  
DATA  
0xFFDF  
0x0074  
0x0074  
0x4000  
0x0800  
0x0074  
0x0074  
0x4000  
0x0800  
REASON  
turn off fuse logic for power savings - not required  
trim value - required  
0x44  
0x47  
trim value - required  
0x4C  
0x50  
trim value - required  
trim value - required  
0x51  
trim value - required  
0x54  
trim value - required  
0x59  
trim value - required  
0x5D  
trim value - required  
7.4 Device Functional Modes  
7.4.1 Operating Modes  
6 details the five different operating modes. A pair of channels (channel A and B and channel C and D) can be  
configured in the same operating mode.  
6. Operating Modes Information  
Channel  
Sampling Rate  
(MSPS)  
Output Data  
Rate (MSPS)  
Output  
Resolution  
Output SerDes  
Rate (GSPS)  
Number of Lanes  
per Channel  
Digital Feature  
500  
500  
Decimation by 2  
Bypass digital logic mode  
250  
500  
14 bit  
14 bit  
5.0  
5.0  
1
2
版权 © 2015–2019, Texas Instruments Incorporated  
33  
 
 
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
7.4.2 Output Format  
7 provides detailed information on how the MSB or LSB get aligned for the different output data rates and resolution in the different operating modes.  
7. Output Data Formats  
Output  
Rate  
Mode  
Resolution  
14 bit  
Bit 15  
D13  
Bit 14  
D12  
Bit 13  
D11  
Bit 12  
D10  
Bit 11  
D9  
Bit 10  
D8  
Bit 9  
D7  
Bit 8  
D6  
Bit 7  
D5  
Bit 6  
D4  
Bit 5  
D3  
Bit 4  
D2  
Bit 3  
D1  
Bit 2  
D0  
Bit 1  
OVR  
OVR  
Bit 0  
250 MSPS  
Decimate by 2  
0
0
Bypass digital  
logic mode  
500 MSPS  
14 bit  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
34  
版权 © 2015–2019, Texas Instruments Incorporated  
 
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
7.5 Programming  
7.5.1 Serial Register Write  
The internal register of the ADS54J54 can be programmed following these steps:  
1. Drive SDENb pin low.  
2. Set the R/W bit to ‘0’ (bit A7 of the 8 bit address).  
3. Initiate a serial interface cycle specifying the address of the register (A6 to A0) whose content has to be  
written.  
4. Write 16-bit data which is latched on the rising edge of SCLK.  
8. Serial Register Read or Write Timing(1)  
PARAMETER  
SCLK frequency (equal to 1 / tSCLK  
SDENb to SCLK setup time  
SCLK to SDENb hold time  
SDATA setup time  
MIN  
>DC  
50  
TYP  
MAX  
UNIT  
MHz  
ns  
ƒSCLK  
tSLOADS  
tSLOADH  
tDSU  
)
10  
50  
ns  
50  
ns  
tDH  
SDATA hold time  
50  
ns  
(1) Typical values at 25°C; minimum and maximum values across the full temperature range: TMIN = –40°C to TMAX = 85°C,  
AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, unless otherwise noted.  
SCLK  
SDENb  
RWB  
A6  
A5  
A4  
A3  
A2  
A1  
A0 D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDATA  
Read = 1  
Write = 0  
7-bit address space  
16-bit data: D15 is MSB, D0 is LSB  
70. Serial Register Write Timing Diagram  
7.5.2 Serial Register Readout  
The device includes a mode where the contents of the internal registers can be read back using the SDOUT and  
SDATA pins. This read-back mode may be useful as a diagnostic check to verify the serial interface  
communication between the external controller and the channel.  
1. Drive SDENb pin low.  
2. Set the RW bit (A7) to 1. This setting disables any further writes to the registers.  
3. Initiate a serial interface cycle specifying the address of the register (A6 to A0) whose content has to be  
read.  
4. The device outputs the contents (D15 to D0) of the selected register on the SDOUT/SDATA pin.  
5. The external controller can latch the contents at the SCLK rising edge.  
6. To enable register writes, reset the RW register bit to 0.  
SCLK  
SDENb  
RWB  
A6  
A5  
A4  
A3  
A2  
A1  
A0 D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDATA  
Read = 1  
Write = 0  
7-bit address space  
16-bit data: D15 is MSB, D0 is LSB  
71. Serial Register Read Timing Diagram  
版权 © 2015–2019, Texas Instruments Incorporated  
35  
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
7.6 Register Maps  
Register  
Address  
Register Data  
A7 to A0 in  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
hex  
0
3/4 WIRE  
MODE 1  
0
FORMAT  
DEC EN AB  
1
HP/LP AB  
0
0
DEC EN CD  
FOVR THRESH AB  
0
HP/LP CD  
0
0
0
0
0
0
0
0
1
0
RESET  
1
0
1
FOVR LENGTH AB  
FOVR THRESH CD  
0
FOVR LENGTH CD  
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
CLK SEL  
CD  
SYSREF  
SEL CD  
CLK SEL  
AB  
3
0
CLK DIV CD  
CLK PHASE SELECT CD  
SYSREF CD DELAY  
CLK DIV AB  
CLK PHASE SELECT AB  
OVRA OUT OVRB OUT OVRC OUT OVRD OUT  
SYNCb AB  
EN  
SYNCb CD  
EN  
4
5
6
SYSREF AB DELAY  
0
0
0
1
1
EN  
EN  
EN  
EN  
ANALOG SLEEP MODES – ENABLE PIN  
ANALOG SLEEP MODES – SPI  
SYSREFCD  
EN  
7
8
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
CLK SW AB  
CLK SW CD  
0
1
1
1
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
0
0
C
SYSREF JESD MODE CD  
0
SYSREF JESD MODE AB  
JESD INIT  
CD  
JESD  
RESET CD  
JESD INIT  
AB  
JESD  
RESET AB  
D
0
0
0
0
0
0
0
0
0
0
0
0
0
E
F
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TX LANE EN CD  
TX LANE EN AB  
CTRL F AB  
0
0
0
0
0
0
0
0
CTRL M AB  
10  
CTRL K AB  
CTRL L AB  
INV SYNCb  
AB  
13  
0
0
0
0
0
0
0
0
HD AB  
0
SCR EN AB  
0
0
0
0
16  
17  
0
0
0
0
0
0
0
0
0
0
0
0
CTRL F CD  
0
0
0
0
0
0
0
0
CTRL M CD  
CTRL L CD  
CTRL K CD  
INV SYNCb  
CD  
1A  
1D  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HD CD  
SCR EN CD  
0
0
0
0
0
0
0
0
TEST  
PATTERN  
EN CD  
TEST  
PATTERN  
EN AB  
TEST  
PATTERN  
1E  
1F  
20  
21  
63  
64  
67  
68  
6B  
0
1
0
1
0
1
0
1
0
1
0
1
JESD SLEEP MODES – ENABLE PIN  
JESD SLEEP MODES – SPI  
PRBS EN  
JESD LANE POLARITY INVERT  
0
0
PRBS SEL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VREF SEL  
TEMP SENSOR  
0
PRE EMP SEL AB  
PRE EMP EN AB  
DCC EN AB  
DCC EN CD  
0
0
0
0
0
0
OUTPUT CURRENT CONTROL AB  
OUTPUT CURRENT CONTROL CD  
PRE EMP SEL CD  
PRE EMP EN CD  
0
JESD PLL  
CD  
JESD PLL  
AB  
6C  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
36  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
7.6.1 Register Descriptions  
7.6.1.1 Register Address 0  
72. Register Address 0, Reset 0x0000, Hex = 0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
3/4  
WIRE  
FORM  
AT  
DEC EN  
AB  
DEC EN  
CD  
HP/LP AB  
0
HP/LP CD  
0
0
0
0
0
0
0
0
RESET  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9. Register Address 0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Enables 4-bit serial interface when set  
0 = 3-wire SPI (SDATA is bidirectional)  
1 = 4-wire SPI (SDOUT is data output)  
D15  
3/4 WIRE  
R/W  
0
Selects digital output format  
0 = Output is 2s complement  
1 = Offset binary  
D14  
D13  
FORMAT  
R/W  
R/W  
0
0
Enables decimation filter for channel AB  
0 = Normal operation  
DEC EN AB  
1 = Decimation filter enabled  
Determines high-pass or low-pass configuration of decimation  
filter for channel AB  
0 = Low pass  
1 = High pass  
D12  
D10  
D9  
HP/LP AB  
DEC EN CD  
HP/LP CD  
RESET  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Enables decimation filter for channel CD  
0 = Normal operation  
1 = Decimation filter enabled  
Determines high-pass or low-pass configuration of decimation  
filter for channel CD  
0 = Low pass  
1 = High pass  
Software reset, self clears to 0  
0 = Normal operation  
D0  
1 = Execute software reset  
版权 © 2015–2019, Texas Instruments Incorporated  
37  
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
7.6.1.2 Register Address 1  
73. Register Address 1, Reset 0xAF7A, Hex = 1  
D15  
D14 D13 D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MODE  
1
FOVR LENGTH  
AB  
FOVR LENGTH  
CD  
0
1
0
FOVR THRESH AB  
FOVR THRESH CD  
1
0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
10. Register Address 1 Field Descriptions  
Bit  
Field  
Type  
R/W  
R
Reset  
Description  
D15  
D13  
MODE 1  
1
1
Set bit D15 to 0 for optimum performance  
Reads back 1  
Sets fast OVR thresholds for channel A and B  
The fast over-range detection is triggered 6 output clock cycles  
after the overload condition occurs. The threshold at which the  
OVR is triggered is:  
Input full scale × [decimal value of <over-range threshold>] / 8.  
After power-up or reset, the default value is 7 (decimal), which  
corresponds to an OVR threshold of 1.16-dB below full scale (20  
× log(7/8)).  
0
-2  
-4  
-6  
D11:D9  
FOVR THRESH AB  
R/W  
111  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
0
1
2
3
4
5
6
7
8
Programmed Decimal Value  
D00F  
74. OVR Detection Threshold  
Determines minimum pulse length for FOVR output  
00 = 1 clock cycle  
D8:D7  
D6:D4  
FOVR LENGTH AB  
FOVR THRESH CD  
FOVR LENGTH CD  
R/W  
R/W  
10  
01 = 2 clock cycles  
10 = 4 clock cycles  
11 = 8 clock cycles  
Sets fast OVR thresholds for channel C and D See description  
for channel A and B  
111  
Determines minimum pulse length for FOVR output  
00 = 1 clock cycle  
01 = 2 clock cycles  
10 = 4 clock cycles  
11 = 8 clock cycles  
D3:D2  
D1  
R/W  
R
10  
1
Reads back 1  
38  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
7.6.1.3 Register Address 3  
75. Register Address 3, Reset: 0x4040, Hex = 3  
D15  
D14  
D13  
D12  
D11 D10  
D9  
D8  
D7  
SYSREF CLK SEL  
SEL CD AB  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CLK SEL  
CD  
CLK PHASE  
SELECT CD  
CLK PHASE  
SELECT AB  
0
CLK DIV CD  
0
CLK DIV AB  
0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
11. Register Address 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Clock source selection for channel C and D  
0 = Channel CD clock output divider  
D14  
CLK SEL CD  
R/W  
1
1 = Channel AB clock output divider (default)  
Channel CD clock divider setting  
00 = Clock input is up to 500 MHz. Input clock is not divided  
(default)  
01 = /2  
10 = /4  
11 = Not used  
D13:D12 CLK DIV CD  
R/W  
R/W  
00  
Selects phase of channel divided clock, but depends on clock  
divider setting. When clock CD divider is set to:  
/1 = 2 phases are available (0º or 180º)  
/2 = 4 phases are available (0º, 90º, 180º or 270º)  
/4 = 8 phases are available (0º, 45º, 90º, 135º, 180º, 225º, 270º  
or 315º)  
D10:D8  
CLK PHASE SELECT CD  
000  
When switching clock phases, register 0x08, D9 must be  
enabled first and then disabled after the switch to ensure glitch-  
free operation.  
SYSREF Input selection for channel C and D  
0 = Use SYSREFAB inputs (default)  
1 = Use SYSREFCD inputs  
D7  
D6  
SYSREF SEL CD  
CLK SEL AB  
R/W  
R/W  
0
1
Clock source selection for channel A and B  
0 = Channel CD clock output divider  
1 = Channel AB clock output divider (default)  
Channel AB clock divider setting  
00 = Clock input is up to 500 MHz. Input clock is not divided  
(default)  
01 = /2  
10 = /4  
11 = Not used  
D5:D4  
D2:D0  
CLK DIV AB  
R/W  
R/W  
00  
Selects phase of channel AB divided clock, but depends on  
clock divider setting. When clock divider is set to:  
/1 = 2 phases are available (0º or 180º)  
/2 = 4 phases are available (0º, 90º, 180º or 270º)  
/4 = 8 phases are available (0º, 45º, 90º, 135º, 180º, 225º, 270º  
or 315º)  
CLK PHASE SELECT AB  
000  
When switching clock phases, register 0x07, D9 must be  
enabled first and then disabled after the switch to ensure glitch-  
free operation.  
版权 © 2015–2019, Texas Instruments Incorporated  
39  
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
7.6.1.4 Register Address 4  
76. Register Address 4, Reset: 0x000F, Hex = 4  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OVRA  
OVRB  
OVRC  
OVRD  
SYSREF AB  
DELAY  
SYSREF CD  
DELAY  
SYNCb  
AB EN  
SYNCb  
CD EN  
0
0
0
0
1
1
OUT EN OUT EN OUT EN OUT EN  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
12. Register Address 4 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
OVRA pin output enable  
0 = Not used (default)  
1 = OVRA is an output  
D15  
OVRA OUT EN  
R/W  
0
OVRB pin output enable  
0 = Not used (default)  
1 = OVRB is an output  
D14  
D13  
D12  
OVRB OUT EN  
OVRC OUT EN  
OVRD OUT EN  
R/W  
R/W  
R/W  
0
0
0
OVRC pin output enable  
0 = Not used (default)  
1 = OVRC is an output  
OVRD pin output enable  
0 = Not used (default)  
1 = OVRD is an output  
Programmable input delay on SYSREFAB input  
00 = 0-ps delay (default)  
01 = 200-ps delay  
10 = 100-ps delay  
11 = 300-ps delay  
D11:D10 SYSREF AB DELAY  
R/W  
R/W  
00  
00  
Programmable input delay on SYSREFCD input  
00 = 0-ps delay (default)  
01 = 200-ps delay  
D9:D8  
SYSREF CD DELAY  
10 = 100-ps delay  
11 = 300-ps delay  
SYNCbAB input buffer enable  
0 = Input buffer disabled  
1 = Input buffer enabled (default)  
D3  
D2  
SYNCb AB EN  
SYNCb CD EN  
R/W  
R/W  
1
1
SYNCbCD input buffer enable  
0 = Input buffer disabled  
1 = Input buffer enabled (default)  
D1  
D0  
R
R
1
1
Reads back 1  
Reads back 1  
40  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
7.6.1.5 Register Address 5  
77. Register Address 5, Reset: 0x0000, Hex = 5  
D15  
D14  
D13  
D12  
D11  
D10  
ANALOG SLEEP MODES – ENABLE pin  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
13. Register Address 5 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Power-down function assigned to ENABLE pin. When any bit is  
set, the corresponding function is always enabled regardless of  
status of the ENABLE pin. This assumes address 0x06 is in  
default configuration.  
ANALOG SLEEP MODES –  
ENABLE pin  
D15:D0  
R/W  
D13  
D11  
D9  
D7  
D6  
D4  
D3  
D2  
D1  
D0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
0
0
Light sleep channel A  
Light sleep channel B  
Light sleep channel C  
Light sleep channel D  
Temperature sensor  
Clock buffer  
Clock divider channel AB  
Clock divider channel CD  
Buffer SYSREFAB  
Buffer SYSREFCD  
spacer  
14. Configurations When ENABLE Pin is Low  
Description  
0000 0000 0000 0000  
1000 0000 0000 0000  
1000 0000 0001 1111  
1010 1010 1001 1111  
Global power down  
Standby  
Deep sleep  
Light sleep (if unused, clock divider CD and SYSREFCD can be set to 0 also)  
版权 © 2015–2019, Texas Instruments Incorporated  
41  
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
7.6.1.6 Register Address 6  
78. Register Address 6, Reset: 0xFFFF, Hex = 6  
D15  
D14  
D13  
D12  
D11  
D10  
ANALOG SLEEP MODES – SPI  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
15. Register Address 6 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Power-down function controlled via SPI. When a bit is set to 0,  
the function is powered down when ENABLE pin is high.  
However, register 0x05 has higher priority. For example, if D13  
(deep sleep channel A) in 0x05 is enabled, it cannot be powered  
down with the SPI.  
D15:D1  
ANALOG SLEEP MODES – SPI  
D13  
D11  
D9  
D7  
D6  
D4  
D3  
D2  
D1  
D0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
1
1
1
1
1
1
1
1
1
Light sleep channel A  
Light sleep channel B  
Light sleep channel C  
Light sleep channel D  
Temperature sensor  
Clock buffer  
Clock divider channel AB  
Clock divider channel CD  
Buffer SYSREFAB  
Should be left set to 1  
spacer  
16. Configurations When ENABLE Pin is High  
Description  
0000 0000 0000 000  
1000 0000 0000 000  
1000 0000 0001 111  
1010 1010 1001 111  
1111 1111 1111 111  
Global power down  
Standby  
Deep sleep  
Light sleep  
Normal operation  
Control power down function through ENABLE pin:  
1. Configure power-down mode in register 0x05  
2. Normal operation: ENABLE pin high  
3. Power-down mode: ENABLE pin low  
Control power down function through SPI (ENABLE pin always high):  
1. Assign power-down mode in register 0x06  
2. Normal operation 0x06 is 0xFFFF  
3. Power-down mode: configure power down mode in register 0x06  
42  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
7.6.1.7 Register Address 7  
79. Register Address 7, Reset: 0x0144, Hex = 7  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
CLK SW AB  
1
0
1
0
0
0
1
0
0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
17. Register Address 7 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
User should set this bit to 1 when changing the clock phase of  
the clock divider AB. After the change is complete user needs to  
write this bit back to 0.  
D9  
CLK SW AB  
R/W  
0
D8  
D6  
D2  
R
R
R
1
1
1
Reads back 1  
Reads back 1  
Reads back 1  
7.6.1.8 Register Address 8  
80. Register Address 8, Reset: 0x0144, Hex = 8  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
CLK SW CD  
1
0
1
0
0
0
1
0
0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
18. Register Address 8 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
User should set this bit to 1 when changing the clock phase of  
the clock divider CD. After the change is complete user needs to  
write this bit back to 0.  
D9  
CLK SW CD  
R/W  
0
D8  
D6  
D2  
R
R
R
1
1
1
Reads back 1  
Reads back 1  
Reads back 1  
7.6.1.9 Register Address 12  
81. Register Address 12, Reset: 0x31E4, Hex = C  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
1
1
0
0
0
1
1
1
SYSREF JESD MODE CD SYSREF JESD MODE AB  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
19. Register Address 12 Field Descriptions  
Bit  
D13  
D12  
D8  
Field  
Type  
R
Reset  
Description  
1
1
1
1
1
Reads back 1  
Reads back 1  
Reads back 1  
Reads back 1  
Reads back 1  
R
R
D7  
R
D6  
R
版权 © 2015–2019, Texas Instruments Incorporated  
43  
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
19. Register Address 12 Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
Determines how SYSREF is used in the JESD block for channel  
CD  
000 = Ignore SYSREF input  
001 = Use all SYSREF pulses  
D5:D3  
SYSREF JESD MODE CD  
R/W  
100  
010 = Use only the next SYSREF pulse  
011 = Skip one SYSREF pulse then use only the next one  
100 = Skip one SYSREF pulse then use all pulses (default)  
101 = Skip two SYSREF pulses and then use one  
111 = Skip two SYSREF pulses and then use all  
Determines how SYSREF is used in the JESD block for channel  
AB. Same functionality as SYSREF JESD MODE CD  
D2:D0  
SYSREF JESD MODE AB  
R/W  
100  
7.6.1.10 Register Address 13  
82. Register Address 13, Reset: 0x0202, Hex = D  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
JESD  
INIT CD RESET CD  
JESD  
JESD  
INIT AB RESET AB  
JESD  
0
0
0
0
0
0
0
0
0
0
0
0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
20. Register Address 13 Field Descriptions  
Bit  
D9  
D8  
D1  
D0  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
Puts the JESD block in INITIALIZATION state when set high. In  
this state the JESD parameters can be programmed and the  
outputs will stay at 0. See also JESD start-up sequence.  
JESD INIT CD  
JESD RESET CD  
JESD INIT AB  
JESD RESET AB  
1
0
1
0
Resets the JESD block when low  
Puts the JESD block in initialization state when set high. In this  
state the JESD parameters can be programmed and the outputs  
will stay at 0.  
Resets the JESD block when low  
7.6.1.11 Register Address 14  
83. Register Address 14, Reset: 0x00FF, Hex = E  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
0
0
TX LANE EN CD  
TX LANE EN AB  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
21. Register Address 14 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Enables JESD204B transmitter for channel C and D. Set to 1 to  
enable.  
D7 = Lane DD1  
D6 = Lane DD0  
D5 = Lane DC1  
D4 = Lane DC0  
D7:D4  
TX LANE EN CD  
R/W  
1111  
Enables JESD204B transmitter for channel A and B. Set to 1 to  
enable.  
D3 = Lane DB1  
D2 = Lane DB0  
D1 = Lane DA1  
D0 = Lane DA0  
D3:D0  
TX LANE EN AB  
R/W  
1111  
44  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
7.6.1.12 Register Address 15  
84. Register Address 15, Reset: 0x0001, Hex = F  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
CTRL F AB  
0
0
0
0
0
0
CTRL M AB  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
22. Register Address 15 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Controls number of octets per frame for channel AB.  
D9:D8  
CTRL F AB  
R/W  
00  
00 = F = 1 (default)  
01 = F = 2  
Controls number of converters per link for channel AB.  
01 = M = 2. This is the only valid option (default)  
D1:D0  
CTRL M AB  
R/W  
01  
7.6.1.13 Register Address 16  
85. Register Address 16, Reset: 0x03E3, Hex = 10  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
CTRL K AB  
0
0
0
CTRL L AB  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
23. Register Address 16 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Controls number of frames per multi-frame for channel AB.  
0: K = 1 30 K = 31  
1: K = 2 31 K = 32 (default)  
And so forth  
D9:D5  
CTRL K AB  
R/W  
11111  
Controls number of lanes for channel AB.  
01: L = 2  
D1:D0  
CTRL L AB  
R/W  
11  
11: L = 4 (default)  
7.6.1.14 Register Address 19  
86. Register Address 19, Reset: 0x0020, Hex = 13  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
INV SYNCb  
AB  
SCR EN  
AB  
0
0
0
0
0
0
0
0
0
HD AB  
0
0
0
0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
24. Register Address 19 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Inverts polarity of SYNCbAB input  
0 = Normal operation  
D6  
INV SYNCb AB  
R/W  
0
1 = Polarity inverted  
Enables high density mode for channel AB. This mode is  
needed for LMFS = 4221.  
0 = High-density mode disabled for mode LMFS = 2221  
D5  
D4  
HD AB  
R/W  
R/W  
1
0
1 = High-density mode enabled for mode LMFS = 4221 (default)  
Enables scramble mode for channel AB  
0 = Scramble mode disabled (default)  
1 = Scramble mode enabled  
SCR EN AB  
版权 © 2015–2019, Texas Instruments Incorporated  
45  
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
7.6.1.15 Register Address 22  
87. Register Address 22, Reset: 0x0001, Hex = 16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
CTRL F CD  
0
0
0
0
0
0
CTRL M CD  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
25. Register Address 22 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Controls number of octets per frame for channel CD.  
D9:D8  
CTRL F CD  
R/W  
00  
00: F = 1 (default)  
01: F = 2  
Controls number of converters per link for channel CD.  
01: M = 2. This is the only valid option (default)  
D1:D0  
CTRL M CD  
R/W  
01  
7.6.1.16 Register Address 23  
88. Register Address 23, Reset: 0x03E3, Hex = 17  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
CTRL K CD  
0
0
0
CTRL L CD  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
26. Register Address 23 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Controls number of frames per multi-frame for channel CD  
0: K = 1 30 K = 31  
1: K = 2 31 K = 32 (default)  
And so forth  
D9:D5  
CTRL K CD  
R/W  
11111  
Controls number of lanes for channel CD  
01: L = 2  
D1:D0  
CTRL L CD  
R/W  
11  
11: L = 4 (default)  
7.6.1.17 Register Address 26  
89. Register Address 26, Reset: 0x0020, Hex = 1A  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
INV SYNCb  
CD  
SCR EN  
CD  
0
0
0
0
0
0
0
0
0
HD CD  
0
0
0
0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
27. Register Address 26 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Inverts polarity of SYNCbCD input  
0 = Normal operation  
D6  
INV SYNCb CD  
R/W  
0
1 = Polarity inverted  
Enables high density mode for channel CD. This mode is  
needed for LMFS = 4221.  
0 = High density mode disabled for mode LMFS = 2221  
D5  
D4  
HD CD  
R/W  
R/W  
1
0
1 = High density mode enabled for mode LMFS = 4221 (default)  
Enables scramble mode for channel CD  
0 = Scramble mode disabled (default)  
1 = Scramble mode enabled  
SCR EN CD  
46  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
7.6.1.18 Register Address 29  
90. Register Address 29, Reset: 0x0000, Hex = 1D  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TEST  
PATTERN  
EN CD  
TEST  
PATTERN  
EN AB  
TEST  
PATTERN  
0
0
0
0
0
0
0
0
0
0
0
0
0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
28. Register Address 29 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Enables test pattern output for channel C and D  
0 = Normal operation  
D6  
TEST PATTERN EN CD  
R/W  
0
1 = Test pattern output enabled  
Enables test pattern output for channel A and B  
0 = Normal operation  
1 = Test pattern output enabled  
D5  
D4  
TEST PATTERN EN AB  
TEST PATTERN  
R/W  
R/W  
0
0
Selects test pattern  
0 = RAMP pattern  
1 = Output alternates between 0x1555 and 0x2AAA  
7.6.1.19 Register Address 30  
91. Register Address 30, Reset: 0x0000, Hex = 1E  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
JESD SLEEP MODES – ENABLE pin  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
29. Register Address 30 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Power-down function assigned to ENABLE pin. When any bit is  
set, the corresponding function is always enabled regardless of  
status of the ENABLE pin.  
D9 = JESD PLL channel CD  
D8 = JESD PLL channel AB  
D7 = Lane DD1  
0
0000  
0000  
JESD SLEEP MODES – ENABLE  
pin  
D9:D0  
R/W  
D6 = Lane DD0  
D5 = Lane DC1  
D4 = Lane DC0  
D3 = Lane DB1  
D2 = Lane DB0  
D1 = Lane DA1  
D0 = Lane DA0  
SPACE  
30. Configurations  
Description  
00 0000 0000  
00 0000 0000  
11 0000 0000  
11 0000 0000  
Global power down (default)  
Standby  
Deep sleep  
Light sleep  
版权 © 2015–2019, Texas Instruments Incorporated  
47  
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
7.6.1.20 Register Address 31  
92. Register Address 31, Reset: 0xFFFF, Hex = 1F  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
1
1
1
1
1
JESD SLEEP MODES – SPI  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
31. Register Address 31 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Power-down function controlled via SPI. When a bit is set to 0,  
the function is powered down when ENABLE pin is high.  
However register 0x1E has higher priority. For example, if D9  
(JESD PLL channel CD) in 0x1E is enabled, it cannot be  
powered down with the ENABLE pin.  
D9 = JESD PLL channel CD  
D8 = JESD PLL channel AB  
D7 = Lane DD1  
11  
1111  
1111  
D15:D0  
JESD SLEEP MODES – SPI  
R/W  
D6 = Lane DD0  
D5 = Lane DC1  
D4 = Lane DC0  
D3 = Lane DB1  
D2 = Lane DB0  
D1 = Lane DA1  
D0 = Lane DA0  
SPACE  
32. Configurations  
Description  
00 0000 0000  
00 0000 0000  
11 0000 0000  
11 0000 0000  
11 1111 1111  
Global power down  
Standby  
Deep sleep  
Light sleep  
Normal operation (default)  
Control power down function through ENABLE pin:  
1. Configure power down mode in register 0x1E  
2. Normal operation: ENABLE pin high  
3. Power down mode: ENABLE pin low  
Control power down function through SPI (ENABLE pin always high):  
1. Assign power down mode in register 0x1F  
2. Normal operation 0x1F is 0xFFFF  
3. Power-down mode: configure power down mode in register 0x1F  
48  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
7.6.1.21 Register Address 32  
93. Register Address 32, Reset: 0x0000, Hex = 20  
D15  
D14  
D13  
JESD LANE POLARITY INVERT  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PRBS EN  
33. Register Address 32 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Set to 1 for polarity inversion  
D15 = Lane DD1  
D14 = Lane DD0  
D13 = Lane DC1  
D12 = Lane DC0  
D11 = Lane DB1  
D10 = Lane DB0  
D9 = Lane DA1  
0000  
0000  
D15:D8  
JESD LANE POLARITY INVERT  
R/W  
D8 = Lane DA0  
Outputs PRBS pattern selected in address 0x21 on the selected  
serial output lanes  
D7 = Lane DD1  
D6 = Lane DD0  
D5 = Lane DC1  
D4 = Lane DC0  
D3 = Lane DB1  
D2 = Lane DB0  
D1 = Lane DA1  
D0 = Lane DA0  
0000  
0000  
D7:D0  
PRBS EN  
R/W  
7.6.1.22 Register Address 33  
94. Register Address 33, Reset: 0x0000, Hex = 21  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PRBS SEL  
0
0
0
0
0
0
0
0
0
0
VREF SEL  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
34. Register Address 33 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Selects different PRBS output pattern (these are not 8b/10b  
encoded)  
000 = 231 – 1  
001 = 27 – 1  
010 = 215 – 1  
011 = 223 – 1  
D14:D13 PRBS SEL  
R/W  
00  
Selects different input full-scale amplitude by adjusting voltage  
reference setting  
000 = Full scale is 1.25 Vpp (default)  
001 = Full scale is 1.35 Vpp  
010 = Full scale is 1.5 Vpp  
D2:D0  
VREF SEL  
R/W  
000  
011 = External  
100 = Full scale is 1.15 Vpp  
101 = Full scale is 1.0 Vpp  
版权 © 2015–2019, Texas Instruments Incorporated  
49  
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
7.6.1.23 Register Address 99  
95. Register Address 99,Reset: 0x0000, Hex = 63  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
0
TEMP SENSOR  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
35. Register Address 99 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Value of on chip temperature sensor (read only). Value is 2s  
D8:D0  
TEMP SENSOR  
R
undefined complement of die temperature sensor in °C  
For example: 0x0032 equals 50°C  
7.6.1.24 Register Address 100  
96. Register Address 100, Reset: 0x0000, Hex = 64  
D15  
D14  
PRE EMP SEL AB  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PRE EMP EN AB  
DCC EN AB  
0
0
0
0
36. Register Address 100 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Selects pre-emphasis of serializers for channel A and B  
0 = Pre-emphasis  
D15:D12 PRE EMP SEL AB  
R/W  
0000  
1 = De-emphasis  
Enables pre-emphasis, 0 = disabled, 1 = enabled  
D11 = Lane DB1  
D11:D8  
D7:D4  
PRE EMP EN AB  
DCC EN AB  
R/W  
R/W  
0000  
0000  
D10 = Lane DB0  
D9 = Lane DA1  
D8 = Lane DA0  
Enables the duty cycle correction circuit for each of the  
serializers  
D7 = Lane DB1  
D6 = Lane DB0  
D5 = Lane DA1  
D4 = Lane DA0  
50  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
7.6.1.25 Register Address 103  
97. Register Address 103, Reset: 0x0000, Hex = 67  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
OUTPUT CURRENT CONTROL AB  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
37. Register Address 103 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Selects pre-emphasis current for the serializers. There are 4 bit  
per serializer of channel A and B.  
D15:D12 = Lane DB1  
D11:D8 = Lane DB0  
D7:D4 = Lane DA1  
spacer  
0000  
0000  
0000  
0000  
D15:D0  
OUTPUT CURRENT CONTROL AB R/W  
D3:D0 = Lane DA0  
38. Pre-Emphasis Level is: Decimal Value / 30  
Description  
0000  
Normal operation  
0001  
1 / 30  
2 / 30  
0010  
and so forth  
7.6.1.26 Register Address 104  
98. Register Address 104, Reset: 0x0000, Hex = 68  
D15  
D14  
PRE EMP SEL CD  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PRE EMP EN CD  
DCC EN CD  
0
0
0
0
39. Register Address 104 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Selects pre-emphasis of serializers for channel C and D  
0 = Pre-emphasis  
D15:D12 PRE EMP SEL CD  
0000  
1 = De-emphasis  
Enables pre-emphasis, 0 = disabled, 1 = enabled  
D11 = Lane DD1  
D11:D8  
D7:D4  
PRE EMP EN CD  
DCC EN CD  
0000  
0000  
D10 = Lane DD0  
D9 = Land DC1  
D8 = Lane DC0  
Enables the duty cycle correction circuit for each of the  
serializers  
D7 = Lane DD1  
D6 = Lane DD0  
D5 = Land DC1  
D4 = Lane DC0  
版权 © 2015–2019, Texas Instruments Incorporated  
51  
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
7.6.1.27 Register Address 107  
99. Register Address 107, Reset: 0x0000, Hex = 6B  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
OUTPUT CURRENT CONTROL CD  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
40. Register Address 107 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Selects pre-emphasis current for the serializers. There are 4 bit  
per serializer of channel C and D.  
D15:D12 = Lane DD1  
D11:D8 = Lane DD0  
D7:D4 = Land DC1  
spacer  
0000  
0000  
0000  
0000  
D15:D0  
OUTPUT CURRENT CONTROL CD R/W  
D3:D0 = Lane DC0  
41. Pre-Emphasis Level is: Decimal Value / 30  
Description  
0000  
Normal operation  
0001  
1 / 30  
2 / 30  
0010  
And so forth  
7.6.1.28 Register Address 108  
100. Register Address 108, Hex = 3C  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
JESD PLL JESD PLL  
CD AB  
D0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
42. Register Address 108 Field Descriptions(1)  
Bit  
D1  
D0  
Field  
Type  
R
Reset  
Description  
JESD PLL CD  
JESD PLL CD  
1
1
JESD PLL for channel CD lost lock when flag is set high  
JESD PLL for channel AB lost lock when flag is set high  
R
(1) Register values in address 0x6C are read only alarms  
52  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
In the design of any application involving a high-speed data converter, particular attention should be paid the  
design of the analog input, the clocking solution, and careful layout of the clock and analog signals. In addition,  
the JESD204B interface means there now are high-speed serial lines that should be handled to preserve  
adequate signal integrity at the device that receives the sample data. The ADS54J54 evaluation module (EVM) is  
one practical example of the design of the analog input circuit and clocking solution, as well as a practical  
example of good circuit board layout practices around the ADC.  
8.2 Typical Application  
The analog inputs of the ADS54J54 must be fully differential and biased to a desired common mode voltage,  
VCM. Therefore, there will be a signal conditioning circuit for each of the analog inputs. If the amplitude of the  
input circuit is such that no gain is needed to make full use of the full-scale range of the ADC, then a transformer  
coupled circuit as in 101 may be used with good results. The transformer coupling is inherently low-noise, and  
inherently AC-coupled so that the signal may be biased to VCM after the transformer coupling. If signal gain is  
required, or the input bandwidth is to include the spectrum all the way down to DC such that AC coupling is not  
possible, then an amplifier-based signal conditioning circuit would be required.  
By using the simple drive circuit of 101, uniform performance can be obtained over a wide frequency range.  
The buffers present at the analog inputs of the device help isolate the external drive source from the switching  
currents of the sampling circuit.  
0.1 F  
T2  
CHx_INP  
T1  
5 ꢀ  
0.1 F  
25 ꢀ  
0.1 F  
RIN  
CIN  
25 ꢀ  
5 ꢀ  
0.1 F  
CHx_INM  
1:1  
1:1  
Device  
101. Input Drive Circuit  
版权 © 2015–2019, Texas Instruments Incorporated  
53  
 
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
Typical Application (接下页)  
0.1 µF  
CLKINP  
CLKINN  
RT  
RT  
0.1 µF  
0.1 µF  
102. Recommended Differential Clock Driving Circuit  
8.3 Design Requirements  
The ADS54J54 requires a fully differential analog input with a full-scale range not to exceed 1.25 V peak to peak,  
biased to a common mode voltage of 2.0 V. In addition the input circuit must provide proper transmission line  
termination (or proper load resistors in an amplifier-based solution) so the input of the impedance of the ADC  
analog inputs should be considered as well.  
The clocking solution will have a direct impact on performance in terms of SNR, as shown in 103. The  
ADS54J54 is capable of a typical SNR of 66 dBFS for input frequencies of about 100 MHz (in 14-bit bypass  
digital mode), so we will want to have a clocking solution that can preserve this level of performance.  
8.4 Detailed Design Procedure  
The ADS54J54 has an input bandwidth of approximately 900 MHz, but we will consider an application involving  
the first or second Nyquist zones, so we will limit the frequency bandwidth here to be under 250 MHz. We will  
also consider a 50-ohm signal source, so the proper termination would be 50-Ω differential. As seen in 104  
and 105, the input impedance of the analog input at 250 MHz is large compared to 50 Ω, so the proper  
termination can be 50-Ω differential as shown in 101. Splitting the termination into two 25-Ω resistors with an  
AC capacitor to ground provides a path to filter out any ripple on the common mode that may result from any  
amplitude or phase imbalance of the differential input, improving SFDR performance. The ADS54J54 provides a  
VCM output that may be used to bias the input to the desired level, but as seen in 67 the signal is internally  
biased inside the ADC so an external biasing to VCM is not required. If an external biasing to VCM were to be  
employed, the VCM voltage may be applied to the mid-point of the two 25-Ω termination resistors in 101.  
For the clock input, 103 shows the SNR of the device above 100 MHz begins to degrade with external clock  
jitter of greater than 100 fs rms, so we will recommend the clock source be limited to approximately 100 fS of rms  
jitter. For the ADS54J54 EVM, the LMK04828 clock device is capable of providing a low-jitter sample clock as  
well as providing the SYSREF signal required as shown in 62 and 63, so that clocking device is one good  
choice for the clocking solution for the ADS54J54.  
8.4.1 SNR and Clock Jitter  
The signal-to-noise ratio of the channel is limited by three different factors: the quantization noise is typically not  
noticeable in pipeline converters and is 84 dB for a 14-bit channel. The thermal noise limits the SNR at low input  
frequencies while the clock jitter sets the SNR for higher input frequencies.  
2
2
2
SNRQuantizatoin Noise  
SNRThermal Noise  
SNRJitter  
20  
÷
÷
÷
-
-
-
20  
20  
SNRADC[dBc] = -20log 10  
+ 10  
+ 10  
÷
÷
÷
÷
÷
÷
«
«
«
(1)  
Calculate the SNR limitation due to sample clock jitter using the following:  
54  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
Detailed Design Procedure (接下页)  
SNRJitter [dBc] = -20log(2pfin TJitter  
)
(2)  
The total clock jitter (tJitter) has two components – the internal aperture jitter (98 fs for ADS54J54), which is set by  
the noise of the clock input buffer, the external clock jitter, and the jitter from the analog input signal. Calculate  
total clock jitter using the following:  
2
TJitter  
= )  
(TJitter,Ext.Clock _Input )2 + (TAperture _ ADC  
(3)  
External clock jitter can be minimized by using high quality clock sources and jitter cleaners, as well as bandpass  
filters at the clock input while a faster clock slew rate improves the channel aperture jitter.  
The ADS54J54 has a thermal noise of 66 dBFS and internal aperture jitter of 98 fs. The SNR depending on  
amount of external jitter for different input frequencies is shown in 103.  
67  
35 fs  
50 fs  
100 fs  
150 fs  
200 fs  
66  
65  
64  
63  
62  
61  
10  
20  
30  
40  
50 60 70 80 100  
Fin (MHz)  
200  
300  
400 500 600 700800 1000  
D00A  
103. SNR vs Input Frequency and External Clock Jitter  
8.5 Application Curves  
104 and 105 show the differential impedance between the channel INP and INM pins. The impedance is  
modeled as a parallel combination of RIN and CIN (RIN || 1 / jwCIN).  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3.4E-12  
3.3E-12  
3.2E-12  
3.1E-12  
3E-12  
2.9E-12  
2.8E-12  
2.7E-12  
2.6E-12  
2.5E-12  
0
0
500 1000 1500 2000 2500 3000 3500 4000  
Frequency (MHz)  
0
500 1000 1500 2000 2500 3000 3500 4000  
Frequency (MHz)  
D032  
D033  
104. Equivalent R  
105. Equivalent C  
版权 © 2015–2019, Texas Instruments Incorporated  
55  
 
 
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
The device requires a 1.8-V nominal supply for AVDDC, IOVDD, PLLVDD, and DVDD. The device also requires  
a 1.9-V supply for AVDD18 and a 3.3-V supply for AVDD33. There are no specific sequence power-supply  
requirements during device power-up. AVDD, DVDD, IOVDD, PLLVDD, and AVDD33 can power up in any order.  
10 Layout  
10.1 Layout Guidelines  
The Device EVM layout can be used as a reference layout to obtain the best performance. A layout diagram of  
the EVM top layer is provided in 107. Some important points to remember during laying out the board are:  
Analog inputs are located on opposite sides of the device pinout to ensure minimum crosstalk on the package  
level. To minimize crosstalk on-board, the analog inputs should exit the pinout in opposite directions, as  
shown in the reference layout of 107 as much as possible.  
In the device pinout, the sampling clock is located on a side perpendicular to the analog inputs in order to  
minimize coupling between them. This configuration is also maintained on the reference layout of 107 as  
much as possible.  
Digital outputs should be kept away from the analog inputs. When these digital outputs exit the pinout, the  
digital output traces should not be kept parallel to the analog input traces because this configuration may  
result in coupling from digital outputs to analog inputs and degrade performance. The digital sample data rate  
can be as high as 5.0 Gsps, so care must be taken to maintain the signal integrity of these signals. A low-loss  
dielectric circuit board is recommended or else these traces should be kept as short as possible. These  
traces should be kept away from the analog inputs ad n clock input to the device as well.  
At each power-supply pin, a 0.1-μF decoupling capacitor should be kept close to the device. A separate  
decoupling  
capacitor  
group  
consisting  
of  
a
parallel  
combination  
of  
10-μF,  
1-μF, and 0.1-μF capacitors can be kept close to the supply source.  
10.1.1 CML SerDes Transmitter Interface  
Each of the 5 Gbps SerDes CML transmitter outputs requires AC coupling between transmitter and receiver. The  
differential pair should be terminated with a 100-Ω resistor as close to the receiving device as possible to avoid  
unwanted reflections and signal degradation.  
10.2 Layout Example  
Board Trace  
Board Trace  
106. Layout Example Schematic  
56  
版权 © 2015–2019, Texas Instruments Incorporated  
ADS54J54  
www.ti.com.cn  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
Layout Example (接下页)  
107. Top and Bottom Layers  
版权 © 2015–2019, Texas Instruments Incorporated  
57  
ADS54J54  
ZHCSD79A JANUARY 2015REVISED AUGUST 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 商标  
PowerPAD is a trademark of Texas Instruments.  
11.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
58  
版权 © 2015–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS54J54IRGCR  
ADS54J54IRGCT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGC  
RGC  
64  
64  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
AZ54J54  
AZ54J54  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS54J54IRGCR  
VQFN  
RGC  
64  
2000  
330.0  
16.4  
9.3  
9.3  
1.5  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RGC 64  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
ADS54J54IRGCR  
2000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGC 64  
9 x 9, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224597/A  
www.ti.com  
PACKAGE OUTLINE  
RGC0064H  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
9.15  
8.85  
A
B
PIN 1 INDEX AREA  
9.15  
8.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 7.5  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
17  
32  
16  
33  
65  
SYMM  
2X 7.5  
7.4 0.1  
60X  
0.5  
1
48  
0.30  
0.18  
64X  
49  
64  
PIN 1 ID  
0.1  
C A B  
0.5  
0.3  
64X  
0.05  
4219011/A 05/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGC0064H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
7.4)  
SEE SOLDER MASK  
DETAIL  
SYMM  
64X (0.6)  
49  
64  
64X (0.24)  
1
48  
60X (0.5)  
(3.45) TYP  
(R0.05) TYP  
(1.16) TYP  
65  
SYMM  
(8.8)  
(
0.2) TYP  
VIA  
33  
16  
32  
17  
(1.16) TYP  
(3.45) TYP  
(8.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219011/A 05/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGC0064H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
64X (0.6)  
64  
49  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
(1.16) TYP  
65  
SYMM  
(8.8)  
(0.58)  
36X ( 0.96)  
33  
16  
17  
32  
(0.58)  
(1.16)  
TYP  
(8.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 65  
61% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219011/A 05/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

ADS54J54IRGCT

四通道、14 位、500MSPS 模数转换器 (ADC) | RGC | 64 | -40 to 85
TI

ADS54J60

双通道、16 位、1.0GSPS 模数转换器 (ADC)
TI

ADS54J60IRMP

双通道、16 位、1.0GSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J60IRMPT

双通道、16 位、1.0GSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J64

四通道 14 位 1GSPS 2 倍过采样模数转换器 (ADC)
TI

ADS54J64IRMP

四通道 14 位 1GSPS 2 倍过采样模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J64IRMPT

四通道 14 位 1GSPS 2 倍过采样模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J66

四通道、14 位、500MSPS 模数转换器 (ADC)
TI

ADS54J66IRMP

四通道、14 位、500MSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J66IRMPT

四通道、14 位、500MSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J69

双通道、16 位、500MSPS 模数转换器 (ADC)
TI

ADS54J69IRMP

双通道、16 位、500MSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI